1
|
Bruno T, Catena V, Corleone G, Cortile C, Cappelletto MC, Bellei B, De Nicola F, Amadio B, Gumenyuk S, Marchesi F, Annibali O, Blandino G, Fanciulli M, Di Agostino S. Che-1/miR-590-3p/TAZ axis sustains multiple myeloma disease. Leukemia 2024; 38:877-882. [PMID: 38368441 PMCID: PMC10997508 DOI: 10.1038/s41375-024-02168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Affiliation(s)
- Tiziana Bruno
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Valeria Catena
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giacomo Corleone
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Clelia Cortile
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Francesca De Nicola
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Bruno Amadio
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Svitlana Gumenyuk
- Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Marchesi
- Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Ombretta Annibali
- Unit Of Hematology, Stem Cell Transplantation, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Roma, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Rome, Italy
| | - Maurizio Fanciulli
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Silvia Di Agostino
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| |
Collapse
|
2
|
Pisani C, Onori A, Gabanella F, Iezzi S, De Angelis R, Fanciulli M, Colizza A, de Vincentiis M, Di Certo MG, Passananti C, Corbi N. HAX1 is a novel binding partner of Che-1/AATF. Implications in oxidative stress cell response. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119587. [PMID: 37742722 DOI: 10.1016/j.bbamcr.2023.119587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
HAX1 is a multifunctional protein involved in the antagonism of apoptosis in cellular response to oxidative stress. In the present study we identified HAX1 as a novel binding partner for Che-1/AATF, a pro-survival factor which plays a crucial role in fundamental processes, including response to multiple stresses and apoptosis. HAX1 and Che-1 proteins show extensive colocalization in mitochondria and we demonstrated that their association is strengthened after oxidative stress stimuli. Interestingly, in MCF-7 cells, resembling luminal estrogen receptor (ER) positive breast cancer, we found that Che-1 depletion correlates with decreased HAX1 mRNA and protein levels, and this event is not significantly affected by oxidative stress induction. Furthermore, we observed an enhancement of the previously reported interaction between HAX1 and estrogen receptor alpha (ERα) upon H2O2 treatment. These results indicate the two anti-apoptotic proteins HAX1 and Che-1 as coordinated players in cellular response to oxidative stress with a potential role in estrogen sensitive breast cancer cells.
Collapse
Affiliation(s)
- Cinzia Pisani
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Annalisa Onori
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Francesca Gabanella
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Simona Iezzi
- SAFU Unit, Department of Research and Advanced Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Roberta De Angelis
- ISPRA, Italian National Institute for Environmental Protection and Research, Via Vitaliano Brancati 48, 00144 Rome, Italy
| | - Maurizio Fanciulli
- SAFU Unit, Department of Research and Advanced Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Andrea Colizza
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Marco de Vincentiis
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Maria Grazia Di Certo
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Claudio Passananti
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Nicoletta Corbi
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| |
Collapse
|
3
|
Kozalak G, Koşar A. Autophagy-related mechanisms for treatment of multiple myeloma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:838-857. [PMID: 38239705 PMCID: PMC10792488 DOI: 10.20517/cdr.2023.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
Multiple myeloma (MM) is a type of hematological cancer that occurs when B cells become malignant. Various drugs such as proteasome inhibitors, immunomodulators, and compounds that cause DNA damage can be used in the treatment of MM. Autophagy, a type 2 cell death mechanism, plays a crucial role in determining the fate of B cells, either promoting their survival or inducing cell death. Therefore, autophagy can either facilitate the progression or hinder the treatment of MM disease. In this review, autophagy mechanisms that may be effective in MM cells were covered and evaluated within the contexts of unfolded protein response (UPR), bone marrow microenvironment (BMME), drug resistance, hypoxia, DNA repair and transcriptional regulation, and apoptosis. The genes that are effective in each mechanism and research efforts on this subject were discussed in detail. Signaling pathways targeted by new drugs to benefit from autophagy in MM disease were covered. The efficacy of drugs that regulate autophagy in MM was examined, and clinical trials on this subject were included. Consequently, among the autophagy mechanisms that are effective in MM, the most suitable ones to be used in the treatment were expressed. The importance of 3D models and microfluidic systems for the discovery of new drugs for autophagy and personalized treatment was emphasized. Ultimately, this review aims to provide a comprehensive overview of MM disease, encompassing autophagy mechanisms, drugs, clinical studies, and further studies.
Collapse
Affiliation(s)
- Gül Kozalak
- Faculty of Engineering and Natural Science, Sabancı University, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabancı University, Istanbul 34956, Turkey
| | - Ali Koşar
- Faculty of Engineering and Natural Science, Sabancı University, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabancı University, Istanbul 34956, Turkey
- Turkish Academy of Sciences (TÜBA), Çankaya, Ankara 06700, Turkey
| |
Collapse
|
4
|
Kim JY, Kwon YG, Kim YM. The stress-responsive protein REDD1 and its pathophysiological functions. Exp Mol Med 2023; 55:1933-1944. [PMID: 37653030 PMCID: PMC10545776 DOI: 10.1038/s12276-023-01056-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 09/02/2023] Open
Abstract
Regulated in development and DNA damage-response 1 (REDD1) is a stress-induced protein that controls various cellular functions, including metabolism, oxidative stress, autophagy, and cell fate, and contributes to the pathogenesis of metabolic and inflammatory disorders, neurodegeneration, and cancer. REDD1 usually exerts deleterious effects, including tumorigenesis, metabolic inflammation, neurodegeneration, and muscle dystrophy; however, it also exhibits protective functions by regulating multiple intrinsic cell activities through either an mTORC1-dependent or -independent mechanism. REDD1 typically regulates mTORC1 signaling, NF-κB activation, and cellular pro-oxidant or antioxidant activity by interacting with 14-3-3 proteins, IκBα, and thioredoxin-interacting protein or 75 kDa glucose-regulated protein, respectively. The diverse functions of REDD1 depend on cell type, cellular context, interaction partners, and cellular localization (e.g., mitochondria, endomembrane, or cytosol). Therefore, comprehensively understanding the molecular mechanisms and biological roles of REDD1 under pathophysiological conditions is of utmost importance. In this review, based on the published literature, we highlight and discuss the molecular mechanisms underlying the REDD1 expression and its actions, biological functions, and pathophysiological roles.
Collapse
Affiliation(s)
- Ji-Yoon Kim
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul, 04763, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
5
|
Caforio M, Tumino N, Sorino C, Manni I, Di Giovenale S, Piaggio G, Iezzi S, Strimpakos G, Mattei E, Moretta L, Fanciulli M, Vacca P, Locatelli F, Folgiero V. AATF/Che-1 RNA polymerase II binding protein overexpression reduces the anti-tumor NK-cell cytotoxicity through activating receptors modulation. Front Immunol 2023; 14:1191908. [PMID: 37435061 PMCID: PMC10332273 DOI: 10.3389/fimmu.2023.1191908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction AATF/Che-1 over-expression in different tumors is well known and its effect on tumorigenicity is mainly due to its central role demonstrated in the oncogenic pathways of solid tumors, where it controls proliferation and viability. The effect exerted by tumors overexpressing Che-1 on the immune response has not yet been investigated. Methods Starting from ChIP-sequencing data we confirmed Che-1 enrichment on Nectin-1 promoter. Several co-cultures experiments between NK-cells and tumor cells transduced by lentiviral vectors carrying Che-1-interfering sequence, analyzed by flow-cytometry have allowed a detailed characterization of NK receptors and tumor ligands expression. Results Here, we show that Che-1 is able to modulate the expression of Nectin-1 ligand at the transcriptional level, leading to the impairment of killing activity of NK-cells. Nectin-1 down-modulation induces a modification in NK-cell ligands expression able to interact with activating receptors and to stimulate NK-cell function. In addition, NK-cells from Che-1 transgenic mice, confirming a reduced expression of activating receptors, exhibit impaired activation and a preferential immature status. Discussion The critical equilibrium between NK-cell ligand expression on tumor cells and the interaction with NK cell receptors is affected by Che-1 over-expression and partially restored by Che-1 interference. The evidence of a new role for Che-1 as regulator of anti-tumor immunity supports the necessity to develop approaches able to target this molecule which shows a dual tumorigenic function as cancer promoter and immune response modulator.
Collapse
Affiliation(s)
- Matteo Caforio
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Nicola Tumino
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Cristina Sorino
- Stabilimento Allevamento Fornitore e Utilizzatore (SAFU) Laboratory, Department of Research, Advanced Diagnostic, Technological Innovation, Regina Elena National Cancer Institute Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Isabella Manni
- Stabilimento Allevamento Fornitore e Utilizzatore (SAFU) Laboratory, Department of Research, Advanced Diagnostic, Technological Innovation, Regina Elena National Cancer Institute Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Stefano Di Giovenale
- Stabilimento Allevamento Fornitore e Utilizzatore (SAFU) Laboratory, Department of Research, Advanced Diagnostic, Technological Innovation, Regina Elena National Cancer Institute Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giulia Piaggio
- Stabilimento Allevamento Fornitore e Utilizzatore (SAFU) Laboratory, Department of Research, Advanced Diagnostic, Technological Innovation, Regina Elena National Cancer Institute Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Simona Iezzi
- Stabilimento Allevamento Fornitore e Utilizzatore (SAFU) Laboratory, Department of Research, Advanced Diagnostic, Technological Innovation, Regina Elena National Cancer Institute Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Georgios Strimpakos
- National Research Council (CNR), Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy
| | - Elisabetta Mattei
- Consiglio Nazionale delle Ricerche (CNR)-Institute of Cell Biology and Neurobiology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit , Children Hospital Bambino Gesù, RomaLM, Rome, Italy
| | - M. Fanciulli
- Stabilimento Allevamento Fornitore e Utilizzatore (SAFU) Laboratory, Department of Research, Advanced Diagnostic, Technological Innovation, Regina Elena National Cancer Institute Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Valentina Folgiero
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
6
|
Su L, Qiao Y, Luo J, Huang R, Xiao Y. Exome and Sputum Microbiota as Predictive Markers of Frequent Exacerbations in Chronic Obstructive Pulmonary Disease. Biomolecules 2022; 12:biom12101481. [PMID: 36291689 PMCID: PMC9599557 DOI: 10.3390/biom12101481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Frequent acute exacerbations are the leading cause of high rates of hospitalization and mortality in chronic obstructive pulmonary disease (COPD). Despite the enormous worldwide medical burden, reliable molecular markers for effective early diagnosis and prognosis of acute exacerbations are still lacking. Both the host genetics and airway microbiome are known to play potential roles in the pathogenesis of frequent exacerbations. Here, we performed whole exome sequencing (WES) and 16S rRNA gene sequencing to explore the interaction between these two factors and their implications in the pathogenesis of frequent exacerbations. We collected peripheral blood (n = 82), sputum samples (n = 59) and clinical data from 50 frequent-exacerbation phenotype (FE) COPD patients and 32 infrequent-exacerbation phenotype (IE) as controls. Based on filtering the deleterious sites, candidate mutated genes shared only in FE patients and did not occur in the IE group were identified. Microbiota analysis revealed significant differences in bacterial diversity and composition between FE and IE groups. We report the underlying pathogenic gene including, AATF, HTT, CEP350, ADAMTS9, TLL2 genes, etc., and explore their possible genotypic-phenotypic correlations with microbiota dysbiosis. Importantly, we observed that AATF gene mutations were significantly negatively correlated with microbial richness and diversity. Our study indicated several deleterious mutations in candidate genes that might be associated with microbial dysbiosis and the increased risk of frequent acute exacerbations in COPD patients. These results provide novel evidence that exomes and related microbiomes may potentially serve as biomarkers for predicting frequent acute exacerbations in COPD patients.
