1
|
Nguyen SA, Sakata T, Shirahige K, Sutani T. Regulation of pericentromeric DNA loop size via Scc2-cohesin interaction. iScience 2025; 28:112322. [PMID: 40271018 PMCID: PMC12017868 DOI: 10.1016/j.isci.2025.112322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/16/2024] [Accepted: 03/26/2025] [Indexed: 04/25/2025] Open
Abstract
Cohesin exhibits DNA loop extrusion when bound to the ATPase activator Scc2 (NIPBL in humans), which has been proposed to organize higher-order chromosome folding. In budding yeast, most chromosome-bound cohesins lack Scc2. How the Scc2-cohesin interaction is regulated on the chromosome and its physiological consequences remain unclear. Here, we show that the deletion of both ECO1 and WPL1, two known cohesin regulators, but not either alone, caused Scc2-cohesin co-localization in metaphase, particularly around centromeres, using calibrated chromatin immunoprecipitation sequencing (ChIP-seq). Eco1's mitotic activity was required to prevent this co-localization in Δwpl1. We also demonstrate that Scc2-cohesin co-localization enlarged pericentromeric DNA loops, linking centromeres to genome sites hundreds of kilobases away, and delayed mitotic chromosome segregation. These findings suggest that Wpl1 and Eco1 cooperatively regulate Scc2-cohesin interaction, restrict pericentromeric DNA loop size, and facilitate chromosome segregation.
Collapse
Affiliation(s)
- Sao Anh Nguyen
- Institute for Quantitative Biosciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-0032, Japan
| | - Toyonori Sakata
- Institute for Quantitative Biosciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-0032, Japan
- Department of Cell and Molecular Biology, Karolinska Institutet Tomtebodavägen 16, 171 77 Stockholm, Sweden
| | - Katsuhiko Shirahige
- Institute for Quantitative Biosciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-0032, Japan
- Department of Cell and Molecular Biology, Karolinska Institutet Tomtebodavägen 16, 171 77 Stockholm, Sweden
| | - Takashi Sutani
- Institute for Quantitative Biosciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-0032, Japan
| |
Collapse
|
2
|
Girard F, Even A, Thierry A, Ruault M, Meneu L, Larrous P, Garnier M, Adiba S, Taddei A, Koszul R, Cournac A. Parasitic plasmids are anchored to inactive regions of eukaryotic chromosomes through a nucleosome signal. EMBO J 2025; 44:2134-2156. [PMID: 40016420 PMCID: PMC11962162 DOI: 10.1038/s44318-025-00389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
Natural plasmids are common in prokaryotes, but few have been documented in eukaryotes. The natural 2µ plasmid present in the yeast Saccharomyces cerevisiae is one of these best-characterized exceptions. This highly stable genetic element has coexisted with its host for millions of years, faithfully segregating at each cell division through a mechanism that remains unclear. Using proximity ligation methods (such as Hi-C, Micro-C) to map the contacts between 2µ plasmid and yeast chromosomes under dozens of different biological conditions, we found that the plasmid is tethered preferentially to regions with low transcriptional activity, often corresponding to long, inactive genes. These contacts do not depend on common chromosome-structuring factors, such as members of the structural maintenance of chromosome complexes (SMC) but depend on a nucleosome-encoded signal associated with RNA Pol II depletion. They appear stable throughout the cell cycle and can be established within minutes. This chromosome hitchhiking strategy may extend beyond the 2µ plasmid/S. cerevisiae pair, as suggested by the binding pattern of the natural eukaryotic plasmid Ddp5 along silent chromosome regions of the amoeba Dictyostelium discoideum.
Collapse
Affiliation(s)
- Fabien Girard
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
- Département de Biologie, Université Paris-Saclay, ENS Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Antoine Even
- Institut Curie, PSL University, Sorbonne Université, CNRS UMR 3664, Nuclear Dynamics, Paris, France
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015, Paris, France
| | - Myriam Ruault
- Institut Curie, PSL University, Sorbonne Université, CNRS UMR 3664, Nuclear Dynamics, Paris, France
| | - Léa Meneu
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Pauline Larrous
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Mickaël Garnier
- Institut Curie, PSL University, Sorbonne Université, CNRS UMR 3664, Nuclear Dynamics, Paris, France
| | - Sandrine Adiba
- Institut de Biologie de l'Ecole Normale Supérieure, Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Angela Taddei
- Institut Curie, PSL University, Sorbonne Université, CNRS UMR 3664, Nuclear Dynamics, Paris, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015, Paris, France.
| | - Axel Cournac
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015, Paris, France.
