1
|
Ahn EH, Park JB. Molecular Mechanisms of Alzheimer's Disease Induced by Amyloid-β and Tau Phosphorylation Along with RhoA Activity: Perspective of RhoA/Rho-Associated Protein Kinase Inhibitors for Neuronal Therapy. Cells 2025; 14:89. [PMID: 39851517 PMCID: PMC11764136 DOI: 10.3390/cells14020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Amyloid-β peptide (Aβ) is a critical cause of Alzheimer's disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli. Tau protein has also been identified as a significant factor in AD. In particular, Tau phosphorylation is crucial for neuronal impairment, as phosphorylated Tau detaches from microtubules, leading to the formation of neurofibrillary tangles and the destabilization of the microtubule structure. This instability in microtubules damages axons and dendrites, resulting in neuronal impairment. Notably, Aβ is linked to Tau phosphorylation. Another crucial factor in AD is neuroinflammation, primarily occurring in the microglia. Microglia possess several receptors that bind with Aβ, triggering the expression and release of an inflammatory factor, although their main physiological function is to phagocytose debris and pathogens in the brain. NF-κB activation plays a major role in neuroinflammation. Additionally, the production of reactive oxygen species (ROS) in the microglia contributes to this neuroinflammation. In microglia, superoxide is produced through NADPH oxidase, specifically NOX2. Rho GTPases play an essential role in regulating various cellular processes, including cytoskeletal rearrangement, morphology changes, migration, and transcription. The typical function of Rho GTPases involves regulating actin filament formation. Neurons, with their complex processes and synapse connections, rely on cytoskeletal dynamics for structural support. Other brain cells, such as astrocytes, microglia, and oligodendrocytes, also depend on specific cytoskeletal structures to maintain their unique cellular architectures. Thus, the aberrant regulation of Rho GTPases activity can disrupt actin filaments, leading to altered cell morphology, including changes in neuronal processes and synapses, and potentially contributing to brain diseases such as AD.
Collapse
Affiliation(s)
- Eun Hee Ahn
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea;
- Department of Neurology, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
- ELMED Co., Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
| |
Collapse
|
2
|
Duman JG, Blanco FA, Cronkite CA, Ru Q, Erikson KC, Mulherkar S, Saifullah AB, Firozi K, Tolias KF. Rac-maninoff and Rho-vel: The symphony of Rho-GTPase signaling at excitatory synapses. Small GTPases 2022; 13:14-47. [PMID: 33955328 PMCID: PMC9707551 DOI: 10.1080/21541248.2021.1885264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/15/2023] Open
Abstract
Synaptic connections between neurons are essential for every facet of human cognition and are thus regulated with extreme precision. Rho-family GTPases, molecular switches that cycle between an active GTP-bound state and an inactive GDP-bound state, comprise a critical feature of synaptic regulation. Rho-GTPases are exquisitely controlled by an extensive suite of activators (GEFs) and inhibitors (GAPs and GDIs) and interact with many different signalling pathways to fulfill their roles in orchestrating the development, maintenance, and plasticity of excitatory synapses of the central nervous system. Among the mechanisms that control Rho-GTPase activity and signalling are cell surface receptors, GEF/GAP complexes that tightly regulate single Rho-GTPase dynamics, GEF/GAP and GEF/GEF functional complexes that coordinate multiple Rho-family GTPase activities, effector positive feedback loops, and mutual antagonism of opposing Rho-GTPase pathways. These complex regulatory mechanisms are employed by the cells of the nervous system in almost every step of development, and prominently figure into the processes of synaptic plasticity that underlie learning and memory. Finally, misregulation of Rho-GTPases plays critical roles in responses to neuronal injury, such as traumatic brain injury and neuropathic pain, and in neurodevelopmental and neurodegenerative disorders, including intellectual disability, autism spectrum disorder, schizophrenia, and Alzheimer's Disease. Thus, decoding the mechanisms of Rho-GTPase regulation and function at excitatory synapses has great potential for combatting many of the biggest current challenges in mental health.
