1
|
Thomas RE, Mudlaff F, Schweers K, Farmer WT, Suvrathan A. Heterogeneity in Slow Synaptic Transmission Diversifies Purkinje Cell Timing. J Neurosci 2024; 44:e0455242024. [PMID: 39147589 PMCID: PMC11391503 DOI: 10.1523/jneurosci.0455-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
The cerebellum plays an important role in diverse brain functions, ranging from motor learning to cognition. Recent studies have suggested that molecular and cellular heterogeneity within cerebellar lobules contributes to functional differences across the cerebellum. However, the specific relationship between molecular and cellular heterogeneity and diverse functional outputs of different regions of the cerebellum remains unclear. Here, we describe a previously unappreciated form of synaptic heterogeneity at parallel fiber synapses to Purkinje cells in the mouse cerebellum (both sexes). In contrast to uniform fast synaptic transmission, we found that the properties of slow synaptic transmission varied by up to threefold across different lobules of the mouse cerebellum, resulting in surprising heterogeneity. Depending on the location of a Purkinje cell, the time of peak of slow synaptic currents varied by hundreds of milliseconds. The duration and decay time of these currents also spanned hundreds of milliseconds, based on lobule. We found that, as a consequence of the heterogeneous synaptic dynamics, the same brief input stimulus was transformed into prolonged firing patterns over a range of timescales that depended on Purkinje cell location.
Collapse
Affiliation(s)
- Riya Elizabeth Thomas
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Franziska Mudlaff
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Kyra Schweers
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
| | - William Todd Farmer
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Aparna Suvrathan
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
| |
Collapse
|
2
|
Parmar J, von Jonquieres G, Gorlamandala N, Chung B, Craig AJ, Pinyon JL, Birnbaumer L, Klugmann M, Moorhouse AJ, Power JM, Housley GD. TRPC Channels Activated by G Protein-Coupled Receptors Drive Ca 2+ Dysregulation Leading to Secondary Brain Injury in the Mouse Model. Transl Stroke Res 2024; 15:844-858. [PMID: 37462831 PMCID: PMC11226524 DOI: 10.1007/s12975-023-01173-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2024]
Abstract
Canonical transient receptor potential (TRPC) non-selective cation channels, particularly those assembled with TRPC3, TRPC6, and TRPC7 subunits, are coupled to Gαq-type G protein-coupled receptors for the major classes of excitatory neurotransmitters. Sustained activation of this TRPC channel-based pathophysiological signaling hub in neurons and glia likely contributes to prodigious excitotoxicity-driven secondary brain injury expansion. This was investigated in mouse models with selective Trpc gene knockout (KO). In adult cerebellar brain slices, application of glutamate and the class I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine to Purkinje neurons expressing the GCaMP5g Ca2+ reporter demonstrated that the majority of the Ca2+ loading in the molecular layer dendritic arbors was attributable to the TRPC3 effector channels (Trpc3KO compared with wildtype (WT)). This Ca2+ dysregulation was associated with glutamate excitotoxicity causing progressive disruption of the Purkinje cell dendrites (significantly abated in a GAD67-GFP-Trpc3KO reporter brain slice model). Contribution of the Gαq-coupled TRPC channels to secondary brain injury was evaluated in a dual photothrombotic focal ischemic injury model targeting cerebellar and cerebral cortex regions, comparing day 4 post-injury in WT mice, Trpc3KO, and Trpc1/3/6/7 quadruple knockout (TrpcQKO), with immediate 2-h (primary) brain injury. Neuroprotection to secondary brain injury was afforded in both brain regions by Trpc3KO and TrpcQKO models, with the TrpcQKO showing greatest neuroprotection. These findings demonstrate the contribution of the Gαq-coupled TRPC effector mechanism to excitotoxicity-based secondary brain injury expansion, which is a primary driver for mortality and morbidity in stroke, traumatic brain injury, and epilepsy.
Collapse
Affiliation(s)
- Jasneet Parmar
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Georg von Jonquieres
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Nagarajesh Gorlamandala
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Brandon Chung
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Amanda J Craig
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jeremy L Pinyon
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Lutz Birnbaumer
- Institute of Biomedical Research (BIOMED), Pontifical Catholic University of Argentina, Av. A Moreau de Justo 1300, C1107AFF, Buenos Aires CABA, Argentina
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Andrew J Moorhouse
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - John M Power
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
3
|
Sekerková G, Kilic S, Cheng YH, Fredrick N, Osmani A, Kim H, Opal P, Martina M. Phenotypical, genotypical and pathological characterization of the moonwalker mouse, a model of ataxia. Neurobiol Dis 2024; 195:106492. [PMID: 38575093 PMCID: PMC11089908 DOI: 10.1016/j.nbd.2024.106492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
We performed a comprehensive study of the morphological, functional, and genetic features of moonwalker (MWK) mice, a mouse model of spinocerebellar ataxia caused by a gain of function of the TRPC3 channel. These mice show numerous behavioral symptoms including tremor, altered gait, circling behavior, impaired motor coordination, impaired motor learning and decreased limb strength. Cerebellar pathology is characterized by early and almost complete loss of unipolar brush cells as well as slowly progressive, moderate loss of Purkinje cell (PCs). Structural damage also includes loss of synaptic contacts from parallel fibers, swollen ER structures, and degenerating axons. Interestingly, no obvious correlation was observed between PC loss and severity of the symptoms, as the phenotype stabilizes around 2 months of age, while the cerebellar pathology is progressive. This is probably due to the fact that PC function is severely impaired much earlier than the appearance of PC loss. Indeed, PC firing is already impaired in 3 weeks old mice. An interesting feature of the MWK pathology that still remains to be explained consists in a strong lobule selectivity of the PC loss, which is puzzling considering that TRPC is expressed in every PC. Intriguingly, genetic analysis of MWK cerebella shows, among other alterations, changes in the expression of both apoptosis inducing and resistance factors possibly suggesting that damaged PCs initiate specific cellular pathways that protect them from overt cell loss.