Collapse
|
7
|
The Oncogenic and Immunological Roles of Apoptosis Antagonistic Transcription Factors in Human Tumors: A Pan-Cancer Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3355365. [PMID: 36275893 PMCID: PMC9581705 DOI: 10.1155/2022/3355365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/23/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022]
Abstract
Background Apoptosis-antagonizing transcription factor (AATF) participates in tumor progression in multiple cancer types. However, its role across cancers is not well understood. Methods Data from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Clinical Proteomic Tumor Analysis Consortium (CPTAC), and Human Protein Atlas (HPA) were used to analyze the multiomic roles of AATF in 33 tumor types, including gene and protein expression, survival prognosis, gene mutation, DNA methylation, protein phosphorylation, AATF coexpressed genes and their enrichment analysis, and immunological analysis. Results In TCGA and GTEx databases, 31 tumors and their corresponding normal tissues had AATF expression data, and it was differentially expressed in 29 of them. AATF was elevated in 27 tumors, decreased in 2 tumors, and was a risk factor for overall survival (OS) in 8 tumors and a risk factor for disease-free survival (DFS) in 4 tumors. AATF expression levels in various cancer types were significantly correlated with the infiltration levels of cancer-associated fibroblasts, endothelial cells, CD4+ T cells, B cells, myeloid dendritic cells, eosinophils, and macrophages. The immune checkpoints PD-1, PD-L1, and CTLA4 were positively correlated with AATF expression in bladder urothelial carcinoma (BLCA), kidney chromophobe (KICH), and prostate adenocarcinoma (PRAD). Conclusion In cancer, AATF expression is generally higher than that in normal tissue, and it is also associated with immunomodulation-related genes. AATF may be a risk factor for poor prognosis across cancers.
Collapse
|
8
|
Bruno T, Corleone G, Catena V, Cortile C, De Nicola F, Fabretti F, Gumenyuk S, Pisani F, Mengarelli A, Passananti C, Fanciulli M. AATF/Che-1 localizes to paraspeckles and suppresses R-loops accumulation and interferon activation in Multiple Myeloma. EMBO J 2022; 41:e109711. [PMID: 35929179 PMCID: PMC9670196 DOI: 10.15252/embj.2021109711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 01/13/2023] Open
Abstract
Several kinds of stress promote the formation of three-stranded RNA:DNA hybrids called R-loops. Insufficient clearance of these structures promotes genomic instability and DNA damage, which ultimately contribute to the establishment of cancer phenotypes. Paraspeckle assemblies participate in R-loop resolution and preserve genome stability, however, the main determinants of this mechanism are still unknown. This study finds that in Multiple Myeloma (MM), AATF/Che-1 (Che-1), an RNA-binding protein fundamental to transcription regulation, interacts with paraspeckles via the lncRNA NEAT1_2 (NEAT1) and directly localizes on R-loops. We systematically show that depletion of Che-1 produces a marked accumulation of RNA:DNA hybrids. We provide evidence that such failure to resolve R-loops causes sustained activation of a systemic inflammatory response characterized by an interferon (IFN) gene expression signature. Furthermore, elevated levels of R-loops and of mRNA for paraspeckle genes in patient cells are linearly correlated with Multiple Myeloma progression. Moreover, increased interferon gene expression signature in patients is associated with markedly poor prognosis. Taken together, our study indicates that Che-1/NEAT1 cooperation prevents excessive inflammatory signaling in Multiple Myeloma by facilitating the clearance of R-loops. Further studies on different cancer types are needed to test if this mechanism is ubiquitously conserved and fundamental for cell homeostasis.
Collapse
Affiliation(s)
- Tiziana Bruno
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Giacomo Corleone
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Valeria Catena
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Clelia Cortile
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Francesca De Nicola
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Francesca Fabretti
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany,Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Svitlana Gumenyuk
- Hematology UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Francesco Pisani
- Hematology UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Andrea Mengarelli
- Hematology UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Claudio Passananti
- Department of Molecular Medicine, CNR‐Institute of Molecular Biology and PathologySapienza University of RomeRomeItaly
| | - Maurizio Fanciulli
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| |
Collapse
|
9
|
Fading memories in aging and neurodegeneration: Is p75 neurotrophin receptor a culprit? Ageing Res Rev 2022; 75:101567. [PMID: 35051645 DOI: 10.1016/j.arr.2022.101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/12/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
Aging and age-related neurodegenerative diseases have become one of the major concerns in modern times as cognitive abilities tend to decline when we get older. It is well known that the main cause of this age-related cognitive deficit is due to aberrant changes in cellular, molecular circuitry and signaling pathways underlying synaptic plasticity and neuronal connections. The p75 neurotrophin receptor (p75NTR) is one of the important mediators regulating the fate of the neurons in the nervous system. Its importance in neuronal apoptosis is well documented. However, the mechanisms involving the regulation of p75NTR in synaptic plasticity and cognitive function remain obscure, although cognitive impairment has been associated with a higher expression of p75NTR in neurons. In this review, we discuss the current understanding of how neurons are influenced by p75NTR function to maintain normal neuronal synaptic strength and connectivity, particularly to support learning and memory in the hippocampus. We then discuss the age-associated alterations in neurophysiological mechanisms of synaptic plasticity and cognitive function. Furthermore, we also describe current evidence that has begun to elucidate how p75NTR regulates synaptic changes in aging and age-related neurodegenerative diseases, focusing on the hippocampus. Elucidating the role that p75NTR signaling plays in regulating synaptic plasticity will contribute to a better understanding of cognitive processes and pathological conditions. This will in turn provide novel approaches to improve therapies for the treatment of neurological diseases in which p75NTR dysfunction has been demonstrated.
Collapse
|
10
|
Ramser A, Greene E, Alrubaye AA, Wideman R, Dridi S. Role of Autophagy Machinery Dysregulation in Bacterial Chondronecrosis with Osteomyelitis (BCO). Poult Sci 2022; 101:101750. [PMID: 35278754 PMCID: PMC8914211 DOI: 10.1016/j.psj.2022.101750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/27/2021] [Accepted: 01/23/2022] [Indexed: 12/22/2022] Open
Abstract
Autophagy is a cell survival and homeostasis mechanism involving lysosomal degradation of cellular components and foreign bodies. It plays a role in bone homeostasis, skeletal diseases, and bacterial infections as both a cell-survival or cell-death pathway. This study sought to determine if autophagy played a role in bacterial chondronecrosis with osteomyelitis (BCO). BCO is a prominent cause of lameness in modern broilers and results from bacterial infection of mechanically stressed leg bone growth plates. The protein and gene expression of key autophagy machinery was analyzed in both normal and BCO-affected broilers using real-time qPCR and immunoblot, respectively. Gene expression showed a significant downregulation of key target signatures involved in every stage of autophagy in BCO-affected bone, such as ATG13, SQSTM1 (p62), ATG9B, ATG16L, ATG12, LC3C, and RAB7A. Additionally, protein expression for LC3 was also significantly lower in BCO. An in vitro study using human fetal osteoblast cells challenged with BCO isolate, Staphylococcus agnetis 908, showed a similar dysregulation of autophagy machinery along with a significant decrease in cell viability. When autophagy was inhibited via 3-methyladenine or chloroquine, comparable decreases in cell viability were seen along with dysregulation of autophagy machinery. Together, these results are the first to implicate autophagy machinery dysregulation in the pathology of BCO.
Collapse
|
11
|
Boustani H, Khodadi E, Shahidi M. Autophagy in Hematological Malignancies: Molecular Aspects in Leukemia and Lymphoma. Lab Med 2021; 52:16-23. [PMID: 32634208 DOI: 10.1093/labmed/lmaa027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The organization of the hematopoietic system is dependent on hematopoietic stem cells (HSCs) that are capable of self-renewal and multilineage differentiation to produce different blood cell lines. Autophagy has a central role in energy production and metabolism of the cells during starvation, cellular stress adaption, and removing mechanisms for aged or damaged organelles. The role and importance of autophagy pathways are becoming increasingly recognized in the literature because these pathways can be useful in organizing intracellular circulation, molecular complexes, and organelles to meet the needs of various hematopoietic cells. There is supporting evidence in the literature that autophagy plays an emerging role in the regulation of normal cells and that it also has important features in malignant hematopoiesis. Understanding the molecular details of the autophagy pathway can provide novel methods for more effective treatment of patients with leukemia. Overall, our review will emphasize the role of autophagy and its different aspects in hematological malignant neoplasms.
Collapse
Affiliation(s)
- Hassan Boustani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Khodadi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Minoo Shahidi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Catena V, Bruno T, Iezzi S, Matteoni S, Salis A, Sorino C, Damonte G, Fanciulli M. CK2-mediated phosphorylation of Che-1/AATF is required for its pro-proliferative activity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:232. [PMID: 34266450 PMCID: PMC8281565 DOI: 10.1186/s13046-021-02038-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/06/2021] [Indexed: 11/23/2022]
Abstract
Background Che-1/AATF (Che-1) is an RNA polymerase II binding protein involved in several cellular processes, including proliferation, apoptosis and response to stress. We have recently demonstrated that Che-1 is able to promote cell proliferation by sustaining global histone acetylation in multiple myeloma (MM) cells where it interacts with histone proteins and competes with HDAC class I members for binding. Methods Site-directed Mutagenesis was performed to generate a Che-1 mutant (Che-1 3S) lacking three serine residues (Ser316, Ser320 and Ser321) in 308–325 aa region. Western blot experiments were conducted to examine the effect of depletion or over-expression of Che-1 and Che-1 3S mutant on histone acetylation, in different human cancer cell lines. Proliferation assays were assessed to estimate the change in cells number when Che-1 was over-expressed or deleted. Immunoprecipitation assays were performed to evaluate Che-1/histone H3 interaction when Ser316, Ser320 and Ser321 were removed. The involvement of CK2 kinase in Che-1 phosphorylation at these residues was analysed by in vitro kinase, 2D gel electrophoresis assays and mass spectrometry analysis. Results Here, we confirmed that Che-1 depletion reduces cell proliferation with a concomitant general histone deacetylation in several tumor cell lines. Furthermore, we provided evidence that CK2 protein kinase phosphorylates Che-1 at Ser316, Ser320 and Ser321 and that these modifications are required for Che-1/histone H3 binding. These results improve our understanding onto the mechanisms by which Che-1 regulates histone acetylation and cell proliferation. Conclusions Che-1 phosphorylation at Ser316, Ser320 and Ser321 by CK2 promotes the interaction with histone H3 and represents an essential requirement for Che-1 pro-proliferative ability. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02038-x.
Collapse
Affiliation(s)
- Valeria Catena
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy.
| | - Tiziana Bruno
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Simona Iezzi
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Silvia Matteoni
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Annalisa Salis
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genoa, Viale Benedetto XV 1, 16132, Genoa, Italy
| | - Cristina Sorino
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Gianluca Damonte
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genoa, Viale Benedetto XV 1, 16132, Genoa, Italy
| | - Maurizio Fanciulli
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
13
|
Perez-Tejeiro JM, Csukasi F. DEPTOR in Skeletal Development and Diseases. Front Genet 2021; 12:667283. [PMID: 34122519 PMCID: PMC8191632 DOI: 10.3389/fgene.2021.667283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/12/2021] [Indexed: 12/02/2022] Open
Abstract
Discovered in 2009, the DEP-domain containing mTOR-interacting protein, DEPTOR, is a known regulator of the mechanistic target of rapamycin (mTOR), an evolutionarily conserved kinase that regulates diverse cellular processes in response to environmental stimuli. DEPTOR was originally identified as a negative regulator of mTOR complexes 1 (mTORC1) and 2 (mTORC2). However, recent discoveries have started to unravel the roles of DEPTOR in mTOR-independent responses. In the past few years, mTOR emerged as an important regulator of skeletal development, growth, and homeostasis; the dysregulation of its activity contributes to the development of several skeletal diseases, both chronic and genetic. Even more recently, several groups have reported on the relevance of DEPTOR in skeletal biology through its action on mTOR-dependent and mTOR-independent pathways. In this review, we summarize the current understanding of DEPTOR in skeletal development and disease.