Collapse
Affiliation(s)
- Joseph G. Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Francisco A. Blanco
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Science Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Christopher A. Cronkite
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Qin Ru
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kelly C. Erikson
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ali Bin Saifullah
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Karen Firozi
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kimberley F. Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Haimson B, Meir O, Sudakevitz-Merzbach R, Elberg G, Friedrich S, Lovell PV, Paixão S, Klein R, Mello CV, Klar A. Natural loss of function of ephrin-B3 shapes spinal flight circuitry in birds. SCIENCE ADVANCES 2021; 7:7/24/eabg5968. [PMID: 34117069 PMCID: PMC8195482 DOI: 10.1126/sciadv.abg5968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/28/2021] [Indexed: 05/11/2023]
Abstract
Flight in birds evolved through patterning of the wings from forelimbs and transition from alternating gait to synchronous flapping. In mammals, the spinal midline guidance molecule ephrin-B3 instructs the wiring that enables limb alternation, and its deletion leads to synchronous hopping gait. Here, we show that the ephrin-B3 protein in birds lacks several motifs present in other vertebrates, diminishing its affinity for the EphA4 receptor. The avian ephrin-B3 gene lacks an enhancer that drives midline expression and is missing in galliforms. The morphology and wiring at brachial levels of the chicken embryonic spinal cord resemble those of ephrin-B3 null mice. Dorsal midline decussation, evident in the mutant mouse, is apparent at the chick brachial level and is prevented by expression of exogenous ephrin-B3 at the roof plate. Our findings support a role for loss of ephrin-B3 function in shaping the avian brachial spinal cord circuitry and facilitating synchronous wing flapping.
Collapse
Affiliation(s)
- Baruch Haimson
- Department of Medical Neurobiology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Oren Meir
- Department of Medical Neurobiology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Reut Sudakevitz-Merzbach
- Department of Medical Neurobiology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Gerard Elberg
- Department of Medical Neurobiology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Samantha Friedrich
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Sónia Paixão
- Department Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Rüdiger Klein
- Department Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA.
| | - Avihu Klar
- Department of Medical Neurobiology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
4
|
Skarlatou S, Hérent C, Toscano E, Mendes CS, Bouvier J, Zampieri N. Afadin Signaling at the Spinal Neuroepithelium Regulates Central Canal Formation and Gait Selection. Cell Rep 2021; 31:107741. [PMID: 32521266 DOI: 10.1016/j.celrep.2020.107741] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 04/03/2020] [Accepted: 05/15/2020] [Indexed: 11/28/2022] Open
Abstract
Afadin, a scaffold protein controlling the activity of the nectin family of cell adhesion molecules, regulates important morphogenetic processes during development. In the central nervous system, afadin has critical roles in neuronal migration, axonal elongation, and synapse formation. Here we examine the role of afadin in development of spinal motor circuits. Afadin elimination in motor neuron progenitors results in striking locomotor behavior: left-right limb alternation is substituted by synchronous activation, characteristic of bound gait. We find that afadin function at the neuroepithelium is required for structural organization of the spinal midline and central canal morphogenesis. Perturbation of afadin results in formation of two central canals, aberrant contralateral wiring of different classes of spinal premotor interneurons, and loss of left-right limb alternation, highlighting important developmental principles controlling the assembly of spinal motor circuits.
Collapse
Affiliation(s)
- Sophie Skarlatou
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Coralie Hérent
- Paris-Saclay Institute of Neuroscience, UMR 9197 CNRS & Université Paris-Saclay, Avenue de La Terrasse, 91190 Gif sur Yvette, France
| | - Elisa Toscano
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - César S Mendes
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Julien Bouvier
- Paris-Saclay Institute of Neuroscience, UMR 9197 CNRS & Université Paris-Saclay, Avenue de La Terrasse, 91190 Gif sur Yvette, France
| | - Niccolò Zampieri
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| |
Collapse
|
5
|
Mulherkar S, Tolias KF. RhoA-ROCK Signaling as a Therapeutic Target in Traumatic Brain Injury. Cells 2020; 9:E245. [PMID: 31963704 PMCID: PMC7016605 DOI: 10.3390/cells9010245] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. TBIs, which range in severity from mild to severe, occur when a traumatic event, such as a fall, a traffic accident, or a blow, causes the brain to move rapidly within the skull, resulting in damage. Long-term consequences of TBI can include motor and cognitive deficits and emotional disturbances that result in a reduced quality of life and work productivity. Recovery from TBI can be challenging due to a lack of effective treatment options for repairing TBI-induced neural damage and alleviating functional impairments. Central nervous system (CNS) injury and disease are known to induce the activation of the small GTPase RhoA and its downstream effector Rho kinase (ROCK). Activation of this signaling pathway promotes cell death and the retraction and loss of neural processes and synapses, which mediate information flow and storage in the brain. Thus, inhibiting RhoA-ROCK signaling has emerged as a promising approach for treating CNS disorders. In this review, we discuss targeting the RhoA-ROCK pathway as a therapeutic strategy for treating TBI and summarize the recent advances in the development of RhoA-ROCK inhibitors.
