1
|
Abdelaziz MA, Chen WH, Chang YW, Mindaye SA, Chen CC. Exploring the role of spinal astrocytes in the onset of hyperalgesic priming signals in acid-induced chronic muscle pain. PNAS NEXUS 2024; 3:pgae362. [PMID: 39228816 PMCID: PMC11370897 DOI: 10.1093/pnasnexus/pgae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024]
Abstract
Hyperalgesic priming, a form of pain plasticity initiated by initial injury, leads to heightened sensitivity to subsequent noxious stimuli, contributing to chronic pain development in animals. While astrocytes play active roles in modulating synaptic transmission in various pain models, their specific involvement in hyperalgesic priming remains elusive. Here, we show that spinal astrocytes are essential for hyperalgesic priming formation in a mouse model of acid-induced muscle pain. We observed spinal astrocyte activation 4 h after initial acid injection, and inhibition of this activation prevented chronic pain development upon subsequent acid injection. Chemogenetic activation of spinal astrocytes mimicked the first acid-induced hyperalgesic priming. We also demonstrated that spinal phosphorylated extracellular regulated kinase (pERK)-positive neurons were mainly vesicular glutamate transporter-2 positive (Vglut2+) neurons after the first acid injection, and inhibition of spinal pERK prevented astrocyte activation. Furthermore, pharmacological inhibition of astrocytic glutamate transporters glutamate transporter-1 and glutamate-aspartate transporter abolished the hyperalgesic priming. Collectively, our results suggest that pERK activation in Vglut2+ neurons activate astrocytes through astrocytic glutamate transporters. This process eventually establishes hyperalgesic priming through spinal D-serine. We conclude that spinal astrocytes play a crucial role in the transition from acute to chronic pain.
Collapse
Affiliation(s)
- Mohamed Abbas Abdelaziz
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Zoology Department, Faculty of Science, Al-Azhar University Assiut Branch, Assiut 71524, Egypt
| | - Wei-Hsin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Wang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Selomon Assefa Mindaye
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
2
|
David ET, Yousuf MS, Mei HR, Jain A, Krishnagiri S, Elahi H, Venkatesan R, Srikanth KD, Dussor G, Dalva MB, Price TJ. ephrin-B2 promotes nociceptive plasticity and hyperalgesic priming through EphB2-MNK-eIF4E signaling in both mice and humans. Pharmacol Res 2024; 206:107284. [PMID: 38925462 DOI: 10.1016/j.phrs.2024.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Ephrin-B-EphB signaling can promote pain through ligand-receptor interactions between peripheral cells, like immune cells expressing ephrin-Bs, and EphB receptors expressed by DRG neurons. Previous studies have shown increased ephrin-B2 expression in peripheral tissues like synovium of rheumatoid and osteoarthritis patients, indicating the clinical significance of this signaling. The primary goal of this study was to understand how ephrin-B2 acts on mouse and human DRG neurons, which express EphB receptors, to promote pain and nociceptor plasticity. We hypothesized that ephrin-B2 would promote nociceptor plasticity and hyperalgesic priming through MNK-eIF4E signaling, a critical mechanism for nociceptive plasticity induced by growth factors, cytokines and nerve injury. Both male and female mice developed dose-dependent mechanical hypersensitivity in response to ephrin-B2, and both sexes showed hyperalgesic priming when challenged with PGE2 injection either to the paw or the cranial dura. Acute nociceptive behaviors and hyperalgesic priming were blocked in mice lacking MNK1 (Mknk1 knockout mice) and by eFT508, a specific MNK inhibitor. Sensory neuron-specific knockout of EphB2 using Pirt-Cre demonstrated that ephrin-B2 actions require this receptor. In Ca2+-imaging experiments on cultured DRG neurons, ephrin-B2 treatment enhanced Ca2+ transients in response to PGE2 and these effects were absent in DRG neurons from MNK1-/- and EphB2-PirtCre mice. In experiments on human DRG neurons, ephrin-B2 increased eIF4E phosphorylation and enhanced Ca2+ responses to PGE2 treatment, both blocked by eFT508. We conclude that ephrin-B2 acts directly on mouse and human sensory neurons to induce nociceptor plasticity via MNK-eIF4E signaling, offering new insight into how ephrin-B signaling promotes pain.
Collapse
Affiliation(s)
- Eric T David
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Muhammad Saad Yousuf
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Hao-Ruei Mei
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Ashita Jain
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Sharada Krishnagiri
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Hajira Elahi
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Rupali Venkatesan
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Kolluru D Srikanth
- Jefferson Synaptic Biology Center, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70124, USA; Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70124, USA
| | - Gregory Dussor
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Matthew B Dalva
- Jefferson Synaptic Biology Center, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70124, USA; Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70124, USA
| | - Theodore J Price
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA.
| |
Collapse
|
3
|
Willemen HLDM, Santos Ribeiro PS, Broeks M, Meijer N, Versteeg S, Tiggeler A, de Boer TP, Małecki JM, Falnes PØ, Jans J, Eijkelkamp N. Inflammation-induced mitochondrial and metabolic disturbances in sensory neurons control the switch from acute to chronic pain. Cell Rep Med 2023; 4:101265. [PMID: 37944527 PMCID: PMC10694662 DOI: 10.1016/j.xcrm.2023.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/24/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
Pain often persists in patients with an inflammatory disease, even when inflammation has subsided. The molecular mechanisms leading to this failure in pain resolution and the transition to chronic pain are poorly understood. Mitochondrial dysfunction in sensory neurons links to chronic pain, but its role in resolution of inflammatory pain is unclear. Transient inflammation causes neuronal plasticity, called hyperalgesic priming, which impairs resolution of pain induced by a subsequent inflammatory stimulus. We identify that hyperalgesic priming in mice increases the expression of a mitochondrial protein (ATPSc-KMT) and causes mitochondrial and metabolic disturbances in sensory neurons. Inhibition of mitochondrial respiration, knockdown of ATPSCKMT expression, or supplementation of the affected metabolite is sufficient to restore resolution of inflammatory pain and prevents chronic pain development. Thus, inflammation-induced mitochondrial-dependent disturbances in sensory neurons predispose to a failure in resolution of inflammatory pain and development of chronic pain.
Collapse
Affiliation(s)
- Hanneke L D M Willemen
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Patrícia Silva Santos Ribeiro
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Melissa Broeks
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Nils Meijer
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Sabine Versteeg
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Annefien Tiggeler
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Teun P de Boer
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 Utrecht, the Netherlands
| | - Jędrzej M Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway; CRES-O - Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway; CRES-O - Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Judith Jans
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands.
| |
Collapse
|
4
|
Fuller AM, Bharde S, Sikandar S. The mechanisms and management of persistent postsurgical pain. FRONTIERS IN PAIN RESEARCH 2023; 4:1154597. [PMID: 37484030 PMCID: PMC10357043 DOI: 10.3389/fpain.2023.1154597] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
An estimated 10%-50% of patients undergoing a surgical intervention will develop persistent postsurgical pain (PPP) lasting more than 3 months despite adequate acute pain management and the availability of minimally invasive procedures. The link between early and late pain outcomes for surgical procedures remains unclear-some patients improve while others develop persistent pain. The elective nature of a surgical procedure offers a unique opportunity for prophylactic or early intervention to prevent the development of PPP and improve our understanding of its associated risk factors, such as pre-operative anxiety and the duration of severe acute postoperative pain. Current perioperative pain management strategies often include opioids, but long-term consumption can lead to tolerance, addiction, opioid-induced hyperalgesia, and death. Pre-clinical models provide the opportunity to dissect mechanisms underpinning the transition from acute to chronic, or persistent, postsurgical pain. This review highlights putative mechanisms of PPP, including sensitisation of peripheral sensory neurons, neuroplasticity in the central nervous system and nociceptive signalling along the neuro-immune axis.
Collapse
|
5
|
Franzen AD, Paulsen RT, Kabeiseman EJ, Burrell BD. Heterosynaptic long-term potentiation of non-nociceptive synapses requires endocannabinoids, NMDARs, CamKII, and PKCζ. J Neurophysiol 2023; 129:807-818. [PMID: 36883763 PMCID: PMC10085563 DOI: 10.1152/jn.00494.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Noxious stimuli or injury can trigger long-lasting sensitization to non-nociceptive stimuli (referred to as allodynia in mammals). Long-term potentiation (LTP) of nociceptive synapses has been shown to contribute to nociceptive sensitization (hyperalgesia) and there is even evidence of heterosynaptic spread of LTP contributing to this type of sensitization. This study will focus on how activation of nociceptors elicits heterosynaptic LTP (hetLTP) in non-nociceptive synapses. Previous studies in the medicinal leech (Hirudo verbana) have demonstrated that high-frequency stimulation (HFS) of nociceptors produces both homosynaptic LTP as well as hetLTP in non-nociceptive afferent synapses. This hetLTP involves endocannabinoid-mediated disinhibition of non-nociceptive synapses at the presynaptic level, but it is not clear if there are additional processes contributing to this synaptic potentiation. In this study, we found evidence for the involvement of postsynaptic level change and observed that postsynaptic N-methyl-d-aspartate (NMDA) receptors (NMDARs) were required for this potentiation. Next, Hirudo orthologs for known LTP signaling proteins, CamKII and PKCζ, were identified based on sequences from humans, mice, and the marine mollusk Aplysia. In electrophysiological experiments, inhibitors of CamKII (AIP) and PKCζ (ZIP) were found to interfere with hetLTP. Interestingly, CamKII was found to be necessary for both induction and maintenance of hetLTP, whereas PKCζ was only necessary for maintenance. These findings show that activation of nociceptors can elicit a potentiation of non-nociceptive synapses through a process that involves both endocannabinoid-mediated disinhibition and NMDAR-initiated signaling pathways.NEW & NOTEWORTHY Pain-related sensitization involves increases in signaling by non-nociceptive sensory neurons. This can allow non-nociceptive afferents to have access to nociceptive circuitry. In this study, we examine a form of synaptic potentiation in which nociceptor activity elicits increases in non-nociceptive synapses. This process involves endocannabinoids, "gating" the activation of NMDA receptors, which in turn activate CamKII and PKCζ. This study provides an important link in how nociceptive stimuli can enhance non-nociceptive signaling related to pain.
Collapse
Affiliation(s)
- Avery D Franzen
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, United States
| | - Riley T Paulsen
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, United States
| | - Emily J Kabeiseman
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, United States
| | - Brian D Burrell
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, United States
| |
Collapse
|
6
|
Tassou A, Thouaye M, Gilabert D, Jouvenel A, Leyris JP, Sonrier C, Diouloufet L, Mechaly I, Mallié S, Bertin J, Chentouf M, Neiveyans M, Pugnière M, Martineau P, Robert B, Capdevila X, Valmier J, Rivat C. Activation of neuronal FLT3 promotes exaggerated sensorial and emotional pain-related behaviors facilitating the transition from acute to chronic pain. Prog Neurobiol 2023; 222:102405. [PMID: 36646299 DOI: 10.1016/j.pneurobio.2023.102405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/16/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Acute pain has been associated with persistent pain sensitization of nociceptive pathways increasing the risk of transition from acute to chronic pain. We demonstrated the critical role of the FLT3- tyrosine kinase receptor, expressed in sensory neurons, in pain chronification after peripheral nerve injury. However, it is unclear whether injury-induced pain sensitization can also promote long-term mood disorders. Here, we evaluated the emotional and sensorial components of pain after a single (SI) or double paw incision (DI) and the implication of FLT3. DI mice showed an anxiodepressive-like phenotype associated with extended mechanical pain hypersensitivity and spontaneous pain when compared to SI mice. Behavioral exaggeration was associated with peripheral and spinal changes including increased microglia activation after DI versus SI. Intrathecal microglial inhibitors not only eliminated the exaggerated pain hypersensitivity produced by DI but also prevented anxiodepressive-related behaviors. Behavioral and cellular changes produced by DI were blocked in Flt3 knock-out animals and recapitulated by repeated intrathecal FL injections in naive animals. Finally, humanized antibodies against FLT3 reduced DI-induced behavioral and microglia changes. Altogether our results show that the repetition of peripheral lesions facilitate not only exaggerated nociceptive behaviors but also induced anxiodepressive disorders supported by spinal central changes that can be blocked by targeting peripheral FLT3.
