1
|
Lakra AR. X-Ray Crystallography Based Epitope Mapping of Glycoproteins and RNA in Chandipura Vesiculovirus for Vaccine Design. Immunology 2025; 175:52-66. [PMID: 39904746 DOI: 10.1111/imm.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/30/2024] [Accepted: 01/17/2025] [Indexed: 02/06/2025] Open
Abstract
This study investigates potential epitopes in the glycoprotein and RNA of Chandipura vesiculovirus (CHPV) using MHC Class I (HLA-A0201) and MHC Class II (DRB1_0101) molecules with 3D structures derived from x-ray crystallography. Computationally derived peptides were mapped and subjected to in silico docking, revealing promising targets for CD8+ cytotoxic and CD4+ helper T cells. Key factors analysed include solvent accessible surface area (SASA), Debye-Waller factor (B-factor), and polar bond interactions. Post-docking, removal of N-acetylglucosamine (NAG) increased peptide stability and reduced B-factors, while SO4 presence had minimal impact. SASA values increased by up to 237.5% with MHC Class I, and RNA docking with MHC Class II displayed mixed SASA changes. Polar bond interactions also increased post-docking, indicating the strong potential of identified CHPV epitopes.
Collapse
|
2
|
Yang F, Lin S, Yuan X, Shu S, Yu Y, Yang J, Ye F, Chen Z, He B, Li J, Zhao Q, Ye H, Cao Y, Lu G. Structures of two lyssavirus glycoproteins trapped in pre- and post-fusion states and the implications on the spatial-temporal conformational transition along with pH-decrease. PLoS Pathog 2025; 21:e1012923. [PMID: 39970183 PMCID: PMC11864512 DOI: 10.1371/journal.ppat.1012923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/26/2025] [Accepted: 01/22/2025] [Indexed: 02/21/2025] Open
Abstract
Lyssavirus glycoprotein plays a crucial role in mediating virus entry and serves as the major target for neutralizing antibodies. During membrane fusion, the lyssavirus glycoprotein undergoes a series of low-pH-induced conformational transitions. Here, we report the structures of Ikoma lyssavirus and Mokola lyssavirus glycoproteins, with which we believe that we have trapped the proteins in pre-fusion and post-fusion states respectively. By analyzing the available lyssaviral glycoprotein structures, we present a sequential conformation-transition model, in which two structural elements in the glycoprotein undergo fine-modulated secondary structural transitions, changing the glycoprotein from a bended hairpin conformation to an extended linear conformation. In addition, such conformational change is further facilitated, as observed in our surface plasmon resonance assay, by the pH-regulated interactions between the membrane-proximal region and the pleckstrin homology and the fusion domains. The structural features elucidated in this study will facilitate the design of vaccines and anti-viral drugs against lyssaviruses.
Collapse
Affiliation(s)
- Fanli Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sheng Lin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Yuan
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Siqi Shu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yueru Yu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Ye
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zimin Chen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin He
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, Sichuan, China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Cao
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Disaster Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangwen Lu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Milojević L, Si Z, Xia X, Chen L, He Y, Tang S, Luo M, Zhou ZH. Capturing intermediates and membrane remodeling in class III viral fusion. SCIENCE ADVANCES 2024; 10:eadn8579. [PMID: 39630917 PMCID: PMC11616707 DOI: 10.1126/sciadv.adn8579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Enveloped viruses enter cells by fusing their envelopes to host cell membranes. Vesicular stomatitis virus (VSV) glycoprotein (G) is a prototype for class III fusion proteins. Although structures of the stable pre- and postfusion ectodomain of G are known, its fusogenic intermediates are insufficiently characterized. Here, we incubated VSV virions with late endosome-mimicking liposomes at pH 5.5 and used cryo-electron tomography (cryo-ET) to visualize stages of VSV's membrane fusion pathway, capture refolding intermediates of G, and reconstruct a sequence of G conformational changes. We observe that the G trimer disassembles into monomers and parallel dimers that explore a broad conformational space. Extended intermediates engage target membranes and mediate fusion, resulting in viral uncoating and linearization of the ribonucleoprotein genome. These viral fusion intermediates provide mechanistic insights into class III viral fusion processes, opening avenues for future research and structure-based design of fusion inhibition-based antiviral therapeutics.