Collapse
Affiliation(s)
- Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Kimberley F. Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA;
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Dupraz S, Hilton BJ, Husch A, Santos TE, Coles CH, Stern S, Brakebusch C, Bradke F. RhoA Controls Axon Extension Independent of Specification in the Developing Brain. Curr Biol 2019; 29:3874-3886.e9. [PMID: 31679934 DOI: 10.1016/j.cub.2019.09.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/22/2019] [Accepted: 09/16/2019] [Indexed: 12/22/2022]
Abstract
The specification of an axon and its subsequent outgrowth are key steps during neuronal polarization, a prerequisite to wire the brain. The Rho-guanosine triphosphatase (GTPase) RhoA is believed to be a central player in these processes. However, its physiological role has remained undefined. Here, genetic loss- and gain-of-function experiments combined with time-lapse microscopy, cell culture, and in vivo analysis show that RhoA is not involved in axon specification but confines the initiation of neuronal polarization and axon outgrowth during development. Biochemical analysis and super-resolution microscopy together with molecular and pharmacological manipulations reveal that RhoA restrains axon growth by activating myosin-II-mediated actin arc formation in the growth cone to prevent microtubules from protruding toward the leading edge. Through this mechanism, RhoA regulates the duration of axon growth and pause phases, thus controlling the tightly timed extension of developing axons. Thereby, this work unravels physiologically relevant players coordinating actin-microtubule interactions during axon growth.
Collapse
Affiliation(s)
- Sebastian Dupraz
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Brett J Hilton
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Andreas Husch
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Telma E Santos
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Charlotte H Coles
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Sina Stern
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Cord Brakebusch
- Biotech Research & Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Frank Bradke
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany.
| |
Collapse
|
7
|
Synapse Formation in Monosynaptic Sensory-Motor Connections Is Regulated by Presynaptic Rho GTPase Cdc42. J Neurosci 2017; 36:5724-35. [PMID: 27225763 DOI: 10.1523/jneurosci.2146-15.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 04/13/2016] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Spinal reflex circuit development requires the precise regulation of axon trajectories, synaptic specificity, and synapse formation. Of these three crucial steps, the molecular mechanisms underlying synapse formation between group Ia proprioceptive sensory neurons and motor neurons is the least understood. Here, we show that the Rho GTPase Cdc42 controls synapse formation in monosynaptic sensory-motor connections in presynaptic, but not postsynaptic, neurons. In mice lacking Cdc42 in presynaptic sensory neurons, proprioceptive sensory axons appropriately reach the ventral spinal cord, but significantly fewer synapses are formed with motor neurons compared with wild-type mice. Concordantly, electrophysiological analyses show diminished EPSP amplitudes in monosynaptic sensory-motor circuits in these mutants. Temporally targeted deletion of Cdc42 in sensory neurons after sensory-motor circuit establishment reveals that Cdc42 does not affect synaptic transmission. Furthermore, addition of the synaptic organizers, neuroligins, induces presynaptic differentiation of wild-type, but not Cdc42-deficient, proprioceptive sensory neurons in vitro Together, our findings demonstrate that Cdc42 in presynaptic neurons is required for synapse formation in monosynaptic sensory-motor circuits. SIGNIFICANCE STATEMENT Group Ia proprioceptive sensory neurons form direct synapses with motor neurons, but the molecular mechanisms underlying synapse formation in these monosynaptic sensory-motor connections are unknown. We show that deleting Cdc42 in sensory neurons does not affect proprioceptive sensory axon targeting because axons reach the ventral spinal cord appropriately, but these neurons form significantly fewer presynaptic terminals on motor neurons. Electrophysiological analysis further shows that EPSPs are decreased in these mice. Finally, we demonstrate that Cdc42 is involved in neuroligin-dependent presynaptic differentiation of proprioceptive sensory neurons in vitro These data suggest that Cdc42 in presynaptic sensory neurons is essential for proper synapse formation in the development of monosynaptic sensory-motor circuits.