Collapse
Affiliation(s)
- Adrien Tassou
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Maxime Thouaye
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Damien Gilabert
- Univ Montpellier, Montpellier, France; CNRS UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Antoine Jouvenel
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Jean-Philippe Leyris
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France; BIODOL Therapeutics, Cap Alpha, Clapiers, France
| | - Corinne Sonrier
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France; BIODOL Therapeutics, Cap Alpha, Clapiers, France
| | - Lucie Diouloufet
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France; BIODOL Therapeutics, Cap Alpha, Clapiers, France
| | - Ilana Mechaly
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Sylvie Mallié
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Juliette Bertin
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France; BIODOL Therapeutics, Cap Alpha, Clapiers, France
| | - Myriam Chentouf
- Univ Montpellier, Montpellier, France; IRCM, INSERM U1194, ICM, Montpellier F-34298, France
| | - Madeline Neiveyans
- Univ Montpellier, Montpellier, France; IRCM, INSERM U1194, ICM, Montpellier F-34298, France
| | - Martine Pugnière
- Univ Montpellier, Montpellier, France; IRCM, INSERM U1194, ICM, Montpellier F-34298, France
| | - Pierre Martineau
- Univ Montpellier, Montpellier, France; IRCM, INSERM U1194, ICM, Montpellier F-34298, France
| | - Bruno Robert
- Univ Montpellier, Montpellier, France; IRCM, INSERM U1194, ICM, Montpellier F-34298, France
| | - Xavier Capdevila
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France; Département d'anesthésiologie, Hôpital Universitaire Lapeyronie, Montpellier, France
| | - Jean Valmier
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Cyril Rivat
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France.
| |
Collapse
|
7
|
Slivicki RA, Yi J, Brings VE, Huynh PN, Gereau RW. The cannabinoid agonist CB-13 produces peripherally mediated analgesia in mice but elicits tolerance and signs of central nervous system activity with repeated dosing. Pain 2022; 163:1603-1621. [PMID: 34961756 PMCID: PMC9281468 DOI: 10.1097/j.pain.0000000000002550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Activation of cannabinoid receptor type 1 (CB 1 ) produces analgesia in a variety of preclinical models of pain; however, engagement of central CB 1 receptors is accompanied by unwanted side effects, such as psychoactivity, tolerance, and dependence. Therefore, some efforts to develop novel analgesics have focused on targeting peripheral CB 1 receptors to circumvent central CB 1 -related side effects. In the present study, we evaluated the effects of acute and repeated dosing with the peripherally selective CB 1 -preferring agonist CB-13 on nociception and central CB 1 -related phenotypes in a model of inflammatory pain in mice. We also evaluated cellular mechanisms underlying CB-13-induced antinociception in vitro using cultured mouse dorsal root ganglion neurons. CB-13 reduced inflammation-induced mechanical allodynia in male and female mice in a peripheral CB 1 -receptor-dependent manner and relieved inflammatory thermal hyperalgesia. In cultured mouse dorsal root ganglion neurons, CB-13 reduced TRPV1 sensitization and neuronal hyperexcitability induced by the inflammatory mediator prostaglandin E 2 , providing potential mechanistic explanations for the analgesic actions of peripheral CB 1 receptor activation. With acute dosing, phenotypes associated with central CB 1 receptor activation occurred only at a dose of CB-13 approximately 10-fold the ED 50 for reducing allodynia. Strikingly, repeated dosing resulted in both analgesic tolerance and CB 1 receptor dependence, even at a dose that did not produce central CB 1 -receptor-mediated phenotypes on acute dosing. This suggests that repeated CB-13 dosing leads to increased CNS exposure and unwanted engagement of central CB 1 receptors. Thus, caution is warranted regarding therapeutic use of CB-13 with the goal of avoiding CNS side effects. Nonetheless, the clear analgesic effect of acute peripheral CB 1 receptor activation suggests that peripherally restricted cannabinoids are a viable target for novel analgesic development.
Collapse
Affiliation(s)
- Richard A. Slivicki
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Jiwon Yi
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO
| | - Victoria E. Brings
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Phuong Nhu Huynh
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
- Department of Neuroscience, Washington University, St. Louis, MO
- Department of Biomedical Engineering, Washington University, St. Louis, MO
| |
Collapse
|
8
|
Jensen KL, Noes-Holt G, Sørensen AT, Madsen KL. A Novel Peripheral Action of PICK1 Inhibition in Inflammatory Pain. Front Cell Neurosci 2021; 15:750902. [PMID: 34975407 PMCID: PMC8714954 DOI: 10.3389/fncel.2021.750902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic pain is a major healthcare problem that impacts one in five adults across the globe. Current treatment is compromised by dose-limiting side effects including drowsiness, apathy, fatigue, loss of ability to function socially and professionally as well as a high abuse liability. Most of these side effects result from broad suppression of excitatory neurotransmission. Chronic pain states are associated with specific changes in the efficacy of synaptic transmission in the pain pathways leading to amplification of non-noxious stimuli and spontaneous pain. Consequently, a reversal of these specific changes may pave the way for the development of efficacious pain treatment with fewer side effects. We have recently described a high-affinity, bivalent peptide TAT-P4-(C5)2, enabling efficient targeting of the neuronal scaffold protein, PICK1, a key protein in mediating chronic pain sensitization. In the present study, we demonstrate that in an inflammatory pain model, the peptide does not only relieve mechanical allodynia by targeting PICK1 involved in central sensitization, but also by peripheral actions in the inflamed paw. Further, we assess the effects of the peptide on novelty-induced locomotor activity, abuse liability, and memory performance without identifying significant side effects.
Collapse
Affiliation(s)
- Kathrine Louise Jensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Kenneth Lindegaard Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Gerum M, Simonin F. Behavioral characterization, potential clinical relevance and mechanisms of latent pain sensitization. Pharmacol Ther 2021; 233:108032. [PMID: 34763010 DOI: 10.1016/j.pharmthera.2021.108032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Chronic pain is a debilitating disorder that can occur as painful episodes that alternates with bouts of remission and occurs despite healing of the primary insult. Those episodes are often triggered by stressful events. In the last decades, a similar situation has been evidenced in a wide variety of rodent models (including inflammatory pain, neuropathy and opioid-induced hyperalgesia) where animals develop a chronic latent hyperalgesia that silently persists after behavioral signs of pain resolution. This state, referred as latent pain sensitization, is due to the compensatory activation of antinociceptive systems, such as the opioid system or NPY and its receptors. A transitory phase of hyperalgesia can then be reinstated by pharmacological or genetic blockade of these antinociceptive systems or by submitting animals to acute stress. Those observations reveal that there is a constant endogenous analgesia responsible for chronic pain inhibition that might paradoxically contribute to maintain this maladaptive state and could then participate to the transition from acute to chronic pain. Thus, demonstration of the existence of this phenomenon in humans and a better understanding of the mechanisms by which latent pain sensitization develops and maintains over long periods of time will be of particular interest to help identifying new therapeutic strategies and targets for chronic pain treatment. The present review aims to recapitulate behavioral expression, potential clinical relevance, cellular mechanisms and intracellular signaling pathways involved so far in latent pain sensitization.
Collapse
Affiliation(s)
- Manon Gerum
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, Illkirch-Graffenstaden, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, Illkirch-Graffenstaden, France.
| |
Collapse
|
10
|
Soubh AA, El-Gazar AA, Mohamed EA, Awad AS, El-Abhar HS. Further insights for the role of Morin in mRTBI: Implication of non-canonical Wnt/PKC-α and JAK-2/STAT-3 signaling pathways. Int Immunopharmacol 2021; 100:108123. [PMID: 34560511 DOI: 10.1016/j.intimp.2021.108123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/01/2021] [Accepted: 08/01/2021] [Indexed: 12/24/2022]
Abstract
The slightly available data about the pathogenesis process of mild repetitive traumatic brain injury (mRTBI) indicates to the necessity of further exploration of mRTBI consequences. Several cellular changes are believed to contribute to the cognitive disabilities, and neurodegenerative changes observed later in persons subjected to mRTBI. We investigated glial fibrillary acidic protein (GFAP), the important severity related biomarker, where it showed further increase after multiple trauma compared to single one. To authenticate our aim, Morin (10 mg/kg loading dose, then twice daily 5 mg/kg for 7 days), MK-801 (1 mg/kg; i.p) and their combination were used. The results obtained has shown that all the chosen regimens opposed the upregulated dementia markers (Aβ1-40,p(Thr231)Tau) and inflammatory protein contents/expression of p(Ser53s6)NF-κBp65, TNF-α, IL-6,and IL-1β and the elevated GFAP in immune stained cortex sections. Additionally, they exerted anti-apoptotic activity by decreasing caspase-3 activity and increasing Bcl-2 contents. Saving brain tissues was evident after these therapeutic agents via upregulating the non-canonical Wnt-1/PKC-α cue and IL-10/p(Tyr(1007/1008))JAK-2/p(Tyr705)STAT-3 signaling pathway to confirm enhancement of survival pathways on the molecular level. Such results were imitated by correcting the injury dependent deviated behavior, where Morin alone or in combination enhanced behavior outcome. On one side, our study refers to the implication of two survival signaling pathways; viz.,the non-canonical Wnt-1/PKC-α and p(Tyr(1007/1008))JAK-2/p(Tyr705)STAT-3 in single and repetitive mRTBI along with distorted dementia markers, inflammation and apoptotic process that finally disrupted behavior. On the other side, intervention through affecting all these targets by Morin alone or with MK-801 affords a promising neuroprotective effect.
Collapse
Affiliation(s)
- Ayman A Soubh
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Amira A El-Gazar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Eman A Mohamed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Azza S Awad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
11
|
Johnson D, Santos E, Kim K, Ponzini MD, McLennan YA, Schneider A, Tassone F, Hagerman RJ. Increased Pain Symptomatology Among Females vs. Males With Fragile X-Associated Tremor/Ataxia Syndrome. Front Psychiatry 2021; 12:762915. [PMID: 35126193 PMCID: PMC8811376 DOI: 10.3389/fpsyt.2021.762915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Individuals with the fragile X premutation report symptoms of chronic pain from multiple systems, have increased incidence of comorbid conditions where pain is a prominent feature, and pathophysiology that supports disrupted pain regulation, inflammation, and energy imbalance. Less is known about how pain manifests for the subpopulation of carriers that develop the motor and cognitive changes of fragile X-associated tremor and ataxia syndrome (FXTAS), and how pain may differ between men and women. We gathered data collected from 104 males and females with FXTAS related to chronic pain, comorbid conditions related to pain, and medications used for pain control to further explore the types of pain experienced and to better characterize how individuals with the fragile X premutation experience pain sensation across genders. We found that women experience significantly more pain symptoms than men, particularly allodynia (20 vs. 2.0%, p = 0.008), peripheral neuropathy pain (43.9 vs. 25.4%, p = 0.0488), migraine (43.9 vs. 14.5%, p = 0.0008), fibromyalgia (26.8 vs. 0%, p = 0.0071) and back pain (48.5 vs. 23.4%, p = 0.008). We found onset of peripheral neuropathy predicts the onset of ataxia (β = 0.63 ± 0.25, p = 0.019) and tremor (β = 0.56 ± 0.17, p = 0.004) across gender. Women also report significantly more anxiety (82.9 vs. 39.7%, p < 0.001), which has implications for ideal pain treatment. These pain symptoms need to be recognized in the medical history and treated appropriately, with consideration for overlapping comorbidities.
Collapse
Affiliation(s)
- Devon Johnson
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Ellery Santos
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Kyoungmi Kim
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States.,Division of Biostatistics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Matthew D Ponzini
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States.,Division of Biostatistics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Yingratana A McLennan
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States.,Department of Pediatrics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States.,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States.,Department of Pediatrics, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
12
|
Neuroendocrine Mechanisms Governing Sex Differences in Hyperalgesic Priming Involve Prolactin Receptor Sensory Neuron Signaling. J Neurosci 2020; 40:7080-7090. [PMID: 32801151 DOI: 10.1523/jneurosci.1499-20.2020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 01/17/2023] Open
Abstract
Many clinical and preclinical studies report higher prevalence and severity of chronic pain in females. We used hyperalgesic priming with interleukin 6 (IL-6) priming and PGE2 as a second stimulus as a model for pain chronicity. Intraplantar IL-6 induced hypersensitivity was similar in magnitude and duration in both males and females, while both paw and intrathecal PGE2 hypersensitivity was more persistent in females. This difference in PGE2 response was dependent on both circulating estrogen and translation regulation signaling in the spinal cord. In males, the duration of hypersensitivity was regulated by testosterone. Since the prolactin receptor (Prlr) is regulated by reproductive hormones and is female-selectively activated in sensory neurons, we evaluated whether Prlr signaling contributes to hyperalgesic priming. Using ΔPRL, a competitive Prlr antagonist, and a mouse line with ablated Prlr in the Nav1.8 sensory neuronal population, we show that Prlr in sensory neurons is necessary for the development of hyperalgesic priming in female, but not male, mice. Overall, sex-specific mechanisms in the initiation and maintenance of chronic pain are regulated by the neuroendocrine system and, specifically, sensory neuronal Prlr signaling.SIGNIFICANCE STATEMENT Females are more likely to experience chronic pain than males, but the mechanisms that underlie this sex difference are not completely understood. Here, we demonstrate that the duration of mechanical hypersensitivity is dependent on circulating sex hormones in mice, where estrogen caused an extension of sensitivity and testosterone was responsible for a decrease in the duration of the hyperalgesic priming model of chronic pain. Additionally, we demonstrated that prolactin receptor expression in Nav1.8+ neurons was necessary for hyperalgesic priming in female, but not male, mice. Our work demonstrates a female-specific mechanism for the promotion of chronic pain involving the neuroendrocrine system and mediated by sensory neuronal prolactin receptor.