Collapse
Affiliation(s)
- Gabriella Sekerková
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA.
| | - Sumeyra Kilic
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Yen-Hsin Cheng
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Natalie Fredrick
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Anne Osmani
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Haram Kim
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Puneet Opal
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Marco Martina
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA.
| |
Collapse
|
4
|
Shorrock HK, Lennon CD, Aliyeva A, Davey EE, DeMeo CC, Pritchard CE, Planco L, Velez JM, Mascorro-Huamancaja A, Shin DS, Cleary JD, Berglund JA. Widespread alternative splicing dysregulation occurs presymptomatically in CAG expansion spinocerebellar ataxias. Brain 2024; 147:486-504. [PMID: 37776516 PMCID: PMC10834251 DOI: 10.1093/brain/awad329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 09/03/2023] [Indexed: 10/02/2023] Open
Abstract
The spinocerebellar ataxias (SCAs) are a group of dominantly inherited neurodegenerative diseases, several of which are caused by CAG expansion mutations (SCAs 1, 2, 3, 6, 7 and 12) and more broadly belong to the large family of over 40 microsatellite expansion diseases. While dysregulation of alternative splicing is a well defined driver of disease pathogenesis across several microsatellite diseases, the contribution of alternative splicing in CAG expansion SCAs is poorly understood. Furthermore, despite extensive studies on differential gene expression, there remains a gap in our understanding of presymptomatic transcriptomic drivers of disease. We sought to address these knowledge gaps through a comprehensive study of 29 publicly available RNA-sequencing datasets. We identified that dysregulation of alternative splicing is widespread across CAG expansion mouse models of SCAs 1, 3 and 7. These changes were detected presymptomatically, persisted throughout disease progression, were repeat length-dependent, and were present in brain regions implicated in SCA pathogenesis including the cerebellum, pons and medulla. Across disease progression, changes in alternative splicing occurred in genes that function in pathways and processes known to be impaired in SCAs, such as ion channels, synaptic signalling, transcriptional regulation and the cytoskeleton. We validated several key alternative splicing events with known functional consequences, including Trpc3 exon 9 and Kcnma1 exon 23b, in the Atxn1154Q/2Q mouse model. Finally, we demonstrated that alternative splicing dysregulation is responsive to therapeutic intervention in CAG expansion SCAs with Atxn1 targeting antisense oligonucleotide rescuing key splicing events. Taken together, these data demonstrate that widespread presymptomatic dysregulation of alternative splicing in CAG expansion SCAs may contribute to disease onset, early neuronal dysfunction and may represent novel biomarkers across this devastating group of neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Claudia D Lennon
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - Asmer Aliyeva
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
- Department of Biology, University at Albany—SUNY, Albany, NY 12222, USA
| | - Emily E Davey
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - Cristina C DeMeo
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | | | - Lori Planco
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - Jose M Velez
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
- Department of Biology, University at Albany—SUNY, Albany, NY 12222, USA
| | | | - Damian S Shin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - John D Cleary
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - J Andrew Berglund
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
- Department of Biology, University at Albany—SUNY, Albany, NY 12222, USA
| |
Collapse
|
5
|
Olmos V, Thompson EN, Gogia N, Luttik K, Veeranki V, Ni L, Sim S, Chen K, Krause DS, Lim J. Dysregulation of alternative splicing in spinocerebellar ataxia type 1. Hum Mol Genet 2024; 33:138-149. [PMID: 37802886 PMCID: PMC10979408 DOI: 10.1093/hmg/ddad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023] Open
Abstract
Spinocerebellar ataxia type 1 is caused by an expansion of the polyglutamine tract in ATAXIN-1. Ataxin-1 is broadly expressed throughout the brain and is involved in regulating gene expression. However, it is not yet known if mutant ataxin-1 can impact the regulation of alternative splicing events. We performed RNA sequencing in mouse models of spinocerebellar ataxia type 1 and identified that mutant ataxin-1 expression abnormally leads to diverse splicing events in the mouse cerebellum of spinocerebellar ataxia type 1. We found that the diverse splicing events occurred in a predominantly cell autonomous manner. A majority of the transcripts with misregulated alternative splicing events were previously unknown, thus allowing us to identify overall new biological pathways that are distinctive to those affected by differential gene expression in spinocerebellar ataxia type 1. We also provide evidence that the splicing factor Rbfox1 mediates the effect of mutant ataxin-1 on misregulated alternative splicing and that genetic manipulation of Rbfox1 expression modifies neurodegenerative phenotypes in a Drosophila model of spinocerebellar ataxia type 1 in vivo. Together, this study provides novel molecular mechanistic insight into the pathogenesis of spinocerebellar ataxia type 1 and identifies potential therapeutic strategies for spinocerebellar ataxia type 1.
Collapse
Affiliation(s)
- Victor Olmos
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
| | - Evrett N Thompson
- Department of Cell Biology, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
- Yale Stem Cell Center, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
| | - Neha Gogia
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
| | - Kimberly Luttik
- Interdepartmental Neuroscience Program, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Vaishnavi Veeranki
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
| | - Luhan Ni
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
| | - Serena Sim
- Yale College, 433 Temple Street, New Haven, CT 06510, United States
| | - Kelly Chen
- Yale College, 433 Temple Street, New Haven, CT 06510, United States
| | - Diane S Krause
- Department of Cell Biology, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
- Yale Stem Cell Center, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
- Department of Pathology, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
- Department of Laboratory Medicine, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
| | - Janghoo Lim
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
- Yale Stem Cell Center, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
- Interdepartmental Neuroscience Program, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
- Wu Tsai Institute, Yale School of Medicine, 100 College, New Haven, CT 06510, United States
| |
Collapse
|
6
|
Baron J, Groschner K, Tiapko O. Calcium transport and sensing in TRPC channels - New insights into a complex feedback regulation. Cell Calcium 2023; 116:102816. [PMID: 37897981 DOI: 10.1016/j.ceca.2023.102816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
Canonical TRP (TRPC) channels are a still enigmatic family of signaling molecules with multimodal sensing features. These channels enable Ca2+ influx through the plasma membrane to control a diverse range of cellular functions. Based on both regulatory- and recently uncovered structural features, TRPC channels are considered to coordinate Ca2+ and other divalent cations not only within the permeation path but also at additional sensory sites. Analysis of TRPC structures by cryo-EM identified multiple regulatory ion binding pockets. With this review, we aim at an overview and a critical discussion of the current concepts of divalent sensing by TRPC channels.