Collapse
Affiliation(s)
- Jose Miguel Perez-Tejeiro
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, IBIMA, University of Málaga, Málaga, Spain.,Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Networking Biomedical Research Center in Bioengineering, Málaga, Spain
| | - Fabiana Csukasi
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, IBIMA, University of Málaga, Málaga, Spain.,Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Networking Biomedical Research Center in Bioengineering, Málaga, Spain
| |
Collapse
|
14
|
Che-1/AATF-induced transcriptionally active chromatin promotes cell proliferation in multiple myeloma. Blood Adv 2021; 4:5616-5630. [PMID: 33186461 DOI: 10.1182/bloodadvances.2020002566] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy produced by a clonal expansion of plasma cells and characterized by abnormal production and secretion of monoclonal antibodies. This pathology exhibits an enormous heterogeneity resulting not only from genetic alterations but also from several epigenetic dysregulations. Here we provide evidence that Che-1/AATF (Che-1), an interactor of RNA polymerase II, promotes MM proliferation by affecting chromatin structure and sustaining global gene expression. We found that Che-1 depletion leads to a reduction of "active chromatin" by inducing a global decrease of histone acetylation. In this context, Che-1 directly interacts with histones and displaces histone deacetylase class I members from them. Strikingly, transgenic mice expressing human Che-1 in plasma cells develop MM with clinical features resembling those observed in the human disease. Finally, Che-1 downregulation decreases BRD4 chromatin accumulation to further sensitize MM cells to bromodomain and external domain inhibitors. These findings identify Che-1 as a promising target for MM therapy, alone or in combination with bromodomain and external domain inhibitors.
Collapse
|
15
|
Luo YD, Fang L, Yu HQ, Zhang J, Lin XT, Liu XY, Wu D, Li GX, Huang D, Zhang YJ, Chen S, Jiang Y, Shuai L, He Y, Zhang LD, Bie P, Xie CM. p53 haploinsufficiency and increased mTOR signalling define a subset of aggressive hepatocellular carcinoma. J Hepatol 2021; 74:96-108. [PMID: 32738450 DOI: 10.1016/j.jhep.2020.07.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/25/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS p53 mutations occur frequently in human HCC. Activation of the mammalian target of rapamycin (mTOR) pathway is also associated with HCC. However, it is still unknown whether these changes together initiate HCC and can be targeted as a potential therapeutic strategy. METHODS We generated mouse models in which mTOR was hyperactivated by loss of tuberous sclerosis complex 1 (Tsc1) with or without p53 haplodeficiency. Primary cells were isolated from mouse livers. Oncogenic signalling was assessed in vitro and in vivo, with or without targeted inhibition of a single molecule or multiple molecules. Transcriptional profiling was used to identify biomarkers predictive of HCC. Human HCC materials were used to corroborate the findings from mouse models. RESULTS p53 haploinsufficiency facilitates mTOR signalling via the PTEN/PI3K/Akt axis, promoting HCC tumorigenesis and lung metastasis. Inhibition of PI3K/Akt reduced mTOR activity, which effectively enhanced the anticancer effort of an mTOR inhibitor. ATP-binding cassette subfamily C member 4 (Abcc4) was found to be responsible for p53 haploinsufficiency- and Tsc1 loss-driven HCC tumorigenesis. Moreover, in clinical HCC samples, Abcc4 was specifically identified an aggressive subtype. The mTOR inhibitor rapamycin significantly reduced hepatocarcinogenesis triggered by Tsc1 loss and p53 haploinsufficiency in vivo, as well as the biomarker Abcc4. CONCLUSIONS Our data advance the current understanding of the activation of the PTEN/PI3K/Akt/mTOR axis and its downstream target Abcc4 in hepatocarcinogenesis driven by p53 reduction and Tsc1 loss. Targeting mTOR, an unexpected vulnerability in p53 (haplo)deficiency HCC, can be exploited therapeutically to treat Abcc4-positive patients with HCC. LAY SUMMARY Tsc1 loss facilitates the p53 (haplo)insufficiency-mediated activation of the PTEN/Akt/mTOR axis, leading to the elevated expression of Abcc4 to drive HCC tumorigenesis and metastasis in mice. Inhibition of mTOR protects against p53 haploinsufficiency and Tsc1 loss-triggered tumour-promoting activity, providing a new approach for treating an aggressive subtype of HCC exhibiting high Abcc4 expression.
Collapse
Affiliation(s)
- Yuan-Deng Luo
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lei Fang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hong-Qiang Yu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiao-Tong Lin
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiao-Yu Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Di Wu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Gui-Xi Li
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Deng Huang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu-Jun Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shu Chen
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yan Jiang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ling Shuai
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu He
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lei-Da Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Ping Bie
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing, China.
| | - Chuan-Ming Xie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
16
|
Srinivas AN, Suresh D, Mirshahi F, Santhekadur PK, Sanyal AJ, Kumar DP. Emerging roles of AATF: Checkpoint signaling and beyond. J Cell Physiol 2020; 236:3383-3395. [PMID: 33145763 DOI: 10.1002/jcp.30141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023]
Abstract
Apoptosis antagonizing transcription factor (AATF), an interacting partner of RNA polymerase II is a multifunctional protein that is highly conserved in eukaryotes. In addition to the regulation of gene expression as a transcriptional coactivator, AATF is shown to play a dual role in regulating the cell cycle by displacing histone deacetylases 1 (HDAC1) from the retinoblastoma-E2F transcription factor (Rb-E2F) complex and also from the specificity protein 1 (Sp1) transcription factor responsible for p21 expression, thereby ensuring cell proliferation and growth arrest, respectively, at different checkpoints of the cell cycle. Notably, AATF has emerged as one of the most important modulators of various cellular responses such as proliferation, apoptosis, and survival. Studies have demonstrated that AATF protects cells from multiple stress stimuli such as DNA damage, ER stress, hypoxia, or glucose deprivation by inducing cell cycle arrest, autophagy, or apoptosis inhibition. Furthermore, AATF serves as a critical regulator in various cancers and promotes tumorigenesis by protecting cancer cells from apoptosis induction, favoring cell proliferation, or promoting cell survival by autophagy. Recent studies have demonstrated the key role of AATF in ribosome biosynthesis and have also provided insights into the mechanistic role of AATF, offering impressive cytoprotection in myocardial infarction, neurologic diseases, and nephronophthisis. In this review, we will provide a comprehensive overview of the role of AATF and shed light on its emerging roles underlining the potential use of AATF as a novel biomarker and as an effective therapeutic target.
Collapse
Affiliation(s)
- Akshatha N Srinivas
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Diwakar Suresh
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Faridoddin Mirshahi
- Department of Internal Medicine, Division of GastroenterologyHepatology, and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Prasanna K Santhekadur
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Arun J Sanyal
- Department of Internal Medicine, Division of GastroenterologyHepatology, and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Divya P Kumar
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
17
|
Umar SA, Tasduq SA. Integrating DNA damage response and autophagy signalling axis in ultraviolet-B induced skin photo-damage: a positive association in protecting cells against genotoxic stress. RSC Adv 2020; 10:36317-36336. [PMID: 35517978 PMCID: PMC9057019 DOI: 10.1039/d0ra05819j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/13/2020] [Indexed: 01/27/2023] Open
Abstract
The skin acts as both physical as well as an immunological barrier against hazardous agents from the outside environment and protects the internal organs against damage. Skin ageing is a dynamic process caused by the influence of various external factors, including damage from ultraviolet (UV-B) radiation, which is known as photo-ageing, and due to internal chronological mechanisms. A normal ageing process requires several orchestrated defense mechanisms to diverse types of stress responses, the concomitant renewal of cellular characteristics, and the homeostasis of different cell types that directly or indirectly protect the integrity of skin. Cumulative oxidative and endoplasmic reticulum (ER) stress responses and their adverse impact on biological systems in the skin are a common mechanism of the ageing process, negatively impacting DNA by causing mutations that lead to many physiological, functional, and aesthetic changes in the skin, culminating in the development of many diseases, including photo-damage and photo-carcinogenesis. Exposure of the skin to ultraviolet-(B) elicits the activation of signal transduction pathways, including DNA damage response, autophagy, and checkpoint signal adaptations associated with clearing radiation-induced DNA damage. Recent experimental reports suggest that autophagy is involved in maintaining skin homeostasis upon encountering different stresses, notably genotoxic stress. It has also been revealed that autophagy positively regulates the recognition of DNA damage by nucleotide excision repair and that skin ageing is associated with defects in the autophagy process. Moreover, autophagy is constitutively active in the skin epithelium, imparting protection to skin cells against a diverse range of outside insults, thus increasing resistance to environmental stressors. It has also been found that the stress-induced suppression of the autophagy response in experimental settings leads to enhanced apoptosis during photo-ageing upon UV-B exposure and that the maintenance of homeostasis depends on cellular autophagy levels. More recent reports in this domain claim that relieving the oxidative-stress-mediated induction of the ER stress response upon UV-B irradiation protects skin cells from photo-damage effects. The integration of autophagy and the DNA damage response under genotoxic stress is being considered as a meaningful partnership for finding novel molecular targets and devising suitable therapeutic strategies against photo-ageing disorders. Here, we summarize and review the current understanding of the mechanisms governing the intricate interplay between autophagy and the DNA damage response and its regulation by UV-B, the roles of autophagy in regulating the cellular response to UV-B-induced photodamage, and the implications of the modulation of autophagy as a meaningful partnership in the treatment and prevention of photoaging disorders.
Collapse
Affiliation(s)
- Sheikh Ahmad Umar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacokinetics-Pharmacodynamics and Toxicology Division, CSIR-Indian Institute of Integrative Medicine Jammu Tawi Jammu and Kashmir India +91-1912569000-10 ext.332
| | - Sheikh Abdullah Tasduq
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacokinetics-Pharmacodynamics and Toxicology Division, CSIR-Indian Institute of Integrative Medicine Jammu Tawi Jammu and Kashmir India +91-1912569000-10 ext.332
| |
Collapse
|
18
|
Britto FA, Dumas K, Giorgetti-Peraldi S, Ollendorff V, Favier FB. Is REDD1 a metabolic double agent? Lessons from physiology and pathology. Am J Physiol Cell Physiol 2020; 319:C807-C824. [PMID: 32877205 DOI: 10.1152/ajpcell.00340.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Akt/mechanistic target of rapamycin (mTOR) signaling pathway governs macromolecule synthesis, cell growth, and metabolism in response to nutrients and growth factors. Regulated in development and DNA damage response (REDD)1 is a conserved and ubiquitous protein, which is transiently induced in response to multiple stimuli. Acting like an endogenous inhibitor of the Akt/mTOR signaling pathway, REDD1 protein has been shown to regulate cell growth, mitochondrial function, oxidative stress, and apoptosis. Recent studies also indicate that timely REDD1 expression limits Akt/mTOR-dependent synthesis processes to spare energy during metabolic stresses, avoiding energy collapse and detrimental consequences. In contrast to this beneficial role for metabolic adaptation, REDD1 chronic expression appears involved in the pathogenesis of several diseases. Indeed, REDD1 expression is found as an early biomarker in many pathologies including inflammatory diseases, cancer, neurodegenerative disorders, depression, diabetes, and obesity. Moreover, prolonged REDD1 expression is associated with cell apoptosis, excessive reactive oxygen species (ROS) production, and inflammation activation leading to tissue damage. In this review, we decipher several mechanisms that make REDD1 a likely metabolic double agent depending on its duration of expression in different physiological and pathological contexts. We also discuss the role played by REDD1 in the cross talk between the Akt/mTOR signaling pathway and the energetic metabolism.