Collapse
|
13
|
Baptista-de-Souza D, Tavares-Ferreira D, Megat S, Sankaranarayanan I, Shiers S, Flores CM, Ghosh S, Luiz Nunes-de-Souza R, Canto-de-Souza A, Price TJ. Sex differences in the role of atypical PKC within the basolateral nucleus of the amygdala in a mouse hyperalgesic priming model. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100049. [PMID: 32548337 PMCID: PMC7284072 DOI: 10.1016/j.ynpai.2020.100049] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/07/2020] [Accepted: 06/01/2020] [Indexed: 04/15/2023]
Abstract
Though sex differences in chronic pain have been consistently described in the literature, their underlying neural mechanisms are poorly understood. Previous work in humans has demonstrated that men and women differentially invoke distinct brain regions and circuits in coping with subjective pain unpleasantness. The goal of the present work was to elucidate the molecular mechanisms in the basolateral nucleus of the amygdala (BLA) that modulate hyperalgesic priming, a pain plasticity model, in males and females. We used plantar incision as the first, priming stimulus and prostaglandin E2 (PGE2) as the second stimulus. We sought to assess whether hyperalgesic priming can be prevented or reversed by pharmacologically manipulating molecular targets in the BLA of male or female mice. We found that administering ZIP, a cell-permeable inhibitor of aPKC, into the BLA attenuated aspects of hyperalgesic priming induced by plantar incision in males and females. However, incision only upregulated PKCζ/PKMζ immunoreactivity in the BLA of male mice, and deficits in hyperalgesic priming were seen only when we restricted our analysis to male Prkcz-/- mice. On the other hand, intra-BLA microinjections of pep2m, a peptide that interferes with the trafficking and function of GluA2-containing AMPA receptors, a downstream target of aPKC, reduced mechanical hypersensitivity after plantar incision and disrupted the development of hyperalgesic priming in both male and female mice. In addition, pep2m treatment reduced facial grimacing and restored aberrant behavioral responses in the sucrose splash test in male and female primed mice. Immunofluorescence results demonstrated upregulation of GluA2 expression in the BLA of male and female primed mice, consistent with pep2m findings. We conclude that, in a model of incision-induced hyperalgesic priming, PKCζ/PKMζ in the BLA is critical for the development of hyperalgesic priming in males, while GluA2 in the BLA is crucial for the expression of both reflexive and affective pain-related behaviors in both male and female mice in this model. Our findings add to a growing body of evidence of sex differences in molecular pain mechanisms in the brain.
Collapse
Affiliation(s)
- Daniela Baptista-de-Souza
- Dept. Psychology, Federal University of Sao Carlos-UFSCar, Sao Carlos, SP 13565-905, Brazil
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Diana Tavares-Ferreira
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Salim Megat
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Ishwarya Sankaranarayanan
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Stephanie Shiers
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Christopher M. Flores
- Janssen Research & Development, Neuroscience Therapeutic Area, San Diego, CA, United States
| | - Sourav Ghosh
- Yale University School of Medicine, Department of Neurology, United States
| | - Ricardo Luiz Nunes-de-Souza
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, SP 13565-905, Brazil
- Lab. Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista – UNESP, Araraquara, SP 14800-903, Brazil
| | - Azair Canto-de-Souza
- Dept. Psychology, Federal University of Sao Carlos-UFSCar, Sao Carlos, SP 13565-905, Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, SP 13565-905, Brazil
- Graduate Program in Psychology UFSCar, São Carlos, SP 13565-905, Brazil
| | - Theodore J. Price
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
- Corresponding author at: University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 W Campbell Rd., BSB 14.102, Richardson, TX 75080, United States.
| |
Collapse
|
14
|
Li XH, Chen QY, Zhuo M. Neuronal Adenylyl Cyclase Targeting Central Plasticity for the Treatment of Chronic Pain. Neurotherapeutics 2020; 17:861-873. [PMID: 32935298 PMCID: PMC7609634 DOI: 10.1007/s13311-020-00927-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is a major health problem and the effective treatment for chronic pain is still lacking. The recent crisis created by the overuse of opioids for pain treatment has clearly shown the need for non-addictive novel pain medicine. Conventional pain medicines usually inhibit peripheral nociceptive transmission and reduce central transmission, especially pain-related excitatory transmission. For example, both opioids and gabapentin produce analgesic effects by inhibiting the release of excitatory transmitters and reducing neuronal excitability. Here, we will review recent studies of central synaptic plasticity contributing to central sensitization in chronic pain. Neuronal selective adenylyl cyclase subtype 1 (AC1) is proposed to be a key intracellular protein that causes both presynaptic and postsynaptic forms of long-term potentiation (LTP). Inhibiting the activity of AC1 by selective inhibitor NB001 blocks behavioral sensitization and injury-related anxiety in animal models of chronic pain. We propose that inhibiting injury-related LTPs will provide new mechanisms for designing novel medicines for the treatment of chronic pain and its related emotional disorders.
Collapse
Affiliation(s)
- Xu-Hui Li
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Qi-Yu Chen
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Min Zhuo
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| |
Collapse
|
15
|
George NC, Laferrière A, Coderre TJ. Sex differences in the contributions of spinal atypical PKCs and downstream targets to the maintenance of nociceptive sensitization. Mol Pain 2020; 15:1744806919840582. [PMID: 30857476 PMCID: PMC6537080 DOI: 10.1177/1744806919840582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Chronic pain has been shown to depend on nociceptive sensitization in the spinal cord, and while multiple mechanisms involved in the initiation of plastic changes have been established, the molecular targets which maintain spinal nociceptive sensitization are still largely unknown. Building upon the established neurobiology underlying the maintenance of long-term potentiation in the hippocampus, this present study investigated the contributions of spinal atypical protein kinase C (PKC) isoforms PKCι/λ and PKMζ and their downstream targets (p62/GluA1 and NSF/GluA2 interactions, respectively) to the maintenance of spinal nociceptive sensitization in male and female rats. Results Pharmacological inhibition of atypical PKCs by ZIP reversed established allodynia produced by repeated intramuscular acidic saline injections in male animals only, replicating previously demonstrated sex differences. Inhibition of both PKCι/λ and downstream substrates p62/GluA1 resulted in male-specific reversals of intramuscular acidic saline-induced allodynia, while female animals continued to display allodynia. Inhibition of NSF/GluA2, the downstream target to PKMζ, reversed allodynia induced by intramuscular acidic saline in both sexes. Neither PKCι/λ, p62/GluA1 or NSF/GluA2 inhibition had any effect on formalin response for either sex. Conclusion This study provides novel behavioural evidence for the male-specific role of PKCι/λ and downstream target p62/GluA1, highlighting the potential influence of ongoing afferent input. The sexually divergent pathways underlying persistent pain are shown here to converge at the interaction between NSF and the GluA2 subunit of the AMPA receptor. Although this interaction is thought to be downstream of PKMζ in males, these findings and previous work suggest that females may rely on a factor independent of atypical PKCs for the maintenance of spinal nociceptive sensitization.
Collapse
Affiliation(s)
- Nicole C George
- 1 Alan Edwards Centre for Research on Pain, Montreal, QC, Canada.,2 Integrated Program in Neuroscience, Montreal, QC, Canada.,3 Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - André Laferrière
- 1 Alan Edwards Centre for Research on Pain, Montreal, QC, Canada.,3 Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Terence J Coderre
- 1 Alan Edwards Centre for Research on Pain, Montreal, QC, Canada.,2 Integrated Program in Neuroscience, Montreal, QC, Canada.,3 Department of Anesthesia, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Yang QQ, Li HN, Zhang ST, Yu YL, Wei W, Zhang X, Wang JY, Zeng XY. Red nucleus IL-6 mediates the maintenance of neuropathic pain by inducing the productions of TNF-α and IL-1β through the JAK2/STAT3 and ERK signaling pathways. Neuropathology 2020; 40:347-357. [PMID: 32380573 DOI: 10.1111/neup.12653] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 01/13/2023]
Abstract
We previously reported that interleukin (IL)-6 in the red nucleus (RN) is involved in the maintenance of neuropathic pain induced by spared nerve injury (SNI), and exerts a facilitatory effect via Janus-activated kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) and extracellular signal-regulated kinase (ERK) signal transduction pathways. The present study aimed at investigating the roles of tumor necrosis factor-α (TNF-α) and IL-1β in RN IL-6-mediated maintenance of neuropathic pain and related signal transduction pathways. Being similar to the elevation of RN IL-6 three weeks after SNI, increased protein levels of both TNF-α and IL-1β were also observed in the contralateral RN three weeks after the nerve injury. The upregulations of TNF-α and IL-1β were closely correlative with IL-6 and suppressed by intrarubral injection of a neutralizing antibody against IL-6. Administration of either the JAK2 antagonist AG490 or the ERK antagonist PD98059 to the RN of rats with SNI remarkably increased the paw withdrawal threshold (PWT) and inhibited the up-regulations of local TNF-α and IL-1β. Further experiments indicated that intrarubral injection of exogenous IL-6 in naive rats apparently lowered the PWT of the contralateral hindpaw and boosted the local expressions of TNF-α and IL-1β. Pretreatment with AG490 could block IL-6-induced tactile hypersensitivity and suppress the up-regulations of both TNF-α and IL-1β. However, injection of PD98059 in advance only inhibited the upregulation of IL-1β, but not TNF-α. These findings indicate that RN IL-6 mediates the maintenance of neuropathic pain by inducing the productions of TNF-α and IL-1β. IL-6 induces the expression of TNF-α through the JAK2/STAT3 pathway, and the production of IL-1β through the JAK2/STAT3 and ERK pathways.
Collapse
Affiliation(s)
- Qing-Qing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hao-Nan Li
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shu-Ting Zhang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yan-Li Yu
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wei Wei
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xi Zhang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jun-Yang Wang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiao-Yan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
17
|
Fan F, Tang Y, Dai H, Cao Y, Sun P, Chen Y, Chen A, Lin C. Blockade of BDNF signalling attenuates chronic visceral hypersensitivity in an IBS-like rat model. Eur J Pain 2020; 24:839-850. [PMID: 31976585 PMCID: PMC7154558 DOI: 10.1002/ejp.1534] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022]
Abstract
Background Irritable bowel syndrome (IBS) is a common functional disease characterized by chronic abdominal pain and changes in bowel movements. Effective therapy for visceral hypersensitivity in IBS patients remains challenging. This study investigated the roles of brain‐derived neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB) and the effect of ANA‐12 (a selective antagonist of TrkB) on chronic visceral hypersensitivity in an IBS‐like rat model. Methods An IBS‐like rat model was established through neonatal maternal separation (NMS), and visceral hypersensitivity was assessed by electromyographic (EMG) responses of the abdominal external oblique muscles to colorectal distention (CRD). Different doses of ANA‐12 were injected intrathecally to investigate the effect of that drug on visceral hypersensitivity, and the open field test was performed to determine whether ANA‐12 had side effects on movement. Thoracolumbar spinal BDNF, TrkB receptor and Protein kinase Mζ (PKMζ) expression were measured to investigate their roles in chronic visceral hypersensitivity. Whole‐cell recordings were made from thoracolumbar superficial dorsal horn (SDH) neurons of lamina II. Results The expression of BDNF and TrkB was enhanced in the thoracolumbar spinal cord of the NMS animals. ANA‐12 attenuated visceral hypersensitivity without side effects on motricity in NMS rats. PKMζ expression significantly decreased after the administration of ANA‐12. The frequency of spontaneous excitatory postsynaptic currents (sEPSCs) increased in the thoracolumbar SDH neurons of lamina II in NMS rats. The amplitude and frequency of sEPSCs were reduced after perfusion with ANA‐12 in NMS rats. Conclusions Neonatal maternal separation caused visceral hypersensitivity and increased synaptic activity by activating BDNF‐TrkB‐PKMζ signalling in the thoracolumbar spinal cord of adult rats. PKMζ was able to potentiate AMPA receptor (AMPAR)‐mediated sEPSCs in NMS rats. ANA‐12 attenuated visceral hypersensitivity and synaptic activity by blocking BDNF/TrkB signalling in NMS rats. Significance ANA‐12 attenuates visceral hypersensitivity via BDNF‐TrkB‐PKMζ signalling and reduces synaptic activity through AMPARs in NMS rats. This knowledge suggests that ANA‐12 could represent an interesting novel therapeutic medicine for chronic visceral hypersensitivity.