Collapse
|
8
|
Guo W, Cai Y, Zhang H, Yang Y, Yang G, Wang X, Zhao J, Lin J, Zhu J, Li W, Lv L. Association of ARHGAP18 polymorphisms with schizophrenia in the Chinese-Han population. PLoS One 2017; 12:e0175209. [PMID: 28384650 PMCID: PMC5383423 DOI: 10.1371/journal.pone.0175209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/22/2017] [Indexed: 11/23/2022] Open
Abstract
Numerous developmental genes have been linked to schizophrenia (SZ) by case-control and genome-wide association studies, suggesting that neurodevelopmental disturbances are major pathogenic mechanisms. However, no neurodevelopmental deficit has been definitively linked to SZ occurrence, likely due to disease heterogeneity and the differential effects of various gene variants across ethnicities. Hence, it is critical to examine linkages in specific ethnic populations, such as Han Chinese. The newly identified RhoGAP ARHGAP18 is likely involved in neurodevelopment through regulation of RhoA/C. Here we describe four single nucleotide polymorphisms (SNPs) in ARHGAP18 associated with SZ across a cohort of >2000 cases and controls from the Han population. Two SNPs, rs7758025 and rs9483050, displayed significant differences between case and control groups both in genotype (P = 0.0002 and P = 7.54×10−6) and allelic frequencies (P = 4.36×10−5 and P = 5.98×10−7), respectively. The AG haplotype in rs7758025−rs9385502 was strongly associated with the occurrence of SZ (P = 0.0012, OR = 0.67, 95% CI = 0.48–0.93), an association that still held following a 1000-times random permutation test (P = 0.022). In an independently collected validation cohort, rs9483050 was the SNP most strongly associated with SZ. In addition, the allelic frequencies of rs12197901 remained associated with SZ in the combined cohort (P = 0.021), although not in the validation cohort alone (P = 0.251). Collectively, our data suggest the ARHGAP18 may confer vulnerability to SZ in the Chinese Han population, providing additional evidence for the involvement of neurodevelopmental dysfunction in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Weiyun Guo
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Yaqi Cai
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hongxing Zhang
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Department of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Yongfeng Yang
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Ge Yang
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiujuan Wang
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jingyuan Zhao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Institute of Anatomy I, Friedrich Schiller University Jena, Jena, Germany
| | - Jinfu Zhu
- Institute of Anatomy I, Friedrich Schiller University Jena, Jena, Germany.,Department of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Luxian Lv
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
9
|
Abstract
In the last decade, several mouse models for RhoA, Rac1, and Cdc42 have emerged and have contributed a great deal to understanding the precise functions of Rho GTPases at early stages of development. This review summarizes our current knowledge of various mouse models of tissue-specific ablation of Cdc42, Rac1, and RhoA with emphasis on early embryogenesis, epithelial and skin morphogenesis, tubulogenesis, development of the central nervous system, and limb development.
Collapse
Affiliation(s)
- Philippe M Duquette
- a McGill University ; Department of Anatomy and Cell Biology ; Montreal , QC Canada
| | | |
Collapse
|
10
|
Zhou X, Zheng Y. Cell type-specific signaling function of RhoA GTPase: lessons from mouse gene targeting. J Biol Chem 2013; 288:36179-88. [PMID: 24202176 DOI: 10.1074/jbc.r113.515486] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RhoA GTPase is a key intracellular regulator of actomyosin dynamics and other cell functions, including adhesion, proliferation, survival, and gene expression. Most of our knowledge of RhoA signaling function is from studies in immortalized cell lines utilizing inhibitors or dominant mutant overexpression, both of which are limited in terms of specificity, dosage, and clonal variation. Recent mouse gene targeting studies of rhoA and its regulators/effectors have revealed cell type-specific signaling mechanisms in the context of mammalian physiology. The new knowledge may present therapeutic opportunities for the rational targeting of RhoA signaling-mediated pathophysiologies.