Collapse
Affiliation(s)
| | - Karine Dumas
- Université Cote d'Azur, INSERM, UMR1065, C3M, Nice, France
| | | | | | | |
Collapse
|
19
|
Transcriptional Regulation in Non-Alcoholic Fatty Liver Disease. Metabolites 2020; 10:metabo10070283. [PMID: 32660130 PMCID: PMC7408131 DOI: 10.3390/metabo10070283] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is the primary risk factor for the pathogenesis of non-alcoholic fatty liver disease (NAFLD), the worldwide prevalence of which continues to increase dramatically. The liver plays a pivotal role in the maintenance of whole-body lipid and glucose homeostasis. This is mainly mediated by the transcriptional activation of hepatic pathways that promote glucose and lipid production or utilization in response to the nutritional state of the body. However, in the setting of chronic excessive nutrition, the dysregulation of hepatic transcriptional machinery promotes lipid accumulation, inflammation, metabolic stress, and fibrosis, which culminate in NAFLD. In this review, we provide our current understanding of the transcription factors that have been linked to the pathogenesis and progression of NAFLD. Using publicly available transcriptomic data, we outline the altered activity of transcription factors among humans with NAFLD. By expanding this analysis to common experimental mouse models of NAFLD, we outline the relevance of mouse models to the human pathophysiology at the transcriptional level.
Collapse
|
20
|
Ambrosio S, Majello B. Autophagy Roles in Genome Maintenance. Cancers (Basel) 2020; 12:E1793. [PMID: 32635505 PMCID: PMC7407194 DOI: 10.3390/cancers12071793] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, a considerable correlation has emerged between autophagy and genome integrity. A range of mechanisms appear to be involved where autophagy participates in preventing genomic instability, as well as in DNA damage response and cell fate decision. These initial findings have attracted particular attention in the context of malignancy; however, the crosstalk between autophagy and DNA damage response is just beginning to be explored and key questions remain that need to be addressed, to move this area of research forward and illuminate the overall consequence of targeting this process in human therapies. Here we present current knowledge on the complex crosstalk between autophagy and genome integrity and discuss its implications for cancer cell survival and response to therapy.
Collapse
Affiliation(s)
- Susanna Ambrosio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy;
| | - Barbara Majello
- Department of Biology, University of Naples ‘Federico II’, 80138 Naples, Italy
| |
Collapse
|
21
|
|
22
|
Kaiser RWJ, Erber J, Höpker K, Fabretti F, Müller RU. AATF/Che-1-An RNA Binding Protein at the Nexus of DNA Damage Response and Ribosome Biogenesis. Front Oncol 2020; 10:919. [PMID: 32587828 PMCID: PMC7298124 DOI: 10.3389/fonc.2020.00919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/11/2020] [Indexed: 01/14/2023] Open
Abstract
The DNA damage response (DDR) is a complex signaling network that is activated upon genotoxic stress. It determines cellular fate by either activating cell cycle arrest or initiating apoptosis and thereby ensures genomic stability. The Apoptosis Antagonizing Transcription Factor (AATF/Che-1), an RNA polymerase II-interacting transcription factor and known downstream target of major DDR kinases, affects DDR signaling by inhibiting p53-mediated transcription of pro-apoptotic genes and promoting cell cycle arrest through various pathways instead. Specifically, AATF was shown to inhibit p53 expression at the transcriptional level and repress its pro-apoptotic activity by direct binding to p53 protein and transactivation of anti-apoptotic genes. Solid and hematological tumors of various organs exploit this function by overexpressing AATF. Both copy number gains and high expression levels of AATF were associated with worse prognosis or relapse of malignant tumors. Recently, a number of studies have enabled insights into the molecular mechanisms by which AATF affects both DDR and proliferation. AATF was found to directly localize to sites of DNA damage upon laser ablation and interact with DNA repair proteins. In addition, depletion of AATF resulted in increased DNA damage and decrease of both proliferative activity and genotoxic tolerance. Interestingly, considering the role of ribosomal stress in the regulation of p53, more recent work established AATF as ribosomal RNA binding protein and enabled insights into its role as an important factor for rRNA processing and ribosome biogenesis. This Mini Review summarizes recent findings on AATF and its important role in the DDR, malignancy, and ribosome biogenesis.
Collapse
Affiliation(s)
- Rainer W J Kaiser
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian-University Munich, Munich, Germany.,Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Johanna Erber
- Department I of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department of Medicine II, School of Medicine, Technical University of Munich, University Hospital Rechts der Isar, Munich, Germany
| | - Katja Höpker
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Francesca Fabretti
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
23
|
Li Y, Luo Y, Li B, Niu L, Liu J, Duan X. miRNA-182/Deptor/mTOR axis regulates autophagy to reduce intestinal ischaemia/reperfusion injury. J Cell Mol Med 2020; 24:7873-7883. [PMID: 32510855 PMCID: PMC7348187 DOI: 10.1111/jcmm.15420] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
It had been reported miR‐182 was down‐regulated after intestinal ischaemia/reperfusion (I/R) damage. However, its role and potential mechanisms are still unknown. This study was aimed to elucidate the function of miR‐182 in intestinal I/R injury and the underlying mechanisms. The model of intestinal injury was constructed in wild‐type and Deptor knockout (KO) mice. Haematoxylin‐eosin staining, Chiu's score and diamine oxidase were utilized to detect intestinal damage. RT‐qPCR assay was used to detected miR‐182 expression. Electronic microscopy was used to detect autophagosome. Western blot was applied to detect the expression of Deptor, S6/pS6, LC3‐II/LC3‐I and p62. Dual‐luciferase reporter assay was used to verify the relationship between miR‐182 and Deptor. The results showed miR‐182 was down‐regulated following intestinal I/R. Up‐regulation of miR‐182 reduced intestinal damage, autophagy, Deptor expression and enhanced mTOR activity following intestinal I/R. Moreover, suppression of autophagy reduced intestinal damage and inhibition of mTOR by rapamycin aggravated intestinal damage following intestinal I/R. Besides, damage of intestine was reduced and mTOR activity was enhanced in Deptor KO mice. In addition, Deptor was the target gene of miR‐182 and was indispensable for the protection of miR‐182 on intestine under I/R condition. Together, our research implicated up‐regulation of miR‐182 inhibited autophagy to alleviate intestinal I/R injury via mTOR by targeting Deptor.
Collapse
Affiliation(s)
- Yunsheng Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanhua Luo
- Department of Anesthesiology, Zhongshan Ophthalmic Center of Sun Yat-sen University, Guangzhou, China
| | - Baochuan Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lijun Niu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiaxin Liu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyun Duan
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Lei Y, Tang L, Hu J, Wang S, Liu Y, Yang M, Zhang J, Tang B. Inhibition of MGMT-mediated autophagy suppression decreases cisplatin chemosensitivity in gastric cancer. Biomed Pharmacother 2020; 125:109896. [DOI: 10.1016/j.biopha.2020.109896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
|
25
|
Autophagy as a Cellular Stress Response Mechanism in the Nervous System. J Mol Biol 2020; 432:2560-2588. [PMID: 31962122 DOI: 10.1016/j.jmb.2020.01.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/11/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
Abstract
Cells of an organism face with various types of insults during their lifetime. Exposure to toxins, metabolic problems, ischaemia/reperfusion, physical trauma, genetic diseases, neurodegenerative diseases are among the conditions that trigger cellular stress responses. In this context, autophagy is one of the mechanisms that supports cell survival under stressful conditions. Autophagic vesicle engulfs the cargo and transports it to lysosome for degradation and turnover. As such, autophagy eliminates abnormal proteins, clears damaged organelles, limits oxidative stress and helps to improve metabolic balance. Nervous system cells and particularly postmitotic neurons are highly sensitive to a spectrum of insults, and autophagy emerges as one of the key stress response mechanism, ensuring health and survival of these vulnerable cell types. In this review, we will overview mechanisms through which cells cope with stress, and how these stress responses regulate autophagy, with a special focus on the nervous system.
Collapse
|
26
|
Entrenching role of cell cycle checkpoints and autophagy for maintenance of genomic integrity. DNA Repair (Amst) 2019; 86:102748. [PMID: 31790874 DOI: 10.1016/j.dnarep.2019.102748] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/19/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022]
Abstract
Genomic integrity of the cell is crucial for the successful transmission of genetic information to the offspring and its survival. Persistent DNA damage induced by endogenous and exogenous agents leads to various metabolic manifestations. To combat this, eukaryotes have developed complex DNA damage response (DDR) pathway which senses the DNA damage and activates an arsenal of enzymes for the repair of damaged DNA. The active pathways for DNA repair are nucleotide excision repair (NER), base excision repair (BER) and mismatch repair (MMR) for single-strand break repair whereas homologous recombination (HR) and non-homologous end-joining (NHEJ) for double-strand break repair. OGG1 is a DNA glycosylase which initiates BER while Mre11-Rad50-Nbs1 (MRN) protein complex is the primary responder to DSBs which gets localized to damage sites. DNA damage response is meticulously executed by three related kinases: ATM, ATR, and DNA-PK. ATM- and ATR-dependent phosphorylation of p53, Chk1, and Chk2 regulate the G1/S, intra-S, or G2/M checkpoints of the cell cycle, respectively. Autophagy is an evolutionarily conserved process that plays a pivotal role in the regulation of DNA repair and maintains the cellular homeostasis. Genotoxic stress-induced altered autophagy occurs in a P53 dependent manner which is also the master regulator of genotoxic stress. A plethora of proteins involved in autophagy is regulated by p53 which involve DRAM, DAPK, and AMPK. As evident, the mtDNA is more prone to damage than nuclear DNA because of its close proximity to the site of ROS generation. Depending on the extent of damage either the repair mechanism or mitophagy gets triggered. SIRT1 is the master regulator which directs the stress response to mitophagy. Nix, a LC3 adapter also participates in Parkin mediated mitophagy. This review highlights the intricate crosstalks between DNA damage and cell cycle checkpoints activation. The DNA damage mediated regulation of autophagy and mitophagy is also reviewed in detail.
Collapse
|
27
|
Doan H, Parsons A, Devkumar S, Selvarajah J, Miralles F, Carroll VA. HIF-mediated Suppression of DEPTOR Confers Resistance to mTOR Kinase Inhibition in Renal Cancer. iScience 2019; 21:509-520. [PMID: 31710966 PMCID: PMC6849413 DOI: 10.1016/j.isci.2019.10.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 07/26/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a fundamental regulator of cell growth, proliferation, and metabolism. mTOR is activated in renal cancer and accelerates tumor progression. Here, we report that the mTOR inhibitor, DEP domain-containing mTOR-interacting protein (DEPTOR), is strikingly suppressed in clear cell renal cell carcinoma (ccRCC) tumors and cell lines. We demonstrate that DEPTOR is repressed by both hypoxia-inducible factors, HIF-1 and HIF-2, which occurs through activation of the HIF-target gene and transcriptional repressor, BHLHe40/DEC1/Stra13. Restoration of DEPTOR- and CRISPR/Cas9-mediated knockout experiments demonstrate that DEPTOR is growth inhibitory in ccRCC. Furthermore, loss of DEPTOR confers resistance to second-generation mTOR kinase inhibitors through deregulated mTORC1 feedback to IRS-2/PI3K/Akt. This work reveals a hitherto unknown mechanism of resistance to mTOR kinase targeted therapy that is mediated by HIF-dependent reprograming of mTOR/DEPTOR networks and suggests that restoration of DEPTOR in ccRCC will confer sensitivity to mTOR kinase therapeutics.