Collapse
Affiliation(s)
- Fei Fan
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| | - Ying Tang
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China
| | - Hengfen Dai
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China.,Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Cao
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China
| | - Pei Sun
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China
| | - Yu Chen
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China
| | - Aiqin Chen
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China
| | - Chun Lin
- School of basic Medical Sciences, Laboratory of Pain Research, Fujian Medical University, Fuzhou, China
| |
Collapse
|
18
|
Mei X, Yang Y, Zhao J, Wang Y, Chen Q, Qian X, Li X, Feng Z. Role of fragile X mental retardation protein in chronic pain. Mol Pain 2020; 16:1744806920928619. [PMID: 32496847 PMCID: PMC7273537 DOI: 10.1177/1744806920928619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 11/15/2022] Open
Abstract
Chronic pain has detrimental effects on one's quality of life. However, its treatment options are very limited, and its underlying pathogenesis remains unclear. Recent research has suggested that fragile X mental retardation protein is involved in the development of chronic pain, making it a potential target for prevention and treatment. The current review of literature will examine the function of fragile X mental retardation protein and its associated pathways, through which we hope to gain insight into how fragile X mental retardation protein may contribute to nociceptive sensitization and chronic pain.
Collapse
Affiliation(s)
- Xiangyang Mei
- Department of Pain Medicine,
The First Affiliated Hospital,
Zhejiang
University School of Medicine,
Hangzhou, Zhejiang, China
| | - Yixin Yang
- Department of Pain Medicine,
The First Affiliated Hospital,
Zhejiang
University School of Medicine,
Hangzhou, Zhejiang, China
| | - Jinsong Zhao
- Department of Pain Medicine,
The First Affiliated Hospital,
Zhejiang
University School of Medicine,
Hangzhou, Zhejiang, China
| | - Yongjie Wang
- Institute of Neuroscience,
Key Laboratory of Medical Neurobiology of the Ministry of Health of
China, School of Medicine,
Zhejiang
University, Hangzhou,
Zhejiang, China
| | - QiLiang Chen
- Department of
Anesthesiology, Perioperative and Pain Medicine, Stanford Health Care,
Stanford
University, Stanford, CA,
USA
| | - Xiang Qian
- Department of
Anesthesiology, Perioperative and Pain Medicine, Stanford Health Care,
Stanford
University, Stanford, CA,
USA
| | - Xiangyao Li
- Institute of Neuroscience,
Key Laboratory of Medical Neurobiology of the Ministry of Health of
China, School of Medicine,
Zhejiang
University, Hangzhou,
Zhejiang, China
| | - Zhiying Feng
- Department of Pain Medicine,
The First Affiliated Hospital,
Zhejiang
University School of Medicine,
Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Does toe clipping for genotyping interfere with later-in-life nociception in mice? Pain Rep 2019; 4:e740. [PMID: 31583355 PMCID: PMC6749918 DOI: 10.1097/pr9.0000000000000740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/21/2019] [Accepted: 03/08/2019] [Indexed: 11/25/2022] Open
Abstract
Introduction: Genetically modified mice are widely used in studies on human and animal physiology and pharmacology, including pain research. The experimental design usually includes comparisons of genetically modified mice with wild-type littermates, requiring biopsy material for genotyping and methods for unequivocal identification of individual mice. Ethical standards and, in some countries, legislation require that both needs are reached with a single procedure. Clipping of the most distal phalanx of up to two toes per paw (toe clipping) is the favored procedure in most research fields, but it may be problematic in sensory physiology and pain research. Objectives: To systematically investigate whether toe-clipping influences later-in-life nociceptive sensitivity or the susceptibility to neuropathic or inflammatory hyperalgesia. Methods: We tested in male mice whether the clipping of 2 toes of a hind paw influences nociceptive sensitivities to noxious heat or cold, or to mechanical stimulation under baseline conditions, after peripheral nerve injury (chronic constriction of the sciatic nerve) or during peripheral inflammation induced by subcutaneous zymosan A injection. We tested not only for the presence of significant differences but also specifically addressed bioequivalence using the 2 one-sided t test procedure. We chose a threshold of 25% variation of the control value for nonequivalence, which is usually taken as a threshold for biological relevance in pain tests. Results: Using this value, we found that for all conditions (non-neuropathic and non-inflamed, neuropathic and inflamed), nociceptive sensitivities significantly fell within the equivalence bounds of the non–toe-clipped control mice. Conclusions: These results suggest that toe clipping does not have long-term effects on nociceptive sensitivities and does not alter the susceptibility of male mice to neuropathic or inflammatory hyperalgesia.
Collapse
|
20
|
Inyang KE, Burton MD, Szabo-Pardi T, Wentworth E, McDougal TA, Ramirez ED, Pradhan G, Dussor G, Price TJ. Indirect AMP-Activated Protein Kinase Activators Prevent Incision-Induced Hyperalgesia and Block Hyperalgesic Priming, Whereas Positive Allosteric Modulators Block Only Priming in Mice. J Pharmacol Exp Ther 2019; 371:138-150. [PMID: 31324647 PMCID: PMC6750189 DOI: 10.1124/jpet.119.258400] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a multifunctional kinase that negatively regulates the mechanistic target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) signaling, two signaling pathways linked to pain promotion after injury, such as surgical incision. AMPK can be activated directly using positive allosteric modulators, as well as indirectly through the upregulation of upstream kinases, such as liver kinase B1 (LKB1), which is a mechanism of action of metformin. Metformin's antihyperalgesic effects occur only in male mice, raising questions about how metformin regulates pain sensitivity. We used metformin and other structurally distinct AMPK activators narciclasine (NCLS), ZLN-024, and MK8722, to treat incision-induced mechanical hypersensitivity and hyperalgesic priming in male and female mice. Metformin was the only AMPK activator to have sex-specific effects. We also found that indirect AMPK activators metformin and NCLS were able to reduce mechanical hypersensitivity and block hyperalgesic priming, whereas direct AMPK activators ZLN-024 and MK8722 only blocked priming. Direct and indirect AMPK activators stimulated AMPK in dorsal root ganglion (DRG) neuron cultures to a similar degree; however, incision decreased phosphorylated AMPK (p-AMPK) in DRG. Because AMPK phosphorylation is required for kinase activity, we interpret our findings as evidence that indirect AMPK activators are more effective for treating pain hypersensitivity after incision because they can drive increased p-AMPK through upstream kinases like LKB1. These findings have important implications for the development of AMPK-targeting therapeutics for pain treatment. SIGNIFICANCE STATEMENT: Nonopioid treatments for postsurgical pain are needed. Our work focused on whether direct or indirect AMP-activated protein kinase (AMPK) activators would show greater efficacy for inhibiting incisional pain, and we also tested for potential sex differences. We conclude that indirect AMPK activators are likely to be more effective as potential therapeutics for postsurgical pain because they inhibit acute pain caused by incision and prevent the long-term neuronal plasticity that is involved in persistent postsurgical pain. Our work points to the natural product narciclasine, an indirect AMPK activator, as an excellent starting point for development of therapeutics.
Collapse
Affiliation(s)
- Kufreobong E Inyang
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Michael D Burton
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Thomas Szabo-Pardi
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Emma Wentworth
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Timothy A McDougal
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Eric D Ramirez
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Grishma Pradhan
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Theodore J Price
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| |
Collapse
|
21
|
|
22
|
He Y, Wang ZJ. Spinal and afferent PKC signaling mechanisms that mediate chronic pain in sickle cell disease. Neurosci Lett 2019; 706:56-60. [PMID: 31051220 DOI: 10.1016/j.neulet.2019.04.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
Pain is the most characteristic feature of sickle cell disease (SCD). Patients with SCD live with unpredictable, recurrent episodes of acute painful crisis, as well as chronic unremitting pain throughout their lifetime. While most of the research and medical efforts have focused on treating vaso-occlusion crisis and acute pain, chronic pain remains a significant challenge faced by patients and physicians. Emerging evidence from human and animal studies has suggested the presence of a neuropathic component in SCD pain. New knowledge on the neurobiology of chronic pain in SCD has significant implications in unraveling the underlying mechanisms. This review focuses on the recent advances on the role of protein kinase C or PKC in promoting and maintaining chronic pain conditions. With a highlight of a specific PKC isoform, PKCδ, we aim to propose PKC as an essential regulator of chronic pain in SCD, which may ultimately lead to innovative therapeutic strategies for treating this devastating life-long problem in patients with SCD.
Collapse
Affiliation(s)
- Ying He
- Department of Biopharmaceutical Sciences and Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60612, United States.
| | - Zaijie Jim Wang
- Department of Biopharmaceutical Sciences and Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60612, United States.
| |
Collapse
|
23
|
Shiers S, Price TJ. Neuroscience: A Male-Specific Pain Memory Mechanism. Curr Biol 2019; 29:R50-R52. [DOI: 10.1016/j.cub.2018.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Khoutorsky A, Price TJ. Translational Control Mechanisms in Persistent Pain. Trends Neurosci 2018; 41:100-114. [PMID: 29249459 DOI: 10.1016/j.tins.2017.11.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/14/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022]
Abstract
Persistent pain, which is poorly treated and estimated to afflict one third of the world's population, is largely mediated by the sensitization of nociceptive neurons. This sensitization involves de novo gene expression to support biochemical and structural changes required to maintain amplified pain signaling that frequently persists even after injury to tissue resolves. While transcription-dependent changes in gene expression are important, recent work demonstrates that activity-dependent regulation of mRNA translation is key to controlling the cellular proteome and the development and maintenance of persistent pain. In this review, we highlight recent advances in translational regulation of gene expression in nociceptive circuits, with a focus on key signaling pathways and mRNA targets that may be tractable for the creation of next-generation pain therapeutics.
Collapse
Affiliation(s)
- Arkady Khoutorsky
- Department of Anesthesia and Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, H3A 0G1, Canada.
| | - Theodore J Price
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
25
|
Uttam S, Wong C, Price TJ, Khoutorsky A. eIF4E-Dependent Translational Control: A Central Mechanism for Regulation of Pain Plasticity. Front Genet 2018; 9:470. [PMID: 30459806 PMCID: PMC6232926 DOI: 10.3389/fgene.2018.00470] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/24/2018] [Indexed: 01/04/2023] Open
Abstract
Translational control of gene expression has emerged as a key mechanism in regulating different forms of long-lasting neuronal plasticity. Maladaptive plastic reorganization of peripheral and spinal nociceptive circuits underlies many chronic pain states and relies on new gene expression. Accordingly, downregulation of mRNA translation in primary afferents and spinal dorsal horn neurons inhibits tissue injury-induced sensitization of nociceptive pathways, supporting a central role for translation dysregulation in the development of persistent pain. Translation is primarily regulated at the initiation stage via the coordinated activity of translation initiation factors. The mRNA cap-binding protein, eukaryotic translation initiation factor 4E (eIF4E), is involved in the recruitment of the ribosome to the mRNA cap structure, playing a central role in the regulation of translation initiation. eIF4E integrates inputs from the mTOR and ERK signaling pathways, both of which are activated in numerous painful conditions to regulate the translation of a subset of mRNAs. Many of these mRNAs are involved in the control of cell growth, proliferation, and neuroplasticity. However, the full repertoire of eIF4E-dependent mRNAs in the nervous system and their translation regulatory mechanisms remain largely unknown. In this review, we summarize the current evidence for the role of eIF4E-dependent translational control in the sensitization of pain circuits and present pharmacological approaches to target these mechanisms. Understanding eIF4E-dependent translational control mechanisms and their roles in aberrant plasticity of nociceptive circuits might reveal novel therapeutic targets to treat persistent pain states.
Collapse
Affiliation(s)
- Sonali Uttam
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Calvin Wong
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Theodore J. Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, United States
| | - Arkady Khoutorsky
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
26
|
Moy JK, Szabo-Pardi T, Tillu DV, Megat S, Pradhan G, Kume M, Asiedu MN, Burton MD, Dussor G, Price TJ. Temporal and sex differences in the role of BDNF/TrkB signaling in hyperalgesic priming in mice and rats. NEUROBIOLOGY OF PAIN 2018; 5:100024. [PMID: 31194015 PMCID: PMC6550116 DOI: 10.1016/j.ynpai.2018.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022]
Abstract
The effect of TrkB-Fc on hyperalgesic priming is sexually dimorphic in mice. The effect of TrkB-Fc on hyperalgesic priming is equivalent in male and female rats. Microglial BDNF does not contribute to hyperalgesic priming in mice.
Brain-derived neurotrophic factor (BDNF) signaling through its cognate receptor, TrkB, is a well-known promoter of synaptic plasticity at nociceptive synapses in the dorsal horn of the spinal cord. Existing evidence suggests that BDNF/TrkB signaling in neuropathic pain is sex dependent. We tested the hypothesis that the effects of BDNF/TrkB signaling in hyperalgesic priming might also be sexually dimorphic. Using the incision postsurgical pain model in male mice, we show that BDNF sequestration with TrkB-Fc administered at the time of surgery blocks the initiation and maintenance of hyperalgesic priming. However, when BDNF signaling was blocked prior to the precipitation of hyperalgesic priming with prostaglandin E2 (PGE2), priming was not reversed. This result is in contrast to our findings in male mice with interleukin-6 (IL6) as the priming stimulus where TrkB-Fc was effective in reversing the maintenance of hyperalgesic priming. Furthermore, in IL6-induced hyperalgesic priming, the BDNF sequestering agent, TrkB-fc, was effective in reversing the maintenance of hyperalgesic priming in male mice; however, when this experiment was conducted in female mice, we did not observe any effect of TrkB-fc. This markedly sexual dimorphic effect in mice is consistent with recent studies showing a similar effect in neuropathic pain models. We tested whether the sexual dimorphic role for BDNF was consistent across species. Importantly, we find that this sexual dimorphism does not occur in rats where TrkB-fc reverses hyperalgesic priming fully in both sexes. Finally, to determine the source of BDNF in hyperalgesic priming in mice, we used transgenic mice (Cx3cr1CreER × Bdnfflx/flx mice) with BDNF eliminated from microglia. From these experiments we conclude that BDNF from microglia does not contribute to hyperalgesic priming and that the key source of BDNF for hyperalgesic priming is likely nociceptors in the dorsal root ganglion. These experiments demonstrate the importance of testing mechanistic hypotheses in both sexes in multiple species to gain insight into complex biology underlying chronic pain.
