1
|
Moutacharrif S, Haichar FEZ, Meyer S, Ribot C, Reverchon S, Nasser W, Hommais F. The Power Duo: How the Interplay Between Nucleoid-Associated Proteins and Small Noncoding RNAs Orchestrates the Cellular Regulatory Symphony. Mol Microbiol 2025. [PMID: 40186492 DOI: 10.1111/mmi.15359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 04/07/2025]
Abstract
In bacteria, the regulation of gene expression involves complex networks that integrate both transcriptional and posttranscriptional mechanisms. At the transcriptional level, nucleoid-associated proteins (NAPs) such as H-NS, HU, Lrp, IHF, Fis and Hfq are key players as they not only compact bacterial DNA but also regulate transcription. Small noncoding RNAs (sRNAs), on the other hand, are known to affect bacterial gene expression posttranscriptionally by base pairing with the target mRNA, but they can also be involved in nucleoid condensation. Interestingly, certain NAPs also influence the function of sRNAs and, conversely, sRNAs themselves can modulate the activity of NAPs, creating a complex bidirectional regulatory network. Here, we summarise the current knowledge of the major NAPs, focusing on the specific role of Hfq. Examples of the regulation of NAPs by sRNAs, the regulation of sRNAs by NAPs and the role of sRNAs in nucleoid structuring are also discussed. This review focuses on the cross-talk between NAPs and sRNAs in an attempt to understand how this interplay works to orchestrate the functioning of the cell.
Collapse
Affiliation(s)
- Sara Moutacharrif
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Feth El Zahar Haichar
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Sam Meyer
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Cecile Ribot
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Sylvie Reverchon
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - William Nasser
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Florence Hommais
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
2
|
Duan Z, Liao L, Lai T, Yang R, Zhang J, Chen B. Dynamic and intricate regulation by the Csr sRNAs in the Arctic Pseudoalteromonas fuliginea. Commun Biol 2025; 8:369. [PMID: 40044903 PMCID: PMC11882849 DOI: 10.1038/s42003-025-07780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
The Csr (Carbon Storage Regulator) system is pivotal in controlling various cellular functions in most bacteria, primarily through the CsrA protein and its antagonistic sRNAs. However, riboregulatory networks are less explored in non-model organisms, particularly those in extreme environments. In this study, we discovered two new sRNAs of the Csr system, Pf2 and Pf3, in the Arctic bacterium Pseudoalteromonas fuliginea BSW20308, along with the previously known Pf1. By studying the impact of these Pf sRNAs on CsrA targetomes and physiological processes, we found a significant influence on various cellular functions and a collective effect on the interaction dynamics between CsrA and RNAs. Furthermore, we identified additional sRNAs that can interact with CsrA and mRNAs. Overall, our results emphasize the growing influence of the Csr system on cellular physiology through intricate sRNA regulation of CsrA, revealing riboregulatory network complexity and significance in non-model organisms.
Collapse
Affiliation(s)
- Zedong Duan
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; Shanghai Key Laboratory of Polar Life and Environment Sciences; and School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Li Liao
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; Shanghai Key Laboratory of Polar Life and Environment Sciences; and School of Oceanography, Shanghai Jiao Tong University, Shanghai, China.
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China.
| | - Tingyi Lai
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; Shanghai Key Laboratory of Polar Life and Environment Sciences; and School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Ruyi Yang
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jin Zhang
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Bo Chen
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| |
Collapse
|
3
|
Nguyen LD, LeBlanc H, Berry KE. Improved constructs for bait RNA display in a bacterial three-hybrid assay. Sci Rep 2025; 15:3820. [PMID: 39885279 PMCID: PMC11782564 DOI: 10.1038/s41598-024-85082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/31/2024] [Indexed: 02/01/2025] Open
Abstract
We have previously developed a transcription-based bacterial three-hybrid (B3H) assay as a genetic approach to probe RNA-protein interactions inside of E. coli cells. This system offers a straightforward path to identify and assess the consequences of mutations in RBPs with molecular phenotypes of interest. One limiting factor in detecting RNA-protein interactions in the B3H assay is RNA misfolding arising from incorrect base-pair interactions with neighboring RNA sequences in a hybrid RNA. To support correct folding of hybrid bait RNAs, we have explored the use of a highly stable stem ("GC clamp") to isolate regions of a hybrid RNA as discrete folding units. In this work, we introduce new bait RNA constructs to (1) insulate the folding of individual components of the hybrid RNA with GC clamps and (2) express bait RNAs that do not encode their own intrinsic terminator. We find that short GC clamps (5 or 7 bp long) are more effective than a longer 13 bp GC clamp in the B3H assay. These new constructs increase the number of Hfq-sRNA and -5'UTR interactions that are detectable in the B3H system and improve the signal-to-noise ratio of many of these interactions. We therefore recommend the use of constructs containing short GC clamps for the expression of future B3H bait RNAs. With these new constructs, a broader range of RNA-protein interactions are detectable in the B3H assay, expanding the utility and impact of this genetic tool as a platform to search for and interrogate mechanisms of additional RNA-protein interactions.
Collapse
Affiliation(s)
- Linh D Nguyen
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Hannah LeBlanc
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Katherine E Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA.
- Department of Chemistry, Mount Holyoke College, South Hadley, MA, 01075, USA.
| |
Collapse
|
4
|
Rüttiger AS, Ryan D, Spiga L, Lamm-Schmidt V, Prezza G, Reichardt S, Langford M, Barquist L, Faber F, Zhu W, Westermann AJ. The global RNA-binding protein RbpB is a regulator of polysaccharide utilization in Bacteroides thetaiotaomicron. Nat Commun 2025; 16:208. [PMID: 39747016 PMCID: PMC11697453 DOI: 10.1038/s41467-024-55383-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Paramount to human health, symbiotic bacteria in the gastrointestinal tract rely on the breakdown of complex polysaccharides to thrive in this sugar-deprived environment. Gut Bacteroides are metabolic generalists and deploy dozens of polysaccharide utilization loci (PULs) to forage diverse dietary and host-derived glycans. The expression of the multi-protein PUL complexes is tightly regulated at the transcriptional level. However, how PULs are orchestrated at translational level in response to the fluctuating levels of their cognate substrates is unknown. Here, we identify the RNA-binding protein RbpB and a family of noncoding RNAs as key players in post-transcriptional PUL regulation. We demonstrate that RbpB interacts with numerous cellular transcripts, including a paralogous noncoding RNA family comprised of 14 members, the FopS (family of paralogous sRNAs). Through a series of in-vitro and in-vivo assays, we reveal that FopS sRNAs repress the translation of SusC-like glycan transporters when substrates are limited-an effect antagonized by RbpB. Ablation of RbpB in Bacteroides thetaiotaomicron compromises colonization in the mouse gut in a diet-dependent manner. Together, this study adds to our understanding of RNA-coordinated metabolic control as an important factor contributing to the in-vivo fitness of predominant microbiota species in dynamic nutrient landscapes.
Collapse
Affiliation(s)
- Ann-Sophie Rüttiger
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, D-97074, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
| | - Daniel Ryan
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, D-97074, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
| | - Luisella Spiga
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Vanessa Lamm-Schmidt
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, D-97080, Germany
| | - Gianluca Prezza
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
| | - Sarah Reichardt
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
| | - Madison Langford
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, D-97080, Germany
- Department of Biology, University of Toronto, Mississauga, L5L 1C6, Ontario, Canada
| | - Franziska Faber
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, D-97080, Germany
| | - Wenhan Zhu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Alexander J Westermann
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, D-97074, Germany.
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany.
| |
Collapse
|
5
|
Vásquez A, Ferreiro MD, Martínez-Rodríguez L, Gallegos MT. Expression, regulation and physiological roles of the five Rsm proteins in Pseudomonas syringae pv. tomato DC3000. Microbiol Res 2024; 289:127926. [PMID: 39437643 DOI: 10.1016/j.micres.2024.127926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Proteins belonging to the RsmA (regulator of secondary metabolism)/CsrA (carbon storage regulator) family are small RNA-binding proteins that play crucial roles post-transcriptionally regulating gene expression in many Gram-negative and some Gram-positive bacteria. Although most of the bacteria studied have a single RsmA/CsrA gene, Pseudomonas syringae pv. tomato (Pto) DC3000 encodes five Rsm proteins: RsmA/CsrA2, RsmC/CsrA1, RsmD/CsrA4, RsmE/CsrA3, and RsmH/CsrA5. This work aims to provide a comprehensive analysis of the expression of these five rsm protein-encoding genes, elucidate the regulatory mechanisms governing their expression, as well as the physiological relevance of each variant. To achieve this, we examined the expression of rsmA, rsmE, rsmC, rsmD, and rsmH within their genetic contexts, identified their promoter regions, and assessed the impact of both their deletion and overexpression on various Pto DC3000 phenotypes. A novel finding is that rsmA and rsmC are part of an operon with the upstream genes, whereas rsmH seems to be co-transcribed with two downstream genes. We also observed significant variability in expression levels and RpoS dependence among the five rsm paralogs. Thus, despite the extensive repertoire of rsm genes in Pto DC3000, only rsmA, rsmE and rsmH were significantly expressed under all tested conditions (swarming, minimal and T3SS-inducing liquid media). Among these, RsmE and RsmA were corroborated as the most important paralogs at the functional level, whereas RsmH played a minor role in regulating free life and plant-associated phenotypes. Conversely, RsmC and RsmD did not seem to be functional under the conditions tested.
Collapse
Affiliation(s)
- Adriana Vásquez
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Dolores Ferreiro
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Laura Martínez-Rodríguez
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Trinidad Gallegos
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain.
| |
Collapse
|
6
|
Pradhan UK, Naha S, Das R, Gupta A, Parsad R, Meher PK. RBProkCNN: Deep learning on appropriate contextual evolutionary information for RNA binding protein discovery in prokaryotes. Comput Struct Biotechnol J 2024; 23:1631-1640. [PMID: 38660008 PMCID: PMC11039349 DOI: 10.1016/j.csbj.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
RNA-binding proteins (RBPs) are central to key functions such as post-transcriptional regulation, mRNA stability, and adaptation to varied environmental conditions in prokaryotes. While the majority of research has concentrated on eukaryotic RBPs, recent developments underscore the crucial involvement of prokaryotic RBPs. Although computational methods have emerged in recent years to identify RBPs, they have fallen short in accurately identifying prokaryotic RBPs due to their generic nature. To bridge this gap, we introduce RBProkCNN, a novel machine learning-driven computational model meticulously designed for the accurate prediction of prokaryotic RBPs. The prediction process involves the utilization of eight shallow learning algorithms and four deep learning models, incorporating PSSM-based evolutionary features. By leveraging a convolutional neural network (CNN) and evolutionarily significant features selected through extreme gradient boosting variable importance measure, RBProkCNN achieved the highest accuracy in five-fold cross-validation, yielding 98.04% auROC and 98.19% auPRC. Furthermore, RBProkCNN demonstrated robust performance with an independent dataset, showcasing a commendable 95.77% auROC and 95.78% auPRC. Noteworthy is its superior predictive accuracy when compared to several state-of-the-art existing models. RBProkCNN is available as an online prediction tool (https://iasri-sg.icar.gov.in/rbprokcnn/), offering free access to interested users. This tool represents a substantial contribution, enriching the array of resources available for the accurate and efficient prediction of prokaryotic RBPs.