Collapse
Affiliation(s)
- Jasmin Baron
- Gottfried-Schatz-Research-Center Medical Physics and Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/H03, 8010 Graz, Austria
| | - Klaus Groschner
- Gottfried-Schatz-Research-Center Medical Physics and Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/H03, 8010 Graz, Austria
| | - Oleksandra Tiapko
- Gottfried-Schatz-Research-Center Medical Physics and Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/H03, 8010 Graz, Austria.
| |
Collapse
|
7
|
Cole BA, Becker EBE. Modulation and Regulation of Canonical Transient Receptor Potential 3 (TRPC3) Channels. Cells 2023; 12:2215. [PMID: 37759438 PMCID: PMC10526463 DOI: 10.3390/cells12182215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Canonical transient receptor potential 3 (TRPC3) channel is a non-selective cation permeable channel that plays an essential role in calcium signalling. TRPC3 is highly expressed in the brain and also found in endocrine tissues and smooth muscle cells. The channel is activated directly by binding of diacylglycerol downstream of G-protein coupled receptor activation. In addition, TRPC3 is regulated by endogenous factors including Ca2+ ions, other endogenous lipids, and interacting proteins. The molecular and structural mechanisms underlying activation and regulation of TRPC3 are incompletely understood. Recently, several high-resolution cryogenic electron microscopy structures of TRPC3 and the closely related channel TRPC6 have been resolved in different functional states and in the presence of modulators, coupled with mutagenesis studies and electrophysiological characterisation. Here, we review the recent literature which has advanced our understanding of the complex mechanisms underlying modulation of TRPC3 by both endogenous and exogenous factors. TRPC3 plays an important role in Ca2+ homeostasis and entry into cells throughout the body, and both pathological variants and downstream dysregulation of TRPC3 channels have been associated with a number of diseases. As such, TRPC3 may be a valuable therapeutic target, and understanding its regulatory mechanisms will aid future development of pharmacological modulators of the channel.
Collapse
Affiliation(s)
- Bethan A. Cole
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Esther B. E. Becker
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
8
|
Ariyani W, Amano I, Koibuchi N. Isoflavones Mediate Dendritogenesis Mainly through Estrogen Receptor α. Int J Mol Sci 2023; 24:ijms24109011. [PMID: 37240356 DOI: 10.3390/ijms24109011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The nuclear estrogen receptor (ER) and G-protein-coupled ER (GPER1) play a crucial role during brain development and are involved in dendrite and spine growth as well as synapse formation. Soybean isoflavones, such as genistein, daidzein, and S-equol, a daidzein metabolite, exert their action through ER and GPER1. However, the mechanisms of action of isoflavones on brain development, particularly during dendritogenesis and neuritogenesis, have not yet been extensively studied. We evaluated the effects of isoflavones using mouse primary cerebellar culture, astrocyte-enriched culture, Neuro-2A clonal cells, and co-culture with neurons and astrocytes. Soybean isoflavone-augmented estradiol mediated dendrite arborization in Purkinje cells. Such augmentation was suppressed by co-exposure with ICI 182,780, an antagonist for ERs, or G15, a selective GPER1 antagonist. The knockdown of nuclear ERs or GPER1 also significantly reduced the arborization of dendrites. Particularly, the knockdown of ERα showed the greatest effect. To further examine the specific molecular mechanism, we used Neuro-2A clonal cells. Isoflavones also induced neurite outgrowth of Neuro-2A cells. The knockdown of ERα most strongly reduced isoflavone-induced neurite outgrowth compared with ERβ or GPER1 knockdown. The knockdown of ERα also reduced the mRNA levels of ER-responsive genes (i.e., Bdnf, Camk2b, Rbfox3, Tubb3, Syn1, Dlg4, and Syp). Furthermore, isoflavones increased ERα levels, but not ERβ or GPER1 levels, in Neuro-2A cells. The co-culture study of Neuro-2A cells and astrocytes also showed an increase in isoflavone-induced neurite growth, and co-exposure with ICI 182,780 or G15 significantly reduced the effects. In addition, isoflavones increased astrocyte proliferation via ER and GPER1. These results indicate that ERα plays an essential role in isoflavone-induced neuritogenesis. However, GPER1 signaling is also necessary for astrocyte proliferation and astrocyte-neuron communication, which may lead to isoflavone-induced neuritogenesis.
Collapse
Affiliation(s)
- Winda Ariyani
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| |
Collapse
|
9
|
Nagib MM, Zhang S, Yasmen N, Li L, Hou R, Yu Y, Boda VK, Wu Z, Li W, Jiang J. Inhibition of TRPC3 channels by a novel pyrazole compound confers antiseizure effects. Epilepsia 2022; 63:1003-1015. [PMID: 35179226 PMCID: PMC9007831 DOI: 10.1111/epi.17190] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 01/02/2023]
Abstract
OBJECTIVE As a key member of the transient receptor potential (TRP) superfamily, TRP canonical 3 (TRPC3) regulates calcium homeostasis and contributes to neuronal excitability. Ablation of TRPC3 lessens pilocarpine-induced seizures in mice, suggesting that TRPC3 inhibition might represent a novel antiseizure strategy. Among current TRPC3 inhibitors, pyrazole 3 (Pyr3) is most selective and potent. However, Pyr3 only provides limited benefits in pilocarpine-treated mice, likely due to its low metabolic stability and potential toxicity. We recently reported a modified pyrazole compound 20 (or JW-65) that has improved stability and safety. The objective of this study was to explore the effects of TRPC3 inhibition by our current lead compound JW-65 on seizure susceptibility. METHODS We first examined the pharmacokinetic properties including plasma half-life and brain to plasma ratio of JW-65 after systemic administration in mice. We then investigated the effects of TRPC3 inhibition by JW-65 on behavioral and electrographic seizures in mice treated with pilocarpine. To ensure our findings are not model specific, we assessed the susceptibility of JW-65-treated mice to pentylenetetrazole (PTZ)-induced seizures with phenytoin as a comparator. RESULTS JW-65 showed adequate half-life and brain penetration in mice, justifying its use for central nervous system conditions. Systemic treatment with JW-65 before pilocarpine injection in mice markedly impaired the initiation of behavioral seizures. This antiseizure action was recapitulated when JW-65 was administered after pilocarpine-induced behavioral seizures were well established and was confirmed by time-locked electroencephalographic monitoring and synchronized video. Moreover, JW-65-treated mice showed substantially decreased susceptibility to PTZ-induced seizures in a dose-dependent manner. SIGNIFICANCE These results suggest that pharmacological inhibition of the TRPC3 channels by our novel compound JW-65 might represent a new antiseizure strategy engaging a previously undrugged mechanism of action. Hence, this proof-of-concept study establishes TRPC3 as a novel feasible therapeutic target for the treatment of some forms of epilepsy.