Collapse
Affiliation(s)
- Jamie K Moy
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, United States
| | - Thomas Szabo-Pardi
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, United States
| | - Dipti V Tillu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, United States.,Department of Medical Pharmacology, University of Arizona, Tucson, AZ, 85724, United States
| | - Salim Megat
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, United States
| | - Grishma Pradhan
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, United States
| | - Moeno Kume
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, United States
| | - Marina N Asiedu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, United States
| | - Michael D Burton
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, United States.,Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, United States
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, United States.,Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, United States
| | - Theodore J Price
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, United States.,Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, United States
| |
Collapse
|
27
|
Abstract
Abstract
The development of chronic pain is considered a major complication after surgery. Basic science research in animal models helps us understand the transition from acute to chronic pain by identifying the numerous molecular and cellular changes that occur in the peripheral and central nervous systems. It is now well recognized that inflammation and nerve injury lead to long-term synaptic plasticity that amplifies and also maintains pain signaling, a phenomenon referred to as pain sensitization. In the context of surgery in humans, pain sensitization is both responsible for an increase in postoperative pain via the expression of wound hyperalgesia and considered a critical factor for the development of persistent postsurgical pain. Using specific drugs that block the processes of pain sensitization reduces postoperative pain and prevents the development of persistent postoperative pain. This narrative review of the literature describes clinical investigations evaluating different preventative pharmacologic strategies that are routinely used by anesthesiologists in their daily clinical practices for preventing persistent postoperative pain. Nevertheless, further efforts are needed in both basic and clinical science research to identify preclinical models and novel therapeutics targets. There remains a need for more patient numbers in clinical research, for more reliable data, and for the development of the safest and the most effective strategies to limit the incidence of persistent postoperative pain.
Collapse
|
28
|
Zhang L, Guo S, Zhao Q, Li Y, Song C, Wang C, Yu Y, Wang G. Spinal Protein Kinase Mζ Regulates α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor Trafficking and Dendritic Spine Plasticity via Kalirin-7 in the Pathogenesis of Remifentanil-induced Postincisional Hyperalgesia in Rats. Anesthesiology 2018; 129:173-186. [PMID: 29578864 DOI: 10.1097/aln.0000000000002190] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Background
Intraoperative remifentanil anesthesia exaggerates postoperative pain sensitivity. Recent studies recapitulate the significance of protein kinase Mζ in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor–mediated pathologic pain. Kalirin-7, a Rho guanine nucleotide exchange factor, coordinates AMPA receptor trafficking and dendritic spine plasticity. This study examines whether protein kinase Mζ and Kalirin-7 contribute to remifentanil-induced postincisional hyperalgesia via AMPA receptor.
Methods
Plantar incision was performed 10 min after the start of remifentanil infusion (1 µg · kg−1 · min−1 for 60 min). Paw withdrawal threshold (primary outcome), spinal protein kinase Mζ activity, Kalirin-7 expression, AMPA receptor trafficking, and spine morphology were assessed. Protein kinase Mζ inhibitor and Kalirin-7 knockdown by short hairpin RNA elucidated the mechanism and prevention of hyperalgesia. Whole-cell patch-clamp recording analyzed the role of protein kinase Mζ in spinal AMPA receptor–induced current.
Results
Remifentanil reduced postincisional paw withdrawal threshold (mean ± SD, control vs. hyperalgesia, 18.9 ± 1.6 vs. 5.3 ± 1.2 g, n = 7) at postoperative 48 h, which was accompanied by an increase in spinal protein kinase Mζ phosphorylation (97.8 ± 25.1 vs. 181.5 ± 18.3%, n = 4), Kalirin-7 production (101.9 ± 29.1 vs. 371.2 ± 59.1%, n = 4), and number of spines/10 µm (2.0 ± 0.3 vs. 13.0 ± 1.6, n = 4). Protein kinase Mζ inhibitor reduced remifentanil-induced hyperalgesia, Kalirin-7 expression, and GluA1 trafficking. Incubation with protein kinase Mζ inhibitor reversed remifentanil-enhanced AMPA receptor-induced current in dorsal horn neurons. Kalirin-7 deficiency impaired remifentanil-caused hyperalgesia, postsynaptic GluA1 insertion, and spine plasticity. Selective GluA2-lacking AMPA receptor antagonist prevented hyperalgesia in a dose-dependent manner.
Conclusions
Spinal protein kinase Mζ regulation of GluA1-containing AMPA receptor trafficking and spine morphology via Kalirin-7 overexpression is a fundamental pathogenesis of remifentanil-induced hyperalgesia in rats.
Collapse
Affiliation(s)
- Linlin Zhang
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Suqian Guo
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qi Zhao
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yize Li
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chengcheng Song
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunyan Wang
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yonghao Yu
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guolin Wang
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
29
|
Wang HJ, Gu HX, Eijkelkamp N, Heijnen CJ, Kavelaars A. Low GRK2 Underlies Hyperalgesic Priming by Glial Cell-Derived Neurotrophic Factor. Front Pharmacol 2018; 9:592. [PMID: 29922165 PMCID: PMC5996251 DOI: 10.3389/fphar.2018.00592] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/17/2018] [Indexed: 11/13/2022] Open
Abstract
Background: We recently identified the balance between the level of G protein coupled receptor kinase 2 (GRK2) and Epac1 in nociceptors as a key factor in the transition from acute to chronic pain that occurs in mice 'primed' by an inflammatory stimulus. Here, we examined the contribution of GRK2 and Epac-signaling to growth factor-induced hyperalgesic priming. Methods: Mice were primed by intraplantar injection with glial cell-derived neurotrophic factor (GDNF). Mechanical allodynia in response to PGE2 was followed over time in primed and non-primed animals. GRK2 protein levels in dorsal root ganglion (DRG) neurons were quantified by immunohistochemistry. The effect of herpes simplex virus (HSV)-GRK2 amplicons to restore GRK2 levels or of an Epac inhibitor on PGE2 allodynia in primed mice was examined. Results: Glial cell-derived neurotrophic factor-induced hyperalgesia disappeared within 12 days. The hyperalgesic response to a subsequent intraplantar injection of PGE2 was prolonged from <24 h in control mice to more than 72 h in GDNF-primed mice. In male and female primed mice, PGE2 hyperalgesia was inhibited by oral administration of the Epac inhibitor ESI-09, while the drug had no effect in control mice. Mice primed with GDNF had reduced levels of GRK2 in IB4(+) small DRG neurons, but normal GRK2 levels in IB4(-) DRG neurons. Intraplantar administration of HSV-GRK2 amplicons to increase GRK2 protein levels prevented the prolongation of PGE2-induced hyperalgesia in GDNF-primed mice. Conclusion: Low GRK2 in nociceptors is critical to develop a primed state in response to GDNF and leads to engagement of Epac signaling and transition to chronic PGE2-induced hyperalgesia. Increasing GRK2 protein or inhibiting Epac signaling may represent new avenues for preventing transition to a chronic pain state.
Collapse
Affiliation(s)
- Hui-Jing Wang
- Laboratory of Neuropsychopharmacology, College of Fundamental Medicine, Shanghai University of Medicine & Health Science, Shanghai, China.,Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, Netherlands
| | - Han-Xin Gu
- Laboratory of Neuropsychopharmacology, College of Fundamental Medicine, Shanghai University of Medicine & Health Science, Shanghai, China
| | - Niels Eijkelkamp
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, Netherlands
| | - Cobi J Heijnen
- Division of Internal Medicine, Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Annemieke Kavelaars
- Division of Internal Medicine, Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
30
|
Tansley SN, Wong C, Uttam S, Mogil JS, Khoutorsky A. Translation regulation in the spinal dorsal horn - A key mechanism for development of chronic pain. NEUROBIOLOGY OF PAIN 2018; 4:20-26. [PMID: 30906901 PMCID: PMC6428080 DOI: 10.1016/j.ynpai.2018.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Spinal sensitization shares molecular mechanisms with hippocampal LTP and memory. Changes in mRNA translation are observed in many chronic pain conditions. Targeting translational control mechanisms is a promising strategy to inhibit pain. Targeting spinal reconsolidation can reverse established hypersensitivity.
Chronic pain is a pathological condition characterized by long-lasting pain after damaged tissue has healed. Chronic pain can be caused and maintained by changes in various components of the pain pathway, including sensory neurons, spinal cord and higher brain centers. Exaggerated sensitivity and responsiveness of spinal nociceptive circuits, representing maladaptive plasticity, play key roles in the amplification of peripheral signals in chronic pain conditions. This spinal amplification mechanism profoundly contributes to the development and maintenance of chronic pain hypersensitivity in response to peripheral injury, and in some cases occurs independently of the peripheral stimulus. Long-lasting changes in the activity of spinal neurons are caused by alterations in their cellular proteome, which relies on de novo gene expression. Recent evidence indicates that translational control of gene expression plays a major role in determining protein levels, and is intricately involved in different forms of intrinsic and synaptic plasticity. In this review, we summarize findings supporting a key role for translational control in spinal cord-dependent mechanisms of chronic pain, and present recent approaches to reverse persistent pain by targeting these mechanisms.
Collapse
Affiliation(s)
- Shannon N Tansley
- Department of Anesthesia, McGill University, Montréal, QC H3A 0G1, Canada.,Department of Psychology, McGill University, Montréal, QC H3A 1B1, Canada
| | - Calvin Wong
- Department of Anesthesia, McGill University, Montréal, QC H3A 0G1, Canada
| | - Sonali Uttam
- Department of Anesthesia, McGill University, Montréal, QC H3A 0G1, Canada
| | - Jeffrey S Mogil
- Department of Anesthesia, McGill University, Montréal, QC H3A 0G1, Canada.,Department of Psychology, McGill University, Montréal, QC H3A 1B1, Canada.,Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC H3A 0G1, Canada
| | - Arkady Khoutorsky
- Department of Anesthesia, McGill University, Montréal, QC H3A 0G1, Canada.,Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC H3A 0G1, Canada
| |
Collapse
|
31
|
Liu S, Li C, Guo Y, Xing Y, Tao F. PKMζ Is Not Required for Development of Postsurgical Pain. Mol Neurobiol 2018; 55:2397-2402. [PMID: 28357808 PMCID: PMC5620111 DOI: 10.1007/s12035-017-0499-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
Abstract
Previous studies have shown that protein kinase M zeta (PKMζ), a brain-specific isoform of protein kinase C, is involved in the central processing of nociception in several pain models by using a synthetic zeta inhibitory peptide. In the present study, we investigated whether PKMζ contributes to the pathogenesis of postsurgical pain using both conditional and conventional PKMζ knockout mice. Our results showed that the expression of PKMζ in anterior cingulate cortex, but not spinal cord, of the conditional PKMζ knockout mice was inhibited following tamoxifen injection. And the conditional PKMζ knockout mice displayed similar plantar incision-produced postsurgical pain responses as those in wild-type mice. Moreover, the expression of PKMζ was inhibited in both anterior cingulate cortex and spinal cord of the conventional PKMζ knockout mice. And there were no significant differences in the development of postsurgical pain among wild-type, heterozygous, and homozygous conventional PKMζ knockout mice. These data suggest that PKMζ is not required for the development of postsurgical pain after plantar incision.
Collapse
Affiliation(s)
- Sufang Liu
- Department of Physiology and Neurobiology, Zhengzhou University School of Medicine, Zhengzhou, Henan, China
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Changsheng Li
- The Affiliated Anti-Cancer Hospital at Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Guo
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ying Xing
- Department of Physiology and Neurobiology, Zhengzhou University School of Medicine, Zhengzhou, Henan, China
| | - Feng Tao
- Department of Physiology and Neurobiology, Zhengzhou University School of Medicine, Zhengzhou, Henan, China.
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA.
- Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA.
| |
Collapse
|
32
|
Abstract
Post-transcriptional regulation is linked to the development of pain hypersensitivity. A growing body of evidence indicates that RNA-binding proteins are involved in pain. RNA-based inhibitors are a potential new source of pain therapeutics.