Collapse
Affiliation(s)
- Upendra Kumar Pradhan
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Sanchita Naha
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Ritwika Das
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Ajit Gupta
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Rajender Parsad
- ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Prabina Kumar Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| |
Collapse
|
7
|
Nguyen LD, LeBlanc H, Berry KE. Improved constructs for bait RNA display in a bacterial three-hybrid assay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604302. [PMID: 39091812 PMCID: PMC11291032 DOI: 10.1101/2024.07.23.604302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
We have previously developed a transcription-based bacterial three-hybrid (B3H) assay as a genetic approach to probe RNA-protein interactions inside of E. coli cells. This system offers a straightforward path to identify and assess the consequences of mutations in RBPs with molecular phenotypes of interest. One limiting factor in detecting RNA-protein interactions in the B3H assay is RNA misfolding arising from incorrect base-pair interactions with neighboring RNA sequences in a hybrid RNA. To support correct folding of hybrid bait RNAs, we have explored the use of a highly stable stem ("GC clamp") to isolate regions of a hybrid RNA as discrete folding units. In this work, we introduce new bait RNA constructs to 1) insulate the folding of individual components of the hybrid RNA with GC clamps and 2) express bait RNAs that do not encode their own intrinsic terminator. We find that short GC clamps (5 or 7 bp long) are more effective than a longer 13bp GC clamp in the B3H assay. These new constructs increase the number of Hfq-sRNA and -5'UTR interactions that are detectable in the B3H system and improve the signal-to-noise ratio of many of these interactions. We therefore recommend the use of constructs containing short GC clamps for the expression of future B3H bait RNAs. With these new constructs, a broader range of RNA-protein interactions are detectable in the B3H assay, expanding the utility and impact of this genetic tool as a platform to search for and interrogate mechanisms of additional RNA-protein interactions.
Collapse
Affiliation(s)
- Linh D. Nguyen
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Hannah LeBlanc
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Katherine E. Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| |
Collapse
|
8
|
Cao L, Wang L. Biospecific Chemistry for Covalent Linking of Biomacromolecules. Chem Rev 2024; 124:8516-8549. [PMID: 38913432 PMCID: PMC11240265 DOI: 10.1021/acs.chemrev.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Interactions among biomacromolecules, predominantly noncovalent, underpin biological processes. However, recent advancements in biospecific chemistry have enabled the creation of specific covalent bonds between biomolecules, both in vitro and in vivo. This Review traces the evolution of biospecific chemistry in proteins, emphasizing the role of genetically encoded latent bioreactive amino acids. These amino acids react selectively with adjacent natural groups through proximity-enabled bioreactivity, enabling targeted covalent linkages. We explore various latent bioreactive amino acids designed to target different protein residues, ribonucleic acids, and carbohydrates. We then discuss how these novel covalent linkages can drive challenging protein properties and capture transient protein-protein and protein-RNA interactions in vivo. Additionally, we examine the application of covalent peptides as potential therapeutic agents and site-specific conjugates for native antibodies, highlighting their capacity to form stable linkages with target molecules. A significant focus is placed on proximity-enabled reactive therapeutics (PERx), a pioneering technology in covalent protein therapeutics. We detail its wide-ranging applications in immunotherapy, viral neutralization, and targeted radionuclide therapy. Finally, we present a perspective on the existing challenges within biospecific chemistry and discuss the potential avenues for future exploration and advancement in this rapidly evolving field.
Collapse
Affiliation(s)
- Li Cao
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
9
|
Shine M, Gordon J, Schärfen L, Zigackova D, Herzel L, Neugebauer KM. Co-transcriptional gene regulation in eukaryotes and prokaryotes. Nat Rev Mol Cell Biol 2024; 25:534-554. [PMID: 38509203 PMCID: PMC11199108 DOI: 10.1038/s41580-024-00706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/22/2024]
Abstract
Many steps of RNA processing occur during transcription by RNA polymerases. Co-transcriptional activities are deemed commonplace in prokaryotes, in which the lack of membrane barriers allows mixing of all gene expression steps, from transcription to translation. In the past decade, an extraordinary level of coordination between transcription and RNA processing has emerged in eukaryotes. In this Review, we discuss recent developments in our understanding of co-transcriptional gene regulation in both eukaryotes and prokaryotes, comparing methodologies and mechanisms, and highlight striking parallels in how RNA polymerases interact with the machineries that act on nascent RNA. The development of RNA sequencing and imaging techniques that detect transient transcription and RNA processing intermediates has facilitated discoveries of transcription coordination with splicing, 3'-end cleavage and dynamic RNA folding and revealed physical contacts between processing machineries and RNA polymerases. Such studies indicate that intron retention in a given nascent transcript can prevent 3'-end cleavage and cause transcriptional readthrough, which is a hallmark of eukaryotic cellular stress responses. We also discuss how coordination between nascent RNA biogenesis and transcription drives fundamental aspects of gene expression in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Morgan Shine
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jackson Gordon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Leonard Schärfen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dagmar Zigackova
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Lydia Herzel
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
10
|
Lv F, Zhan Y, Feng H, Sun W, Yin C, Han Y, Shao Y, Xue W, Jiang S, Ma Y, Hu H, Wei J, Yan Y, Lin M. Integrated Hfq-interacting RNAome and transcriptomic analysis reveals complex regulatory networks of nitrogen fixation in root-associated Pseudomonas stutzeri A1501. mSphere 2024; 9:e0076223. [PMID: 38747590 PMCID: PMC11332353 DOI: 10.1128/msphere.00762-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/10/2024] [Indexed: 06/26/2024] Open
Abstract
The RNA chaperone Hfq acts as a global regulator of numerous biological processes, such as carbon/nitrogen metabolism and environmental adaptation in plant-associated diazotrophs; however, its target RNAs and the mechanisms underlying nitrogen fixation remain largely unknown. Here, we used enhanced UV cross-linking immunoprecipitation coupled with high-throughput sequencing to identify hundreds of Hfq-binding RNAs probably involved in nitrogen fixation, carbon substrate utilization, biofilm formation, and other functions. Collectively, these processes endow strain A1501 with the requisite capabilities to thrive in the highly competitive rhizosphere. Our findings revealed a previously uncharted landscape of Hfq target genes. Notable among these is nifM, encoding an isomerase necessary for nitrogenase reductase solubility; amtB, encoding an ammonium transporter; oprB, encoding a carbohydrate porin; and cheZ, encoding a chemotaxis protein. Furthermore, we identified more than 100 genes of unknown function, which expands the potential direct regulatory targets of Hfq in diazotrophs. Our data showed that Hfq directly interacts with the mRNA of regulatory proteins (RsmA, AlgU, and NifA), regulatory ncRNA RsmY, and other potential targets, thus revealing the mechanistic links in nitrogen fixation and other metabolic pathways. IMPORTANCE Numerous experimental approaches often face challenges in distinguishing between direct and indirect effects of Hfq-mediated regulation. New technologies based on high-throughput sequencing are increasingly providing insight into the global regulation of Hfq in gene expression. Here, enhanced UV cross-linking immunoprecipitation coupled with high-throughput sequencing was employed to identify the Hfq-binding sites and potential targets in the root-associated Pseudomonas stutzeri A1501 and identify hundreds of novel Hfq-binding RNAs that are predicted to be involved in metabolism, environmental adaptation, and nitrogen fixation. In particular, we have shown Hfq interactions with various regulatory proteins' mRNA and their potential targets at the posttranscriptional level. This study not only enhances our understanding of Hfq regulation but, importantly, also provides a framework for addressing integrated regulatory network underlying root-associated nitrogen fixation.
Collapse
Affiliation(s)
- Fanyang Lv
- Biotechnology Research Institute/National Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhua Zhan
- Biotechnology Research Institute/National Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haichao Feng
- College of Agriculture, Henan University, Kaifeng, Henan, China
| | - Wenyue Sun
- Biotechnology Research Institute/National Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changyan Yin
- Biotechnology Research Institute/National Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yueyue Han
- Biotechnology Research Institute/National Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yahui Shao
- Biotechnology Research Institute/National Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Xue
- Biotechnology Research Institute/National Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Jiang
- Biotechnology Research Institute/National Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiyuan Ma
- Biotechnology Research Institute/National Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haonan Hu
- Biotechnology Research Institute/National Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinfeng Wei
- College of Agriculture, Henan University, Kaifeng, Henan, China
| | - Yongliang Yan
- Biotechnology Research Institute/National Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Lin
- College of Agriculture, Henan University, Kaifeng, Henan, China
| |
Collapse
|
11
|
Zhu Y, Ponath F, Cosi V, Vogel J. A global survey of small RNA interactors identifies KhpA and KhpB as major RNA-binding proteins in Fusobacterium nucleatum. Nucleic Acids Res 2024; 52:3950-3970. [PMID: 38281181 DOI: 10.1093/nar/gkae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024] Open
Abstract
The common oral microbe Fusobacterium nucleatum has recently drawn attention after it was found to colonize tumors throughout the human body. Fusobacteria are also interesting study systems for bacterial RNA biology as these early-branching species encode many small noncoding RNAs (sRNAs) but lack homologs of the common RNA-binding proteins (RBPs) CsrA, Hfq and ProQ. To search for alternate sRNA-associated RBPs in F. nucleatum, we performed a systematic mass spectrometry analysis of proteins that co-purified with 19 different sRNAs. This approach revealed strong enrichment of the KH domain proteins KhpA and KhpB with nearly all tested sRNAs, including the σE-dependent sRNA FoxI, a regulator of several envelope proteins. KhpA/B act as a dimer to bind sRNAs with low micromolar affinity and influence the stability of several of their target transcripts. Transcriptome studies combined with biochemical and genetic analyses suggest that KhpA/B have several physiological functions, including being required for ethanolamine utilization. Our RBP search and the discovery of KhpA/B as major RBPs in F. nucleatum are important first steps in identifying key players of post-transcriptional control at the root of the bacterial phylogenetic tree.
Collapse
Affiliation(s)
- Yan Zhu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg D-97080, Germany
| | - Falk Ponath
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg D-97080, Germany
| | - Valentina Cosi
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg D-97080, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg D-97080, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| |
Collapse
|
12
|
Mediati DG, Dan W, Lalaouna D, Dinh H, Pokhrel A, Rowell KN, Michie KA, Stinear TP, Cain AK, Tree JJ. The 3' UTR of vigR is required for virulence in Staphylococcus aureus and has expanded through STAR sequence repeat insertions. Cell Rep 2024; 43:114082. [PMID: 38583155 DOI: 10.1016/j.celrep.2024.114082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/17/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are alarmingly common, and treatment is confined to last-line antibiotics. Vancomycin is the treatment of choice for MRSA bacteremia, and treatment failure is often associated with vancomycin-intermediate S. aureus isolates. The regulatory 3' UTR of the vigR mRNA contributes to vancomycin tolerance and upregulates the autolysin IsaA. Using MS2-affinity purification coupled with RNA sequencing, we find that the vigR 3' UTR also regulates dapE, a succinyl-diaminopimelate desuccinylase required for lysine and peptidoglycan synthesis, suggesting a broader role in controlling cell wall metabolism and vancomycin tolerance. Deletion of the 3' UTR increased virulence, while the isaA mutant is completely attenuated in a wax moth larvae model. Sequence and structural analyses of vigR indicated that the 3' UTR has expanded through the acquisition of Staphylococcus aureus repeat insertions that contribute sequence for the isaA interaction seed and may functionalize the 3' UTR.