Collapse
Affiliation(s)
- Hong Doan
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Alexander Parsons
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Shruthi Devkumar
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK; Centre for Biomedical Education, Institute of Medical and Biomedical Education, St George's, University of London, London SW17 0RE, UK
| | - Jogitha Selvarajah
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK; Centre for Biomedical Education, Institute of Medical and Biomedical Education, St George's, University of London, London SW17 0RE, UK
| | - Francesc Miralles
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK; Centre for Biomedical Education, Institute of Medical and Biomedical Education, St George's, University of London, London SW17 0RE, UK
| | - Veronica A Carroll
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK; Centre for Biomedical Education, Institute of Medical and Biomedical Education, St George's, University of London, London SW17 0RE, UK.
| |
Collapse
|
28
|
Vega MI, Shi Y, Frost P, Huerta-Yepez S, Antonio-Andres G, Hernandez-Pando R, Lee J, Jung ME, Gera JF, Lichtenstein A. A Novel Therapeutic Induces DEPTOR Degradation in Multiple Myeloma Cells with Resulting Tumor Cytotoxicity. Mol Cancer Ther 2019; 18:1822-1831. [PMID: 31395691 PMCID: PMC6774835 DOI: 10.1158/1535-7163.mct-19-0115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/19/2019] [Accepted: 07/30/2019] [Indexed: 11/16/2022]
Abstract
Prior work indicates DEPTOR expression in multiple myeloma cells could be a therapeutic target. DEPTOR binds to mTOR via its PDZ domain and inhibits mTOR kinase activity. We previously identified a drug, which prevented mTOR-DEPTOR binding (NSC126405) and induced multiple myeloma cytotoxicity. We now report on a related therapeutic, drug 3g, which induces proteasomal degradation of DEPTOR. DEPTOR degradation followed drug 3g binding to its PDZ domain and was not due to caspase activation or enhanced mTOR phosphorylation of DEPTOR. Drug 3g enhanced mTOR activity, and engaged the IRS-1/PI3K/AKT feedback loop with reduced phosphorylation of AKT on T308. Activation of TORC1, in part, mediated multiple myeloma cytotoxicity. Drug 3g was more effective than NSC126405 in preventing binding of recombinant DEPTOR to mTOR, preventing binding of DEPTOR to mTOR inside multiple myeloma cells, in activating mTOR and inducing apoptosis in multiple myeloma cells. In vivo, drug 3g injected daily abrogated DEPTOR expression in xenograft tumors and induced an antitumor effect although modest weight loss was seen. Every-other-day treatment, however, was equally effective without weight loss. Drug 3g also reduced DEPTOR expression in normal tissues. Although no potential toxicity was identified in hematopoietic or hepatic function, moderate cardiac enlargement and glomerular mesangial hypertrophy was seen. DEPTOR protected multiple myeloma cells against bortezomib suggesting anti-DEPTOR drugs could synergize with proteasome inhibitors (PI). Indeed, combinations of drug NSC126405 + bortezomib were synergistic. In contrast, drug 3g was not and was even antagonistic. This antagonism was probably due to prevention of proteasomal DEPTOR degradation.
Collapse
Affiliation(s)
- Mario I Vega
- Hematology-Oncology, VA West LA-UCLA Medical Center, Los Angeles, California
| | - Yijiang Shi
- Hematology-Oncology, VA West LA-UCLA Medical Center, Los Angeles, California
| | - Patrick Frost
- Hematology-Oncology, VA West LA-UCLA Medical Center, Los Angeles, California
| | - Sara Huerta-Yepez
- Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
- Pathology & Laboratory Medicine, UCLA Medical School, Los Angeles, California
| | - Gabriela Antonio-Andres
- Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
- Pathology & Laboratory Medicine, UCLA Medical School, Los Angeles, California
| | | | | | - Michael E Jung
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California
- Jonsson Cancer Center, University of California, Los Angeles, California
| | - Joseph F Gera
- Hematology-Oncology, VA West LA-UCLA Medical Center, Los Angeles, California
- Jonsson Cancer Center, University of California, Los Angeles, California
| | - Alan Lichtenstein
- Hematology-Oncology, VA West LA-UCLA Medical Center, Los Angeles, California.
- Jonsson Cancer Center, University of California, Los Angeles, California
| |
Collapse
|
29
|
Newhouse DJ, Barcelo-Serra M, Tuttle EM, Gonser RA, Balakrishnan CN. Parent and offspring genotypes influence gene expression in early life. Mol Ecol 2019; 28:4166-4180. [PMID: 31421010 DOI: 10.1111/mec.15205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Parents can have profound effects on offspring fitness. Little, however, is known about the mechanisms through which parental genetic variation influences offspring physiology in natural systems. White-throated sparrows (Zonotrichia albicollis, WTSP) exist in two genetic morphs, tan and white, controlled by a large polymorphic supergene. Morphs mate disassortatively, resulting in two pair types: tan male × white female (T × W) pairs, which provide biparental care and white male × tan female (W × T) pairs, which provide female-biased care. To investigate how parental composition impacts offspring, we performed RNA-seq on whole blood of WTSP nestlings sampled from nests of both pair types. Parental pair type had a large effect on nestling gene expression, with 881 genes differentially expressed (DE) and seven correlated gene coexpression modules. The DE genes and modules expressed at higher levels in W × T nests with female-biased parental care function in metabolism and stress-related pathways resulting from the overrepresentation of proteolysis and stress-response genes (e.g., SOD2, NR3C1). These results show that parental genotypes and/or associated behaviours influence nestling physiology, and highlight avenues of further research investigating the ultimate implications for the maintenance of this polymorphism. Nestlings also exhibited morph-specific gene expression, with 92 differentially expressed genes, comprising immunity genes and genes encompassed by the supergene. Remarkably, we identified the same regulatory hub genes in these blood-derived expression networks as were previously identified in adult WTSP brains (EPM2A, BPNT1, TAF5L). These hub genes were located within the supergene, highlighting the importance of this gene complex in structuring regulatory networks across diverse tissues.
Collapse
Affiliation(s)
- Daniel J Newhouse
- Department of Biology, East Carolina University, Greenville, NC, USA
| | | | | | | | | |
Collapse
|
30
|
Kaiser RWJ, Ignarski M, Van Nostrand EL, Frese CK, Jain M, Cukoski S, Heinen H, Schaechter M, Seufert L, Bunte K, Frommolt P, Keller P, Helm M, Bohl K, Höhne M, Schermer B, Benzing T, Höpker K, Dieterich C, Yeo GW, Müller RU, Fabretti F. A protein-RNA interaction atlas of the ribosome biogenesis factor AATF. Sci Rep 2019; 9:11071. [PMID: 31363146 PMCID: PMC6667500 DOI: 10.1038/s41598-019-47552-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/19/2019] [Indexed: 01/08/2023] Open
Abstract
AATF is a central regulator of the cellular outcome upon p53 activation, a finding that has primarily been attributed to its function as a transcription factor. Recent data showed that AATF is essential for ribosome biogenesis and plays a role in rRNA maturation. AATF has been implicated to fulfil this role through direct interaction with rRNA and was identified in several RNA-interactome capture experiments. Here, we provide a first comprehensive analysis of the RNA bound by AATF using CLIP-sequencing. Interestingly, this approach shows predominant binding of the 45S pre-ribosomal RNA precursor molecules. Furthermore, AATF binds to mRNAs encoding for ribosome biogenesis factors as well as snoRNAs. These findings are complemented by an in-depth analysis of the protein interactome of AATF containing a large set of proteins known to play a role in rRNA maturation with an emphasis on the protein-RNA-complexes known to be required for the generation of the small ribosomal subunit (SSU). In line with this finding, the binding sites of AATF within the 45S rRNA precursor localize in close proximity to the SSU cleavage sites. Consequently, our multilayer analysis of the protein-RNA interactome of AATF reveals this protein to be an important hub for protein and RNA interactions involved in ribosome biogenesis.
Collapse
Affiliation(s)
- Rainer W J Kaiser
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Michael Ignarski
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Christian K Frese
- Proteomics Core Facility, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Manaswita Jain
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
| | - Sadrija Cukoski
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
| | - Heide Heinen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
| | - Melanie Schaechter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
| | - Lisa Seufert
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Konstantin Bunte
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
- Bioinformatics Core Facility, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Peter Frommolt
- Bioinformatics Core Facility, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Patrick Keller
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Katrin Bohl
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931, Cologne, Germany
| | - Katja Höpker
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Christoph Dieterich
- German Center for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology and Department of Internal Medicine III, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.
- Systems Biology of Ageing Cologne, University of Cologne, 50931, Cologne, Germany.
| | - Francesca Fabretti
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
| |
Collapse
|
31
|
Skendros P, Papagoras C, Mitroulis I, Ritis K. Autoinflammation: Lessons from the study of familial Mediterranean fever. J Autoimmun 2019; 104:102305. [PMID: 31337526 DOI: 10.1016/j.jaut.2019.102305] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 07/14/2019] [Indexed: 12/16/2022]
Abstract
Autoinflammatory disorders represent a heterogeneous group of systemic inflammatory diseases caused by genetic or acquired defects in key components of the innate immunity. Familial Mediterranean fever (FMF) is the most common among the other clinical phenotypes of the rare hereditary periodic fevers (HPFs) syndromes. FMF is associated with mutations in the MEFV gene encoding pyrin and is characterized by recurrent, often stress-provoked attacks of fever and serositis, but sometimes also by chronic subclinical inflammation. FMF is prevalent in Greece and other countries of the eastern Mediterranean region. Over the last 17 years, our group has focused on FMF as a model suitable for the research on innate immunity and particularly the role of neutrophils. Therefore, the study of Greek patients with FMF has yielded lessons across several levels: the epidemiology of the disease in Greece, the spectrum of its clinical manifestations and potential overlaps with other idiopathic inflammatory conditions, the demonstration of its rather complex and heterogeneous genetic background and the suggestion of a novel mechanism involved in the crosstalk between environmental stress and inflammation. Mechanistically, during FMF attack, neutrophils release chromatin structures called neutrophil extracellular traps (NETs), which are decorated with bioactive IL-1β. REDD1 (regulated in development and DNA damage responses 1), that encodes a stress-related mTOR repressor, has been found to be the most significantly upregulated gene in neutrophils during disease attacks. Upon adrenergic stress, REDD1-induced autophagy triggers a pyrin-driven IL-1β maturation, and the release of IL-1β-bearing NETs. Consequently, not only the mode of action of IL-1β-targeting therapies is explained, but also new treatment prospects emerge with the evaluation of old or the design of new drugs targeting autophagy-induced NETosis. Information gained from FMF studies may subsequently be applied in more complex but still relevant inflammatory conditions, such as adult-onset Still's disease, gout, ulcerative colitis and Behçet's disease.