Collapse
Affiliation(s)
- Marwa M Nagib
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Sicheng Zhang
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Lexiao Li
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ruida Hou
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Vijay K Boda
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Wei Li
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
10
|
Creisméas A, Gazaille C, Bourdon A, Lallemand MA, François V, Allais M, Ledevin M, Larcher T, Toumaniantz G, Lafoux A, Huchet C, Anegon I, Adjali O, Le Guiner C, Fraysse B. TRPC3, but not TRPC1, as a good therapeutic target for standalone or complementary treatment of DMD. J Transl Med 2021; 19:519. [PMID: 34930315 PMCID: PMC8686557 DOI: 10.1186/s12967-021-03191-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is an X-linked inherited disease caused by mutations in the gene encoding dystrophin that leads to a severe and ultimately life limiting muscle-wasting condition. Recombinant adeno-associated vector (rAAV)-based gene therapy is promising, but the size of the full-length dystrophin cDNA exceeds the packaging capacity of a rAAV. Alternative or complementary strategies that could treat DMD patients are thus needed. Intracellular calcium overload due to a sarcolemma permeability to calcium (SPCa) increase is an early and critical step of the DMD pathogenesis. We assessed herein whether TRPC1 and TRPC3 calcium channels may be involved in skeletal muscle SPCa alterations and could represent therapeutic targets to treat DMD. Methods All experiments were conducted in the DMDmdx rat, an animal model that closely reproduces the human DMD disease. We measured the cytosolic calcium concentration ([Ca2+]c) and SPCa in EDL (Extensor Digitorum Longus) muscle fibers from age-matched WT and DMDmdx rats of 1.5 to 7 months old. TRPC1 and TRPC3 expressions were measured in the EDL muscles at both the mRNA and protein levels, by RT-qPCR, western blot and immunocytofluorescence analysis. Results As expected from the malignant hyperthermia like episodes observed in several DMDmdx rats, calcium homeostasis alterations were confirmed by measurements of early increases in [Ca2+]c and SPCa in muscle fibers. TRPC3 and TRPC1 protein levels were increased in DMDmdx rats. This was observed as soon as 1.5 months of age for TRPC3 but only at 7 months of age for TRPC1. A slight but reliable shift of the TRPC3 apparent molecular weight was observed in DMDmdx rat muscles. Intracellular localization of both channels was not altered. We thus focused our attention on TRPC3. Application of Pyr10, a specific inhibitor of TRPC3, abolished the differences between SPCa values measured in WT and DMDmdx. Finally, we showed that a rAAV-microdystrophin based treatment induced a high microdystrophin expression but only partial prevention of calcium homeostasis alterations, skeletal muscle force and TRPC3 protein increase. Conclusions All together our results show that correcting TRPC3 channel expression and/or activity appear to be a promising approach as a single or as a rAAV-based complementary therapy to treat DMD.
Collapse
Affiliation(s)
- Anna Creisméas
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Claire Gazaille
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Audrey Bourdon
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Marc-Antoine Lallemand
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Virginie François
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Marine Allais
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | | | | | - Gilles Toumaniantz
- L'Institut du Thorax, Université de Nantes, CNRS, INSERM UMR 1087, Nantes, France
| | - Aude Lafoux
- Therassay Platform, Capacités, Université de Nantes, Nantes, France
| | - Corinne Huchet
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Ignacio Anegon
- INSERM, UMR 1064-Center for Research in Transplantation and Immunology, ITUN, CHU Nantes, Université de Nantes, Faculté de Médecine, Nantes, France
| | - Oumeya Adjali
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Caroline Le Guiner
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Bodvaël Fraysse
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France.
| |
Collapse
|
11
|
Cochlear homeostasis: a molecular physiological perspective on maintenance of sound transduction and auditory neurotransmission with noise and ageing. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Human Brain Region-Specific Alternative Splicing of TRPC3, the Type 3 Canonical Transient Receptor Potential Non-Selective Cation Channel. THE CEREBELLUM 2019; 18:536-543. [PMID: 30887370 DOI: 10.1007/s12311-019-01026-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Canonical transient receptor potential (TRPC) non-selective cation channels are broadly expressed by neurons, glia and the microvasculature of the brain. In neurons and astrocytes, these ion channels are coupled to group I metabotropic glutamate receptors via Gαq-phospholipase C signal transduction. In the mouse cerebellar Purkinje neurons, TRPC channels assembled as tetramers of TRPC3 subunits exclusively mediate this glutamatergic signalling mechanism and regulation of alternative splicing results in dominance of a high Ca2+ conducting TRPC3c isoform. This regional control of TRPC3 transcript type likely has physiological and pathophysiological sequelae. The current study provides a quantitative comparison of the TRPC3c splice variant and the TRPC3b full-length isoform expression across seven regions of the human brain. This shows that the cerebellum has the highest expression level of both isoforms and that regulation of alternative splicing results in a higher propensity of the TRPC3c isoform in the cerebellum relative to the TRPC3b isoform (in a 1:3 ratio). This compares with the other regions (motor cortex, hippocampus, midbrain subregions, pons and medulla) where the prevalence of TRPC3c relative to TRPC3b is typically less than half as abundant. The finding here of a bias in the high-conductance TRPC3c isoform in the cerebellum is consistent with the enhanced vulnerability of the cerebellum to ischaemic injury.