Collapse
Affiliation(s)
- Daniel G Mediati
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia; Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia.
| | - William Dan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - David Lalaouna
- Université de Strasbourg, CNRS, ARN UPR 9002, Strasbourg, France
| | - Hue Dinh
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Alaska Pokhrel
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia; School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Keiran N Rowell
- Structural Biology Facility, University of New South Wales, Sydney, NSW, Australia
| | - Katharine A Michie
- Structural Biology Facility, University of New South Wales, Sydney, NSW, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Amy K Cain
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Jenniches L, Michaux C, Popella L, Reichardt S, Vogel J, Westermann AJ, Barquist L. Improved RNA stability estimation through Bayesian modeling reveals most Salmonella transcripts have subminute half-lives. Proc Natl Acad Sci U S A 2024; 121:e2308814121. [PMID: 38527194 PMCID: PMC10998600 DOI: 10.1073/pnas.2308814121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
RNA decay is a crucial mechanism for regulating gene expression in response to environmental stresses. In bacteria, RNA-binding proteins (RBPs) are known to be involved in posttranscriptional regulation, but their global impact on RNA half-lives has not been extensively studied. To shed light on the role of the major RBPs ProQ and CspC/E in maintaining RNA stability, we performed RNA sequencing of Salmonella enterica over a time course following treatment with the transcription initiation inhibitor rifampicin (RIF-seq) in the presence and absence of these RBPs. We developed a hierarchical Bayesian model that corrects for confounding factors in rifampicin RNA stability assays and enables us to identify differentially decaying transcripts transcriptome-wide. Our analysis revealed that the median RNA half-life in Salmonella in early stationary phase is less than 1 min, a third of previous estimates. We found that over half of the 500 most long-lived transcripts are bound by at least one major RBP, suggesting a general role for RBPs in shaping the transcriptome. Integrating differential stability estimates with cross-linking and immunoprecipitation followed by RNA sequencing (CLIP-seq) revealed that approximately 30% of transcripts with ProQ binding sites and more than 40% with CspC/E binding sites in coding or 3' untranslated regions decay differentially in the absence of the respective RBP. Analysis of differentially destabilized transcripts identified a role for ProQ in the oxidative stress response. Our findings provide insights into posttranscriptional regulation by ProQ and CspC/E, and the importance of RBPs in regulating gene expression.
Collapse
Affiliation(s)
- Laura Jenniches
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg97080, Germany
| | - Charlotte Michaux
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg97080, Germany
| | - Linda Popella
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg97080, Germany
| | - Sarah Reichardt
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg97080, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg97080, Germany
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg97080, Germany
- Faculty of Medicine, University of Würzburg, Würzburg97080, Germany
| | - Alexander J. Westermann
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg97080, Germany
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg97080, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg97080, Germany
- Faculty of Medicine, University of Würzburg, Würzburg97080, Germany
- Department of Biology, University of Toronto Mississauga, Mississauga, ONL5L 1C6Canada
| |
Collapse
|
14
|
Bergman S, Andresen L, Kjellin J, Martinez Burgo Y, Geiser P, Baars S, Söderbom F, Sellin ME, Holmqvist E. ProQ-dependent activation of Salmonella virulence genes mediated by post-transcriptional control of PhoP synthesis. mSphere 2024; 9:e0001824. [PMID: 38411119 PMCID: PMC10964419 DOI: 10.1128/msphere.00018-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
Gastrointestinal disease caused by Salmonella enterica is associated with the pathogen's ability to replicate within epithelial cells and macrophages. Upon host cell entry, the bacteria express a type-three secretion system encoded within Salmonella pathogenicity island 2, through which host-manipulating effector proteins are secreted to establish a stable intracellular niche. Transcription of this intracellular virulence program is activated by the PhoPQ two-component system that senses the low pH and the reduced magnesium concentration of host cell vacuoles. In addition to transcriptional control, Salmonella commonly employ RNA-binding proteins (RBPs) and small regulatory RNAs (sRNAs) to regulate gene expression at the post-transcriptional level. ProQ is a globally acting RBP in Salmonella that promotes expression of the intracellular virulence program, but its RNA repertoire has previously been characterized only under standard laboratory growth conditions. Here, we provide a high-resolution ProQ interactome during conditions mimicking the environment of the Salmonella-containing vacuole (SCV), revealing hundreds of previously unknown ProQ binding sites in sRNAs and mRNA 3'UTRs. ProQ positively affected both the levels and the stability of many sRNA ligands, some of which were previously shown to associate with the well-studied and infection-relevant RBP Hfq. We further show that ProQ activates the expression of PhoP at the post-transcriptional level, which, in turn, leads to upregulation of the intracellular virulence program. IMPORTANCE Salmonella enterica is a major pathogen responsible for foodborne gastroenteritis, and a leading model organism for genetic and molecular studies of bacterial virulence mechanisms. One key trait of this pathogen is the ability to survive within infected host cells. During infection, the bacteria employ a type three secretion system that deliver effector proteins to target and manipulate host cell processes. The transcriptional regulation of this virulence program is well understood. By contrast, the factors and mechanisms operating at the post-transcriptional level to control virulence gene expression are less clear. In this study, we have charted the global RNA ligand repertoire of the RNA-binding protein ProQ during in vitro conditions mimicking the host cell environment. This identified hundreds of binding sites and revealed ProQ-dependent stabilization of intracellular-specific small RNAs. Importantly, we show that ProQ post-transcriptionally activates the expression of PhoP, a master transcriptional activator of intracellular virulence in Salmonella.
Collapse
Affiliation(s)
- Sofia Bergman
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Liis Andresen
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Jonas Kjellin
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Yolanda Martinez Burgo
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Petra Geiser
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sophie Baars
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Fredrik Söderbom
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Mikael E. Sellin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Kotsira V, Skoufos G, Alexiou A, Zioga M, Tastsoglou S, Kardaras FS, Perdikopanis N, Elissavet Z, Gouzouasis V, Charitou T, Hatzigeorgiou AG. Agnodice: indexing experimentally supported bacterial sRNA-RNA interactions. mBio 2024; 15:e0301023. [PMID: 38319109 PMCID: PMC10936433 DOI: 10.1128/mbio.03010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
In the last decade, the immense growth in the field of bacterial small RNAs (sRNAs), along with the biotechnological breakthroughs in Deep Sequencing permitted the deeper understanding of sRNA-RNA interactions. However, microbiology is currently lacking a thoroughly curated collection of this rapidly expanding universe. We present Agnodice (https://dianalab.e-ce.uth.gr/agnodice), our effort to systematically catalog and annotate experimentally supported bacterial sRNA-RNA interactions. Agnodice, for the first time, incorporates thousands of bacterial sRNA-RNA interactions derived from a diverse set of experimental methodologies including state-of-the-art Deep Sequencing interactome identification techniques. It comprises 39,600 entries which are annotated at strain-level resolution and pertain to 399 sRNAs and 12,137 target RNAs identified in 71 bacterial strains. The database content is exclusively experimentally supported, incorporating interactions derived via low yield as well as state-of-the-art high-throughput methods. The entire content of the database is freely accessible and can be directly downloaded for further analysis. Agnodice will serve as a valuable source, enabling microbiologists to form novel hypotheses, design/identify novel sRNA-based drug targets, and explore the therapeutic potential of microbiomes from the perspective of small regulatory RNAs.IMPORTANCEAgnodice (https://dianalab.e-ce.uth.gr/agnodice) is an effort to systematically catalog and annotate experimentally supported bacterial small RNA (sRNA)-RNA interactions. Agnodice, for the first time, incorporates thousands of bacterial sRNA-RNA interactions derived from a diverse set of experimental methodologies including state-of-the-art Next Generation Sequencing interactome identification techniques.
Collapse
Affiliation(s)
- Vasiliki Kotsira
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Giorgos Skoufos
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Athanasios Alexiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Maria Zioga
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Spyros Tastsoglou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Filippos S. Kardaras
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Nikos Perdikopanis
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece
| | - Zacharopoulou Elissavet
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Vasileios Gouzouasis
- Hellenic Pasteur Institute, Athens, Greece
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Theodosia Charitou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Artemis G. Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
16
|
Małecka EM, Woodson SA. RNA compaction and iterative scanning for small RNA targets by the Hfq chaperone. Nat Commun 2024; 15:2069. [PMID: 38453956 PMCID: PMC10920880 DOI: 10.1038/s41467-024-46316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
RNA-guided enzymes must quickly search a vast sequence space for their targets. This search is aided by chaperones such as Hfq, a protein that mediates regulation by bacterial small RNAs (sRNAs). How RNA binding proteins enhance this search is little known. Using single-molecule Förster resonance energy transfer, we show that E. coli Hfq performs a one-dimensional scan in which compaction of the target RNA delivers sRNAs to sites distant from the location of Hfq recruitment. We also show that Hfq can transfer an sRNA between different target sites in a single mRNA, favoring the most stable duplex. We propose that compaction and segmental transfer, combined with repeated cycles of base pairing, enable the kinetic selection of optimal sRNA targets. Finally, we show that RNA compaction and sRNA transfer require conserved arginine patches. We suggest that arginine patches are a widespread strategy for enabling the movement of RNA across protein surfaces.
Collapse
Affiliation(s)
- Ewelina M Małecka
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St.,5, Baltimore, MD, 21218, USA.
- Laboratory of Single-Molecule Biophysics, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, Warsaw, 02-109, Poland.
| | - Sarah A Woodson
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St.,5, Baltimore, MD, 21218, USA.
| |
Collapse
|
17
|
Putzeys L, Wicke L, Brandão A, Boon M, Pires DP, Azeredo J, Vogel J, Lavigne R, Gerovac M. Exploring the transcriptional landscape of phage-host interactions using novel high-throughput approaches. Curr Opin Microbiol 2024; 77:102419. [PMID: 38271748 PMCID: PMC10884466 DOI: 10.1016/j.mib.2023.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024]
Abstract
In the last decade, powerful high-throughput sequencing approaches have emerged to analyse microbial transcriptomes at a global scale. However, to date, applications of these approaches to microbial viruses such as phages remain scarce. Tailoring these techniques to virus-infected bacteria promises to obtain a detailed picture of the underexplored RNA biology and molecular processes during infection. In addition, transcriptome study of stress and perturbations induced by phages in their infected bacterial hosts is likely to reveal new fundamental mechanisms of bacterial metabolism and gene regulation. Here, we provide references and blueprints to implement emerging transcriptomic approaches towards addressing transcriptome architecture, RNA-RNA and RNA-protein interactions, RNA modifications, structures and heterogeneity of transcription profiles in infected cells that will provide guides for future directions in phage-centric therapeutic applications and microbial synthetic biology.
Collapse
Affiliation(s)
- Leena Putzeys
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Laura Wicke
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium; Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Würzburg, Germany
| | - Ana Brandão
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Maarten Boon
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Diana P Pires
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Jörg Vogel
- Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Milan Gerovac
- Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.
| |
Collapse
|
18
|
Chauvier A, Walter NG. Regulation of bacterial gene expression by non-coding RNA: It is all about time! Cell Chem Biol 2024; 31:71-85. [PMID: 38211587 DOI: 10.1016/j.chembiol.2023.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Commensal and pathogenic bacteria continuously evolve to survive in diverse ecological niches by efficiently coordinating gene expression levels in their ever-changing environments. Regulation through the RNA transcript itself offers a faster and more cost-effective way to adapt than protein-based mechanisms and can be leveraged for diagnostic or antimicrobial purposes. However, RNA can fold into numerous intricate, not always functional structures that both expand and obscure the plethora of roles that regulatory RNAs serve within the cell. Here, we review the current knowledge of bacterial non-coding RNAs in relation to their folding pathways and interactions. We posit that co-transcriptional folding of these transcripts ultimately dictates their downstream functions. Elucidating the spatiotemporal folding of non-coding RNAs during transcription therefore provides invaluable insights into bacterial pathogeneses and predictive disease diagnostics. Finally, we discuss the implications of co-transcriptional folding andapplications of RNAs for therapeutics and drug targets.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Raden M, Miladi M. How to do RNA-RNA Interaction Prediction? A Use-Case Driven Handbook Using IntaRNA. Methods Mol Biol 2024; 2726:209-234. [PMID: 38780733 DOI: 10.1007/978-1-0716-3519-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Computational prediction of RNA-RNA interactions (RRI) is a central methodology for the specific investigation of inter-molecular RNA interactions and regulatory effects of non-coding RNAs like eukaryotic microRNAs or prokaryotic small RNAs. Available methods can be classified according to their underlying prediction strategies, each implicating specific capabilities and restrictions often not transparent to the non-expert user. Within this work, we review seven classes of RRI prediction strategies and discuss the advantages and limitations of respective tools, since such knowledge is essential for selecting the right tool in the first place.Among the RRI prediction strategies, accessibility-based approaches have been shown to provide the most reliable predictions. Here, we describe how IntaRNA, as one of the state-of-the-art accessibility-based tools, can be applied in various use cases for the task of computational RRI prediction. Detailed hands-on examples for individual RRI predictions as well as large-scale target prediction scenarios are provided. We illustrate the flexibility and capabilities of IntaRNA through the examples. Each example is designed using real-life data from the literature and is accompanied by instructions on interpreting the respective results from IntaRNA output. Our use-case driven instructions enable non-expert users to comprehensively understand and utilize IntaRNA's features for effective RRI predictions.