Collapse
Affiliation(s)
- Panagiotis Skendros
- First Department of Internal Medicine and Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Charalampos Papagoras
- First Department of Internal Medicine and Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Mitroulis
- First Department of Internal Medicine and Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Ritis
- First Department of Internal Medicine and Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|
32
|
Liu X, Cai S, Zhang C, Liu Z, Luo J, Xing B, Du X. Deacetylation of NAT10 by Sirt1 promotes the transition from rRNA biogenesis to autophagy upon energy stress. Nucleic Acids Res 2019; 46:9601-9616. [PMID: 30165671 PMCID: PMC6182161 DOI: 10.1093/nar/gky777] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023] Open
Abstract
Anabolism and catabolism are tightly regulated according to the cellular energy supply. Upon energy stress, ribosomal RNA (rRNA) biogenesis is inhibited, and autophagy is induced. However, the mechanism linking rRNA biogenesis and autophagy is unclear. Here, we demonstrate that the nucleolar protein NAT10 plays a role in the transition between rRNA biogenesis and autophagy. Under normal conditions, NAT10 is acetylated to activate rRNA biogenesis and inhibit autophagy induction. Mechanistic studies demonstrate that NAT10 binds to and acetylates the autophagy regulator Che-1 at K228 to suppress the Che-1-mediated transcriptional activation of downstream genes Redd1 and Deptor under adequate energy supply conditions. Upon energy stress, NAT10 is deacetylated by Sirt1, leading to suppression of NAT10-activated rRNA biogenesis. In addition, deacetylation of NAT10 abolishes the NAT10-mediated transcriptional repression of Che-1, leading to the release of autophagy inhibition. Collectively, we demonstrate that the acetylation status of NAT10 is important for the anabolism-catabolism transition in response to energy stress, providing a novel mechanism by which nucleolar proteins control rRNA synthesis and autophagy in response to the cellular energy supply.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department I, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Shiying Cai
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chunfeng Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhenzhen Liu
- Hepatopancreatobiliary Surgery Department I, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jianyuan Luo
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Baocai Xing
- Hepatopancreatobiliary Surgery Department I, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
33
|
Pfister AS. Emerging Role of the Nucleolar Stress Response in Autophagy. Front Cell Neurosci 2019; 13:156. [PMID: 31114481 PMCID: PMC6503120 DOI: 10.3389/fncel.2019.00156] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy represents a conserved self-digestion program, which allows regulated degradation of cellular material. Autophagy is activated by cellular stress, serum starvation and nutrient deprivation. Several autophagic pathways have been uncovered, which either non-selectively or selectively target the cellular cargo for lysosomal degradation. Autophagy engages the coordinated action of various key regulators involved in the steps of autophagosome formation, cargo targeting and lysosomal fusion. While non-selective (macro)autophagy is required for removal of bulk material or recycling of nutrients, selective autophagy mediates specific targeting of damaged organelles or protein aggregates. By proper action of the autophagic machinery, cellular homeostasis is maintained. In contrast, failure of this fundamental process is accompanied by severe pathophysiological conditions. Hallmarks of neuropathological disorders are for instance accumulated, mis-folded protein aggregates and damaged mitochondria. The nucleolus has been recognized as central hub in the cellular stress response. It represents a sub-nuclear organelle essential for ribosome biogenesis and also functions as stress sensor by mediating cell cycle arrest or apoptosis. Thus, proper nucleolar function is mandatory for cell growth and survival. Here, I highlight the emerging role of nucleolar factors in the regulation of autophagy. Moreover, I discuss the nucleolar stress response as a novel signaling pathway in the context of autophagy, health and disease.
Collapse
Affiliation(s)
- Astrid S Pfister
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
34
|
Kumar DP, Santhekadur PK, Seneshaw M, Mirshahi F, Uram-Tuculescu C, Sanyal AJ. A Regulatory Role of Apoptosis Antagonizing Transcription Factor in the Pathogenesis of Nonalcoholic Fatty Liver Disease and Hepatocellular Carcinoma. Hepatology 2019; 69:1520-1534. [PMID: 30394550 PMCID: PMC6440548 DOI: 10.1002/hep.30346] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/29/2018] [Indexed: 01/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is increasing as a cause of liver-related mortality largely because of the growing burden of nonalcoholic steatohepatitis (NASH). The mechanisms of HCC development in nonalcoholic fatty liver disease (NAFLD) are incompletely understood. We initially identified apoptosis antagonizing transcription factor (AATF) to be associated with HCC in a mouse model of NASH that develops HCC without the addition of specific carcinogens. AATF, also called che-1, is a transcriptional factor that is highly conserved among eukaryotes. AATF is known to be a central mediator of the cellular responses as it promotes cell proliferation and survival by inducing cell cycle arrest, autophagy, DNA repair, and inhibition of apoptosis. However, the role of AATF in NASH and HCC remains unknown. Here, we provide evidence for AATF as a contributory factor for HCC in NAFLD. AATF overexpression was further verified in human NASH and HCC and multiple human HCC cell lines. Tumor necrosis factor-α (TNFα), known to be increased in NASH, induced AATF expression. Promoter analysis of AATF revealed a sterol regulatory element binding transcription factor 1-c (SREBP-1c) binding site; inhibition of SREBP-1 by using specific inhibitors as well as small interfering RNA decreased TNFα-induced AATF expression. AATF interacted with signal transducer and activator of transcription 3 to increase monocyte chemoattractant protein-1 expression. AATF knockdown decreased cell proliferation, migration, invasion, colony formation, and anchorage-dependent growth in HCC cell lines. Xenograft of QGY-7703 HCC cells with AATF stably knocked down into nonobese diabetic scid gamma mice demonstrated reduced tumorigenesis and metastases. Conclusion: AATF drives NAFLD and hepatocarcinogenesis, offering a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Divya P. Kumar
- Division of Gastroenterology, Hepatology and Nutrition,
Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Prasanna K. Santhekadur
- Division of Gastroenterology, Hepatology and Nutrition,
Virginia Commonwealth University, Richmond, VA 23298, USA,Massey Cancer Center, Virginia Commonwealth University,
Richmond, VA 23298, USA
| | - Mulugeta Seneshaw
- Division of Gastroenterology, Hepatology and Nutrition,
Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Faridoddin Mirshahi
- Division of Gastroenterology, Hepatology and Nutrition,
Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Cora Uram-Tuculescu
- Department of Pathology, Virginia Commonwealth University,
Richmond, VA 23298, USA
| | - Arun J. Sanyal
- Division of Gastroenterology, Hepatology and Nutrition,
Virginia Commonwealth University, Richmond, VA 23298, USA,Massey Cancer Center, Virginia Commonwealth University,
Richmond, VA 23298, USA
| |
Collapse
|
35
|
Therapeutic Modulation of Autophagy in Leukaemia and Lymphoma. Cells 2019; 8:cells8020103. [PMID: 30704144 PMCID: PMC6406467 DOI: 10.3390/cells8020103] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Haematopoiesis is a tightly orchestrated process where a pool of hematopoietic stem and progenitor cells (HSPCs) with high self-renewal potential can give rise to both lymphoid and myeloid lineages. The HSPCs pool is reduced with ageing resulting in few HSPC clones maintaining haematopoiesis thereby reducing blood cell diversity, a phenomenon called clonal haematopoiesis. Clonal expansion of HSPCs carrying specific genetic mutations leads to increased risk for haematological malignancies. Therefore, it comes as no surprise that hematopoietic tumours develop in higher frequency in elderly people. Unfortunately, elderly patients with leukaemia or lymphoma still have an unsatisfactory prognosis compared to younger ones highlighting the need to develop more efficient therapies for this group of patients. Growing evidence indicates that macroautophagy (hereafter referred to as autophagy) is essential for health and longevity. This review is focusing on the role of autophagy in normal haematopoiesis as well as in leukaemia and lymphoma development. Attenuated autophagy may support early hematopoietic neoplasia whereas activation of autophagy in later stages of tumour development and in response to a variety of therapies rather triggers a pro-tumoral response. Novel insights into the role of autophagy in haematopoiesis will be discussed in light of designing new autophagy modulating therapies in hematopoietic cancers.
Collapse
|
36
|
Caron A, Briscoe DM, Richard D, Laplante M. DEPTOR at the Nexus of Cancer, Metabolism, and Immunity. Physiol Rev 2018; 98:1765-1803. [PMID: 29897294 DOI: 10.1152/physrev.00064.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DEP domain-containing mechanistic target of rapamycin (mTOR)-interacting protein (DEPTOR) is an important modulator of mTOR, a kinase at the center of two important protein complexes named mTORC1 and mTORC2. These highly studied complexes play essential roles in regulating growth, metabolism, and immunity in response to mitogens, nutrients, and cytokines. Defects in mTOR signaling have been associated with the development of many diseases, including cancer and diabetes, and approaches aiming at modulating mTOR activity are envisioned as an attractive strategy to improve human health. DEPTOR interaction with mTOR represses its kinase activity and rewires the mTOR signaling pathway. Over the last years, several studies have revealed key roles for DEPTOR in numerous biological and pathological processes. Here, we provide the current state of the knowledge regarding the cellular and physiological functions of DEPTOR by focusing on its impact on the mTOR pathway and its role in promoting health and disease.
Collapse
Affiliation(s)
- Alexandre Caron
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - David M Briscoe
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Denis Richard
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Mathieu Laplante
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| |
Collapse
|
37
|
Che-1 inhibits oxygen–glucose deprivation/reoxygenation-induced neuronal apoptosis associated with inhibition of the p53-mediated proapoptotic signaling pathway. Neuroreport 2018; 29:1193-1200. [DOI: 10.1097/wnr.0000000000001095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
APOBEC3G-Regulated Host Factors Interfere with Measles Virus Replication: Role of REDD1 and Mammalian TORC1 Inhibition. J Virol 2018; 92:JVI.00835-18. [PMID: 29925665 DOI: 10.1128/jvi.00835-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/14/2018] [Indexed: 01/23/2023] Open
Abstract
We found earlier that ectopic expression of the cytidine deaminase APOBEC3G (A3G) in Vero cells inhibits measles virus (MV), respiratory syncytial virus, and mumps virus, while the mechanism of inhibition remained unclear. A microarray analysis revealed that in A3G-transduced Vero cells, several cellular transcripts were differentially expressed, suggesting that A3G regulates the expression of host factors. One of the most upregulated host cell factors, REDD1 (regulated in development and DNA damage response-1, also called DDIT4), reduced MV replication ∼10-fold upon overexpression in Vero cells. REDD1 is an endogenous inhibitor of mTORC1 (mammalian target of rapamycin complex-1), the central regulator of cellular metabolism. Interestingly, rapamycin reduced the MV replication similarly to REDD1 overexpression, while the combination of both did not lead to further inhibition, suggesting that the same pathway is affected. REDD1 silencing in A3G-expressing Vero cells abolished the inhibitory effect of A3G. In addition, silencing of A3G led to reduced REDD1 expression, confirming that its expression is regulated by A3G. In primary human peripheral blood lymphocytes (PBL), expression of A3G and REDD1 was found to be stimulated by phytohemagglutinin (PHA) and interleukin-2. Small interfering RNA (siRNA)-mediated depletion of A3G in PHA-stimulated PBL reduced REDD1 expression and increased viral titers, which corroborates our findings in Vero cells. Silencing of REDD1 also increased viral titers, confirming the antiviral role of REDD1. Finally, pharmacological inhibition of mTORC1 by rapamycin in PHA-stimulated PBL reduced viral replication to the level found in unstimulated lymphocytes, indicating that mTORC1 activity supports MV replication as a proviral host factor.IMPORTANCE Knowledge about host factors supporting or restricting virus replication is required for a deeper understanding of virus-cell interactions and may eventually provide the basis for therapeutic intervention. This work was undertaken predominantly to explain the mechanism of A3G-mediated inhibition of MV, a negative-strand RNA virus that is not affected by the deaminase activity of A3G acting on single-stranded DNA. We found that A3G regulates the expression of several cellular proteins, which influences the capacity of the host cell to replicate MV. One of these, REDD1, which modulates the cellular metabolism in a central position by regulating the kinase complex mTORC1, was identified as the major cellular factor impairing MV replication. These findings show interesting aspects of the function of A3G and the dependence of the MV replication on the metabolic state of the cell. Interestingly, pharmacological inhibition of mTORC1 can be utilized to inhibit MV replication in Vero cells and primary human peripheral blood lymphocytes.