Collapse
Affiliation(s)
- Lenka Milojević
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Zhu Si
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Xian Xia
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Lauren Chen
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yao He
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Sijia Tang
- Department of Chemistry, Centre for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Ming Luo
- Department of Chemistry, Centre for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA
- Department of Chemistry, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA
| | - Z. Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Kephart SM, Hom N, Lee KK. Visualizing intermediate stages of viral membrane fusion by cryo-electron tomography. Trends Biochem Sci 2024; 49:916-931. [PMID: 39054240 PMCID: PMC11455608 DOI: 10.1016/j.tibs.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Protein-mediated membrane fusion is the dynamic process where specialized protein machinery undergoes dramatic conformational changes that drive two membrane bilayers together, leading to lipid mixing and opening of a fusion pore between previously separate membrane-bound compartments. Membrane fusion is an essential stage of enveloped virus entry that results in viral genome delivery into host cells. Recent studies applying cryo-electron microscopy techniques in a time-resolved fashion provide unprecedented glimpses into the interaction of viral fusion proteins and membranes, revealing fusion intermediate states from the initiation of fusion to release of the viral genome. In combination with complementary structural, biophysical, and computation modeling approaches, these advances are shedding new light on the mechanics and dynamics of protein-mediated membrane fusion.
Collapse
Affiliation(s)
- Sally M Kephart
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Nancy Hom
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA; Biological Structure Physics and Design Graduate Program, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Guo J, Li S, Bai L, Zhao H, Shang W, Zhong Z, Maimaiti T, Gao X, Ji N, Chao Y, Li Z, Du D. Structural transition of GP64 triggered by a pH-sensitive multi-histidine switch. Nat Commun 2024; 15:7668. [PMID: 39227374 PMCID: PMC11372198 DOI: 10.1038/s41467-024-51799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
The fusion of viruses with cellular membranes is a critical step in the life cycle of enveloped viruses. This process is facilitated by viral fusion proteins, many of which are conformationally pH-sensitive. The specifics of how changes in pH initiate this fusion have remained largely elusive. This study presents the cryo-electron microscopy (cryo-EM) structures of a prototype class III fusion protein, GP64, in its prefusion and early intermediate states, revealing the structural intermediates accompanying the membrane fusion process. The structures identify the involvement of a pH-sensitive switch, comprising H23, H245, and H304, in sensing the low pH that triggers the initial step of membrane fusion. The pH sensing role of this switch is corroborated by assays of cell-cell syncytium formation and dual dye-labeling. The findings demonstrate that coordination between multiple histidine residues acts as a pH sensor and activator. The involvement of a multi-histidine switch in viral fusion is applicable to fusogens of human-infecting thogotoviruses and other viruses, which could lead to strategies for developing anti-viral therapies and vaccines.
Collapse
Affiliation(s)
- Jinliang Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shangrong Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lisha Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huimin Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenyu Shang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhaojun Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | | | - Xueyan Gao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ning Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanjie Chao
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Zhaofei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Dijun Du
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
6
|
Abstract
There are at least 21 families of enveloped viruses that infect mammals, and many contain members of high concern for global human health. All enveloped viruses have a dedicated fusion protein or fusion complex that enacts the critical genome-releasing membrane fusion event that is essential before viral replication within the host cell interior can begin. Because all enveloped viruses enter cells by fusion, it behooves us to know how viral fusion proteins function. Viral fusion proteins are also major targets of neutralizing antibodies, and hence they serve as key vaccine immunogens. Here we review current concepts about viral membrane fusion proteins focusing on how they are triggered, structural intermediates between pre- and postfusion forms, and their interplay with the lipid bilayers they engage. We also discuss cellular and therapeutic interventions that thwart virus-cell membrane fusion.
Collapse
Affiliation(s)
- Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA;
| | - Amanda E Ward
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Laura Odongo
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
7
|
Ng WM, Fedosyuk S, English S, Augusto G, Berg A, Thorley L, Haselon AS, Segireddy RR, Bowden TA, Douglas AD. Structure of trimeric pre-fusion rabies virus glycoprotein in complex with two protective antibodies. Cell Host Microbe 2022; 30:1219-1230.e7. [PMID: 35985336 PMCID: PMC9605875 DOI: 10.1016/j.chom.2022.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/07/2022] [Accepted: 07/19/2022] [Indexed: 11/03/2022]
Abstract
Rabies virus (RABV) causes lethal encephalitis and is responsible for approximately 60,000 deaths per year. As the sole virion-surface protein, the rabies virus glycoprotein (RABV-G) mediates host-cell entry. RABV-G's pre-fusion trimeric conformation displays epitopes bound by protective neutralizing antibodies that can be induced by vaccination or passively administered for post-exposure prophylaxis. We report a 2.8-Å structure of a RABV-G trimer in the pre-fusion conformation, in complex with two neutralizing and protective monoclonal antibodies, 17C7 and 1112-1, that recognize distinct epitopes. One of these antibodies is a licensed prophylactic (17C7, Rabishield), which we show locks the protein in pre-fusion conformation. Targeted mutations can similarly stabilize RABV-G in the pre-fusion conformation, a key step toward structure-guided vaccine design. These data reveal the higher-order architecture of a key therapeutic target and the structural basis of neutralization by antibodies binding two key antigenic sites, and this will facilitate the development of improved vaccines and prophylactic antibodies.