Collapse
Affiliation(s)
- Martin Raden
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany.
| | - Milad Miladi
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Schnoor SB, Neubauer P, Gimpel M. Recent insights into the world of dual-function bacterial sRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1824. [PMID: 38039556 DOI: 10.1002/wrna.1824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/03/2023]
Abstract
Dual-function sRNAs refer to a small subgroup of small regulatory RNAs that merges base-pairing properties of antisense RNAs with peptide-encoding properties of mRNA. Both functions can be part of either same or in another metabolic pathway. Here, we want to update the knowledge of to the already known dual-function sRNAs and review the six new sRNAs found since 2017 regarding their structure, functional mechanisms, evolutionary conservation, and role in the regulation of distinct biological/physiological processes. The increasing identification of dual-function sRNAs through bioinformatics approaches, RNomics and RNA-sequencing and the associated increase in regulatory understanding will likely continue to increase at the same rate in the future. This may improve our understanding of the physiology, virulence and resistance of bacteria, as well as enable their use in technical applications. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
| | - Peter Neubauer
- Department of Bioprocess Engineering, Technische Universitat Berlin, Berlin, Germany
| | - Matthias Gimpel
- Department of Bioprocess Engineering, Technische Universitat Berlin, Berlin, Germany
| |
Collapse
|
21
|
Rojano-Nisimura AM, Simmons TR, Leistra AN, Mihailovic MK, Buchser R, Ekdahl AM, Joseph I, Curtis NC, Contreras LM. CsrA selectively modulates sRNA-mRNA regulator outcomes. Front Mol Biosci 2023; 10:1249528. [PMID: 38116378 PMCID: PMC10729762 DOI: 10.3389/fmolb.2023.1249528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 12/21/2023] Open
Abstract
Post-transcriptional regulation, by small RNAs (sRNAs) as well as the global Carbon Storage Regulator A (CsrA) protein, play critical roles in bacterial metabolic control and stress responses. The CsrA protein affects selective sRNA-mRNA networks, in addition to regulating transcription factors and sigma factors, providing additional avenues of cross talk between other stress-response regulators. Here, we expand the known set of sRNA-CsrA interactions and study their regulatory effects. In vitro binding assays confirm novel CsrA interactions with ten sRNAs, many of which are previously recognized as key regulatory nodes. Of those 10 sRNA, we identify that McaS, FnrS, SgrS, MicL, and Spot42 interact directly with CsrA in vivo. We find that the presence of CsrA impacts the downstream regulation of mRNA targets of the respective sRNA. In vivo evidence supports enhanced CsrA McaS-csgD mRNA repression and showcases CsrA-dependent repression of the fucP mRNA via the Spot42 sRNA. We additionally identify SgrS and FnrS as potential new sRNA sponges of CsrA. Overall, our results further support the expanding impact of the Csr system on cellular physiology via CsrA impact on the regulatory roles of these sRNAs.
Collapse
Affiliation(s)
| | - Trevor R. Simmons
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Abigail N. Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Mia K. Mihailovic
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Ryan Buchser
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Alyssa M. Ekdahl
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Isabella Joseph
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Nicholas C. Curtis
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Lydia M. Contreras
- Biochemistry Graduate Program, University of Texas at Austin, Austin, TX, United States
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
22
|
Zhang S, Shu Y, Zhang W, Xu Z, Li Y, Li S, Li Q, Xiong R, Long Y, Liu J, Zhang Y, Chen C, Lu Y. Quorum sensing N-acyl homoserine lactones-SdiA enhances the biofilm formation of E. coli by regulating sRNA CsrB expression. Heliyon 2023; 9:e21658. [PMID: 38027585 PMCID: PMC10651509 DOI: 10.1016/j.heliyon.2023.e21658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
As an important virulence phenotype of Escherichia coli, the regulation mechanism of biofilm by non-coding RNA and quorum sensing system has not been clarified. Here, by transcriptome sequencing and RT-PCR analysis, we found CsrB, a non-coding RNA of the carbon storage regulation system, was positively regulated by the LuxR protein SdiA. Furthermore, β-galactosidase reporter assays showed that SdiA enhanced promoter transcriptional activity of csrB. The consistent dynamic expression levels of SdiA and CsrB during Escherichia coli growth were also detected. Moreover, curli assays and biofilm assays showed sdiA deficiency in Escherichia coli SM10λπ or BW25113 led to a decreased formation of biofilm, and was significantly restored by over-expression of CsrB. Interestingly, the regulations of SdiA on CsrB in biofilm formation were enhanced by quorum sensing signal molecules AHLs. In conclusion, SdiA plays a crucial role in Escherichia coli biofilm formation by regulating the expression of non-coding RNA CsrB. Our study provides new insights into SdiA-non-coding RNA regulatory network involved in Escherichia coli biofilm formation.
Collapse
Affiliation(s)
- Shebin Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yurong Shu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Weizheng Zhang
- Department of Laboratory Medicine, Guangzhou No.11 People's Hospital, Guangzhou Cadre Health Management Center, Guangzhou, PR China
| | - Zhenjie Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Youqiang Li
- Department of Laboratory Medicine, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, PR China
| | - Song Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Qiwei Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Rui Xiong
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yifei Long
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jianping Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yunyan Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Cha Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yang Lu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital Guangzhou, Qingyuan, PR China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| |
Collapse
|
23
|
Stein EM, Wang S, Dailey KG, Gravel CM, Wang S, Olejniczak M, Berry KE. Biochemical and genetic dissection of the RNA-binding surface of the FinO domain of Escherichia coli ProQ. RNA (NEW YORK, N.Y.) 2023; 29:1772-1791. [PMID: 37607742 PMCID: PMC10578477 DOI: 10.1261/rna.079697.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
RNA-binding proteins play important roles in bacterial gene regulation through interactions with both coding and noncoding RNAs. ProQ is a FinO-domain protein that binds a large set of RNAs in Escherichia coli, though the details of how ProQ binds these RNAs remain unclear. In this study, we used a combination of in vivo and in vitro binding assays to confirm key structural features of E. coli ProQ's FinO domain and explore its mechanism of RNA interactions. Using a bacterial three-hybrid assay, we performed forward genetic screens to confirm the importance of the concave face of ProQ in RNA binding. Using gel shift assays, we directly probed the contributions of ten amino acids on ProQ binding to seven RNA targets. Certain residues (R58, Y70, and R80) were found to be essential for binding of all seven RNAs, while substitutions of other residues (K54 and R62) caused more moderate binding defects. Interestingly, substitutions of two amino acids (K35, R69), which are evolutionarily variable but adjacent to conserved residues, showed varied effects on the binding of different RNAs; these may arise from the differing sequence context around each RNA's terminator hairpin. Together, this work confirms many of the essential RNA-binding residues in ProQ initially identified in vivo and supports a model in which residues on the conserved concave face of the FinO domain such as R58, Y70, and R80 form the main RNA-binding site of E. coli ProQ, while additional contacts contribute to the binding of certain RNAs.
Collapse
Affiliation(s)
- Ewa M Stein
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Suxuan Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Katherine G Dailey
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Chandra M Gravel
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Shiying Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Mikołaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Katherine E Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| |
Collapse
|
24
|
Esteban‐Serna S, McCaughan H, Granneman S. Advantages and limitations of UV cross-linking analysis of protein-RNA interactomes in microbes. Mol Microbiol 2023; 120:477-489. [PMID: 37165708 PMCID: PMC10952675 DOI: 10.1111/mmi.15073] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
RNA-binding proteins (RBPs) govern the lifespan of nearly all transcripts and play key roles in adaptive responses in microbes. A robust approach to examine protein-RNA interactions involves irradiating cells with UV light to form covalent adducts between RBPs and their cognate RNAs. Combined with RNA or protein purification, these procedures can provide global RBP censuses or transcriptomic maps for all target sequences of a single protein in living cells. The recent development of novel methods has quickly populated the RBP landscape in microorganisms. Here, we provide an overview of prominent UV cross-linking techniques which have been applied to investigate RNA interactomes in microbes. By assessing their advantages and caveats, this technical evaluation intends to guide the selection of appropriate methods and experimental design as well as to encourage the use of complementary UV-dependent techniques to inspect RNA-binding activity.
Collapse
Affiliation(s)
- Sofia Esteban‐Serna
- Centre for Engineering Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Hugh McCaughan
- Centre for Engineering Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Sander Granneman
- Centre for Engineering Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
25
|
Broglia L, Le Rhun A, Charpentier E. Methodologies for bacterial ribonuclease characterization using RNA-seq. FEMS Microbiol Rev 2023; 47:fuad049. [PMID: 37656885 PMCID: PMC10503654 DOI: 10.1093/femsre/fuad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/06/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Bacteria adjust gene expression at the post-transcriptional level through an intricate network of small regulatory RNAs and RNA-binding proteins, including ribonucleases (RNases). RNases play an essential role in RNA metabolism, regulating RNA stability, decay, and activation. These enzymes exhibit species-specific effects on gene expression, bacterial physiology, and different strategies of target recognition. Recent advances in high-throughput RNA sequencing (RNA-seq) approaches have provided a better understanding of the roles and modes of action of bacterial RNases. Global studies aiming to identify direct targets of RNases have highlighted the diversity of RNase activity and RNA-based mechanisms of gene expression regulation. Here, we review recent RNA-seq approaches used to study bacterial RNases, with a focus on the methods for identifying direct RNase targets.
Collapse
Affiliation(s)
- Laura Broglia
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Center for Human Technologies, Istituto Italiano di Tecnologia, 16152 Genova, Italy
| | - Anaïs Le Rhun
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Institute for Biology, Humboldt University, D-10115 Berlin, Germany
| |
Collapse
|
26
|
Nava-Galeana J, Núñez C, Bustamante VH. Proteomic analysis reveals the global effect of the BarA/SirA-Csr regulatory cascade in Salmonella Typhimurium grown in conditions that favor the expression of invasion genes. J Proteomics 2023; 286:104960. [PMID: 37451358 DOI: 10.1016/j.jprot.2023.104960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
In many bacteria, the BarA/SirA and Csr regulatory systems control expression of genes encoding a wide variety of cellular functions. The BarA/SirA two-component system induces the expression of CsrB and CsrC, two small non-coding RNAs that sequester CsrA, a protein that binds to target mRNAs and thus negatively or positively regulates their expression. BarA/SirA and CsrB/C induce expression of the Salmonella Pathogenicity Island 1 (SPI-1) genes required for Salmonella invasion of host cells. To further investigate the regulatory role of the BarA/SirA and Csr systems in Salmonella, we performed LC-MS/MS proteomic analysis using the WT S. Typhimurium strain and its derived ΔsirA and ΔcsrB ΔcsrC mutants grown in SPI-1-inducing conditions. The expression of 164 proteins with a wide diversity, or unknown, functions was significantly affected positively or negatively by the absence of SirA and/or CsrB/C. Interestingly, 19 proteins were identified as new targets for SirA-CsrB/C. Our results support that SirA and CsrB/C act in a cascade fashion to regulate gene expression in S. Typhimurium in the conditions tested. Notably, our results show that SirA-CsrB/C-CsrA controls expression of proteins required for the replication of Salmonella in the intestinal lumen, in an opposite way to its control exerted on the SPI-1 proteins. SIGNIFICANCE: The BarA/SirA and Csr global regulatory systems control a wide range of cellular processes, including the expression of virulence genes. For instance, in Salmonella, BarA/SirA and CsrB/C positively regulate expression of the SPI-1 genes, which are required for Salmonella invasion to host cells. In this study, by performing a proteomic analysis, we identified 164 proteins whose expression was positively or negatively controlled by SirA and CsrB/C in SPI-1-inducing conditions, including 19 new possible targets of these systems. Our results support the action of SirA and CsrB/C in a cascade fashion to control different cellular processes in Salmonella. Interestingly, our data indicate that SirA-CsrB/C-CsrA controls inversely the expression of proteins required for invasion of the intestinal epithelium and for replication in the intestinal lumen, which suggests a role for this regulatory cascade as a molecular switch for Salmonella virulence. Thus, our study further expands the insight into the regulatory mechanisms governing the virulence and physiology of an important pathogen.