Collapse
Affiliation(s)
- Xuan Zhou
- From the Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, Ohio 45229
| | | |
Collapse
|
11
|
Thumkeo D, Watanabe S, Narumiya S. Physiological roles of Rho and Rho effectors in mammals. Eur J Cell Biol 2013; 92:303-15. [PMID: 24183240 DOI: 10.1016/j.ejcb.2013.09.002] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/25/2013] [Accepted: 09/25/2013] [Indexed: 02/06/2023] Open
Abstract
Rho GTPase is a master regulator controlling cytoskeleton in multiple contexts such as cell migration, adhesion and cytokinesis. Of several Rho GTPases in mammals, the best characterized is the Rho subfamily including ubiquitously expressed RhoA and its homologs RhoB and RhoC. Upon binding GTP, Rho exerts its functions through downstream Rho effectors, such as ROCK, mDia, Citron, PKN, Rhophilin and Rhotekin. Until recently, our knowledge about functions of Rho and Rho effectors came mostly from in vitro studies utilizing cultured cells, and their physiological roles in vivo were largely unknown. However, gene-targeting studies of Rho and its effectors have now unraveled their tissue- and cell-specific roles and provide deeper insight into the physiological function of Rho signaling in vivo. In this article, we briefly describe previous studies of the function of Rho and its effectors in vitro and then review and discuss recent studies on knockout mice of Rho and its effectors.
Collapse
Affiliation(s)
- Dean Thumkeo
- Department of Pharmacology, Kyoto University Faculty of Medicine, Sakyo-ku, Kyoto 606-8501, Japan; Innovation Center for Immunoregulation, Technologies and Drugs (AK Project), Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
12
|
Katayama KI, Imai F, Campbell K, Lang RA, Zheng Y, Yoshida Y. RhoA and Cdc42 are required in pre-migratory progenitors of the medial ganglionic eminence ventricular zone for proper cortical interneuron migration. Development 2013; 140:3139-45. [PMID: 23861058 DOI: 10.1242/dev.092585] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cortical interneurons arise from the ganglionic eminences in the ventral telencephalon and migrate tangentially to the cortex. Although RhoA and Cdc42, members of the Rho family of small GTPases, have been implicated in regulating neuronal migration, their respective roles in the tangential migration of cortical interneurons remain unknown. Here we show that loss of RhoA and Cdc42 in the ventricular zone (VZ) of the medial ganglionic eminence (MGE) using Olig2-Cre mice causes moderate or severe defects in the migration of cortical interneurons, respectively. Furthermore, RhoA- or Cdc42-deleted MGE cells exhibit impaired migration in vitro. To determine whether RhoA and Cdc42 directly regulate the motility of cortical interneurons during migration, we deleted RhoA and Cdc42 in the subventricular zone (SVZ), where more fate-restricted progenitors are located within the ganglionic eminences, using Dlx5/6-Cre-ires-EGFP (Dlx5/6-CIE) mice. Deletion of either gene within the SVZ does not cause any obvious defects in cortical interneuron migration, indicating that cell motility is not dependent upon RhoA or Cdc42. These findings provide genetic evidence that RhoA and Cdc42 are required in progenitors of the MGE in the VZ, but not the SVZ, for proper cortical interneuron migration.