Collapse
Affiliation(s)
- Weng M Ng
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Sofiya Fedosyuk
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Solomon English
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Gilles Augusto
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Adam Berg
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Luke Thorley
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Anna-Sophie Haselon
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Rameswara R Segireddy
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Alexander D Douglas
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
8
|
Sharma NR, Gadhave K, Kumar P, Saif M, Khan MM, Sarkar DP, Uversky VN, Giri R. Analysis of the dark proteome of Chandipura virus reveals maximum propensity for intrinsic disorder in phosphoprotein. Sci Rep 2021; 11:13253. [PMID: 34168211 PMCID: PMC8225862 DOI: 10.1038/s41598-021-92581-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023] Open
Abstract
Chandipura virus (CHPV, a member of the Rhabdoviridae family) is an emerging pathogen that causes rapidly progressing influenza-like illness and acute encephalitis often leading to coma and death of the human host. Given several CHPV outbreaks in Indian sub-continent, recurring sporadic cases, neurological manifestation, and high mortality rate of this infection, CHPV is gaining global attention. The 'dark proteome' includes the whole proteome with special emphasis on intrinsically disordered proteins (IDP) and IDP regions (IDPR), which are proteins or protein regions that lack unique (or ordered) three-dimensional structures within the cellular milieu. These proteins/regions, however, play a number of vital roles in various biological processes, such as cell cycle regulation, control of signaling pathways, etc. and, therefore, are implicated in many human diseases. IDPs and IPPRs are also abundantly found in many viral proteins enabling their multifunctional roles in the viral life cycles and their capability to highjack various host systems. The unknown abundance of IDP and IDPR in CHPV, therefore, prompted us to analyze the dark proteome of this virus. Our analysis revealed a varying degree of disorder in all five CHPV proteins, with the maximum level of intrinsic disorder propensity being found in Phosphoprotein (P). We have also shown the flexibility of P protein using extensive molecular dynamics simulations up to 500 ns (ns). Furthermore, our analysis also showed the abundant presence of the disorder-based binding regions (also known as molecular recognition features, MoRFs) in CHPV proteins. The identification of IDPs/IDPRs in CHPV proteins suggests that their disordered regions may function as potential interacting domains and may also serve as novel targets for disorder-based drug designs.
Collapse
Affiliation(s)
- Nishi R Sharma
- School of Interdisciplinary Studies, Jamia Hamdard-Institute of Molecular Medicine (JH-IMM), Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Kamand, Himachal Pradesh, 175005, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Kamand, Himachal Pradesh, 175005, India
| | - Mohammad Saif
- School of Interdisciplinary Studies, Jamia Hamdard-Institute of Molecular Medicine (JH-IMM), Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Md M Khan
- School of Interdisciplinary Studies, Jamia Hamdard-Institute of Molecular Medicine (JH-IMM), Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Debi P Sarkar
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA.
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Moscow, Russia.
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|
9
|
Beilstein F, Abou Hamdan A, Raux H, Belot L, Ouldali M, Albertini AA, Gaudin Y. Identification of a pH-Sensitive Switch in VSV-G and a Crystal Structure of the G Pre-fusion State Highlight the VSV-G Structural Transition Pathway. Cell Rep 2021; 32:108042. [PMID: 32814045 DOI: 10.1016/j.celrep.2020.108042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 07/12/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022] Open
Abstract
VSV fusion machinery, like that of many other enveloped viruses, is triggered at low pH in endosomes after virion endocytosis. It was suggested that some histidines could play the role of pH-sensitive switches. By mutating histidine residues H22, H60, H132, H162, H389, H397, H407, and H409, we demonstrate that residues H389 and D280, facing each other in the six-helix bundle of the post-fusion state, and more prominently H407, located at the interface between the C-terminal part of the ectodomain and the fusion domain, are crucial for fusion. Passages of recombinant viruses bearing mutant G resulted in the selection of compensatory mutations. Thus, the H407A mutation in G resulted in two independent compensatory mutants, L396I and S422I. Together with a crystal structure of G, presented here, which extends our knowledge of G pre-fusion structure, this indicates that the conformational transition is initiated by refolding of the C-terminal part of the G ectodomain.