Collapse
|
13
|
Sierra-Valdez F, Azumaya CM, Romero LO, Nakagawa T, Cordero-Morales JF. Structure-function analyses of the ion channel TRPC3 reveal that its cytoplasmic domain allosterically modulates channel gating. J Biol Chem 2018; 293:16102-16114. [PMID: 30139744 DOI: 10.1074/jbc.ra118.005066] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
The transient receptor potential ion channels support Ca2+ permeation in many organs, including the heart, brain, and kidney. Genetic mutations in transient receptor potential cation channel subfamily C member 3 (TRPC3) are associated with neurodegenerative diseases, memory loss, and hypertension. To better understand the conformational changes that regulate TRPC3 function, we solved the cryo-EM structures for the full-length human TRPC3 and its cytoplasmic domain (CPD) in the apo state at 5.8- and 4.0-Å resolution, respectively. These structures revealed that the TRPC3 transmembrane domain resembles those of other TRP channels and that the CPD is a stable module involved in channel assembly and gating. We observed the presence of a C-terminal domain swap at the center of the CPD where horizontal helices (HHs) transition into a coiled-coil bundle. Comparison of TRPC3 structures revealed that the HHs can reside in two distinct positions. Electrophysiological analyses disclosed that shortening the length of the C-terminal loop connecting the HH with the TRP helices increases TRPC3 activity and that elongating the length of the loop has the opposite effect. Our findings indicate that the C-terminal loop affects channel gating by altering the allosteric coupling between the cytoplasmic and transmembrane domains. We propose that molecules that target the HH may represent a promising strategy for controlling TRPC3-associated neurological disorders and hypertension.
Collapse
Affiliation(s)
- Francisco Sierra-Valdez
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | | | - Luis O Romero
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Terunaga Nakagawa
- Department of Molecular Physiology and Biophysics, .,Center for Structural Biology, and.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Julio F Cordero-Morales
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| |
Collapse
|
14
|
A Closely Associated Phospholipase C Regulates Cation Channel Function through Phosphoinositide Hydrolysis. J Neurosci 2018; 38:7622-7634. [PMID: 30037836 DOI: 10.1523/jneurosci.0586-18.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/28/2018] [Accepted: 07/17/2018] [Indexed: 11/21/2022] Open
Abstract
In the hemaphroditic sea snail, Aplysia californica, reproduction is initiated when the bag cell neurons secrete egg-laying hormone during a protracted afterdischarge. A source of depolarization for the afterdischarge is a voltage-gated, nonselective cation channel, similar to transient receptor potential (TRP) channels. Once the afterdischarge is triggered, phospholipase C (PLC) is activated to hydrolyze phosphatidylinositol-4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and inositol trisphosphate (IP3). We previously reported that a DAG analog, 1-oleoyl-2-acetyl-sn-glycerol (OAG), activates a prominent, inward whole-cell cationic current that is enhanced by IP3 To examine the underlying mechanism, we investigated the effect of exogenous OAG and IP3, as well as PLC activation, on cation channel activity and voltage dependence in excised, inside-out patches from cultured bag cell neurons. OAG transiently elevated channel open probability (PO) when applied to excised patches; however, coapplication of IP3 prolonged the OAG-induced response. In patches exposed to OAG and IP3, channel voltage dependence was left-shifted; this was also observed with OAG, but not to the same extent. Introducing the PLC activator, m-3M3FBS, to patches increased channel PO, suggesting PLC may be physically linked to the channels. Accordingly, blocking PLC with U-73122 ablated the m-3M3FBS-induced elevation in PO Treatment with m-3M3FBS left-shifted cation channel voltage dependence to a greater extent than exogenous OAG and IP3 Finally, OAG and IP3 potentiated the stimulatory effect of PKC, which is also associated with the channel. Thus, the PLC-PKC signaling system is physically localized such that PIP2 breakdown products liberated during the afterdischarge modulate the cation channel and temporally influence neuronal activity.SIGNIFICANCE STATEMENT Using excised patches from Aplysia bag cell neurons, we present the first evidence of a nonselective cation channel physically associating with phospholipase C (PLC) at the single-channel level. PLC-mediated breakdown of phospholipids generates diacylglycerol and inositol trisphosphate, which activate the cation channel. This is mimicked by exogenous lipids; furthermore, these second messengers left-shift channel voltage dependence and enhance the response of the channel to protein kinase C. PLC-mediated lipid signaling controls single-channel currents to ensure depolarization is maintained for an extended period of firing, termed the afterdischarge, when the bag cell neurons secrete egg-laying hormone to trigger reproduction.
Collapse
|
15
|
Focal Ischaemic Infarcts Expand Faster in Cerebellar Cortex than Cerebral Cortex in a Mouse Photothrombotic Stroke Model. Transl Stroke Res 2018; 9:643-653. [PMID: 29455391 DOI: 10.1007/s12975-018-0615-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 12/31/2022]
Abstract
It is generally accepted that the cerebellum is particularly vulnerable to ischaemic injury, and this may contribute to the high mortality arising from posterior circulation strokes. However, this has not been systematically examined in an animal model. This study compared the development and resolution of matched photothrombotic microvascular infarcts in the cerebellar and cerebral cortices in adult 129/SvEv mice of both sexes. The photothrombotic lesions were made using tail vein injection of Rose Bengal with a 532 nm laser projected onto a 2 mm diameter aperture over the target region of the brain (with skull thinning). Infarct size was then imaged histologically following 2 h to 30-day survival using serial reconstruction of haematoxylin and eosin stained cryosections. This was complemented with immunohistochemistry for neuron and glial markers. At 2 h post-injury, the cerebellar infarct volume averaged ~ 2.7 times that of the cerebral cortex infarcts. Infarct volume reached maximum in the cerebellum in a quarter of the time (24 h) taken in the cerebral cortex (4 days). Remodelling resolved the infarcts within a month, leaving significantly larger residual injury volume in the cerebellum. The death of neurons in the core lesion at 2 h was confirmed by NeuN and Calbindin immunofluorescence, alongside activation of astrocytes and microglia. The latter persisted in the region within and surrounding the residual infarct at 30 days. This comparison of acute focal ischaemic injuries in cerebellar and cerebral cortices provides direct confirmation of exacerbation of neuropathology and faster kinetics in the cerebellum.