| |
Collapse
|
3
|
Contessoto VG, Oliveira Jr. AB, Brahmachari S, Wolynes PG, Di Pierro M, Onuchic JN. Energy landscape analysis of the development of the chromosome structure across the cell cycle. Proc Natl Acad Sci U S A 2025; 122:e2425225122. [PMID: 40112110 PMCID: PMC11962442 DOI: 10.1073/pnas.2425225122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
During mitosis, there are significant structural changes in chromosomes. We used a maximum entropy approach to invert experimental Hi-C data to generate effective energy landscapes for chromosomal structures at different stages during the cell cycle. Modeled mitotic structures show a hierarchical organization of helices of helices. High-periodicity loops span hundreds of kilobases or less, while the other low-periodicity ones are larger in genomic separation, spanning several megabases. The structural ensembles reveal a progressive decrease in compartmentalization from interphase to mitosis, accompanied by the appearance of a second diagonal in prometaphase, indicating an organized array of loops. While there is a local tendency to form chiral helices, overall, no preferential left-handed or right-handed chirality appears to develop on the time scale of the cell cycle. Chromatin thus appears to be a liquid crystal containing numerous defects that anneal rather slowly.
Collapse
Affiliation(s)
| | | | | | - Peter G. Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX
- Department of Physics and Astronomy, Rice University, Houston, TX
- Department of Chemistry, Rice University, Houston, TX
- Department of Biosciences, Rice University, Houston, TX77005
| | - Michele Di Pierro
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA02115
- Department of Physics, Northeastern University, Boston, MA02115
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX
- Department of Physics and Astronomy, Rice University, Houston, TX
- Department of Chemistry, Rice University, Houston, TX
- Department of Biosciences, Rice University, Houston, TX77005
| |
Collapse
|
4
|
Choi EH, Kim KP. Cohesin and condensin regulate chromosome topology and play an essential role in maintaining pluripotency in embryonic stem cells. Sci Rep 2025; 15:9918. [PMID: 40121293 PMCID: PMC11929898 DOI: 10.1038/s41598-025-94533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025] Open
Abstract
Cohesin and condensin, two related protein complexes, play essential roles in ensuring the accurate segregation of the genome into daughter cells during cell division. However, the interaction between cohesin and condensin in embryonic stem cells remains unclear, as does the specific function of the meiosis-specific cohesin complex. Cohesin maintains the cohesion of replicated sister chromatids until their separation at anaphase, whereas condensin facilitates the reorganization of chromosomes into a highly compact structure characteristic of mitosis. First, we found via ChIP-seq analysis that cohesins (SMC3, RAD21, and REC8) and condensin (SMC4) share DNA binding sites in close proximity and directly interact with the insulator protein CTCF. Second, siRNA-regulated SMC3 depletion led to nuclear accumulation of SMC4. Third, embryonic stem (ES) cells uniquely harbor cohesin complexes containing the meiotic kleisin subunit REC8. RAD21 knockdown increased the proportion of SMC3-REC8 complexes. Our findings indicate that cohesin and condensin make important contributions to the functions of the chromosomal organization, and that meiotic cohesin may be specifically required for the mitotic program in ES cells.
Collapse
Affiliation(s)
- Eui-Hwan Choi
- Department of Biotechnology, Korea National University of Transportation, Chungbuk, 27909, Republic of Korea.
| | - Keun P Kim
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
5
|
Uhlmann F. A unified model for cohesin function in sisterchromatid cohesion and chromatin loop formation. Mol Cell 2025; 85:1058-1071. [PMID: 40118039 DOI: 10.1016/j.molcel.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/12/2025] [Accepted: 02/06/2025] [Indexed: 03/23/2025]
Abstract
The ring-shaped cohesin complex topologically entraps two DNAs to establish sister chromatid cohesion. Cohesin also shapes the interphase chromatin landscape by forming DNA loops, which it is thought to achieve using an in vitro-observed loop extrusion mechanism. However, recent studies revealed that loop-extrusion-deficient cohesin retains its ability to form chromatin loops, suggesting a divergence of in vitro and in vivo loop formation. Instead of loop extrusion, we examine whether cohesin forms chromatin loops by a mechanism akin to sister chromatid cohesion establishment: sequential topological capture of two DNAs. We explore similarities and differences between the "loop capture" and the "loop extrusion" model, how they compare at explaining experimental observations, and how future approaches can delineate their possible respective contributions. We extend our DNA-DNA capture model for cohesin function to related structural maintenance of chromosomes (SMC) family members, condensin, the Smc5-Smc6 complex, and bacterial SMC complexes.