Collapse
Affiliation(s)
- Frauke Beilstein
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Abbas Abou Hamdan
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Hélène Raux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Laura Belot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Malika Ouldali
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Aurélie A Albertini
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Yves Gaudin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
10
|
Affiliation(s)
- Tobias
P. Wörner
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Tatiana M. Shamorkina
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
11
|
Kali S, Jallet C, Azebi S, Cokelaer T, Da Fonseca JP, Wu Y, Barbier J, Cintrat JC, Gillet D, Tordo N. Broad spectrum compounds targeting early stages of rabies virus (RABV) infection. Antiviral Res 2021; 188:105016. [PMID: 33444703 DOI: 10.1016/j.antiviral.2021.105016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022]
Abstract
ABMA and its analogue DABMA are two molecules of the adamantane family known to perturbate the endosomal pathway and to inhibit cell infection of several RNA and DNA viruses. Their activity against Rabies Virus (RABV) infection has already been demonstrated in vitro. (Wu et al., 2017, 2019). Here, we describe in more details their mechanism of action by comparison to Arbidol (umifenovir) and Ribavirin, two broad spectrum antivirals against emerging viruses such as Lassa, Ebola, influenza and Hantaan viruses. ABMA and DABMA, delivered 2 h pre-infection, inhibit RABV infection in vitro with an EC50 of 7.8 μM and 14 μM, respectively. They act at post-entry, by causing RABV accumulation within the endosomal compartment and DABMA specifically diminishes the expression of the GTPase Rab7a controlling the fusion of early endosomes to late endosomes or lysosomes. This may suggest that ABMA and DABMA act at different stages of the late endosomal pathway as supported by their different profile of synergy/antagonism with the fusion inhibitor Arbidol. This difference is further confirmed by the RABV mutants induced by successive passages under increasing selective pressure showing a particular involvement of the viral G protein in the DABMA inhibition while ABMA inhibition induces less mutations dispersed in the M, G and L viral proteins. These results suggest new therapeutic perspectives against rabies.
Collapse
Affiliation(s)
- Sabrina Kali
- Unit Antiviral Strategies, Institut Pasteur, 75724, Paris, France; Institut Pasteur D'Algérie, Dely Ibrahim, Alger, Algeria
| | - Corinne Jallet
- Unit Antiviral Strategies, Institut Pasteur, 75724, Paris, France
| | - Saliha Azebi
- Unit Antiviral Strategies, Institut Pasteur, 75724, Paris, France; Plate-forme Technologique Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, 75724, Paris, France; Unit Viral Neuroimmunology, Institut Pasteur, 75724, Paris, France
| | - Thomas Cokelaer
- Plate-forme Technologique Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, 75724, Paris, France; Hub de Bioinformatique et Biostatistique, Institut Pasteur, USR 3756 CNRS, 75724, Paris, France
| | - Juliana Pipoli Da Fonseca
- Plate-forme Technologique Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, 75724, Paris, France
| | - Yu Wu
- Service D'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Julien Barbier
- Service D'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Jean-Christophe Cintrat
- Service de Chimie Bioorganique et Marquage (SCBM), CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Daniel Gillet
- Service D'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Noël Tordo
- Unit Antiviral Strategies, Institut Pasteur, 75724, Paris, France; Institut Pasteur de Guinée, BP 4416, Conakry, Guinea.
| |
Collapse
|
12
|
Vollmer B, Pražák V, Vasishtan D, Jefferys EE, Hernandez-Duran A, Vallbracht M, Klupp BG, Mettenleiter TC, Backovic M, Rey FA, Topf M, Grünewald K. The prefusion structure of herpes simplex virus glycoprotein B. SCIENCE ADVANCES 2020; 6:eabc1726. [PMID: 32978151 PMCID: PMC7518877 DOI: 10.1126/sciadv.abc1726] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/12/2020] [Indexed: 05/03/2023]
Abstract
Cell entry of enveloped viruses requires specialized viral proteins that mediate fusion with the host membrane by substantial structural rearrangements from a metastable pre- to a stable postfusion conformation. This metastability renders the herpes simplex virus 1 (HSV-1) fusion glycoprotein B (gB) highly unstable such that it readily converts into the postfusion form, thereby precluding structural elucidation of the pharmacologically relevant prefusion conformation. By identification of conserved sequence signatures and molecular dynamics simulations, we devised a mutation that stabilized this form. Functionally locking gB allowed the structural determination of its membrane-embedded prefusion conformation at sub-nanometer resolution and enabled the unambiguous fit of all ectodomains. The resulting pseudo-atomic model reveals a notable conservation of conformational domain rearrangements during fusion between HSV-1 gB and the vesicular stomatitis virus glycoprotein G, despite their very distant phylogeny. In combination with our comparative sequence-structure analysis, these findings suggest common fusogenic domain rearrangements in all class III viral fusion proteins.
Collapse
Affiliation(s)
- B Vollmer
- Oxford Particle Imaging Centre, Department of Structural Biology, Wellcome Centre Human Genetics, University of Oxford, Oxford, UK
- Centre for Structural Systems Biology, Heinrich-Pette-Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
| | - V Pražák
- Oxford Particle Imaging Centre, Department of Structural Biology, Wellcome Centre Human Genetics, University of Oxford, Oxford, UK
| | - D Vasishtan
- Oxford Particle Imaging Centre, Department of Structural Biology, Wellcome Centre Human Genetics, University of Oxford, Oxford, UK
| | - E E Jefferys
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - M Vallbracht
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Insel Riems, Germany
| | - B G Klupp
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Insel Riems, Germany
| | - T C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Insel Riems, Germany
| | - M Backovic
- Institut Pasteur, Structural Virology Unit, Department of Virology, Paris, France
| | - F A Rey
- Institut Pasteur, Structural Virology Unit, Department of Virology, Paris, France
| | - M Topf
- Institute of Structural and Molecular Biology, Birkbeck, London, UK
| | - K Grünewald
- Oxford Particle Imaging Centre, Department of Structural Biology, Wellcome Centre Human Genetics, University of Oxford, Oxford, UK.