Collapse
Affiliation(s)
- Jessica Nava-Galeana
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
27
|
Klein T, Funke F, Rossbach O, Lehmann G, Vockenhuber M, Medenbach J, Suess B, Meister G, Babinger P. Investigating the Prevalence of RNA-Binding Metabolic Enzymes in E. coli. Int J Mol Sci 2023; 24:11536. [PMID: 37511294 PMCID: PMC10380284 DOI: 10.3390/ijms241411536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
An open research field in cellular regulation is the assumed crosstalk between RNAs, metabolic enzymes, and metabolites, also known as the REM hypothesis. High-throughput assays have produced extensive interactome data with metabolic enzymes frequently found as hits, but only a few examples have been biochemically validated, with deficits especially in prokaryotes. Therefore, we rationally selected nineteen Escherichia coli enzymes from such datasets and examined their ability to bind RNAs using two complementary methods, iCLIP and SELEX. Found interactions were validated by EMSA and other methods. For most of the candidates, we observed no RNA binding (12/19) or a rather unspecific binding (5/19). Two of the candidates, namely glutamate-5-kinase (ProB) and quinone oxidoreductase (QorA), displayed specific and previously unknown binding to distinct RNAs. We concentrated on the interaction of QorA to the mRNA of yffO, a grounded prophage gene, which could be validated by EMSA and MST. Because the physiological function of both partners is not known, the biological relevance of this interaction remains elusive. Furthermore, we found novel RNA targets for the MS2 phage coat protein that served us as control. Our results indicate that RNA binding of metabolic enzymes in procaryotes is less frequent than suggested by the results of high-throughput studies, but does occur.
Collapse
Affiliation(s)
- Thomas Klein
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Franziska Funke
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, Faculty of Biology and Chemistry, University of Giessen, D-35392 Giessen, Germany
| | - Gerhard Lehmann
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Michael Vockenhuber
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Jan Medenbach
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Beatrix Suess
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Gunter Meister
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Patrick Babinger
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
28
|
Stenum TS, Kumar AD, Sandbaumhüter FA, Kjellin J, Jerlström-Hultqvist J, Andrén PE, Koskiniemi S, Jansson E, Holmqvist E. RNA interactome capture in Escherichia coli globally identifies RNA-binding proteins. Nucleic Acids Res 2023; 51:4572-4587. [PMID: 36987847 PMCID: PMC10201417 DOI: 10.1093/nar/gkad216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
RNA-binding proteins (RPBs) are deeply involved in fundamental cellular processes in bacteria and are vital for their survival. Despite this, few studies have so far been dedicated to direct and global identification of bacterial RBPs. We have adapted the RNA interactome capture (RIC) technique, originally developed for eukaryotic systems, to globally identify RBPs in bacteria. RIC takes advantage of the base pairing potential of poly(A) tails to pull-down RNA-protein complexes. Overexpressing poly(A) polymerase I in Escherichia coli drastically increased transcriptome-wide RNA polyadenylation, enabling pull-down of crosslinked RNA-protein complexes using immobilized oligo(dT) as bait. With this approach, we identified 169 putative RBPs, roughly half of which are already annotated as RNA-binding. We experimentally verified the RNA-binding ability of a number of uncharacterized RBPs, including YhgF, which is exceptionally well conserved not only in bacteria, but also in archaea and eukaryotes. We identified YhgF RNA targets in vivo using CLIP-seq, verified specific binding in vitro, and reveal a putative role for YhgF in regulation of gene expression. Our findings present a simple and robust strategy for RBP identification in bacteria, provide a resource of new bacterial RBPs, and lay the foundation for further studies of the highly conserved RBP YhgF.
Collapse
Affiliation(s)
- Thomas Søndergaard Stenum
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Ankith D Kumar
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Friederike A Sandbaumhüter
- Medical Mass Spectrometry, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Box 591, 75124 Uppsala, Sweden
| | - Jonas Kjellin
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Jon Jerlström-Hultqvist
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Per E Andrén
- Medical Mass Spectrometry, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Box 591, 75124 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Biomedical Centre, Uppsala University, Box 591, 75124 Uppsala, Sweden
| | - Sanna Koskiniemi
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Erik T Jansson
- Medical Mass Spectrometry, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Box 591, 75124 Uppsala, Sweden
| | - Erik Holmqvist
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| |
Collapse
|
29
|
Wu W, Pang CNI, Tree JJ, Mediati DG. Profiling the in vivo RNA interactome associated with the endoribonuclease RNase III in Staphylococcus aureus. Methods Enzymol 2023; 692:299-324. [PMID: 37925184 DOI: 10.1016/bs.mie.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Regulatory small RNA (sRNA) have been extensively studied in model Gram-negative bacteria, but the functional characterisation of these post-transcriptional gene regulators in Gram-positives remains a major challenge. Our previous work in enterohaemorrhagic E. coli utilised the proximity-dependant ligation technique termed CLASH (UV-crosslinking, ligation, and sequencing of hybrids) for direct high-throughput sequencing of the regulatory sRNA-RNA interactions within the cell. Recently, we adapted the CLASH technique and demonstrated that UV-crosslinking and RNA proximity-dependant ligation can be applied to Staphylococcus aureus, which uncovered the first RNA-RNA interaction network in a Gram-positive bacterium. In this chapter, we describe modifications to the CLASH technique that were developed to capture the RNA interactome associated with the double-stranded endoribonuclease RNase III in two clinical isolates of S. aureus. To briefly summarise our CLASH methodology, regulatory RNA-RNA interactions were first UV-crosslinked in vivo to the RNase III protein and protein-RNA complexes were affinity-purified using the His6-TEV-FLAG tags. Linkers were ligated to RNase III-bound RNA during library preparation and duplexed RNA-RNA species were ligated together to form a single contiguous RNA 'hybrid'. The RNase III-RNA binding sites and RNA-RNA interactions occurring on RNase III (RNA hybrids) were then identified by paired-end sequencing technology. RNase III-CLASH represents a step towards a systems-level understanding of regulatory RNA in Gram-positive bacteria.
Collapse
Affiliation(s)
- Winton Wu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Chi Nam Ignatius Pang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia; Children's Medical Research Institute, Westmead, NSW, Australia
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Daniel G Mediati
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
30
|
Stein EM, Wang S, Dailey K, Gravel CM, Wang S, Olejniczak M, Berry KE. Biochemical and genetic dissection of the RNA-binding surface of the FinO domain of Escherichia coli ProQ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538249. [PMID: 37163069 PMCID: PMC10168233 DOI: 10.1101/2023.04.25.538249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
RNA-binding proteins play important roles in bacterial gene regulation through interactions with both coding and non-coding RNAs. ProQ is a FinO-domain protein that binds a large set of RNAs in Escherichia coli , though the details of how ProQ binds these RNAs remain unclear. In this study, we used a combination of in vivo and in vitro binding assays to confirm key structural features of E. coli ProQ's FinO domain and explore its mechanism of RNA interactions. Using a bacterial three-hybrid assay, we performed forward genetic screens to confirm the importance of the concave face of ProQ in RNA binding. Using gel shift assays, we directly probed the contributions of ten amino acids on ProQ binding to seven RNA targets. Certain residues (R58, Y70, and R80) were found to be essential for binding of all seven RNAs, while substitutions of other residues (K54 and R62) caused more moderate binding defects. Interestingly, substitutions of two amino acids (K35, R69), which are evolutionarily variable but adjacent to conserved residues, showed varied effects on the binding of different RNAs; these may arise from the differing sequence context around each RNA's terminator hairpin. Together, this work confirms many of the essential RNA-binding residues in ProQ initially identified in vivo and supports a model in which residues on the conserved concave face of the FinO domain such as R58, Y70 and R80 form the main RNA-binding site of E. coli ProQ, while additional contacts contribute to the binding of certain RNAs.
Collapse
Affiliation(s)
- Ewa M. Stein
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Suxuan Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Katherine Dailey
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Chandra M Gravel
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Shiying Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Mikołaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Katherine E Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| |
Collapse
|
31
|
Rojano-Nisimura AM, Simmons TR, Leistra AN, Mihailovic MK, Buchser R, Ekdahl AM, Joseph I, Curtis NC, Contreras LM. CsrA Shows Selective Regulation of sRNA-mRNA Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534774. [PMID: 37034808 PMCID: PMC10081199 DOI: 10.1101/2023.03.29.534774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Post-transcriptional regulation, by small RNAs (sRNAs) as well as the global Carbon Storage Regulator A (CsrA) protein, play critical roles in bacterial metabolic control and stress responses. The CsrA protein affects selective sRNA-mRNA networks, in addition to regulating transcription factors and sigma factors, providing additional avenues of cross talk between other stress-response regulators. Here, we expand the known set of sRNA-CsrA interactions and study their regulatory effects. In vitro binding assays confirm novel CsrA interactions with ten sRNAs, many of which are previously recognized as key regulatory nodes. Of those 10 sRNA, we identify that McaS, FnrS, SgrS, MicL, and Spot42 interact with CsrA in vivo. We find that the presence of CsrA impacts the downstream regulation of mRNA targets of the respective sRNA. In vivo evidence supports enhanced CsrA McaS-csgD mRNA repression and showcase CsrA-dependent repression of the fucP mRNA via the Spot42 sRNA. We additionally identify SgrS and FnrS as potential new sRNA sponges of CsrA. Overall, our results further support the expanding impact of the Csr system on cellular physiology via CsrA impact on the regulatory roles of these sRNAs.
Collapse
Affiliation(s)
| | - Trevor R. Simmons
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Abigail N. Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Mia K. Mihailovic
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Ryan Buchser
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Alyssa M. Ekdahl
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Isabella Joseph
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Nicholas C. Curtis
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Lydia M. Contreras
- Biochemistry Graduate Program, University of Texas at Austin, 100 E. 24th Street Stop A6500, Austin, TX 78712, USA
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| |
Collapse
|
32
|
Dendooven T, Sonnleitner E, Bläsi U, Luisi BF. Translational regulation by Hfq-Crc assemblies emerges from polymorphic ribonucleoprotein folding. EMBO J 2023; 42:e111129. [PMID: 36504222 PMCID: PMC9890229 DOI: 10.15252/embj.2022111129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
The widely occurring bacterial RNA chaperone Hfq is a key factor in the post-transcriptional control of hundreds of genes in Pseudomonas aeruginosa. How this broadly acting protein can contribute to the regulatory requirements of many different genes remains puzzling. Here, we describe cryo-EM structures of higher order assemblies formed by Hfq and its partner protein Crc on control regions of different P. aeruginosa target mRNAs. Our results show that these assemblies have mRNA-specific quaternary architectures resulting from the combination of multivalent protein-protein interfaces and recognition of patterns in the RNA sequence. The structural polymorphism of these ribonucleoprotein assemblies enables selective translational repression of many different target mRNAs. This system elucidates how highly complex regulatory pathways can evolve with a minimal economy of proteinogenic components in combination with RNA sequence and fold.