Collapse
Affiliation(s)
- Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
6
|
Meneu L, Chapard C, Serizay J, Westbrook A, Routhier E, Ruault M, Perrot M, Minakakis A, Girard F, Bignaud A, Even A, Gourgues G, Libri D, Lartigue C, Piazza A, Thierry A, Taddei A, Beckouët F, Mozziconacci J, Koszul R. Sequence-dependent activity and compartmentalization of foreign DNA in a eukaryotic nucleus. Science 2025; 387:eadm9466. [PMID: 39913590 DOI: 10.1126/science.adm9466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 09/26/2024] [Accepted: 11/21/2024] [Indexed: 04/23/2025]
Abstract
In eukaryotes, DNA-associated protein complexes coevolve with genomic sequences to orchestrate chromatin folding. We investigate the relationship between DNA sequence and the spontaneous loading and activity of chromatin components in the absence of coevolution. Using bacterial genomes integrated into Saccharomyces cerevisiae, which diverged from yeast more than 2 billion years ago, we show that nucleosomes, cohesins, and associated transcriptional machinery can lead to the formation of two different chromatin archetypes, one transcribed and the other silent, independently of heterochromatin formation. These two archetypes also form on eukaryotic exogenous sequences, depend on sequence composition, and can be predicted using neural networks trained on the native genome. They do not mix in the nucleus, leading to a bipartite nuclear compartmentalization, reminiscent of the organization of vertebrate nuclei.
Collapse
Affiliation(s)
- Léa Meneu
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, College Doctoral
| | - Christophe Chapard
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Jacques Serizay
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Alex Westbrook
- Sorbonne Université, College Doctoral
- Laboratoire Structure et Instabilité des génomes, UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | - Etienne Routhier
- Sorbonne Université, College Doctoral
- Laboratoire Structure et Instabilité des génomes, UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS, Paris, France
| | - Myriam Ruault
- Institut Curie, PSL University, Sorbonne Université, CNRS UMR 3664 Nuclear Dynamics, Paris, France
| | - Manon Perrot
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, College Doctoral
| | - Alexandros Minakakis
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Fabien Girard
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Amaury Bignaud
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, College Doctoral
| | - Antoine Even
- Institut Curie, PSL University, Sorbonne Université, CNRS UMR 3664 Nuclear Dynamics, Paris, France
| | - Géraldine Gourgues
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| | - Domenico Libri
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Carole Lartigue
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| | - Aurèle Piazza
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Angela Taddei
- Institut Curie, PSL University, Sorbonne Université, CNRS UMR 3664 Nuclear Dynamics, Paris, France
| | - Frédéric Beckouët
- Molecular, Cellular and Developmental biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Mozziconacci
- Laboratoire Structure et Instabilité des génomes, UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS, Paris, France
- UAR 2700 2AD, Muséum National d'Histoire Naturelle, Paris, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| |
Collapse
|
7
|
Delamarre A, Bailey B, Yavid J, Koche R, Mohibullah N, Whitehouse I. Chromatin architecture mapping by multiplex proximity tagging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.12.623258. [PMID: 39605487 PMCID: PMC11601423 DOI: 10.1101/2024.11.12.623258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chromatin plays a pivotal role in genome expression, maintenance, and replication. To better understand chromatin organization, we developed a novel proximity-tagging method which assigns unique DNA barcodes to molecules that associate in 3D space. Using this method - Proximity Copy Paste (PCP) - we mapped the connectivity of individual nucleosomes in Saccharomyces cerevisiae. By analyzing nucleosome positions and spacing on single molecule fibers, we show that chromatin is predominantly organized into regularly spaced nucleosome arrays that can be positioned or delocalized. Basic features of nucleosome arrays are generally explained by gene size and transcription. PCP can also map long-range, multi-way interactions and we provide the first direct evidence supporting a model that metaphase chromosomes are compacted by cohesin loop clustering. Analyzing single-molecule nuclease footprinting data we define distinct chromatin states within a mixed population to show that non-canonical nucleosomes, notably Overlapping-Di-Nucleosomes (OLDN) are a stable feature of chromatin. PCP is a versatile method allowing the detection of the connectivity of individual molecules locally and over large distance to be mapped at high-resolution in a single experiment.