Collapse
|
16
|
Transient receptor potential canonical type 3 channels: Interactions, role and relevance - A vascular focus. Pharmacol Ther 2017; 174:79-96. [DOI: 10.1016/j.pharmthera.2017.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Sturgeon RM, Magoski NS. Diacylglycerol-mediated regulation of Aplysia bag cell neuron excitability requires protein kinase C. J Physiol 2016; 594:5573-92. [PMID: 27198498 DOI: 10.1113/jp272152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/17/2016] [Indexed: 01/15/2023] Open
Abstract
KEY POINTS In Aplysia, reproduction is initiated by the bag cell neurons and a prolonged period of enhanced excitability known as the afterdischarge. Phosphoinositide turnover is upregulated during the afterdischarge resulting in the hydrolysis of phosphatidylinositol-4,5-bisphosphate by phospholipase C (PLC) and the release of diacylglycerol (DAG) and inositol trisphosphate (IP3 ). In whole-cell voltage-clamped cultured bag cell neurons, 1-oleoyl-2-acetyl-sn-glycerol (OAG), a synthetic DAG analogue, activates a dose-dependent, transient, inward current (IOAG ) that is enhanced by IP3 , mimicked by PLC activation and dependent on basal protein kinase C (PKC) activity. OAG depolarizes bag cell neurons and triggers action potential firing in culture, and prolongs electrically stimulated afterdischarges in intact bag cell neuron clusters ex vivo. Although PKC alone cannot activate the current, it is required for IOAG ; this is the first description of required obligate PKC activity working in concert with PLC, DAG and IP3 to maintain the depolarization required for prolonged excitability in Aplysia reproduction. ABSTRACT Following synaptic input, the bag cell neurons of Aplysia undergo a long-term afterdischarge of action potentials to secrete egg-laying hormone and initiate reproduction. Early in the afterdischarge, phospholipase C (PLC) hydrolyses phosphatidylinositol-4,5-bisphosphate into inositol trisphosphate (IP3 ) and diacylglycerol (DAG). In Aplysia, little is known about the action of DAG, or any interaction with IP3 ; thus, we examined the effects of a synthetic DAG analogue, 1-oleoyl-2-acetyl-sn-glycerol (OAG), on whole-cell voltage-clamped cultured bag cell neurons. OAG induced a large, prolonged, Ca(2+) -permeable, concentration-dependent inward current (IOAG ) that reversed at ∼-20 mV and was enhanced by intracellular IP3 . A similar current was evoked by either another DAG analogue, 1,2-dioctanoyl-sn-glycerol (DOG), or activating PLC with N-(3-trifluoromethylphenyl)-2,4,6-trimethylbenzenesulfonamide (m-3M3FBS). IOAG was reduced by the general cation channel blockers Gd(3+) or flufenamic acid. Work in other systems indicated that OAG activates channels independently of protein kinase C (PKC); however, we found pretreating bag cell neurons with any of the PKC inhibitors bisindolylmaleimide, sphinganine, or H7, attenuated IOAG . However, stimulating PKC with phorbol 12-myristate 13-acetate (PMA) did not evoke current or enhance IOAG ; moreover, unlike PMA, OAG failed to trigger PKC, as confirmed by an independent bioassay. Finally, OAG or m-3M3FBS depolarized cultured neurons, and while OAG did not provoke afterdischarges from bag cell neurons in the nervous system, it did double the duration of synaptically elicited afterdischarges. To our knowledge, this is the first report of obligate PKC activity for IOAG gating. An interaction between phosphoinositol metabolites and PKC could control the cation channel to influence afterdischarge duration.
Collapse
Affiliation(s)
- Raymond M Sturgeon
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, ON, Canada, K7L 3N6
| | - Neil S Magoski
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, ON, Canada, K7L 3N6.
| |
Collapse
|
18
|
Zheng S. Alternative splicing and nonsense-mediated mRNA decay enforce neural specific gene expression. Int J Dev Neurosci 2016; 55:102-108. [PMID: 26968265 DOI: 10.1016/j.ijdevneu.2016.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 11/20/2022] Open
Abstract
Alternative pre-mRNA splicing is a fundamental regulatory process for most mammalian multi-exon genes to increase proteome diversity. Nonsense-mediated mRNA decay (NMD) is a conserved mRNA surveillance mechanism to mitigate deleterious effects caused by gene mutations or transcriptional errors. Coupling alternative splicing and NMD (AS-NMD), in which alternative splicing switches between translational and NMD isoforms, results in fine-tuning overall gene expression to, in turn, expand the functional activities of these two post-transcriptional regulatory processes. AS-NMD is known for maintaining homeostatic expression of many RNA-binding proteins. We further show that AS-NMD is a conserved mechanism among mammals to induce developmental expression of the synaptic scaffold protein PSD-95. Comparing gene sequences between human Psd-95 and its ancestral orthologues indicates that AS-NMD regulation of mammalian Psd-95 is a product of selective pressure and that it enforces neural-specific expression of PSD-95 proteins in mammals. Invertebrate homolog of Psd-95 is not subjected to AS-NMD regulation and its protein product does not exhibit neural-specific expression. Given the prevalence of alternative splicing regulation in the mammalian nervous system, neural-specific expression of many other genes could be controlled by AS-NMD in a similar manner. We discuss the implication of these discoveries, as well as the challenges in generalizing the regulation and functional activity of AS-NMD.