- Centre for Structural Systems Biology, Heinrich-Pette-Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
- Department of Chemistry, MIN Faculty, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
13
|
Belot L, Ouldali M, Roche S, Legrand P, Gaudin Y, Albertini AA. Crystal structure of Mokola virus glycoprotein in its post-fusion conformation. PLoS Pathog 2020; 16:e1008383. [PMID: 32150590 PMCID: PMC7082061 DOI: 10.1371/journal.ppat.1008383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/19/2020] [Accepted: 02/05/2020] [Indexed: 01/08/2023] Open
Abstract
Mokola virus (MOKV) belongs to the lyssavirus genus. As other genus members-including rabies virus (RABV)-it causes deadly encephalitis in mammals. MOKV entry into host cells is mediated by its transmembrane glycoprotein G. First, G binds cellular receptors, triggering virion endocytosis. Then, in the acidic endosomal environment, G undergoes a conformational change from its pre- toward its post-fusion state that catalyzes the merger of the viral and endosomal membranes. Here, we have determined the crystal structure of a soluble MOKV G ectodomain in which the hydrophobic fusion loops have been replaced by more hydrophilic sequences. The crystal structure corresponds to a monomer that is similar to the protomer of the trimeric post-fusion state of vesicular stomatitis virus (VSV) G. However, by electron microscopy, we show that, at low pH, at the surface of pseudotyped VSV, MOKV spikes adopt the trimeric post-fusion conformation and have a tendency to reorganize into regular arrays. Sequence alignment between MOKV G and RABV G allows a precise location of RABV G antigenic sites. Repositioning MOKV G domains on VSV G pre-fusion structure reveals that antigenic sites are located in the most exposed part of the molecule in its pre-fusion conformation and are therefore very accessible to antibodies. Furthermore, the structure allows the identification of pH-sensitive molecular switches. Specifically, the long helix, which constitutes the core of the post-fusion trimer for class III fusion glycoproteins, contains many acidic residues located at the trimeric interface. Several of them, aligned along the helix, point toward the trimer axis. They have to be protonated for the post-fusion trimer to be stable. At high pH, when they are negatively charged, they destabilize the interface, which explains the conformational change reversibility. Finally, the present structure will be of great help to perform rational mutagenesis on lyssavirus glycoproteins.
Collapse
Affiliation(s)
- Laura Belot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, France
| | - Malika Ouldali
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, France
| | - Stéphane Roche
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, France
| | | | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, France
- * E-mail: (YG); (AAA)
| | - Aurélie A. Albertini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, France
- * E-mail: (YG); (AAA)
| |
Collapse
|
14
|
Yang F, Lin S, Ye F, Yang J, Qi J, Chen Z, Lin X, Wang J, Yue D, Cheng Y, Chen Z, Chen H, You Y, Zhang Z, Yang Y, Yang M, Sun H, Li Y, Cao Y, Yang S, Wei Y, Gao GF, Lu G. Structural Analysis of Rabies Virus Glycoprotein Reveals pH-Dependent Conformational Changes and Interactions with a Neutralizing Antibody. Cell Host Microbe 2020; 27:441-453.e7. [DOI: 10.1016/j.chom.2019.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/06/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
|
15
|
Abstract
Rhabdoviruses are enveloped viruses with a negative-sense single strand RNA genome and are widespread among a great variety of organisms. In their membrane, they have a single glycoprotein (G) that mediates both virus attachment to cellular receptors and fusion between viral and endosomal membranes allowing viral genome release in the cytoplasm. We present structural and cellular aspects of Rhabdovirus entry into their host cell with a focus on vesicular stomatitis virus (VSV) and rabies virus (RABV) for which the early events of the viral cycle have been extensively studied. Recent data have shown that the only VSV receptors are the members of the LDL-R family. This is in contrast with RABV for which multiple receptors belonging to unrelated families have been identified. Despite having different receptors, after attachment, rhabdovirus internalization occurs through clathrin-mediated endocytosis (CME) in an actin-dependent manner. There are still debates about the exact endocytic pathway of VSV in the cell and on RABV transport in the neuronal axon. In any case, fusion is triggered in the endosomal vesicle via a low-pH induced structural rearrangement of G from its pre- to its postfusion conformation. Vesiculovirus G is one of the best characterized fusion glycoproteins as the previously reported crystal structures of the pre- and postfusion states have been recently completed by those of intermediates during the structural transition. Understanding the entry pathway of rhabdoviruses may have strong impact in biotechnologies as, for example, VSV G is used for pseudotyping lentiviruses to promote efficient transduction, and VSV is a promising oncolytic virus.