Collapse
Affiliation(s)
- Tom Dendooven
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max Perutz LabsUniversity of ViennaViennaAustria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max Perutz LabsUniversity of ViennaViennaAustria
| | - Ben F Luisi
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
33
|
Small RNAs Activate Salmonella Pathogenicity Island 1 by Modulating mRNA Stability through the hilD mRNA 3' Untranslated Region. J Bacteriol 2023; 205:e0033322. [PMID: 36472436 PMCID: PMC9879128 DOI: 10.1128/jb.00333-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is an enteric pathogen associated with foodborne disease. Salmonella invades the intestinal epithelium using a type three secretion system encoded on Salmonella pathogenicity island 1 (SPI-1). SPI-1 genes are tightly regulated by a complex feed-forward loop to ensure proper spatial and temporal expression. Most regulatory input is integrated at HilD, through control of hilD mRNA translation or HilD protein activity. The hilD mRNA possesses a 310-nucleotide 3' untranslated region (UTR) that influences HilD and SPI-1 expression, and this regulation is dependent on Hfq and RNase E, cofactors known to mediate small RNA (sRNA) activities. Thus, we hypothesized that the hilD mRNA 3' UTR is a target for sRNAs. Here, we show that two sRNAs, SdsR and Spot 42, regulate SPI-1 by targeting different regions of the hilD mRNA 3' UTR. Regulatory activities of these sRNAs depended on Hfq and RNase E, in agreement with previous roles found for both at the hilD 3' UTR. Salmonella mutants lacking SdsR and Spot 42 had decreased virulence in a mouse model of infection. Collectively, this work suggests that these sRNAs targeting the hilD mRNA 3' UTR increase hilD mRNA levels by interfering with RNase E-dependent mRNA degradation and that this regulatory effect is required for Salmonella invasiveness. Our work provides novel insights into mechanisms of sRNA regulation at bacterial mRNA 3' UTRs and adds to our knowledge of post-transcriptional regulation of the SPI-1 complex feed-forward loop. IMPORTANCE Salmonella enterica serovar Typhimurium is a prominent foodborne pathogen, infecting millions of people a year. To express virulence genes at the correct time and place in the host, Salmonella uses a complex regulatory network that senses environmental conditions. Known for their role in allowing quick responses to stress and virulence conditions, we investigated the role of small RNAs in facilitating precise expression of virulence genes. We found that the 3' untranslated region of the hilD mRNA, encoding a key virulence regulator, is a target for small RNAs and RNase E. The small RNAs stabilize hilD mRNA to allow proper expression of Salmonella virulence genes in the host.
Collapse
|
34
|
Genetically encoded chemical crosslinking of RNA in vivo. Nat Chem 2023; 15:21-32. [PMID: 36202986 PMCID: PMC9840682 DOI: 10.1038/s41557-022-01038-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/08/2022] [Indexed: 01/17/2023]
Abstract
Protein-RNA interactions regulate RNA fate and function, and defects can lead to various disorders. Such interactions have mainly been studied by nucleoside-based UV crosslinking methods, which lack broad in vivo compatibility and the ability to resolve specific amino acids. In this study we genetically encoded latent bioreactive unnatural amino acids into proteins to react with bound RNA by proximity-enabled reactivity and demonstrated genetically encoded chemical crosslinking of proteins with target RNA (GECX-RNA) in vivo. Applying GECX-RNA to the RNA chaperone Hfq in Escherichia coli identified target RNAs with amino acid specificity. Combining GECX-RNA with immunoprecipitation and high-throughput sequencing of an N6-methyladenosine reader protein in mammalian cells allowed the in vivo identification of unknown N6-methyladenosine on RNA with single-nucleotide resolution throughout the transcriptome. GECX-RNA thus affords resolution at the nucleotide and amino acid level for interrogating protein-RNA interactions in vivo. It also enables the precise engineering of covalent linkages between a protein and RNA, which will inspire innovative solutions for RNA-related research and therapeutics.
Collapse
|
35
|
Michaux C, Gerovac M, Hansen EE, Barquist L, Vogel J. Grad-seq analysis of Enterococcus faecalis and Enterococcus faecium provides a global view of RNA and protein complexes in these two opportunistic pathogens. MICROLIFE 2022; 4:uqac027. [PMID: 37223738 PMCID: PMC10117718 DOI: 10.1093/femsml/uqac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 05/25/2023]
Abstract
Enterococcus faecalis and Enterococcus faecium are major nosocomial pathogens. Despite their relevance to public health and their role in the development of bacterial antibiotic resistance, relatively little is known about gene regulation in these species. RNA-protein complexes serve crucial functions in all cellular processes associated with gene expression, including post-transcriptional control mediated by small regulatory RNAs (sRNAs). Here, we present a new resource for the study of enterococcal RNA biology, employing the Grad-seq technique to comprehensively predict complexes formed by RNA and proteins in E. faecalis V583 and E. faecium AUS0004. Analysis of the generated global RNA and protein sedimentation profiles led to the identification of RNA-protein complexes and putative novel sRNAs. Validating our data sets, we observe well-established cellular RNA-protein complexes such as the 6S RNA-RNA polymerase complex, suggesting that 6S RNA-mediated global control of transcription is conserved in enterococci. Focusing on the largely uncharacterized RNA-binding protein KhpB, we use the RIP-seq technique to predict that KhpB interacts with sRNAs, tRNAs, and untranslated regions of mRNAs, and might be involved in the processing of specific tRNAs. Collectively, these datasets provide departure points for in-depth studies of the cellular interactome of enterococci that should facilitate functional discovery in these and related Gram-positive species. Our data are available to the community through a user-friendly Grad-seq browser that allows interactive searches of the sedimentation profiles (https://resources.helmholtz-hiri.de/gradseqef/).
Collapse
Affiliation(s)
- Charlotte Michaux
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
| | - Milan Gerovac
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
| | - Elisabeth E Hansen
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Straße, 97080, Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Straße, 97080, Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
| |
Collapse
|
36
|
Ormazábal A, Pierdominici-Sottile G, Palma J. Recognition and Binding of RsmE to an AGGAC Motif of RsmZ: Insights from Molecular Dynamics Simulations. J Chem Inf Model 2022; 62:6614-6627. [PMID: 35470666 DOI: 10.1021/acs.jcim.2c00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CsrA/RsmE is a post-transcriptional regulator protein widely distributed in bacteria. It impedes the expression of target mRNAs by attaching their 5' untranslated region. The translation is restored by small, noncoding RNAs that sequester CsrA/RsmE acting as sponges. In both cases, the protein recognizes and attaches to specific AGGAX and AXGGAX motifs, where X refers to any nucleotide. RsmZ of Pseudomonas protegens is one of these small RNAs. The structures of some of its complexes with RsmE were disclosed a few years ago. We have used umbrella sampling simulations to force the unbinding of RsmE from the AGGAC motif located in the single-stranded region sited between stem loops 2 and 3 of RsmZ. The calculations unveiled the identity of the main residues and nucleotides involved in the process. They also showed that the region adopts a hairpin-like conformation during the initial stages of the binding. The ability to acquire this conformation requires that the region has a length of at least nine nucleotides. Besides, we performed standard molecular dynamics simulations of the isolated fragments, analyzed their typical conformations, and characterized their movements. This analysis revealed that the free molecules oscillate along specific collective coordinates that facilitate the initial stages of the binding. The results strongly suggest that the flexibility of the single-stranded region of RsmZ crucially affects the ability of its binding motif to catch RsmE.
Collapse
Affiliation(s)
- Agustín Ormazábal
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Sáenz Peña 352, Bernal B1876BXD, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| | - Gustavo Pierdominici-Sottile
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Sáenz Peña 352, Bernal B1876BXD, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| | - Juliana Palma
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Sáenz Peña 352, Bernal B1876BXD, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| |
Collapse
|
37
|
Chihara K, Gerovac M, Hör J, Vogel J. Global profiling of the RNA and protein complexes of Escherichia coli by size exclusion chromatography followed by RNA sequencing and mass spectrometry (SEC-seq). RNA (NEW YORK, N.Y.) 2022; 29:rna.079439.122. [PMID: 36328526 PMCID: PMC9808575 DOI: 10.1261/rna.079439.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
New methods for the global identification of RNA-protein interactions have led to greater recognition of the abundance and importance of RNA-binding proteins (RBPs) in bacteria. Here, we expand this tool kit by developing SEC-seq, a method based on a similar concept as the established Grad-seq approach. In Grad-seq, cellular RNA and protein complexes of a bacterium of interest are separated in a glycerol gradient, followed by high-throughput RNA-sequencing and mass spectrometry analyses of individual gradient fractions. New RNA-protein complexes are predicted based on the similarity of their elution profiles. In SEC-seq, we have replaced the glycerol gradient with separation by size exclusion chromatography, which shortens operation times and offers greater potential for automation. Applying SEC-seq to Escherichia coli, we find that the method provides a higher resolution than Grad-seq in the lower molecular weight range up to ~500 kDa. This is illustrated by the ability of SEC-seq to resolve two distinct, but similarly sized complexes of the global translational repressor CsrA with either of its antagonistic small RNAs, CsrB and CsrC. We also characterized changes in the SEC-seq profiles of the small RNA MicA upon deletion of its RNA chaperones Hfq and ProQ and investigated the redistribution of these two proteins upon RNase treatment. Overall, we demonstrate that SEC-seq is a tractable and reproducible method for the global profiling of bacterial RNA-protein complexes that offers the potential to discover yet-unrecognized associations between bacterial RNAs and proteins.