Collapse
Affiliation(s)
- Sika Zheng
- Division of Biomedical Sciences, University of California Riverside, University of California, 201 School of Medicine Research Building, 900 University Avenue, Riverside, CA 92521, United States.
| |
Collapse
|
19
|
Ohya S, Kito H, Hatano N, Muraki K. Recent advances in therapeutic strategies that focus on the regulation of ion channel expression. Pharmacol Ther 2016; 160:11-43. [PMID: 26896566 DOI: 10.1016/j.pharmthera.2016.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A number of different ion channel types are involved in cell signaling networks, and homeostatic regulatory mechanisms contribute to the control of ion channel expression. Profiling of global gene expression using microarray technology has recently provided novel insights into the molecular mechanisms underlying the homeostatic and pathological control of ion channel expression. It has demonstrated that the dysregulation of ion channel expression is associated with the pathogenesis of neural, cardiovascular, and immune diseases as well as cancers. In addition to the transcriptional, translational, and post-translational regulation of ion channels, potentially important evidence on the mechanisms controlling ion channel expression has recently been accumulated. The regulation of alternative pre-mRNA splicing is therefore a novel therapeutic strategy for the treatment of dominant-negative splicing disorders. Epigenetic modification plays a key role in various pathological conditions through the regulation of pluripotency genes. Inhibitors of pre-mRNA splicing and histone deacetyalase/methyltransferase have potential as potent therapeutic drugs for cancers and autoimmune and inflammatory diseases. Moreover, membrane-anchoring proteins, lysosomal and proteasomal degradation-related molecules, auxiliary subunits, and pharmacological agents alter the protein folding, membrane trafficking, and post-translational modifications of ion channels, and are linked to expression-defect channelopathies. In this review, we focused on recent insights into the transcriptional, spliceosomal, epigenetic, and proteasomal regulation of ion channel expression: Ca(2+) channels (TRPC/TRPV/TRPM/TRPA/Orai), K(+) channels (voltage-gated, KV/Ca(2+)-activated, KCa/two-pore domain, K2P/inward-rectifier, Kir), and Ca(2+)-activated Cl(-) channels (TMEM16A/TMEM16B). Furthermore, this review highlights expression of these ion channels in expression-defect channelopathies.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan.
| |
Collapse
|
20
|
Weber EW, Han F, Tauseef M, Birnbaumer L, Mehta D, Muller WA. TRPC6 is the endothelial calcium channel that regulates leukocyte transendothelial migration during the inflammatory response. ACTA ACUST UNITED AC 2015; 212:1883-99. [PMID: 26392222 PMCID: PMC4612081 DOI: 10.1084/jem.20150353] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/25/2015] [Indexed: 12/14/2022]
Abstract
Weber et al. identify TRPC6 as the calcium channel mediating the transient increase in endothelial cytosolic free calcium concentration required for transendothelial migration of leukocytes during the inflammatory response. Leukocyte transendothelial migration (TEM) is a tightly regulated, multistep process that is critical to the inflammatory response. A transient increase in endothelial cytosolic free calcium ion concentration (↑[Ca2+]i) is required for TEM. However, the mechanism by which endothelial ↑[Ca2+]i regulates TEM and the channels mediating this ↑[Ca2+]i are unknown. Buffering ↑[Ca2+]i in endothelial cells does not affect leukocyte adhesion or locomotion but selectively blocks TEM, suggesting a role for ↑[Ca2+]i specifically for this step. Transient receptor potential canonical 6 (TRPC6), a Ca2+ channel expressed in endothelial cells, colocalizes with platelet/endothelial cell adhesion molecule-1 (PECAM) to surround leukocytes during TEM and clusters when endothelial PECAM is engaged. Expression of dominant-negative TRPC6 or shRNA knockdown in endothelial cells arrests neutrophils apically over the junction, similar to when PECAM is blocked. Selectively activating endothelial TRPC6 rescues TEM during an ongoing PECAM blockade, indicating that TRPC6 functions downstream of PECAM. Furthermore, endothelial TRPC6 is required for trafficking of lateral border recycling compartment membrane, which facilitates TEM. Finally, mice lacking TRPC6 in the nonmyeloid compartment (i.e., endothelium) exhibit a profound defect in neutrophil TEM with no effect on leukocyte trafficking. Our findings identify endothelial TRPC6 as the calcium channel mediating the ↑[Ca2+]i required for TEM at a step downstream of PECAM homophilic interactions.
Collapse
Affiliation(s)
- Evan W Weber
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Fei Han
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Mohammad Tauseef
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois in Chicago College of Medicine, Chicago, IL 60612
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Dolly Mehta
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois in Chicago College of Medicine, Chicago, IL 60612
| | - William A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
21
|
Abstract
Although our ability to store semantic declarative information can nowadays be readily surpassed by that of simple personal computers, our ability to learn and express procedural memories still outperforms that of supercomputers controlling the most advanced robots. To a large extent, our procedural memories are formed in the cerebellum, which embodies more than two-thirds of all neurons in our brain. In this review, we will focus on the emerging view that different modules of the cerebellum use different encoding schemes to form and express their respective memories. More specifically, zebrin-positive zones in the cerebellum, such as those controlling adaptation of the vestibulo-ocular reflex, appear to predominantly form their memories by potentiation mechanisms and express their memories via rate coding, whereas zebrin-negative zones, such as those controlling eyeblink conditioning, appear to predominantly form their memories by suppression mechanisms and express their memories in part by temporal coding using rebound bursting. Together, the different types of modules offer a rich repertoire to acquire and control sensorimotor processes with specific challenges in the spatiotemporal domain.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands
| | - Michiel M Ten Brinke
- Department of Neuroscience, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands
| |
Collapse
|
22
|
Hartmann J, Konnerth A. TRPC3‐dependent synaptic transmission in central mammalian neurons. J Mol Med (Berl) 2015; 93:983-9. [DOI: 10.1007/s00109-015-1298-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/05/2015] [Accepted: 05/13/2015] [Indexed: 01/05/2023]
|
23
|
Becker EBE. The Moonwalker mouse: new insights into TRPC3 function, cerebellar development, and ataxia. THE CEREBELLUM 2015; 13:628-36. [PMID: 24797279 PMCID: PMC4155175 DOI: 10.1007/s12311-014-0564-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Moonwalker (Mwk) mouse is a recent model of dominantly inherited cerebellar ataxia. The motor phenotype of the Mwk mouse is due to a gain-of-function mutation in the gene encoding the cation-permeable transient receptor potential channel (TRPC3). This mutation converts a threonine into an alanine in the highly conserved cytoplasmic S4–S5 linker of the channel, affecting channel gating. TRPC3 is highly expressed in cerebellar Purkinje cells and type II unipolar brush cells that both degenerate in the Mwk mouse. Studies of the Mwk mouse have provided new insights into the role of TRPC3 in cerebellar development and disease, which could not have been predicted from the Trpc3 knockout phenotype. Here, the genetic, behavioral, histological, and functional characterization of the Mwk mouse is reviewed. Moreover, the relationship of the Mwk mutant to other cerebellar mouse models and its relevance as a model for cerebellar ataxia are discussed.