Collapse
|
16
|
Si Z, Zhang J, Shivakoti S, Atanasov I, Tao CL, Hui WH, Zhou K, Yu X, Li W, Luo M, Bi GQ, Zhou ZH. Different functional states of fusion protein gB revealed on human cytomegalovirus by cryo electron tomography with Volta phase plate. PLoS Pathog 2018; 14:e1007452. [PMID: 30507948 PMCID: PMC6307773 DOI: 10.1371/journal.ppat.1007452] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/27/2018] [Accepted: 11/02/2018] [Indexed: 11/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) enters host by glycoprotein B (gB)-mediated membrane fusion upon receptor-binding to gH/gL-related complexes, causing devastating diseases such as birth defects. Although an X-ray crystal structure of the recombinant gB ectodomain at postfusion conformation is available, the structures of prefusion gB and its complex with gH/gL on the viral envelope remain elusive. Here, we demonstrate the utility of cryo electron tomography (cryoET) with energy filtering and the cutting-edge technologies of Volta phase plate (VPP) and direct electron-counting detection to capture metastable prefusion viral fusion proteins and report the structures of glycoproteins in the native environment of HCMV virions. We established the validity of our approach by obtaining cryoET in situ structures of the vesicular stomatitis virus (VSV) glycoprotein G trimer (171 kD) in prefusion and postfusion conformations, which agree with the known crystal structures of purified G trimers in both conformations. The excellent contrast afforded by these technologies has enabled us to identify gB trimers (303kD) in two distinct conformations in HCMV tomograms and obtain their in situ structures at up to 21 Å resolution through subtomographic averaging. The predominant conformation (79%), which we designate as gB prefusion conformation, fashions a globular endodomain and a Christmas tree-shaped ectodomain, while the minority conformation (21%) has a columnar tree-shaped ectodomain that matches the crystal structure of the "postfusion" gB ectodomain. We also observed prefusion gB in complex with an "L"-shaped density attributed to the gH/gL complex. Integration of these structures of HCMV glycoproteins in multiple functional states and oligomeric forms with existing biochemical data and domain organization of other class III viral fusion proteins suggests that gH/gL receptor-binding triggers conformational changes of gB endodomain, which in turn triggers two essential steps to actuate virus-cell membrane fusion: exposure of gB fusion loops and unfurling of gB ectodomain.
Collapse
Affiliation(s)
- Zhu Si
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Jiayan Zhang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
- Molecular Biology Institute, UCLA, Los Angeles, CA, United States of America
| | - Sakar Shivakoti
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Ivo Atanasov
- California NanoSystems Institute, UCLA, Los Angeles, CA, United States of America
| | - Chang-Lu Tao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Wong H. Hui
- California NanoSystems Institute, UCLA, Los Angeles, CA, United States of America
| | - Kang Zhou
- California NanoSystems Institute, UCLA, Los Angeles, CA, United States of America
| | - Xuekui Yu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Weike Li
- Department of Chemistry, Georgia State University, Atlanta, GA, United States of America
| | - Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, GA, United States of America
| | - Guo-Qiang Bi
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Z. Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
- Molecular Biology Institute, UCLA, Los Angeles, CA, United States of America
- California NanoSystems Institute, UCLA, Los Angeles, CA, United States of America
| |
Collapse
|
17
|
Characterization of Antibody Interactions with the G Protein of Vesicular Stomatitis Virus Indiana Strain and Other Vesiculovirus G Proteins. J Virol 2018; 92:JVI.00900-18. [PMID: 30232190 PMCID: PMC6232470 DOI: 10.1128/jvi.00900-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/06/2018] [Indexed: 01/20/2023] Open
Abstract
VSVind.G is currently regarded as the gold-standard envelope glycoprotein to pseudotype lentiviral vectors. However, recently other G proteins derived from vesiculoviruses have been proposed as alternative envelopes. Here, we investigated two commercially available anti-VSVind.G monoclonal antibodies for their ability to cross-react with other vesiculovirus G proteins, identified the epitopes they recognize, and explored their neutralization activity. We have identified 8G5F11, for the first time, as a cross-neutralizing antibody against several vesiculovirus G proteins. Furthermore, we elucidated the two different neutralization mechanisms employed by these two monoclonal antibodies. Understanding how cross-neutralizing antibodies interact with other G proteins may be of interest in the context of host-pathogen interaction and coevolution, as well as providing the opportunity to modify the G proteins and improve G protein-containing medicinal products and vaccine vectors. Vesicular stomatitis virus Indiana strain G protein (VSVind.G) is the most commonly used envelope glycoprotein to pseudotype lentiviral vectors (LV) for experimental and clinical applications. Recently, G proteins derived from other vesiculoviruses (VesG), for example, Cocal virus, have been proposed as alternative LV envelopes with possible advantages over VSVind.G. Well-characterized