Collapse
Affiliation(s)
- Kotaro Chihara
- Helmholtz Institute for RNA-based Infection Research, Würzburg, Germany
| | | | - Jens Hör
- Weizmann Institute, Rehovot, Israel
| | | |
Collapse
|
38
|
da Silva GC, Rossi CC, Rosa JN, Sanches NM, Cardoso DL, Li Y, Witney AA, Gould KA, Fontes PP, Callaghan AJ, Bossé JT, Langford PR, Bazzolli DMS. Identification of small RNAs associated with RNA chaperone Hfq reveals a new stress response regulator in Actinobacillus pleuropneumoniae. Front Microbiol 2022; 13:1017278. [PMID: 36267174 PMCID: PMC9577009 DOI: 10.3389/fmicb.2022.1017278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The RNA chaperone Hfq promotes the association of small RNAs (sRNAs) with cognate mRNAs, controlling the expression of bacterial phenotype. Actinobacillus pleuropneumoniae hfq mutants strains are attenuated for virulence in pigs, impaired in the ability to form biofilms, and more susceptible to stress, but knowledge of the extent of sRNA involvement is limited. Here, using A. pleuropneumoniae strain MIDG2331 (serovar 8), 14 sRNAs were identified by co-immunoprecipitation with Hfq and the expression of eight, identified as trans-acting sRNAs, were confirmed by Northern blotting. We focused on one of these sRNAs, named Rna01, containing a putative promoter for RpoE (stress regulon) recognition. Knockout mutants of rna01 and a double knockout mutant of rna01 and hfq, both had decreased biofilm formation and hemolytic activity, attenuation for virulence in Galleria mellonella, altered stress susceptibility, and an altered outer membrane protein profile. Rna01 affected extracellular vesicle production, size and toxicity in G. mellonella. qRT-PCR analysis of rna01 and putative cognate mRNA targets indicated that Rna01 is associated with the extracytoplasmic stress response. This work increases our understanding of the multilayered and complex nature of the influence of Hfq-dependent sRNAs on the physiology and virulence of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Giarlã Cunha da Silva
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ciro César Rossi
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Jéssica Nogueira Rosa
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Newton Moreno Sanches
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Daniela Lopes Cardoso
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Yanwen Li
- Section of Pediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Adam A. Witney
- Institute for Infection and Immunity, St. George’s, University of London, London, United Kingdom
| | - Kate A. Gould
- Institute for Infection and Immunity, St. George’s, University of London, London, United Kingdom
| | | | - Anastasia J. Callaghan
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Janine Thérèse Bossé
- Section of Pediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Paul Richard Langford
- Section of Pediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Denise Mara Soares Bazzolli
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
39
|
Spatial Structure Formation by RsmE-Regulated Extracellular Secretions in Pseudomonas fluorescens Pf0-1. J Bacteriol 2022; 204:e0028522. [PMID: 36165622 PMCID: PMC9578434 DOI: 10.1128/jb.00285-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells in microbial communities on surfaces live and divide in close proximity, which greatly enhances the potential for social interactions. Spatiogenetic structures are manifested through competitive and cooperative interactions among the same and different genotypes within a shared space, and extracellular secretions appear to function dynamically at the forefront. A previous experimental evolution study utilizing Pseudomonas fluorescens Pf0-1 colonies demonstrated that diverse mutations in the rsmE gene were repeatedly and exclusively selected through the formation of a dominant spatial structure. RsmE's primary molecular function is translation repression, and its homologs regulate various social and virulence phenotypes. Pseudomonas spp. possess multiple paralogs of Rsm proteins, and RsmA, RsmE, and RsmI are the most prevalent. Here, we demonstrate that the production of a mucoid polymer and a biosurfactant are exclusively regulated through RsmE, contradicting the generalized notion of functional redundancy among the Rsm paralogs. Furthermore, we identified the biosurfactant as the cyclic lipopeptide gacamide A. Competition and microscopy analyses showed that the mucoid polymer is solely responsible for creating a space of low cellular density, which is shared exclusively by the same genotype. Gacamide A and other RsmE-regulated products appear to establish a physical boundary that prevents the encroachment of the competing genotype into the newly created space. Although cyclic lipopeptides and other biosurfactants are best known for their antimicrobial properties and reducing surface tension to promote the spreading of cells on various surfaces, they also appear to help define spatial structure formation within a dense community. IMPORTANCE In densely populated colonies of the bacterium Pseudomonas fluorescens Pf0-1, diverse mutations in the rsmE gene are naturally selected by solving the problem of overcrowding. Here, we show that RsmE-regulated secretions function together to create and protect space of low cell density. A biosurfactant generally promotes the spreading of bacterial cells on abiotic surfaces; however, it appears to function atypically within a crowded population by physically defining genotypic boundaries. Another significant finding is that these secretions are not regulated by RsmE's paralogs that share high sequence similarity. The experimental pipeline described in this study is highly tractable and should facilitate future studies to explore additional RsmE-regulated products and address why RsmE is functionally unique from its paralogs.
Collapse
|
40
|
Mahendran G, Jayasinghe OT, Thavakumaran D, Arachchilage GM, Silva GN. Key players in regulatory RNA realm of bacteria. Biochem Biophys Rep 2022; 30:101276. [PMID: 35592614 PMCID: PMC9111926 DOI: 10.1016/j.bbrep.2022.101276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Precise regulation of gene expression is crucial for living cells to adapt for survival in diverse environmental conditions. Among the common cellular regulatory mechanisms, RNA-based regulators play a key role in all domains of life. Discovery of regulatory RNAs have made a paradigm shift in molecular biology as many regulatory functions of RNA have been identified beyond its canonical roles as messenger, ribosomal and transfer RNA. In the complex regulatory RNA network, riboswitches, small RNAs, and RNA thermometers can be identified as some of the key players. Herein, we review the discovery, mechanism, and potential therapeutic use of these classes of regulatory RNAs mainly found in bacteria. Being highly adaptive organisms that inhabit a broad range of ecological niches, bacteria have adopted tight and rapid-responding gene regulation mechanisms. This review aims to highlight how bacteria utilize versatile RNA structures and sequences to build a sophisticated gene regulation network. The three major classes of prokaryotic ncRNAs and their characterized mechanisms of operation in gene regulation. sRNAs emerging as major players in global gene regulatory networks. Riboswitch mediated gene control mechanisms through on/off switches in response to ligand binding. RNA thermo sensors for temperature-dependent gene expression. Therapeutic importance of ncRNAs and computational approaches involved in the discovery of ncRNAs.
Collapse
Affiliation(s)
- Gowthami Mahendran
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Department of Chemistry and Biochemistry, University of Notre Dame, IN, 46556, USA
| | - Oshadhi T. Jayasinghe
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Dhanushika Thavakumaran
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Department of Chemistry and Biochemistry, University of Notre Dame, IN, 46556, USA
| | - Gayan Mirihana Arachchilage
- Howard Hughes Medical Institute, Yale University, New Haven, CT, 06520-8103, USA
- PTC Therapeutics Inc, South Plainfield, NJ, 07080, USA
| | - Gayathri N. Silva
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Corresponding author.
| |
Collapse
|
41
|
Brosse A, Boudry P, Walburger A, Magalon A, Guillier M. Synthesis of the NarP response regulator of nitrate respiration in Escherichia coli is regulated at multiple levels by Hfq and small RNAs. Nucleic Acids Res 2022; 50:6753-6768. [PMID: 35748881 PMCID: PMC9262595 DOI: 10.1093/nar/gkac504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Two-component systems (TCS) and small RNAs (sRNA) are widespread regulators that participate in the response and the adaptation of bacteria to their environments. TCSs and sRNAs mostly act at the transcriptional and post-transcriptional levels, respectively, and can be found integrated in regulatory circuits, where TCSs control sRNAs transcription and/or sRNAs post-transcriptionally regulate TCSs synthesis. In response to nitrate and nitrite, the paralogous NarQ-NarP and NarX-NarL TCSs regulate the expression of genes involved in anaerobic respiration of these alternative electron acceptors to oxygen. In addition to the previously reported repression of NarP synthesis by the SdsN137 sRNA, we show here that RprA, another Hfq-dependent sRNA, also negatively controls narP. Interestingly, the repression of narP by RprA actually relies on two independent mechanisms of control. The first is via the direct pairing of the central region of RprA to the narP translation initiation region and presumably occurs at the translation initiation level. In contrast, the second requires only the very 5' end of the narP mRNA, which is targeted, most likely indirectly, by the full-length or the shorter, processed, form of RprA. In addition, our results raise the possibility of a direct role of Hfq in narP control, further illustrating the diversity of post-transcriptional regulation mechanisms in the synthesis of TCSs.
Collapse
Affiliation(s)
- Anaïs Brosse
- UMR8261, CNRS, Université de Paris Cité, Institut de Biologie Physico-Chimique, 75005Paris, France
| | - Pierre Boudry
- UMR8261, CNRS, Université de Paris Cité, Institut de Biologie Physico-Chimique, 75005Paris, France
| | - Anne Walburger
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402Marseille, France
| | - Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402Marseille, France
| | - Maude Guillier
- To whom correspondence should be addressed. Tel: +33 01 58 41 51 49; Fax: +33 01 58 41 50 25;
| |
Collapse
|
42
|
Cellular RNA Targets of Cold Shock Proteins CspC and CspE and Their Importance for Serum Resistance in Septicemic Escherichia coli. mSystems 2022; 7:e0008622. [PMID: 35695420 PMCID: PMC9426608 DOI: 10.1128/msystems.00086-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The RNA chaperones, cold shock proteins CspC and CspE, are important in stress response and adaptation. We studied their role in the pathogenesis of a virulent Escherichia coli, representative of extraintestinal pathogenic E. coli (ExPEC) which are serum resistant and septicemic. We performed a global analysis to identify transcripts that interact with these cold shock proteins (CSPs), focusing on virulence-related genes. We used CLIP-seq, which combines UV cross-linking, immunoprecipitation and RNA sequencing. A large number of transcripts bound to the CSPs were identified, and many bind both CspC and CspE. Many transcripts were of genes involved in protein synthesis, transcription and energy metabolism. In addition, there were virulence-related genes, (i.e., fur and ryhB), essential for iron homeostasis. The CLIP-seq results were validated on two transcripts, clpX and tdcA, reported as virulence-associated. Deletion of either CspC or CspE significantly decreased their transcript levels and in a double deletion mutant cspC/cspE, the transcript stability of tdcA and clpX was reduced by 32-fold and 10-fold, respectively. We showed that these two genes are important for virulence, as deleting either of them resulted in loss of serum resistance, a requirement for sepsis. As several virulence-related transcripts interact with CspC or CspE, we determined the importance of these proteins for growth in serum and showed that deletion of either gene significantly reduced serum survival. This phenotype could be partially complemented by cspE and fully complemented by cspC. These results indicate that the two RNA chaperones are essential for virulence, and that CspC particularly critical. IMPORTANCE Virulent Escherichia coli strains that cause infections outside the intestinal tract—extraintestinal pathogenic E. coli (ExPEC)—constitute a major clinical problem worldwide. They are involved in several distinct conditions, including urinary tract infections, newborn meningitis, and sepsis. Due to increasing antibiotic resistance, these strains are a main factor in hospital and community-acquired infections. Because many strains, which do not cross-react immunologically are involved, developing a simple vaccine is not possible. Therefore, it is essential to understand the pathogenesis of these bacteria to identify potential targets for developing drugs or vaccines. One of the least investigated systems involves RNA binding proteins, important for stability of transcripts and global gene regulation. Two such proteins are CspC and CspE (“cold shock proteins”), RNA chaperones involved in stress adaptation. Here we performed a global analysis to identify the transcripts which are affected by these two chaperones, with focus on virulence-associated transcripts.
Collapse
|
43
|
Sun Z, Zhou N, Zhang W, Xu Y, Yao YF. Dual role of CsrA in regulating the hemolytic activity of Escherichia coli O157:H7. Virulence 2022; 13:859-874. [PMID: 35609307 PMCID: PMC9132389 DOI: 10.1080/21505594.2022.2073023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Post-transcriptional global carbon storage regulator A (CsrA) is a sequence-specific RNA-binding protein involved in the regulation of multiple bacterial processes. Hemolysin is an important virulence factor in the enterohemorrhagic Escherichia coli O157:H7 (EHEC). Here, we show that CsrA plays a dual role in the regulation of hemolysis in EHEC. CsrA significantly represses plasmid-borne enterohemolysin (EhxA)-mediated hemolysis and activates chromosome-borne hemolysin E (HlyE)-mediated hemolysis through different mechanisms. RNA structure prediction revealed a well-matched stem-loop structure with two potential CsrA binding sites located on the 5' untranslated region (UTR) of ehxB, which encodes a translocator required for EhxA secretion. CsrA inhibits EhxA secretion by directly binding to the RNA leader sequence of ehxB to repress its expression in two different ways: CsrA either binds to the Shine–Dalgarno sequence of ehxB to block ribosome access or to ehxB transcript to promote its mRNA decay. The predicted CsrA-binding site 1 of ehxB is essential for its regulation. There is a single potential CsrA-binding site at the 5'-end of the hlyE transcript, and its mutation completely abolishes CsrA-dependent activation. CsrA can also stabilize hlyE mRNA by directly binding to its 5' UTR. Overall, our results indicate that CsrA acts as a hemolysis modulator to regulate pathogenicity under certain conditions.