RNA-protein interactions permeate biology. Transcription, translation, processing, and mRNA decay all hinge on widespread use of regulatory information decoded by RNA-binding proteins. The final committed step of protein synthesis, translation, is intimately linked to nociceptor excitability. Understanding the factors that control translation is essential as nociceptor plasticity is a hallmark of persistent pain. Here, we review the growing body of evidence for widespread involvement of RNA-binding proteins in pain. Many of the relevant factors have been implicated in post-transcriptional and translational mechanisms of mRNA control. We propose that recent advances in the development of RNA-based therapeutics provide a potential means to exploit our current understanding of liaisons between RNAs and proteins for therapeutic purposes.
Collapse
Affiliation(s)
| | - Zachary T. Campbell
- Corresponding author at: Department of Biological Sciences, 800 W. Campbell Road, RL10 BSB 12.510, Richardson, TX 75080, United States.
| |
Collapse
|
33
|
Kays J, Zhang YH, Khorodova A, Strichartz G, Nicol GD. Peripheral Synthesis of an Atypical Protein Kinase C Mediates the Enhancement of Excitability and the Development of Mechanical Hyperalgesia Produced by Nerve Growth Factor. Neuroscience 2017; 371:420-432. [PMID: 29288797 DOI: 10.1016/j.neuroscience.2017.12.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/26/2022]
Abstract
Nerve growth factor (NGF) plays a key role in the initiation as well as the prolonged heightened pain sensitivity of the inflammatory response. Previously, we showed that NGF rapidly augmented both the excitability of isolated rat sensory neurons and the mechanical sensitivity of the rat's hind paw. The increase in excitability and sensitivity was blocked by the myristoylated pseudosubstrate inhibitor of atypical PKCs (mPSI), suggesting that an atypical PKC may play a key regulatory role in generating this heightened sensitivity. Our findings raised the question as to whether NGF directs changes in translational control, as suggested for long-lasting long-term potentiation (LTP), or whether NGF leads to the activation of an atypical PKC by other mechanisms. The current studies demonstrate that enhanced action potential (AP) firing produced by NGF was blocked by inhibitors of translation, but not transcription. In parallel, in vitro studies showed that NGF elevated the protein levels of PKMζ, which was also prevented by inhibitors of translation. Intraplantar injection of NGF in the rat hind paw produced a rapid and maintained increase in mechanical sensitivity whose onset was delayed by translation inhibitors. Established NGF-induced hypersensitivity could be transiently reversed by injection of rapamycin or mPSI. These results suggest that NGF produces a rapid increase in the synthesis of PKMζ protein in the paw that augments neuronal sensitivity and that the ongoing translational expression of PKMζ plays a critical role in generating as well as maintaining the heightened sensitivity produced by NGF.
Collapse
Affiliation(s)
- Joanne Kays
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States
| | - Yi Hong Zhang
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States
| | - Alla Khorodova
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02135-6110, United States
| | - Gary Strichartz
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02135-6110, United States
| | - Grant D Nicol
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States.
| |
Collapse
|
34
|
A Critical Role for Dopamine D5 Receptors in Pain Chronicity in Male Mice. J Neurosci 2017; 38:379-397. [PMID: 29167404 DOI: 10.1523/jneurosci.2110-17.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 01/11/2023] Open
Abstract
Dopaminergic modulation of spinal cord plasticity has long been recognized, but circuits affected by this system and the precise receptor subtypes involved in this modulation have not been defined. Dopaminergic modulation from the A11 nucleus of the hypothalamus contributes to plasticity in a model of chronic pain called hyperalgesic priming. Here we tested the hypothesis that the key receptor subtype mediating this effect is the D5 receptor (D5R). We find that a spinally directed lesion of dopaminergic neurons reverses hyperalgesic priming in both sexes and that a D1/D5 antagonist transiently inhibits neuropathic pain. We used mice lacking D5Rs (DRD5KO mice) to show that carrageenan, interleukin 6, as well as BDNF-induced hyperalgesia and priming are reduced specifically in male mice. These male DRD5KO mice also show reduced formalin pain responses and decreased heat pain. To characterize the subtypes of dorsal horn neurons engaged by dopamine signaling in the hyperalgesic priming model, we used c-fos labeling. We find that a mixed D1/D5 agonist given spinally to primed mice activates a subset of neurons in lamina III and IV of the dorsal horn that coexpress PAX2, a transcription factor for GABAergic interneurons. In line with this, we show that gabazine, a GABA-A receptor antagonist, is antihyperalgesic in primed mice exposed to spinal administration of a D1/D5 agonist. Therefore, the D5R, in males, and the D1R, in females, exert a powerful influence over spinal cord circuitry in pathological pain likely via modulation of deep dorsal horn GABAergic neurons.SIGNIFICANCE STATEMENT Pain is the most prominent reason why people seek medical attention, and chronic pain incidence worldwide has been estimated to be as high as 33%. This study provides new insight into how descending dopamine controls pathological pain states. Our work demonstrates that dopaminergic spinal projections are necessary for the maintenance of a chronic pain state in both sexes; however, D5 receptors seem to play a critical role in males whereas females rely more heavily on D1 receptors, an effect that could be explained by sexual dimorphisms in receptor expression levels. Collectively, our work provides new insights into how the dopaminergic system interacts with spinal circuits to promote pain plasticity.
Collapse
|
35
|
Price TJ, Das V, Dussor G. Adenosine Monophosphate-activated Protein Kinase (AMPK) Activators For the Prevention, Treatment and Potential Reversal of Pathological Pain. Curr Drug Targets 2017; 17:908-20. [PMID: 26521775 DOI: 10.2174/1389450116666151102095046] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 12/23/2022]
Abstract
Pathological pain is an enormous medical problem that places a significant burden on patients and can result from an injury that has long since healed or be due to an unidentifiable cause. Although treatments exist, they often either lack efficacy or have intolerable side effects. More importantly, they do not reverse the changes in the nervous system mediating pathological pain, and thus symptoms often return when therapies are discontinued. Consequently, novel therapies are urgently needed that have both improved efficacy and disease-modifying properties. Here we highlight an emerging target for novel pain therapies, adenosine monophosphate-activated protein kinase (AMPK). AMPK is capable of regulating a variety of cellular processes including protein translation, activity of other kinases, and mitochondrial metabolism, many of which are thought to contribute to pathological pain. Consistent with these properties, preclinical studies show positive, and in some cases disease-modifying effects of either pharmacological activation or genetic regulation of AMPK in models of nerve injury, chemotherapy-induced peripheral neuropathy (CIPN), postsurgical pain, inflammatory pain, and diabetic neuropathy. Given the AMPK-activating ability of metformin, a widely prescribed and well-tolerated drug, these preclinical studies provide a strong rationale for both retrospective and prospective human pain trials with this drug. They also argue for the development of novel AMPK activators, whether orthosteric, allosteric, or modulators of events upstream of the kinase. Together, this review will present the case for AMPK as a novel therapeutic target for pain and will discuss future challenges in the path toward development of AMPK-based pain therapeutics.
Collapse
Affiliation(s)
- Theodore J Price
- School of Behavioral and Brain Sciences, University of Texas at Dallas, JO 4.212 800 W Campbell Rd, Richardson TX 75080, USA.
| | | | | |
Collapse
|
36
|
Sahn JJ, Mejia GL, Ray PR, Martin SF, Price TJ. Sigma 2 Receptor/Tmem97 Agonists Produce Long Lasting Antineuropathic Pain Effects in Mice. ACS Chem Neurosci 2017; 8:1801-1811. [PMID: 28644012 PMCID: PMC5715471 DOI: 10.1021/acschemneuro.7b00200] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuropathic pain is an important medical problem with few effective treatments. The sigma 1 receptor (σ1R) is known to be a potential target for neuropathic pain therapeutics, and antagonists for this receptor are effective in preclinical models and are currently in phase II clinical trials. Conversely, relatively little is known about σ2R, which has recently been identified as transmembrane protein 97 (Tmem97). We generated a series of σ1R and σ2R/Tmem97 agonists and antagonists and tested them for efficacy in the mouse spared nerve injury (SNI) model. In agreement with previous reports, we find that σ1R ligands given intrathecally (IT) produce relief of SNI-induced mechanical hypersensitivity. We also find that the putative σ2R/Tmem97 agonists DKR-1005, DKR-1051, and UKH-1114 (Ki ∼ 46 nM) lead to relief of SNI-induced mechanical hypersensitivity, peaking at 48 h after dosing when given IT. This effect is blocked by the putative σ2R/Tmem97 antagonist SAS-0132. Systemic administration of UKH-1114 (10 mg/kg) relieves SNI-induced mechanical hypersensitivity for 48 h with a peak magnitude of effect equivalent to 100 mg/kg gabapentin and without producing any motor impairment. Finally, we find that the TMEM97 gene is expressed in mouse and human dorsal root ganglion (DRG) including populations of neurons that are involved in pain; however, the gene is also likely expressed in non-neuronal cells that may contribute to the observed behavioral effects. Our results show robust antineuropathic pain effects of σ1R and σ2R/Tmem97 ligands, demonstrate that σ2R/Tmem97 is a novel neuropathic pain target, and identify UKH-1114 as a lead molecule for further development.
Collapse
MESH Headings
- Amines/pharmacology
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/pharmacology
- Animals
- Cyclohexanecarboxylic Acids/pharmacology
- Disease Models, Animal
- Gabapentin
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Humans
- Hyperalgesia/drug therapy
- Hyperalgesia/metabolism
- Male
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Molecular Structure
- Motor Activity/drug effects
- Neuralgia/drug therapy
- Neuralgia/metabolism
- RNA, Messenger/metabolism
- Receptors, sigma/agonists
- Receptors, sigma/antagonists & inhibitors
- Receptors, sigma/metabolism
- Touch
- gamma-Aminobutyric Acid/pharmacology
- Sigma-1 Receptor
Collapse
Affiliation(s)
- James J. Sahn
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Galo L. Mejia
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Pradipta R. Ray
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Stephen F. Martin
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Theodore J. Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
37
|
Hanamura K, Washburn HR, Sheffler-Collins SI, Xia NL, Henderson N, Tillu DV, Hassler S, Spellman DS, Zhang G, Neubert TA, Price TJ, Dalva MB. Extracellular phosphorylation of a receptor tyrosine kinase controls synaptic localization of NMDA receptors and regulates pathological pain. PLoS Biol 2017; 15:e2002457. [PMID: 28719605 PMCID: PMC5515392 DOI: 10.1371/journal.pbio.2002457] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/12/2017] [Indexed: 11/18/2022] Open
Abstract
Extracellular phosphorylation of proteins was suggested in the late 1800s when it was demonstrated that casein contains phosphate. More recently, extracellular kinases that phosphorylate extracellular serine, threonine, and tyrosine residues of numerous proteins have been identified. However, the functional significance of extracellular phosphorylation of specific residues in the nervous system is poorly understood. Here we show that synaptic accumulation of GluN2B-containing N-methyl-D-aspartate receptors (NMDARs) and pathological pain are controlled by ephrin-B-induced extracellular phosphorylation of a single tyrosine (p*Y504) in a highly conserved region of the fibronectin type III (FN3) domain of the receptor tyrosine kinase EphB2. Ligand-dependent Y504 phosphorylation modulates the EphB-NMDAR interaction in cortical and spinal cord neurons. Furthermore, Y504 phosphorylation enhances NMDAR localization and injury-induced pain behavior. By mediating inducible extracellular interactions that are capable of modulating animal behavior, extracellular tyrosine phosphorylation of EphBs may represent a previously unknown class of mechanism mediating protein interaction and function. The activity of proteins can be finely and reversibly tuned by post-translational modifications. The attachment of phosphate groups to tyrosine residues is one of such modifications. While the existence of extracellular phosphoproteins has been known, the functional significance of extracellular phosphorylation is poorly understood. Here we describe a single extracellular tyrosine whose inducible phosphorylation may represent an archetype for a new class of mechanism mediating protein—protein interaction and regulating protein function. We show that the interaction between EphB2—which occurs upon receptor activation by its ligand ephrin-B—and the N-methyl-D-aspartate receptor (NMDAR) depends on extracellular phosphorylation of EphB2. This interaction regulates the localization of the NMDA receptor to synaptic sites in neurons. In vivo, EphB2 is phosphorylated in response to injury, and the subsequent up-regulation of the interaction between EphB2 and NMDA receptors enhances injury-induced pain behavior and mechanical hypersensitivity in mice. Importantly, our study defines a specific extracellular phosphorylation event as a mechanism driving protein interaction and suggests that extracellular phosphorylation of proteins is an underappreciated mechanism contributing to the development and function of the nervous system and synapse.