Collapse
Affiliation(s)
- Kei-ichi Katayama
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Katayama KI, Imai F, Suto F, Yoshida Y. Deletion of Sema3a or plexinA1/plexinA3 causes defects in sensory afferent projections of statoacoustic ganglion neurons. PLoS One 2013; 8:e72512. [PMID: 23991118 PMCID: PMC3753268 DOI: 10.1371/journal.pone.0072512] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/14/2013] [Indexed: 11/30/2022] Open
Abstract
Statoacoustic ganglion (SAG) neurons project sensory afferents to appropriate targets in the inner ear to form functional vestibular and auditory circuits. Neuropilin1 (Npn1), a receptor for class 3 semaphorins, is required to generate appropriate afferent projections in SAG neurons; however, the ligands and coreceptors involved in Npn1 functioning remain unknown. Here we show that both plexinA1 and plexinA3 are expressed by SAG neurons, and plexinA1/plexinA3 double mutant mice show defects in afferent projections of SAG neurons in the inner ear. In control mice, sensory afferents of SAG neurons terminate at the vestibular sensory patches, whereas in plexinA1/plexinA3 double mutants, they extend more dorsally in the inner ear beyond normal vestibular target areas. Moreover, we find that semaphorin3a (Sema3a) is expressed in the dorsal otocyst, and Sema3a mutant mice show defects in afferent projections of SAG neurons similar to those observed in plexinA1/plexinA3 double mutants and in mice lacking a functional Npn1 receptor. Taken together, these genetic findings demonstrate that Sema3a repellent signaling plays a role in the establishment of proper afferent projections in SAG neurons, and this signaling likely occurs through a receptor complex involving Npn1 and either plexinA1 or plexinA3.
Collapse
Affiliation(s)
- Kei-ichi Katayama
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (KK); (YY)
| | - Fumiyasu Imai
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Fumikazu Suto
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yutaka Yoshida
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (KK); (YY)
| |
Collapse
|
14
|
Toyoda Y, Shinohara R, Thumkeo D, Kamijo H, Nishimaru H, Hioki H, Kaneko T, Ishizaki T, Furuyashiki T, Narumiya S. EphA4-dependent axon retraction and midline localization of Ephrin-B3 are disrupted in the spinal cord of mice lacking mDia1 and mDia3 in combination. Genes Cells 2013; 18:873-85. [PMID: 23890216 DOI: 10.1111/gtc.12081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/04/2013] [Indexed: 01/13/2023]
Abstract
mDia is an actin nucleator and polymerization factor regulated by the small GTPase Rho and consists of three isoforms. Here, we found that mice lacking mDia1 and mDia3, two isoforms expressed in the brain, in combination (mDia-DKO mice) show impaired left-right limb coordination during locomotion and aberrant midline crossing of axons of corticospinal neurons and spinal cord interneurons. Given that mice lacking Ephrin-B3-EphA4 signaling show a similar impairment in locomotion, we examined whether mDia is involved in Ephrin-B3-EphA4 signaling for axon repulsion. In primary cultured neurons, mDia deficiency impairs growth cone collapse and axon retraction induced by chemo-repellants including EphA ligands. In mDia-DKO mice, the Ephrin-B3-expressing midline structure in the spinal cord is disrupted, and axons aberrantly cross the spinal cord midline preferentially through the region devoid of Ephrin-B3. Therefore, mDia plays multiple roles in the proper formation of the neural network in vivo.
Collapse
Affiliation(s)
- Yosuke Toyoda
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
The small GTPase RhoA is required for proper locomotor circuit assembly. PLoS One 2013; 8:e67015. [PMID: 23825607 PMCID: PMC3692541 DOI: 10.1371/journal.pone.0067015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/13/2013] [Indexed: 11/19/2022] Open
Abstract
The assembly of neuronal circuits during development requires the precise navigation of axons, which is controlled by attractive and repulsive guidance cues. In the developing spinal cord, ephrinB3 functions as a short-range repulsive cue that prevents EphA4 receptor-expressing corticospinal tract and spinal interneuron axons from crossing the midline, ensuring proper formation of locomotor circuits. Here we report that the small GTPase RhoA, a key regulator of cytoskeletal dynamics, is also required for ephrinB3/EphA4-dependent locomotor circuit formation. Deletion of RhoA from neural progenitor cells results in mice that exhibit a rabbit-like hopping gait, which phenocopies mice lacking ephrinB3 or EphA4. Consistent with this locomotor defect, we found that corticospinal tract axons and spinal interneuron projections from RhoA-deficient mice aberrantly cross the spinal cord midline. Furthermore, we determined that loss of RhoA blocks ephrinB3-induced growth cone collapse of cortical axons and disrupts ephrinB3 expression at the spinal cord midline. Collectively, our results demonstrate that RhoA is essential for the ephrinB3/EphA4-dependent assembly of cortical and spinal motor circuits that control normal locomotor behavior.
Collapse
|