Collapse
|
39
|
Folgiero V, Sorino C, Locatelli F, Fanciulli M. A new baby in the c-Myc-directed transcriptional machinery: Che-1/AATF. Cell Cycle 2018; 17:1286-1290. [PMID: 29943642 DOI: 10.1080/15384101.2018.1480227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common malignancy in childhood. Despite the high cure-rate, identifying new druggable molecular targets is still of great interest. In a cohort of BCP-ALL pediatric patients, irrespectively of the molecule/karyotype lesions found, we recently observed high expression of c-Myc and Che-1/AATF, which disappears at time of remission. Study of the molecular mechanisms involved in this co-expression revealed that Che-1 expression was crucial for induction of blast-cell proliferation driven by c-Myc. Furthermore, Che-1/AATF silencing in primary BCP-ALL cell lines improves responsiveness to chemotherapy. These data individuate Che-1 as a possible novel target in the treatment of BCP-ALL able to affect c-Myc-driven tumorigenicity.
Collapse
Affiliation(s)
- Valentina Folgiero
- a Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy , Bambino Gesù Children's Hospital, IRCCS , Rome , Italy
| | - Cristina Sorino
- b SAFU, Department of Research , Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute , Rome , Italy
| | - Franco Locatelli
- a Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy , Bambino Gesù Children's Hospital, IRCCS , Rome , Italy.,c Department of Pediatric Science , University of Pavia , Pavia , Italy
| | - Maurizio Fanciulli
- b SAFU, Department of Research , Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute , Rome , Italy
| |
Collapse
|
40
|
Ogawa M, Matsuda R, Takada N, Tomokiyo M, Yamamoto S, Shizukuishi S, Yamaji T, Yoshikawa Y, Yoshida M, Tanida I, Koike M, Murai M, Morita H, Takeyama H, Ryo A, Guan JL, Yamamoto M, Inoue JI, Yanagawa T, Fukuda M, Kawabe H, Ohnishi M. Molecular mechanisms of Streptococcus pneumoniae-targeted autophagy via pneumolysin, Golgi-resident Rab41, and Nedd4-1-mediated K63-linked ubiquitination. Cell Microbiol 2018; 20:e12846. [PMID: 29582580 DOI: 10.1111/cmi.12846] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/12/2018] [Accepted: 03/19/2018] [Indexed: 12/30/2022]
Abstract
Streptococcus pneumoniae is the most common causative agent of community-acquired pneumonia and can penetrate epithelial barriers to enter the bloodstream and brain. We investigated intracellular fates of S. pneumoniae and found that the pathogen is entrapped by selective autophagy in pneumolysin- and ubiquitin-p62-LC3 cargo-dependent manners. Importantly, following induction of autophagy, Rab41 was relocated from the Golgi apparatus to S. pneumoniae-containing autophagic vesicles (PcAV), which were only formed in the presence of Rab41-positive intact Golgi apparatuses. Moreover, subsequent localization and regulation of K48- and K63-linked polyubiquitin chains in and on PcAV were clearly distinguishable from each other. Finally, we found that E3 ligase Nedd4-1 was recruited to PcAV and played a pivotal role in K63-linked polyubiquitin chain (K63Ub) generation on PcAV, promotion of PcAV formation, and elimination of intracellular S. pneumoniae. These findings suggest that Nedd4-1-mediated K63Ub deposition on PcAV acts as a scaffold for PcAV biogenesis and efficient elimination of host cell-invaded pneumococci.
Collapse
Affiliation(s)
- Michinaga Ogawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryuta Matsuda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Health Sciences, Saitama Prefectural University, Saitama, Japan
| | - Naoki Takada
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Mikado Tomokiyo
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.,School of Veterinary Medicine, Azabu University, Sagamihara-shi, Kanagawa, Japan
| | - Shouji Yamamoto
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sayaka Shizukuishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama-shi, Kanagawa, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Yoshikawa
- Division of Veterinary Hygiene and Public Health, Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Mitsutaka Yoshida
- Division of Ultrastructural Research, BioMedical Research Center, Juntendo University, Tokyo, Japan
| | - Isei Tanida
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Miyo Murai
- Department of Health Sciences, Saitama Prefectural University, Saitama, Japan
| | - Hidetoshi Morita
- Laboratory of Animal Applied Microbiology, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama-shi, Kanagawa, Japan
| | - Jun-Lin Guan
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Jun-Ichiro Inoue
- Division of Cellular and Molecular Biology, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toru Yanagawa
- Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Gottingen, Germany
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
41
|
Catena V, Bruno T, De Nicola F, Goeman F, Pallocca M, Iezzi S, Sorino C, Cigliana G, Floridi A, Blandino G, Fanciulli M. Deptor transcriptionally regulates endoplasmic reticulum homeostasis in multiple myeloma cells. Oncotarget 2018; 7:70546-70558. [PMID: 27655709 PMCID: PMC5342573 DOI: 10.18632/oncotarget.12060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/13/2016] [Indexed: 12/27/2022] Open
Abstract
Multiple myeloma (MM) is a malignant disorder of plasma cells characterized by active production and secretion of monoclonal immunoglobulins (IgG), thus rendering cells prone to endoplasmic reticulum (ER) stress. For this reason, MM cell survival requires to maintain ER homeostasis at basal levels. Deptor is an mTOR binding protein, belonging to the mTORC1 and mTORC2 complexes. It was reported that Deptor is overexpressed in MM cells where it inhibits mTOR kinase activity and promotes cell survival by activating Akt signaling. Here we identify Deptor as a nuclear protein, able to bind DNA and regulate transcription in MM cells. In particular, we found that Deptor plays an important role in the maintenance of the ER network, sustaining the expression of several genes involved in this pathway. In agreement with this, Deptor depletion induces ER stress and synergizes the effect of the proteasome inhibitor bortezomib (Bz) in MM cells. These findings provide important new insights in the ER stress control in MM cells.
Collapse
Affiliation(s)
- Valeria Catena
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Tiziana Bruno
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Francesca De Nicola
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Frauke Goeman
- Epigenetic, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Matteo Pallocca
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Simona Iezzi
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Cristina Sorino
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Giovanni Cigliana
- Clinical Pathology Laboratories, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Aristide Floridi
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Giovanni Blandino
- Epigenetic, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Maurizio Fanciulli
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy
| |
Collapse
|
42
|
Lee E, Wei Y, Zou Z, Tucker K, Rakheja D, Levine B, Amatruda JF. Genetic inhibition of autophagy promotes p53 loss-of-heterozygosity and tumorigenesis. Oncotarget 2018; 7:67919-67933. [PMID: 27655644 PMCID: PMC5356529 DOI: 10.18632/oncotarget.12084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an evolutionarily conserved lysosomal degradation pathway that plays an essential role in enabling eukaryotic organisms to adapt to nutrient deprivation and other forms of environmental stress. In metazoan organisms, autophagy is essential for differentiation and normal development; however, whether the autophagy pathway promotes or inhibits tumorigenesis is controversial, and the possible mechanisms linking defective autophagy to cancer remain unclear. To determine if autophagy is important for tumor suppression, we inhibited autophagy in transgenic zebrafish via stable, tissue-specific expression of a dominant-negative autophagy protein Atg5K130R. In heterozygous tp53 mutants, expression of dominant-negative atg5K130R increased tumor incidence and decreased tumor latency compared to non-transgenic heterozygous tp53 mutant controls. In a tp53-deficient background, Tg(mitfa:atg5K130R) mutantsdeveloped malignant peripheral nerve sheath tumors (MPNSTs), neuroendocrine tumors and small-cell tumors. Expression of a Sox10-dependent GFP transgene in the tumors demonstrated their origin from neural crest cells, lending support to a model in which mitfa-expressing cells can arise from sox10+ Schwann cell precursors. Tumors from the transgenic animals exhibited increased DNA damage and loss-of-heterozygosity of tp53. Taken together, our data indicate that genetic inhibition of autophagy promotes tumorigenesis in tp53 mutant zebrafish, and suggest a possible role for autophagy in the regulation of genome stability during oncogenesis.
Collapse
Affiliation(s)
- Eunmyong Lee
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yongjie Wei
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhongju Zou
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kathryn Tucker
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Beth Levine
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James F Amatruda
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
43
|
Folgiero V, Sorino C, Pallocca M, De Nicola F, Goeman F, Bertaina V, Strocchio L, Romania P, Pitisci A, Iezzi S, Catena V, Bruno T, Strimpakos G, Passananti C, Mattei E, Blandino G, Locatelli F, Fanciulli M. Che-1 is targeted by c-Myc to sustain proliferation in pre-B-cell acute lymphoblastic leukemia. EMBO Rep 2018; 19:embr.201744871. [PMID: 29367285 DOI: 10.15252/embr.201744871] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022] Open
Abstract
Despite progress in treating B-cell precursor acute lymphoblastic leukemia (BCP-ALL), disease recurrence remains the main cause of treatment failure. New strategies to improve therapeutic outcomes are needed, particularly in high-risk relapsed patients. Che-1/AATF (Che-1) is an RNA polymerase II-binding protein involved in proliferation and tumor survival, but its role in hematological malignancies has not been clarified. Here, we show that Che-1 is overexpressed in pediatric BCP-ALL during disease onset and at relapse, and that its depletion inhibits the proliferation of BCP-ALL cells. Furthermore, we report that c-Myc regulates Che-1 expression by direct binding to its promoter and describe a strict correlation between Che-1 expression and c-Myc expression. RNA-seq analyses upon Che-1 or c-Myc depletion reveal a strong overlap of the respective controlled pathways. Genomewide ChIP-seq experiments suggest that Che-1 acts as a downstream effector of c-Myc. These results identify the pivotal role of Che-1 in the control of BCP-ALL proliferation and present the protein as a possible therapeutic target in children with relapsed BCP-ALL.
Collapse
Affiliation(s)
- Valentina Folgiero
- Department of Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cristina Sorino
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Matteo Pallocca
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca De Nicola
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Frauke Goeman
- Oncogenomic and Epigenetic, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Bertaina
- Department of Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luisa Strocchio
- Department of Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paolo Romania
- Department of Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Pitisci
- Department of Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Simona Iezzi
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Valeria Catena
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Tiziana Bruno
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Georgios Strimpakos
- CNR-Institute of Cell Biology and Neurobiology CNR, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Claudio Passananti
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Elisabetta Mattei
- CNR-Institute of Cell Biology and Neurobiology CNR, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Pediatric Science, University of Pavia, Pavia, Italy
| | - Maurizio Fanciulli
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
44
|
Welcker D, Jain M, Khurshid S, Jokić M, Höhne M, Schmitt A, Frommolt P, Niessen CM, Spiro J, Persigehl T, Wittersheim M, Büttner R, Fanciulli M, Schermer B, Reinhardt HC, Benzing T, Höpker K. AATF suppresses apoptosis, promotes proliferation and is critical for Kras-driven lung cancer. Oncogene 2018; 37:1503-1518. [DOI: 10.1038/s41388-017-0054-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022]
|
45
|
Che1/AATF interacts with subunits of the histone acetyltransferase core module of SAGA complexes. PLoS One 2017; 12:e0189193. [PMID: 29232376 PMCID: PMC5726650 DOI: 10.1371/journal.pone.0189193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022] Open
Abstract
General Control Non-derepressible 5 (GCN5) and Alteration/Deficiency in Activation 2 and 3 proteins (ADA2 and ADA3, respectively) are subunits of the Histone AcetylTransferase (HAT) module of SAGA- and ATAC-type co-activators. We previously reported four new interacting partners of human ADA3 identified by screening a human fetal brain cDNA library using yeast two hybrid technology. One of these partners was Apoptosis-Antagonizing Transcription Factor (AATF), also known as Che-1, an RNA polymerase II-binding protein with a number of roles in different cellular processes including regulation of transcription, cell proliferation, cell cycle control, DNA damage responses and apoptosis. Che-1/AATF is a potential therapeutic target for cancer treatments. In this study, we aimed to identify whether besides ADA3, other components of the HAT modules of SAGA and ATAC complexes, human ADA2 and GCN5 also interact with Che-1/AATF. Co-immunoprecipitation and co-localization experiments were used to demonstrate association of AATF both with two ADA2 isoforms, ADA2A and ADA2B and with GCN5 proteins in human cells and yeast two-hybrid assays to delineate domains in the ADA2 and GCN5 proteins required for these interactions. These findings provide new insights into the pathways regulated by ADA-containing protein complexes.