Collapse
Affiliation(s)
- Kenji Hanamura
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, United States of America
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi City, Gunma, Japan
| | - Halley R. Washburn
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, United States of America
| | - Sean I. Sheffler-Collins
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, United States of America
- Neuroscience Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Nan L. Xia
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, United States of America
| | - Nathan Henderson
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, United States of America
| | - Dipti V. Tillu
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona, United States of America
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Shayne Hassler
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Daniel S. Spellman
- Department of Cell Biology and Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York, United States of America
| | - Guoan Zhang
- Department of Cell Biology and Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York, United States of America
| | - Thomas A. Neubert
- Department of Cell Biology and Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York, United States of America
| | - Theodore J. Price
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona, United States of America
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Matthew B. Dalva
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
38
|
Pharmacological activation of AMPK inhibits incision-evoked mechanical hypersensitivity and the development of hyperalgesic priming in mice. Neuroscience 2017; 359:119-129. [PMID: 28729062 DOI: 10.1016/j.neuroscience.2017.07.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022]
Abstract
New therapeutics to manage post-surgical pain are needed to mitigate the liabilities of opioid and other analgesics. Our previous work shows that key modulators of excitability in peripheral nociceptors, such as extracellular signal-regulated kinases (ERK) are inhibited by activation of adenosine monophosphate activated protein kinase (AMPK). We hypothesized that AMPK activation would attenuate acute incision-evoked mechanical hypersensitivity and the development of hyperalgesic priming caused by surgery in mice. Here we have used a variety of administration routes and combinations of AMPK activators to test this hypothesis. Topical administration of a resveratrol-based cream inhibited acute mechanical hypersensitivity evoked by incision and blocked the development of hyperalgesic priming. We also observed that systemic administration of metformin dose-dependently inhibited incision-evoked mechanical hypersensitivity and hyperalgesic priming. Interestingly, low doses of systemic metformin and local resveratrol that had no acute effect were able to mitigate development of hyperalgesic priming. Combined treatment with doses of systemic metformin and local resveratrol that were not effective on their own enhanced the acute efficacy of the individual AMPK activators for post-surgical mechanical pain alleviation and blocked the development of hyperalgesic priming. Finally, we used dorsal root ganglion (DRG) neurons in culture to show that resveratrol and metformin given in combination shift the concentration-response curve for AMPK activation to the left and increase the magnitude of AMPK activation. Therefore, we find that topical administration is an effective treatment route of administration and combining systemic and local treatments led to anti-nociceptive efficacy in acute mechanical hypersensitivity at doses that were not effective alone. Collectively our work demonstrates a specific effect of AMPK activators on post-surgical pain and points to novel therapeutic opportunities with potential immediate impact in the clinical setting.
Collapse
|
39
|
The MNK-eIF4E Signaling Axis Contributes to Injury-Induced Nociceptive Plasticity and the Development of Chronic Pain. J Neurosci 2017; 37:7481-7499. [PMID: 28674170 DOI: 10.1523/jneurosci.0220-17.2017] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/21/2017] [Accepted: 06/27/2017] [Indexed: 12/18/2022] Open
Abstract
Injury-induced sensitization of nociceptors contributes to pain states and the development of chronic pain. Inhibiting activity-dependent mRNA translation through mechanistic target of rapamycin and mitogen-activated protein kinase (MAPK) pathways blocks the development of nociceptor sensitization. These pathways convergently signal to the eukaryotic translation initiation factor (eIF) 4F complex to regulate the sensitization of nociceptors, but the details of this process are ill defined. Here we investigated the hypothesis that phosphorylation of the 5' cap-binding protein eIF4E by its specific kinase MAPK interacting kinases (MNKs) 1/2 is a key factor in nociceptor sensitization and the development of chronic pain. Phosphorylation of ser209 on eIF4E regulates the translation of a subset of mRNAs. We show that pronociceptive and inflammatory factors, such as nerve growth factor (NGF), interleukin-6 (IL-6), and carrageenan, produce decreased mechanical and thermal hypersensitivity, decreased affective pain behaviors, and strongly reduced hyperalgesic priming in mice lacking eIF4E phosphorylation (eIF4ES209A ). Tests were done in both sexes, and no sex differences were found. Moreover, in patch-clamp electrophysiology and Ca2+ imaging experiments on dorsal root ganglion neurons, NGF- and IL-6-induced increases in excitability were attenuated in neurons from eIF4ES209A mice. These effects were recapitulated in Mnk1/2-/- mice and with the MNK1/2 inhibitor cercosporamide. We also find that cold hypersensitivity induced by peripheral nerve injury is reduced in eIF4ES209A and Mnk1/2-/- mice and following cercosporamide treatment. Our findings demonstrate that the MNK1/2-eIF4E signaling axis is an important contributing factor to mechanisms of nociceptor plasticity and the development of chronic pain.SIGNIFICANCE STATEMENT Chronic pain is a debilitating disease affecting approximately one in three Americans. Chronic pain is thought to be driven by changes in the excitability of peripheral nociceptive neurons, but the precise mechanisms controlling these changes are not elucidated. Emerging evidence demonstrates that mRNA translation regulation pathways are key factors in changes in nociceptor excitability. Our work demonstrates that a single phosphorylation site on the 5' cap-binding protein eIF4E is a critical mechanism for changes in nociceptor excitability that drive the development of chronic pain. We reveal a new mechanistic target for the development of a chronic pain state and propose that targeting the upstream kinase, MAPK interacting kinase 1/2, could be used as a therapeutic approach for chronic pain.
Collapse
|
40
|
Zhao Q, Zhang L, Shu R, Wang C, Yu Y, Wang H, Wang G. Involvement of Spinal PKMζ Expression and Phosphorylation in Remifentanil-Induced Long-Term Hyperalgesia in Rats. Cell Mol Neurobiol 2017; 37:643-653. [PMID: 27380044 PMCID: PMC11482079 DOI: 10.1007/s10571-016-0401-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
Abstract
Up-regulation of GluN2B-containing N-methyl-D-aspartate receptors (NMDARs) expression and trafficking is the key mechanism for remifentanil-induced hyperalgesia (RIH), nevertheless, the signaling pathway and pivotal proteins involved in RIH remain equivocal. PKMζ, an isoform of protein kinase C (PKC), maintains pain memory storage in neuropathic pain and inflammatory pain, which plays a parallel role regulated by NMDARs in long-term memory trace. In the present study, Zeta Inhibitory Peptide (ZIP), a PKMζ inhibitor, and a selective GluN2B antagonist Ro-256981 are injected intrathecally before remifentanil infusion (1 μg kg-1 min-1 for 1 h, iv) in order to detect whether GluN2B contributes to RIH through affecting synthesis and activity of PKMζ in spinal dorsal horn. Nociceptive tests are measured by Paw withdrawal mechanical threshold (PWT) and paw withdrawal thermal latency (PWL). The L4-L6 segments of dorsal horn taken from rats with RIH are for determining expression of PKMζ and pPKMζ by Western blot and immunohistochemistry. Our data suggest that remifentanil infusion causes an increase of PKMζ in expression and phosphorylation in rats with nociceptive sensitization, beginning at 2 h, peaked at 2 days, and returned to basal level at 7 days. ZIP (10 ng) could block behavioral sensitization induced by remifentanil. Ro25-6981 dosage-dependently attenuated mechanical and thermal hyperalgesia and reversed expression of PKMζ and pPKMζ, indicating that GluN2B-containing NMDA receptor facilitates development of RIH through mediating expression and activity of spinal PKMζ in rats. Although detailed mechanisms require further comprehensive study, the preventive role of Ro25-6981 and ZIP provide novel options for the effective precaution of RIH in clinics.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Ruichen Shu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Chunyan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Haiyun Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China.
| |
Collapse
|
41
|
Neuroligin 2 regulates spinal GABAergic plasticity in hyperalgesic priming, a model of the transition from acute to chronic pain. Pain 2017; 157:1314-1324. [PMID: 26859820 DOI: 10.1097/j.pain.0000000000000513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plasticity in inhibitory receptors, neurotransmission, and networks is an important mechanism for nociceptive signal amplification in the spinal dorsal horn. We studied potential changes in GABAergic pharmacology and its underlying mechanisms in hyperalgesic priming, a model of the transition from acute to chronic pain. We find that while GABAA agonists and positive allosteric modulators reduce mechanical hypersensitivity to an acute insult, they fail to do so during the maintenance phase of hyperalgesic priming. In contrast, GABAA antagonism promotes antinociception and a reduction in facial grimacing after the transition to a chronic pain state. During the maintenance phase of hyperalgesic priming, we observed increased neuroligin (nlgn) 2 expression in the spinal dorsal horn. This protein increase was associated with an increase in nlgn2A splice variant mRNA, which promotes inhibitory synaptogenesis. Disruption of nlgn2 function with the peptide inhibitor, neurolide 2, produced mechanical hypersensitivity in naive mice but reversed hyperalgesic priming in mice previously exposed to brain-derived neurotrophic factor. Neurolide 2 treatment also reverses the change in polarity in GABAergic pharmacology observed in the maintenance of hyperalgesic priming. We propose that increased nlgn2 expression is associated with hyperalgesic priming where it promotes dysregulation of inhibitory networks. Our observations reveal new mechanisms involved in the spinal maintenance of a pain plasticity and further suggest that disinhibitory mechanisms are central features of neuroplasticity in the spinal dorsal horn.
Collapse
|
42
|
Walters ET. How is chronic pain related to sympathetic dysfunction and autonomic dysreflexia following spinal cord injury? Auton Neurosci 2017; 209:79-89. [PMID: 28161248 DOI: 10.1016/j.autneu.2017.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/29/2022]
Abstract
Autonomic dysreflexia (AD) and neuropathic pain occur after severe injury to higher levels of the spinal cord. Mechanisms underlying these problems have rarely been integrated in proposed models of spinal cord injury (SCI). Several parallels suggest significant overlap of these mechanisms, although the relationships between sympathetic function (dysregulated in AD) and nociceptive function (dysregulated in neuropathic pain) are complex. One general mechanism likely to be shared is central sensitization - enhanced responsiveness and synaptic reorganization of spinal circuits that mediate sympathetic reflexes or that process and relay pain-related information to the brain. Another is enhanced sensory input to spinal circuits caused by extensive alterations in primary sensory neurons. Both AD and SCI-induced neuropathic pain are associated with spinal sprouting of peptidergic nociceptors that might increase synaptic input to the circuits involved in AD and SCI pain. In addition, numerous nociceptors become hyperexcitable, hypersensitive to chemicals associated with injury and inflammation, and spontaneously active, greatly amplifying sensory input to sensitized spinal circuits. As discussed with the aid of a preliminary functional model, these effects are likely to have mutually reinforcing relationships with each other, and with consequences of SCI-induced interruption of descending excitatory and inhibitory influences on spinal circuits, with SCI-induced inflammation in the spinal cord and in DRGs, and with activity in sympathetic fibers within DRGs that promotes local inflammation and spontaneous activity in sensory neurons. This model suggests that interventions selectively targeting hyperactivity in C-nociceptors might be useful for treating chronic pain and AD after high SCI.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
43
|
Nasir H, Mahboubi H, Gyawali S, Ding S, Mickeviciute A, Ragavendran JV, Laferrière A, Stochaj U, Coderre TJ. Consistent sex-dependent effects of PKMζ gene ablation and pharmacological inhibition on the maintenance of referred pain. Mol Pain 2016; 12:1744806916675347. [PMID: 27899695 PMCID: PMC5131814 DOI: 10.1177/1744806916675347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/06/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Persistently active PKMζ has been implicated in maintaining spinal nociceptive sensitization that underlies pain hypersensitivity. However, evidence for PKMζ in the maintenance of pain hypersensitivity comes exclusively from short-term studies in males using pharmacological agents of questionable selectivity. The present study examines the contribution of PKMζ to long-lasting allodynia associated with neuropathic, inflammatory, or referred visceral and muscle pain in males and females using pharmacological inhibition or genetic ablation. RESULTS Pharmacological inhibition or genetic ablation of PKMζ reduced mild formalin pain and slowly developing contralateral allodynia in nerve-injured rats, but not moderate formalin pain or ipsilateral allodynia in models of neuropathic and inflammatory pain. Pharmacological inhibition or genetic ablation of PKMζ also effectively reduced referred visceral and muscle pain in male, but not in female mice and rats. CONCLUSION We show pharmacological inhibition and genetic ablation of PKMζ consistently attenuate long-lasting pain hypersensitivity. However, differential effects in models of referred versus inflammatory and neuropathic pain, and in males versus females, highlight the roles of afferent input-dependent masking and sex differences in the maintenance of pain hypersensitivity.