Collapse
Affiliation(s)
- Zhibin Sun
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ning Zhou
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenting Zhang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Infectious Diseases, Shanghai Ruijin Hospital, Shanghai, China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| |
Collapse
|
44
|
Menendez-Gil P, Catalan-Moreno A, Caballero CJ, Toledo-Arana A. Staphylococcus aureus ftnA 3'-Untranslated Region Modulates Ferritin Production Facilitating Growth Under Iron Starvation Conditions. Front Microbiol 2022; 13:838042. [PMID: 35572681 PMCID: PMC9093591 DOI: 10.3389/fmicb.2022.838042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Iron acquisition and modulation of its intracellular concentration are critical for the development of all living organisms. So far, several proteins have been described to be involved in iron homeostasis. Among them, ferritins act as the major iron storage proteins, sequestering internalized iron and modulating its concentration inside bacterial cells. We previously described that the deletion of the 3’-untranslated region (3’UTR) of the ftnA gene, which codes for ferritin in Staphylococcus aureus, increased the ftnA mRNA and ferritin levels. Here, we show that the ferritin levels are affected by RNase III and PNPase, which target the ftnA 3’UTR. Rifampicin mRNA stability experiments revealed that the half-life of the ftnA mRNA is affected by both RNase III and the ftnA 3’UTR. A transcriptional fusion of the ftnA 3’UTR to the gfp reporter gene decreased green fluorescent protein (GFP) expression, indicating that the ftnA 3’UTR could work as an independent module. Additionally, a chromosomal deletion of the ftnA 3’UTR impaired S. aureus growth under conditions of iron starvation. Overall, this work highlights the biological relevance of the ftnA 3’UTR for iron homeostasis in S. aureus.
Collapse
Affiliation(s)
- Pilar Menendez-Gil
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| | - Arancha Catalan-Moreno
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| | - Carlos J Caballero
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| |
Collapse
|
45
|
Lemos Rocha LF, Peters K, Biboy J, Depelteau JS, Briegel A, Vollmer W, Blokesch M. The VarA-CsrA regulatory pathway influences cell shape in Vibrio cholerae. PLoS Genet 2022; 18:e1010143. [PMID: 35344548 PMCID: PMC8989286 DOI: 10.1371/journal.pgen.1010143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/07/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
Despite extensive studies on the curve-shaped bacterium Vibrio cholerae, the causative agent of the diarrheal disease cholera, its virulence-associated regulatory two-component signal transduction system VarS/VarA is not well understood. This pathway, which mainly signals through the downstream protein CsrA, is highly conserved among gamma-proteobacteria, indicating there is likely a broader function of this system beyond virulence regulation. In this study, we investigated the VarA-CsrA signaling pathway and discovered a previously unrecognized link to the shape of the bacterium. We observed that varA-deficient V. cholerae cells showed an abnormal spherical morphology during late-stage growth. Through peptidoglycan (PG) composition analyses, we discovered that these mutant bacteria contained an increased content of disaccharide dipeptides and reduced peptide crosslinks, consistent with the atypical cellular shape. The spherical shape correlated with the CsrA-dependent overproduction of aspartate ammonia lyase (AspA) in varA mutant cells, which likely depleted the cellular aspartate pool; therefore, the synthesis of the PG precursor amino acid meso-diaminopimelic acid was impaired. Importantly, this phenotype, and the overall cell rounding, could be prevented by means of cell wall recycling. Collectively, our data provide new insights into how V. cholerae use the VarA-CsrA signaling system to adjust its morphology upon unidentified external cues in its environment.
Collapse
Affiliation(s)
- Leonardo F. Lemos Rocha
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Katharina Peters
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Jamie S. Depelteau
- Microbial Sciences, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Ariane Briegel
- Microbial Sciences, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
46
|
Matera G, Altuvia Y, Gerovac M, El Mouali Y, Margalit H, Vogel J. Global RNA interactome of Salmonella discovers a 5' UTR sponge for the MicF small RNA that connects membrane permeability to transport capacity. Mol Cell 2022; 82:629-644.e4. [PMID: 35063132 DOI: 10.1016/j.molcel.2021.12.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 10/04/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
The envelope of Gram-negative bacteria is a vital barrier that must balance protection and nutrient uptake. Small RNAs are crucial regulators of the envelope composition and function. Here, using RIL-seq to capture the Hfq-mediated RNA-RNA interactome in Salmonella enterica, we discover envelope-related riboregulators, including OppX. We show that OppX acts as an RNA sponge of MicF sRNA, a prototypical porin repressor. OppX originates from the 5' UTR of oppABCDF, encoding the major inner-membrane oligopeptide transporter, and sequesters MicF's seed region to derepress the synthesis of the porin OmpF. Intriguingly, OppX operates as a true sponge, storing MicF in an inactive complex without affecting its levels or stability. Conservation of the opp-OppX-MicF-ompF axis in related bacteria suggests that it serves an important mechanism, adjusting envelope porosity to specific transport capacity. These data also highlight the resource value of this Salmonella RNA interactome, which will aid in unraveling RNA-centric regulation in enteric pathogens.
Collapse
Affiliation(s)
- Gianluca Matera
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Yael Altuvia
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Milan Gerovac
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Youssef El Mouali
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), D-97080 Würzburg, Germany.
| |
Collapse
|
47
|
Lai YJ, Yakhnin H, Pannuri A, Pourciau C, Babitzke P, Romeo T. CsrA regulation via binding to the base-pairing small RNA Spot 42. Mol Microbiol 2022; 117:32-53. [PMID: 34107125 PMCID: PMC10000020 DOI: 10.1111/mmi.14769] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 02/03/2023]
Abstract
The carbon storage regulator system and base-pairing small RNAs (sRNAs) represent two predominant modes of bacterial post-transcriptional regulation, which globally influence gene expression. Binding of CsrA protein to the 5' UTR or initial mRNA coding sequences can affect translation, RNA stability, and/or transcript elongation. Base-pairing sRNAs also regulate these processes, often requiring assistance from the RNA chaperone Hfq. Transcriptomics studies in Escherichia coli have identified many new CsrA targets, including Spot 42 and other base-pairing sRNAs. Spot 42 synthesis is repressed by cAMP-CRP, induced by the presence of glucose, and Spot 42 post-transcriptionally represses operons that facilitate metabolism of nonpreferred carbon sources. CsrA activity is also increased by glucose via effects on CsrA sRNA antagonists, CsrB/C. Here, we elucidate a mechanism wherein CsrA binds to and protects Spot 42 sRNA from RNase E-mediated cleavage. This protection leads to enhanced repression of srlA by Spot 42, a gene required for sorbitol uptake. A second, independent mechanism by which CsrA represses srlA is by binding to and inhibiting translation of srlM mRNA, encoding a transcriptional activator of srlA. Our findings demonstrate a novel means of regulation, by CsrA binding to a sRNA, and indicate that such interactions can help to shape complex bacterial regulatory circuitry.
Collapse
Affiliation(s)
- Ying-Jung Lai
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Archana Pannuri
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Christine Pourciau
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
48
|
Sharma S, Sharma CM. Identification of RNA Binding Partners of CRISPR-Cas Proteins in Prokaryotes Using RIP-Seq. Methods Mol Biol 2022; 2404:111-133. [PMID: 34694606 DOI: 10.1007/978-1-0716-1851-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
CRISPR-Cas systems consist of a complex ribonucleoprotein (RNP) machinery encoded in prokaryotic genomes to confer adaptive immunity against foreign mobile genetic elements. Of these, especially the class 2, Type II CRISPR-Cas9 RNA-guided systems with single protein effector modules have recently received much attention for their application as programmable DNA scissors that can be used for genome editing in eukaryotes. While many studies have concentrated their efforts on improving RNA-mediated DNA targeting with these Type II systems, little is known about the factors that modulate processing or binding of the CRISPR RNA (crRNA) guides and the trans-activating tracrRNA to the nuclease protein Cas9, and whether Cas9 can also potentially interact with other endogenous RNAs encoded within the host genome. Here, we describe RIP-seq as a method to globally identify the direct RNA binding partners of CRISPR-Cas RNPs using the Cas9 nuclease as an example. RIP-seq combines co-immunoprecipitation (coIP) of an epitope-tagged Cas9 followed by isolation and deep sequencing analysis of its co-purified bound RNAs. This method can not only be used to study interactions of Cas9 with its known interaction partners, crRNAs and tracrRNA in native systems, but also to reveal potential additional RNA substrates of Cas9. For example, in RIP-seq analysis of Cas9 from the foodborne pathogen Campylobacter jejuni (CjeCas9), we recently identified several endogenous RNAs bound to CjeCas9 RNP in a crRNA-dependent manner, leading to the discovery of PAM-independent RNA cleavage activity of CjeCas9 as well as non-canonical crRNAs. RIP-seq can be easily adapted to any other effector RNP of choice from other CRISPR-Cas systems, allowing for the identification of target RNAs. Deciphering novel RNA-protein interactions for CRISPR-Cas proteins within host bacterial genomes will lead to a better understanding of the molecular mechanisms and functions of these systems and enable us to use the in vivo identified interaction rules as design principles for nucleic acid-targeting applications, fitted to each nuclease of interest.
Collapse
Affiliation(s)
- Sahil Sharma
- Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.
| | - Cynthia M Sharma
- Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.
| |
Collapse
|
49
|
Li C, Jiang T, Li M, Zou Y, Yan Y. Fine-tuning gene expression for improved biosynthesis of natural products: From transcriptional to post-translational regulation. Biotechnol Adv 2022; 54:107853. [PMID: 34637919 PMCID: PMC8724446 DOI: 10.1016/j.biotechadv.2021.107853] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/08/2023]
Abstract
Microbial production of natural compounds has attracted extensive attention due to their high value in pharmaceutical, cosmetic, and food industries. Constructing efficient microbial cell factories for biosynthesis of natural products requires the fine-tuning of gene expressions to minimize the accumulation of toxic metabolites, reduce the competition between cell growth and product generation, as well as achieve the balance of redox or co-factors. In this review, we focus on recent advances in fine-tuning gene expression at the DNA, RNA, and protein levels to improve the microbial biosynthesis of natural products. Commonly used regulatory toolsets in each level are discussed, and perspectives for future direction in this area are provided.
Collapse
Affiliation(s)
- Chenyi Li
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Michelle Li
- North Oconee High School, Bogart, GA 30622, USA
| | - Yusong Zou
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
50
|
Katsuya-Gaviria K, Paris G, Dendooven T, Bandyra KJ. Bacterial RNA chaperones and chaperone-like riboregulators: behind the scenes of RNA-mediated regulation of cellular metabolism. RNA Biol 2021; 19:419-436. [PMID: 35438047 PMCID: PMC9037510 DOI: 10.1080/15476286.2022.2048565] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/26/2022] [Indexed: 11/02/2022] Open
Abstract
In all domains of life, RNA chaperones safeguard and guide the fate of the cellular RNA pool. RNA chaperones comprise structurally diverse proteins that ensure proper folding, stability, and ribonuclease resistance of RNA, and they support regulatory activities mediated by RNA. RNA chaperones constitute a topologically diverse group of proteins that often present an unstructured region and bind RNA with limited nucleotide sequence preferences. In bacteria, three main proteins - Hfq, ProQ, and CsrA - have been shown to regulate numerous complex processes, including bacterial growth, stress response and virulence. Hfq and ProQ have well-studied activities as global chaperones with pleiotropic impact, while CsrA has a chaperone-like role with more defined riboregulatory function. Here, we describe relevant novel insights into their common features, including RNA binding properties, unstructured domains, and interplay with other proteins important to RNA metabolism.
Collapse
Affiliation(s)
- Kai Katsuya-Gaviria
- Department of Biochemistry, University of Cambridge, Tennis Court Road, CambridgeCB2 1GA, UK
| | - Giulia Paris
- Department of Biochemistry, University of Cambridge, Tennis Court Road, CambridgeCB2 1GA, UK
| | - Tom Dendooven
- Department of Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Katarzyna J. Bandyra
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, 02-089Warsaw, Poland
| |
Collapse
|