Collapse
|
46
|
Panday A, Gupta A, Srinivasa K, Xiao L, Smith MD, Grove A. DNA damage regulates direct association of TOR kinase with the RNA polymerase II-transcribed HMO1 gene. Mol Biol Cell 2017; 28:2449-2459. [PMID: 28701348 PMCID: PMC5576907 DOI: 10.1091/mbc.e17-01-0024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/05/2017] [Accepted: 07/07/2017] [Indexed: 01/29/2023] Open
Abstract
In yeast, Hmo1p is important for communicating target of rapamycin (TOR) kinase activity to downstream targets. Results show that TOR kinase controls expression of the HMO1 gene and that an important component of this regulation is its direct association with the HMO1 gene. The implications are that TOR kinase may have more elaborate nuclear functions. The mechanistic target of rapamycin complex 1 (mTORC1) senses nutrient sufficiency and cellular stress. When mTORC1 is inhibited, protein synthesis is reduced in an intricate process that includes a concerted down-regulation of genes encoding rRNA and ribosomal proteins. The Saccharomyces cerevisiae high-mobility group protein Hmo1p has been implicated in coordinating this response to mTORC1 inhibition. We show here that Tor1p binds directly to the HMO1 gene (but not to genes that are not linked to ribosome biogenesis) and that the presence of Tor1p is associated with activation of gene activity. Persistent induction of DNA double-strand breaks or mTORC1 inhibition by rapamycin results in reduced levels of HMO1 mRNA, but only in the presence of Tor1p. This down-regulation is accompanied by eviction of Ifh1p and recruitment of Crf1p, followed by concerted dissociation of Hmo1p and Tor1p. These findings uncover a novel role for TOR kinase in control of gene activity by direct association with an RNA polymerase II–transcribed gene.
Collapse
Affiliation(s)
- Arvind Panday
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Ashish Gupta
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Kavitha Srinivasa
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Lijuan Xiao
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Mathew D Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
47
|
Argininosuccinate Synthase 1-Deficiency Enhances the Cell Sensitivity to Arginine through Decreased DEPTOR Expression in Endometrial Cancer. Sci Rep 2017; 7:45504. [PMID: 28358054 PMCID: PMC5371991 DOI: 10.1038/srep45504] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/27/2017] [Indexed: 02/07/2023] Open
Abstract
Argininosuccinate synthetase 1 (ASS1) is a rate-limiting enzyme in arginine biosynthesis. Although ASS1 expression levels are often reduced in several tumors and low ASS1 expression can be a poor prognostic factor, the underlying mechanism has not been elucidated. In this study, we reveal a novel association between ASS1 and migration/invasion of endometrial tumors via regulation of mechanistic target of rapamycin complex (mTORC) 1 signaling. ASS1-knockout cells showed enhanced migration and invasion in response to arginine following arginine starvation. In ASS1-knockout cells, DEPTOR, an inhibitor of mTORC1 signal, was downregulated and mTORC1 signaling was more activated in response to arginine. ASS1 epigenetically enhanced DEPTOR expression by altering the histone methylation. Consistent with these findings, tumor cells at the invasive front of endometrioid carcinoma cases showed lower ASS1 and DEPTOR expression. Our findings suggest that ASS1 levels in each tumor cell are associated with invasion capability in response to arginine within the tumor microenvironment through mTORC1 signal regulation.
Collapse
|
48
|
Skendros P, Chrysanthopoulou A, Rousset F, Kambas K, Arampatzioglou A, Mitsios A, Bocly V, Konstantinidis T, Pellet P, Angelidou I, Apostolidou E, Ritis D, Tsironidou V, Galtsidis S, Papagoras C, Stakos D, Kouklakis G, Dalla V, Koffa M, Mitroulis I, Theodorou I, Ritis K. Regulated in development and DNA damage responses 1 (REDD1) links stress with IL-1β-mediated familial Mediterranean fever attack through autophagy-driven neutrophil extracellular traps. J Allergy Clin Immunol 2017; 140:1378-1387.e13. [PMID: 28342915 DOI: 10.1016/j.jaci.2017.02.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/15/2016] [Accepted: 02/01/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Familial Mediterranean fever (FMF) is an IL-1β-dependent autoinflammatory disease caused by mutations of Mediterranean fever (MEFV) encoding pyrin and characterized by inflammatory attacks induced by physical or psychological stress. OBJECTIVE We investigated the underlying mechanism that links stress-induced inflammatory attacks with neutrophil activation and release of IL-1β-bearing neutrophil extracellular traps (NETs) in patients with FMF. METHODS RNA sequencing was performed in peripheral neutrophils from 3 patients with FMF isolated both during attacks and remission, 8 patients in remission, and 8 healthy subjects. NET formation and proteins were analyzed by using confocal immunofluorescence microscopy, immunoblotting, myeloperoxidase-DNA complex ELISA, and flow cytometry. Samples from patients with Still's disease and bacterial infections were used also. RESULTS The stress-related protein regulated in development and DNA damage responses 1 (REDD1) is significantly overexpressed during FMF attacks. Neutrophils from patients with FMF during remission are resistant to autophagy-mediated NET release, which can be overcome through REDD1 induction. Stress-related mediators (eg, epinephrine) decrease this threshold, leading to autophagy-driven NET release, whereas the synchronous inflammatory environment of FMF attack leads to intracellular production of IL-1β and its release through NETs. REDD1 in autolysosomes colocalizes with pyrin and nucleotide-binding domain, leucine-rich repeat/pyrin domain-containing 3. Mutated pyrin prohibits this colocalization, leading to higher IL-1β levels on NETs. CONCLUSIONS This study provides a link between stress and initiation of inflammatory attacks in patients with FMF. REDD1 emerges as a regulator of neutrophil function upstream to pyrin, is involved in NET release and regulation of IL-1β, and might constitute an important piece in the IL-1β-mediated inflammation puzzle.
Collapse
Affiliation(s)
- Panagiotis Skendros
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece; First Department of Internal Medicine, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Akrivi Chrysanthopoulou
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - François Rousset
- Université Pierre et Marie Curie, UF d'Histocompatibilité et Immunogénétique, Département d'Immunologie, Groupe Hospitalier Pitié Salpêtrière-Charles Foix, Paris, France
| | - Konstantinos Kambas
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Alexandros Mitsios
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Veronique Bocly
- Université Pierre et Marie Curie, UF d'Histocompatibilité et Immunogénétique, Département d'Immunologie, Groupe Hospitalier Pitié Salpêtrière-Charles Foix, Paris, France
| | | | - Philippe Pellet
- Université Pierre et Marie Curie, UF d'Histocompatibilité et Immunogénétique, Département d'Immunologie, Groupe Hospitalier Pitié Salpêtrière-Charles Foix, Paris, France
| | - Iliana Angelidou
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eirini Apostolidou
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece; First Department of Internal Medicine, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Dimitrios Ritis
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Victoria Tsironidou
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Sotiris Galtsidis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Charalampos Papagoras
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Dimitrios Stakos
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Georgios Kouklakis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Vasiliki Dalla
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Maria Koffa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Mitroulis
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine Technische Universität Dresden, Dresden, Germany
| | - Ioannis Theodorou
- Université Pierre et Marie Curie, UF d'Histocompatibilité et Immunogénétique, Département d'Immunologie, Groupe Hospitalier Pitié Salpêtrière-Charles Foix, Paris, France
| | - Konstantinos Ritis
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece; First Department of Internal Medicine, University Hospital of Alexandroupolis, Alexandroupolis, Greece.
| |
Collapse
|
49
|
Bruno T, Valerio M, Casadei L, De Nicola F, Goeman F, Pallocca M, Catena V, Iezzi S, Sorino C, Desantis A, Manetti C, Blandino G, Floridi A, Fanciulli M. Che-1 sustains hypoxic response of colorectal cancer cells by affecting Hif-1α stabilization. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:32. [PMID: 28214471 PMCID: PMC5316229 DOI: 10.1186/s13046-017-0497-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/28/2017] [Indexed: 12/25/2022]
Abstract
Background Solid tumours are less oxygenated than normal tissues. Consequently, cancer cells acquire to be adapted to a hypoxic environment. The poor oxygenation of solid tumours is also a major indicator of an adverse cancer prognosis and leads to resistance to conventional anticancer treatments. We previously showed the involvement of Che-1/AATF (Che-1) in cancer cell survival under stress conditions. Herein we hypothesized that Che-1 plays a role in the response of cancer cells to hypoxia. Methods The human colon adenocarcinoma HCT116 and HT29 cell lines undepleted or depleted for Che-1 expression by siRNA, were treated under normoxic and hypoxic conditions to perform studies regarding the role of this protein in metabolic adaptation and cell proliferation. Che-1 expression was detected using western blot assays; cell metabolism was assessed by NMR spectroscopy and functional assays. Additional molecular studies were performed by RNA seq, qRT-PCR and ChIP analyses. Results Here we report that Che-1 expression is required for the adaptation of cells to hypoxia, playing an important role in metabolic modulation. Indeed, Che-1 depletion impacted on HIF-1α stabilization, thus downregulating the expression of several genes involved in the response to hypoxia and affecting glucose metabolism. Conclusions We show that Che-1 a novel player in the regulation of HIF-1α in response to hypoxia. Notably, we found that Che-1 is required for SIAH-2 expression, a member of E3 ubiquitin ligase family that is involved in the degradation of the hydroxylase PHD3, the master regulator of HIF-1α stability. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0497-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tiziana Bruno
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy.
| | | | - Luca Casadei
- Department of Chemistry, "Sapienza" University, Rome, Italy
| | - Francesca De Nicola
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Frauke Goeman
- UOSD Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Matteo Pallocca
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Valeria Catena
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Simona Iezzi
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Cristina Sorino
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Agata Desantis
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Cesare Manetti
- Department of Chemistry, "Sapienza" University, Rome, Italy
| | - Giovanni Blandino
- UOSD Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Aristide Floridi
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Maurizio Fanciulli
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
50
|
Catena V, Fanciulli M. Deptor: not only a mTOR inhibitor. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:12. [PMID: 28086984 PMCID: PMC5237168 DOI: 10.1186/s13046-016-0484-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/23/2016] [Indexed: 01/09/2023]
Abstract
Deptor is an important protein that belongs to the mTORC1 and mTORC2 complexes, able to interact with mTOR and to inhibit its kinase activity. As a natural mTOR inhibitor, Deptor is involved in several molecular pathways, such as cell growth, apoptosis, autophagy and ER stress response. For this reason, Deptor seems to play an important role in controlling cellular homeostasis. Despite several recent insights characterizing Deptor functions and regulation, its complete role within cells has not yet been completely clarified. Indeed, quite recently, Deptor has been associated with chromatin, and it has been demonstrated having a role in transcriptional regulation, controlling in such way endoplasmatic reticulum activity. From all these observations it is not surprising that Deptor can behave either as an oncogene or oncosuppressor, depending on the cell- or tissue-contexts. This review highlights recent progresses made in our understanding of the many activities of Deptor, describing its transcriptional and post-transcriptional regulation in different cancer cell types. Moreover, here we discuss the possibility of using compounds able to inhibit Deptor or to disrupt its interaction with mTOR as novel approaches for cancer therapy.
Collapse
Affiliation(s)
- Valeria Catena
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Maurizio Fanciulli
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|