antibodies that recognize VesG will be useful for vesiculovirus research, development of G protein-containing advanced therapy medicinal products (ATMPs), and deployment of VSVind-based vaccine vectors. Here, we show that one commercially available monoclonal antibody, 8G5F11, binds to and neutralizes G proteins from three strains of VSV, as well as Cocal and Maraba viruses, whereas the other commercially available monoclonal anti-VSVind.G antibody, IE9F9, binds to and neutralizes only VSVind.G. Using a combination of G protein chimeras and site-directed mutations, we mapped the binding epitopes of IE9F9 and 8G5F11 on VSVind.G. IE9F9 binds close to the receptor binding site and competes with soluble low-density lipoprotein receptor (LDLR) for binding to VSVind.G, explaining its mechanism of neutralization. In contrast, 8G5F11 binds close to a region known to undergo conformational changes when the G protein moves to its postfusion structure, and we propose that 8G5F11 cross-neutralizes VesGs by inhibiting this. IMPORTANCE VSVind.G is currently regarded as the gold-standard envelope glycoprotein to pseudotype lentiviral vectors. However, recently other G proteins derived from vesiculoviruses have been proposed as alternative envelopes. Here, we investigated two commercially available anti-VSVind.G monoclonal antibodies for their ability to cross-react with other vesiculovirus G proteins, identified the epitopes they recognize, and explored their neutralization activity. We have identified 8G5F11, for the first time, as a cross-neutralizing antibody against several vesiculovirus G proteins. Furthermore, we elucidated the two different neutralization mechanisms employed by these two monoclonal antibodies. Understanding how cross-neutralizing antibodies interact with other G proteins may be of interest in the context of host-pathogen interaction and coevolution, as well as providing the opportunity to modify the G proteins and improve G protein-containing medicinal products and vaccine vectors.
Collapse
|
18
|
Tijani M, Munis AM, Perry C, Sanber K, Ferraresso M, Mukhopadhyay T, Themis M, Nisoli I, Mattiuzzo G, Collins MK, Takeuchi Y. Lentivector Producer Cell Lines with Stably Expressed Vesiculovirus Envelopes. Mol Ther Methods Clin Dev 2018; 10:303-312. [PMID: 30182034 PMCID: PMC6118154 DOI: 10.1016/j.omtm.2018.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/30/2018] [Indexed: 01/19/2023]
Abstract
Retroviral and lentiviral vectors often use the envelope G protein from the vesicular stomatitis virus Indiana strain (VSVind.G). However, lentivector producer cell lines that stably express VSVind.G have not been reported, presumably because of its cytotoxicity, preventing simple scale-up of vector production. Interestingly, we showed that VSVind.G and other vesiculovirus G from the VSV New Jersey strain (VSVnj), Cocal virus (COCV), and Piry virus (PIRYV) could be constitutively expressed and supported lentivector production for up to 10 weeks. All G-enveloped particles were robust, allowing concentration and freeze-thawing. COCV.G and PIRYV.G were resistant to complement inactivation, and, using chimeras between VSVind.G and COCV.G, the determinant for complement inactivation of VSVind.G was mapped to amino acid residues 136-370. Clonal packaging cell lines using COCV.G could be generated; however, during attempts to establish LV producer cells, vector superinfection was observed following the introduction of a lentivector genome. This could be prevented by culturing the cells with the antiviral drug nevirapine. As an alternative countermeasure, we demonstrated that functional lentivectors could be reconstituted by admixing supernatant from stable cells producing unenveloped virus with supernatant containing envelopes harvested from cells stably expressing VSVind.G, COCV.G, or PIRYV.G.
Collapse
Affiliation(s)
- Maha Tijani
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Altar M. Munis
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Christopher Perry
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- Department of Biochemical Engineering, University College London, London WC1H 0AH, UK
| | - Khaled Sanber
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Marta Ferraresso
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Tarit Mukhopadhyay
- Department of Biochemical Engineering, University College London, London WC1H 0AH, UK
| | - Michael Themis
- Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Ilaria Nisoli
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
| | - Mary K. Collins
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- Okinawa Institute of Science and Technology, Okinawa 904-0412, Japan
| | - Yasuhiro Takeuchi
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
19
|
Abou-Hamdan A, Belot L, Albertini A, Gaudin Y. Monomeric Intermediates Formed by Vesiculovirus Glycoprotein during Its Low-pH-induced Structural Transition. J Mol Biol 2018; 430:1685-1695. [PMID: 29678555 PMCID: PMC7126088 DOI: 10.1016/j.jmb.2018.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 01/26/2023]
Abstract
•Vesiculovirus G is the prototype of class III viral fusion glycoproteins. •The structures of both G pre- and post-fusion conformation have been determined. •The structure of monomeric intermediates reveals the pathway of the transition. •A fusion-loop-exposing antiparallel dimer may initiate the fusion process. •Those data challenge the current model proposed for viral membrane fusion.