Collapse
Affiliation(s)
- Esther B E Becker
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK,
| |
Collapse
|
24
|
Xie YF, Zhou F. TRPC3 channel mediates excitation of striatal cholinergic interneurons. Neurol Sci 2014; 35:1757-1761. [PMID: 24844791 DOI: 10.1007/s10072-014-1827-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/08/2014] [Indexed: 11/29/2022]
Abstract
Striatal cholinergic interneurons exhibit tonic firing and more positive membrane potentials, however, the mechanism is unclear. In the present study, we found that intracellular perfusion of TRPC3 antibody induced outward current in striatal cholinergic interneurons identified by electrophysiological characteristics. The TRPC3 channel blocker flufenamic acid induced hyperpolarization, and reduced firing rate and outward current which was similar to the effect of TRPC3 channel antibody. Furthermore, by using single-cell RT-PCR we confirmed the co-existence of TRPC3 channel and D5 receptor mRNA in striatal cholinergic interneurons identified by electrophysiological characteristics and expression of choline acetyltransferase (Chat) mRNA. These results implied that the TRPC3 channel is involved in modulating the depolarization of cholinergic interneurons.
Collapse
Affiliation(s)
- Yu-Feng Xie
- Department of Pharmacology, Health Science Center, University of Tennessee, Memphis, USA,
| | | |
Collapse
|
25
|
Zhou H, Lin Z, Voges K, Ju C, Gao Z, Bosman LWJ, Ruigrok TJH, Hoebeek FE, De Zeeuw CI, Schonewille M. Cerebellar modules operate at different frequencies. eLife 2014; 3:e02536. [PMID: 24843004 PMCID: PMC4049173 DOI: 10.7554/elife.02536] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Due to the uniform cyto-architecture of the cerebellar cortex, its overall physiological characteristics have traditionally been considered to be homogeneous. In this study, we show in awake mice at rest that spiking activity of Purkinje cells, the sole output cells of the cerebellar cortex, differs between cerebellar modules and correlates with their expression of the glycolytic enzyme aldolase C or zebrin. Simple spike and complex spike frequencies were significantly higher in Purkinje cells located in zebrin-negative than zebrin-positive modules. The difference in simple spike frequency persisted when the synaptic input to, but not intrinsic activity of, Purkinje cells was manipulated. Blocking TRPC3, the effector channel of a cascade of proteins that have zebrin-like distribution patterns, attenuated the simple spike frequency difference. Our results indicate that zebrin-discriminated cerebellar modules operate at different frequencies, which depend on activation of TRPC3, and that this property is relevant for all cerebellar functions. DOI:http://dx.doi.org/10.7554/eLife.02536.001 The cerebellum, located at the back of the brain underneath the cerebral hemispheres, is best known for its role in the control of movement. Despite its small size, the cerebellum contains more than half of the brain's neurons. These are organized in a repeating pattern in which cells called Purkinje cells receive inputs from two types of fibers: climbing fibers, which ascend into the cerebellum from the brainstem; and parallel fibers, which run perpendicular to the climbing fibers. This gives rise to a characteristic ‘crystalline’ structure. As a result of this uniform circuitry, it was widely believed was that all Purkinje cells throughout the cerebellum would function the same way. However, the presence of distinct patterns of gene expression in different regions suggests that this is not the case. Molecules called zebrins, for example, are found in some Purkinje cells but not others, and this gives rise to a pattern of zebrin-positive and zebrin-negative stripes. A number of other molecules have similar distributions, suggesting that these differences in molecular machinery could underlie differences in cellular physiology. Zhou, Lin et al. have now provided one of the first direct demonstrations of such physiological differences by showing that zebrin-positive cells generate action potentials at lower frequencies than zebrin-negative cells. This pattern is seen throughout the cerebellum, and is evident even when the positive and negative cells are neighbors, which indicates that these differences do not simply reflect differences in the locations of the cells or differences in the inputs they receive from parallel fibers. Additional experiments revealed that the distinct firing rates are likely not generated by zebrin itself, but rather by proteins that are expressed alongside zebrin, most notably those that work through an ion channel called TRPC3. By showing that cells arranged in the same type of circuit can nevertheless have distinct firing rates, the work of Zhou, Lin et al. has revealed an additional level of complexity in the physiology of the cerebellum. In addition to improving our understanding of how the brain controls movement, these findings might also be of interest to researchers studying the increasing number of neurological and psychiatric disorders in which cerebellar dysfunction has been implicated. DOI:http://dx.doi.org/10.7554/eLife.02536.002
Collapse
Affiliation(s)
- Haibo Zhou
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Zhanmin Lin
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Kai Voges
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Chiheng Ju
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands Cerebellar Coordination and Cognition, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | | |
Collapse
|
26
|
Eijkelkamp N, Quick K, Wood JN. Transient Receptor Potential Channels and Mechanosensation. Annu Rev Neurosci 2013; 36:519-46. [DOI: 10.1146/annurev-neuro-062012-170412] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niels Eijkelkamp
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands;
| | - Kathryn Quick
- Wolfson Institute for Biomedical Research, University College London, London WC1 6BT, United Kingdom; ,
| | - John N. Wood
- Wolfson Institute for Biomedical Research, University College London, London WC1 6BT, United Kingdom; ,
| |
Collapse
|
27
|
Wong ACY, Birnbaumer L, Housley GD. Canonical transient receptor potential channel subtype 3-mediated hair cell Ca2+entry regulates sound transduction and auditory neurotransmission. Eur J Neurosci 2013; 37:1478-86. [DOI: 10.1111/ejn.12158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/09/2013] [Accepted: 01/16/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Ann Chi Yan Wong
- Translational Neuroscience Facility and Department of Physiology; School of Medical Sciences; University of New South Wales; Sydney; 2052; NSW; Australia
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, NIH, Building 101, Room F180, 111 TW Alexander Dr; Research Triangle Park; NC 27709; USA
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology; School of Medical Sciences; University of New South Wales; Sydney; 2052; NSW; Australia
| |
Collapse
|