Collapse
Affiliation(s)
- Hibatulnaseer Nasir
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Hicham Mahboubi
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Sandeep Gyawali
- Division of Pharmacology & Toxicology, School of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - Stephanie Ding
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Aiste Mickeviciute
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - J Vaigunda Ragavendran
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - André Laferrière
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Terence J Coderre
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
44
|
Tang Y, Chen A, Chen Y, Guo L, Dai H, Huang Y, Chen Q, Lin C. Zeta Inhibitory Peptide as a Novel Therapy to Control Chronic Visceral Hypersensitivity in a Rat Model. PLoS One 2016; 11:e0163324. [PMID: 27776136 PMCID: PMC5077089 DOI: 10.1371/journal.pone.0163324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022] Open
Abstract
Background The pathogenesis of multiple chronic visceral pain syndromes, such as irritable bowel syndrome (IBS), is not well known, and as a result current therapies are ineffective. The objective of this study was to investigate the effect of spinal protein kinase M zeta (PKMζ) on visceral pain sensitivity in rats with IBS to better understand the pathogenesis and investigate the effect of zeta inhibitory peptide (ZIP) as a therapy for chronic visceral pain. Methods Visceral hypersensitivity rats were produced by neonatal maternal separation (NMS). Visceral pain sensitivity was assessed by electromyographic (EMG) responses of abdominal muscles to colorectal distention (CRD). Spinal PKMζ and phosphorylated PKMζ (p-PKMζ) were detected by western blot. Varying doses of ZIP were intrathecally administered to investigate the role of spinal PKMζ in chronic visceral hypersensitivity. The open field test was used to determine if ZIP therapy causes spontaneous motor activity side effects. Results Graded CRD pressure significantly increased EMG responses in NMS rats compared to control rats (p < 0.05). p-PKMζ expression increased in the thoracolumbar and lumbosacral spinal cord in the IBS-like rats with notable concomitant chronic visceral pain compared to control rats (p < 0.05). EMG data revealed that intrathecal ZIP injection (1, 5, and 10 μg) dose-dependently attenuated visceral pain hypersensitivity in IBS-like rats. Conclusions Phosphorylated PKMζ may be involved in the spinal central sensitization of chronic visceral hypersensitivity in IBS, and administration of ZIP could effectively treat chronic visceral pain with good outcomes in rat models.
Collapse
Affiliation(s)
- Ying Tang
- Fujian Medical University, Basic Medical College, Laboratory of Pain Research, Key Laboratory of Brain Aging and Neurodegenerative Diseases, Neuroscience Research Center, Fuzhou City, Fujian Province 350108, PR China
| | - Aiqin Chen
- Fujian Medical University, Basic Medical College, Laboratory of Pain Research, Key Laboratory of Brain Aging and Neurodegenerative Diseases, Neuroscience Research Center, Fuzhou City, Fujian Province 350108, PR China
| | - Yu Chen
- Fujian Medical University, Basic Medical College, Laboratory of Pain Research, Key Laboratory of Brain Aging and Neurodegenerative Diseases, Neuroscience Research Center, Fuzhou City, Fujian Province 350108, PR China
| | - Lixia Guo
- Department of Pathology, Pingxiang People's Hospital, Pingxiang 337000, Jiangxi, PR China
| | - Hengfen Dai
- Fujian Medical University, Basic Medical College, Laboratory of Pain Research, Key Laboratory of Brain Aging and Neurodegenerative Diseases, Neuroscience Research Center, Fuzhou City, Fujian Province 350108, PR China
| | - Yang Huang
- Fujian Medical University, Basic Medical College, Laboratory of Pain Research, Key Laboratory of Brain Aging and Neurodegenerative Diseases, Neuroscience Research Center, Fuzhou City, Fujian Province 350108, PR China
| | - Qianqian Chen
- Fujian Medical University, Basic Medical College, Laboratory of Pain Research, Key Laboratory of Brain Aging and Neurodegenerative Diseases, Neuroscience Research Center, Fuzhou City, Fujian Province 350108, PR China
| | - Chun Lin
- Fujian Medical University, Basic Medical College, Laboratory of Pain Research, Key Laboratory of Brain Aging and Neurodegenerative Diseases, Neuroscience Research Center, Fuzhou City, Fujian Province 350108, PR China
- * E-mail:
| |
Collapse
|
45
|
Chen G, Xie RG, Gao YJ, Xu ZZ, Zhao LX, Bang S, Berta T, Park CK, Lay M, Chen W, Ji RR. β-arrestin-2 regulates NMDA receptor function in spinal lamina II neurons and duration of persistent pain. Nat Commun 2016; 7:12531. [PMID: 27538456 PMCID: PMC5477285 DOI: 10.1038/ncomms12531] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/08/2016] [Indexed: 02/02/2023] Open
Abstract
Mechanisms of acute pain transition to chronic pain are not fully understood. Here we demonstrate an active role of β-arrestin 2 (Arrb2) in regulating spinal cord NMDA receptor (NMDAR) function and the duration of pain. Intrathecal injection of the mu-opioid receptor agonist [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin produces paradoxical behavioural responses: early-phase analgesia and late-phase mechanical allodynia which requires NMDAR; both phases are prolonged in Arrb2 knockout (KO) mice. Spinal administration of NMDA induces GluN2B-dependent mechanical allodynia, which is prolonged in Arrb2-KO mice and conditional KO mice lacking Arrb2 in presynaptic terminals expressing Nav1.8. Loss of Arrb2 also results in prolongation of inflammatory pain and neuropathic pain and enhancement of GluN2B-mediated NMDA currents in spinal lamina IIo not lamina I neurons. Finally, spinal over-expression of Arrb2 reverses chronic neuropathic pain after nerve injury. Thus, spinal Arrb2 may serve as an intracellular gate for acute to chronic pain transition via desensitization of NMDAR. The cellular mechanisms underlying acute pain transitions to chronic pain are poorly understood. Here the authors show that the scaffolding protein β-arrestin 2 contributes to these processes via desensitization of NMDA receptors in spinal neurons.
Collapse
Affiliation(s)
- Gang Chen
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Rou-Gang Xie
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Anesthesiology and Pain Management, Xijing Hospital, Department of Neuroscience, Fourth Military Medical University, Xian, Shanxi 710032, China
| | - Yong-Jing Gao
- Pain Research Laboratory, Institute of Nautical Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Zhen-Zhong Xu
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang 3100058, China
| | - Lin-Xia Zhao
- Pain Research Laboratory, Institute of Nautical Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Sangsu Bang
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Temugin Berta
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio 45267, USA
| | - Chul-Kyu Park
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Physiology, College of Medicine, Gachon University, Incheon 21999, South Korea
| | - Mark Lay
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Wei Chen
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
46
|
Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. Molecular Pharmacology of δ-Opioid Receptors. Pharmacol Rev 2016; 68:631-700. [PMID: 27343248 PMCID: PMC4931872 DOI: 10.1124/pr.114.008979] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs' capacity to engage a multiplicity of canonical and noncanonical G protein-dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management.
Collapse
Affiliation(s)
- Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Catherine M Cahill
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Mark von Zastrow
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Peter W Schiller
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Graciela Pineyro
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| |
Collapse
|
47
|
SDF1-CXCR4 Signaling Contributes to the Transition from Acute to Chronic Pain State. Mol Neurobiol 2016; 54:2763-2775. [PMID: 27011380 DOI: 10.1007/s12035-016-9875-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022]
Abstract
Emerging evidence has demonstrated the involvement of stromal cell-derived factor 1 (SDF1, also known as CXCL12)-CXCR4 signaling in a variety of pain state. However, the underlying mechanisms of SDF1-CXCR4 signaling leading to the maintenance of chronic pain states are poorly understood. In the present study, we sought to explore the role of SDF1-CXCR4 signaling in the forming of neuroplasticity by applying a model of the transition from acute to chronic pain state, named as hyperalgesic priming. Utilizing intraplantar bee venom (BV) injection, we successfully established hyperalgesic priming state and found that peripheral treating with AMD3100, a CXCR4 antagonist, or knocking down CXCR4 by intraganglionar CXCR4 small interfering RNA (siRNA) injection could prevent BV-induced primary mechanical hyperalgesia and hyperalgesic priming. Moreover, we showed that single intraplantar active SDF1 protein injection is sufficient to induce acute mechanical hyperalgesia and hyperalgesic priming through CXC4. Intraplantar coinjection of ERK inhibitor, U0126, and PI3K inhibitor, LY294002, as well as two protein translation inhibitors, temsirolimus and cordycepin, prevented the development of SDF1-induced acute mechanical hyperalgesia and hyperalgesic priming. Finally, on the models of complete Freund's adjuvant (CFA)-induced chronic inflammatory pain and spared nerve injury (SNI)-induced chronic neuropathic pain, we observed that knock-down of CXCR4 could both prevent the development and reverse the maintenance of chronic pain state. In conclusion, our present data suggested that through regulating ERK and PI3K-AKT pathways-mediated protein translation SDF1-CXCR4 signaling mediates the transition from acute pain to chronic pain state and finally contributes to the development and maintenance of chronic pain.
Collapse
|
48
|
Protease-activated receptor 2 activation is sufficient to induce the transition to a chronic pain state. Pain 2016; 156:859-867. [PMID: 25734998 DOI: 10.1097/j.pain.0000000000000125] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protease-activated receptor type 2 (PAR2) is known to play an important role in inflammatory, visceral, and cancer-evoked pain based on studies using PAR2 knockout (PAR2(-/-)) mice. We have tested the hypothesis that specific activation of PAR2 is sufficient to induce a chronic pain state through extracellular signal-regulated kinase (ERK) signaling to protein synthesis machinery. We have further tested whether the maintenance of this chronic pain state involves a brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (trkB)/atypical protein kinase C (aPKC) signaling axis. We observed that intraplantar injection of the novel highly specific PAR2 agonist, 2-aminothiazol-4-yl-LIGRL-NH2 (2-at), evokes a long-lasting acute mechanical hypersensitivity (median effective dose ∼12 pmoles), facial grimacing, and causes robust hyperalgesic priming as revealed by a subsequent mechanical hypersensitivity and facial grimacing to prostaglandin E2 (PGE2) injection. The promechanical hypersensitivity effect of 2-at is completely absent in PAR2(-/-) mice as is hyperalgesic priming. Intraplantar injection of the upstream ERK inhibitor, U0126, and the eukaryotic initiation factor (eIF) 4F complex inhibitor, 4EGI-1, prevented the development of acute mechanical hypersensitivity and hyperalgesic priming after 2-at injection. Systemic injection of the trkB antagonist ANA-12 similarly inhibited PAR2-mediated mechanical hypersensitivity, grimacing, and hyperalgesic priming. Inhibition of aPKC (intrathecal delivery of ZIP) or trkB (systemic administration of ANA-12) after the resolution of 2-at-induced mechanical hypersensitivity reversed the maintenance of hyperalgesic priming. Hence, PAR2 activation is sufficient to induce neuronal plasticity leading to a chronic pain state, the maintenance of which is dependent on a BDNF/trkB/aPKC signaling axis.
Collapse
|
49
|
Hawkins JL, Durham PL. Prolonged Jaw Opening Promotes Nociception and Enhanced Cytokine Expression. J Oral Facial Pain Headache 2016; 30:34-41. [PMID: 26817031 PMCID: PMC5894825 DOI: 10.11607/ofph.1557] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS To test the hypothesis that prolonged jaw opening, as can occur during routine dental procedures, increases nociceptive sensitivity of the masseter muscle and increases cytokine expression. METHODS Sprague-Dawley rats were used to investigate behavioral and cellular changes in response to prolonged jaw opening. A surgical retractor was placed around the maxillary and mandibular incisors, and the jaw was held at near maximal opening for 20 minutes. Head-withdrawal responses to mechanical stimuli applied to the facial skin overlying the left and right masseter muscles were determined following jaw opening. Cytokine levels in the upper cervical spinal cord containing the caudal part of the spinal trigeminal nucleus were evaluated using protein antibody microarrays (n = 3). Statistical analysis was performed using a nonparametric Mann-Whitney U test. RESULTS Prolonged jaw opening significantly increased nocifensive head withdrawal to mechanical stimuli at 2 hours, and days 3 and 7 postinduction (P < .05). The increase in nociceptive response resolved after 14 days. Sustained jaw opening also stimulated differential cytokine expression in the trigeminal ganglion and upper cervical spinal cord that persisted 14 days postprocedure (P < .05). CONCLUSION These findings provide evidence that near maximal jaw opening can lead to activation and prolonged sensitization of trigeminal neurons that results in nociceptive behavior evoked by stimulation of the masseter muscle, a physiologic event often associated with temporomandibular disorders (TMD). Results from this study may provide a plausible explanation for why some patients develop TMD after routine dental procedures that involve prolonged jaw opening.
Collapse
|
50
|
Abstract
Chronic pain is a major clinical problem that is poorly treated with available therapeutics. Adenosine monophosphate-activated protein kinase (AMPK) has recently emerged as a novel target for the treatment of pain with the exciting potential for disease modification. AMPK activators inhibit signaling pathways that are known to promote changes in the function and phenotype of peripheral nociceptive neurons and promote chronic pain. AMPK activators also reduce the excitability of these cells suggesting that AMPK activators may be efficacious for the treatment of chronic pain disorders, like neuropathic pain, where changes in the excitability of nociceptors is thought to be an underlying cause. In agreement with this, AMPK activators have now been shown to alleviate pain in a broad variety of preclinical pain models indicating that this mechanism might be engaged for the treatment of many types of pain in the clinic. A key feature of the effect of AMPK activators in these models is that they can lead to a long-lasting reversal of pain hypersensitivity even long after treatment cessation, indicative of disease modification. Here, we review the evidence supporting AMPK as a novel pain target pointing out opportunities for further discovery that are likely to have an impact on drug discovery efforts centered around potent and specific allosteric activators of AMPK for chronic pain treatment.
Collapse
|