Collapse
Affiliation(s)
- Abbas Abou-Hamdan
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Laura Belot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Aurélie Albertini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
20
|
Abstract
Vesicular stomatitis virus (VSV) is an oncolytic rhabdovirus and its glycoprotein G is widely used to pseudotype other viruses for gene therapy. Low-density lipoprotein receptor (LDL-R) serves as a major entry receptor for VSV. Here we report two crystal structures of VSV G in complex with two distinct cysteine-rich domains (CR2 and CR3) of LDL-R, showing that their binding sites on G are identical. We identify two basic residues on G, which are essential for its interaction with CR2 and CR3. Mutating these residues abolishes VSV infectivity even though VSV can use alternative receptors, indicating that all VSV receptors are members of the LDL-R family. Collectively, our data suggest that VSV G has specifically evolved to interact with receptor CR domains. These structural insights into the interaction between VSV G and host cell receptors provide a basis for the design of recombinant viruses with an altered tropism.
Collapse
|
21
|
Trz1, the long form RNase Z from yeast, forms a stable heterohexamer with endonuclease Nuc1 and mutarotase. Biochem J 2017; 474:3599-3613. [PMID: 28899942 DOI: 10.1042/bcj20170435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 11/17/2022]
Abstract
Proteomic studies have established that Trz1, Nuc1 and mutarotase form a complex in yeast. Trz1 is a β-lactamase-type RNase composed of two β-lactamase-type domains connected by a long linker that is responsible for the endonucleolytic cleavage at the 3'-end of tRNAs during the maturation process (RNase Z activity); Nuc1 is a dimeric mitochondrial nuclease involved in apoptosis, while mutarotase (encoded by YMR099C) catalyzes the conversion between the α- and β-configuration of glucose-6-phosphate. Using gel filtration, small angle X-ray scattering and electron microscopy, we demonstrated that Trz1, Nuc1 and mutarotase form a very stable heterohexamer, composed of two copies of each of the three subunits. A Nuc1 homodimer is at the center of the complex, creating a two-fold symmetry and interacting with both Trz1 and mutarotase. Enzymatic characterization of the ternary complex revealed that the activities of Trz1 and mutarotase are not affected by complex formation, but that the Nuc1 activity is completely inhibited by mutarotase and partially by Trz1. This suggests that mutarotase and Trz1 might be regulators of the Nuc1 apoptotic nuclease activity.
Collapse
|
22
|
Baquero E, Albertini AA, Raux H, Abou-Hamdan A, Boeri-Erba E, Ouldali M, Buonocore L, Rose JK, Lepault J, Bressanelli S, Gaudin Y. Structural intermediates in the fusion-associated transition of vesiculovirus glycoprotein. EMBO J 2017; 36:679-692. [PMID: 28188244 DOI: 10.15252/embj.201694565] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 11/09/2022] Open
Abstract
Vesiculoviruses enter cells by membrane fusion, driven by a large, low-pH-induced, conformational change in the fusion glycoprotein G that involves transition from a trimeric pre-fusion toward a trimeric post-fusion state via monomeric intermediates. Here, we present the structure of the G fusion protein at intermediate pH for two vesiculoviruses, vesicular stomatitis virus (VSV) and Chandipura virus (CHAV), which is responsible for deadly encephalopathies. First, a CHAV G crystal structure shows two intermediate conformations forming a flat dimer of heterodimers. On virions, electron microscopy (EM) and tomography reveal monomeric spikes similar to one of the crystal conformations. In solution, mass spectrometry shows dimers of G. Finally, mutations at a dimer interface, involving fusion domains associated in an antiparallel manner to form an intermolecular β-sheet, affect G fusion properties. The location of the compensatory mutations restoring fusion activity strongly suggests that this interface is functionally relevant. This work reveals the range of G structural changes and suggests that G monomers can re-associate, through antiparallel interactions between fusion domains, into dimers that play a role at some early stage of the fusion process.
Collapse
Affiliation(s)
- Eduard Baquero
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Aurélie A Albertini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Hélène Raux
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Abbas Abou-Hamdan
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Elisabetta Boeri-Erba
- CNRS, CEA, Institut de Biologie Structurale (IBS), Université Grenoble Alpes, Grenoble, France
| | - Malika Ouldali
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | | | - John K Rose
- Yale University School of Medicine, New Haven, CT, USA
| | - Jean Lepault
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Stéphane Bressanelli
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| |
Collapse
|