Collapse
|
8
|
Phipps J, Toulouze M, Ducrot C, Costa R, Brocas C, Dubrana K. Cohesin complex oligomerization maintains end-tethering at DNA double-strand breaks. Nat Cell Biol 2025; 27:118-129. [PMID: 39482358 PMCID: PMC11735392 DOI: 10.1038/s41556-024-01552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 10/01/2024] [Indexed: 11/03/2024]
Abstract
DNA double-strand breaks (DSBs) must be repaired to ensure genome stability. Crucially, DSB-ends must be kept together for timely repair. In Saccharomyces cerevisiae, two pathways mediate DSB end-tethering. One employs the Mre11-Rad50-Xrs2 (MRX) complex to physically bridge DSB-ends. Another requires the conversion of DSB-ends into single-strand DNA (ssDNA) by Exo1, but the bridging proteins are unknown. We uncover that cohesin, its loader and Smc5/6 act with Exo1 to tether DSB-ends. Remarkably, cohesin specifically impaired in oligomerization fails to tether DSB-ends, revealing a function for cohesin oligomerization. In addition to the known importance of sister chromatid cohesion, microscopy-based microfluidic experiments unveil a role for cohesin in repair by ensuring DSB end-tethering. Altogether, our findings demonstrate that oligomerization of cohesin prevents DSB end-separation and promotes DSB repair, revealing a previously undescribed mode of action and role for cohesin in safeguarding genome integrity.
Collapse
Affiliation(s)
- Jamie Phipps
- UMR Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, INSERM, CEA, Fontenay-aux-Roses, France
- UMR Stabilité Génétique Cellules Souches et Radiations, Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Mathias Toulouze
- UMR Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, INSERM, CEA, Fontenay-aux-Roses, France
- UMR Stabilité Génétique Cellules Souches et Radiations, Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Cécile Ducrot
- UMR Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, INSERM, CEA, Fontenay-aux-Roses, France
- UMR Stabilité Génétique Cellules Souches et Radiations, Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Rafaël Costa
- UMR Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, INSERM, CEA, Fontenay-aux-Roses, France
- UMR Stabilité Génétique Cellules Souches et Radiations, Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Clémentine Brocas
- UMR Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, INSERM, CEA, Fontenay-aux-Roses, France
- UMR Stabilité Génétique Cellules Souches et Radiations, Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Karine Dubrana
- UMR Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, INSERM, CEA, Fontenay-aux-Roses, France.
- UMR Stabilité Génétique Cellules Souches et Radiations, Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France.
| |
Collapse
|
9
|
Dumont A, Mendiboure N, Savocco J, Anani L, Moreau P, Thierry A, Modolo L, Jost D, Piazza A. Mechanism of homology search expansion during recombinational DNA break repair in Saccharomyces cerevisiae. Mol Cell 2024; 84:3237-3253.e6. [PMID: 39178861 DOI: 10.1016/j.molcel.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
Homology search is a central step of DNA double-strand break (DSB) repair by homologous recombination (HR). How it operates in cells remains elusive. We developed a Hi-C-based methodology to map single-stranded DNA (ssDNA) contacts genome-wide in S. cerevisiae, which revealed two main homology search phases. Initial search conducted by short Rad51-ssDNA nucleoprotein filaments (NPFs) is confined in cis by cohesin-mediated chromatin loop folding. Progressive growth of stiff NPFs enables exploration of distant genomic sites. Long-range resection drives this transition from local to genome-wide search by increasing the probability of assembling extensive NPFs. DSB end-tethering promotes coordinated search by opposite NPFs. Finally, an autonomous genetic element on chromosome III engages the NPF, which stimulates homology search in its vicinity. This work reveals the mechanism of the progressive expansion of homology search that is orchestrated by chromatin organizers, long-range resection, end-tethering, and specialized genetic elements and that exploits the stiff NPF structure conferred by Rad51 oligomerization.
Collapse
Affiliation(s)
- Agnès Dumont
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Nicolas Mendiboure
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Jérôme Savocco
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Loqmen Anani
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Pierrick Moreau
- Unité Régulation spatiale des génomes, Institut Pasteur, CNRS UMR3525, 75015 Paris, France
| | - Agnès Thierry
- Unité Régulation spatiale des génomes, Institut Pasteur, CNRS UMR3525, 75015 Paris, France
| | - Laurent Modolo
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Daniel Jost
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Aurèle Piazza
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
10
|
Gil J, Navarrete E, Rosin L, Chowdhury N, Abraham S, Cornilleau G, Lei E, Mozziconacci J, Mirny L, Muller H, Drinnenberg I. Unique territorial and compartmental organization of chromosomes in the holocentric silkmoth. RESEARCH SQUARE 2024:rs.3.rs-4732646. [PMID: 39149482 PMCID: PMC11326380 DOI: 10.21203/rs.3.rs-4732646/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The hallmarks of chromosome organization in multicellular eukaryotes are chromosome territories (CT), chromatin compartments, and insulated domains, including topologically associated domains (TADs). Yet, most of these elements of chromosome organization are derived from analyses of a limited set of model organisms, while large eukaryotic groups, including insects, remain mostly unexplored. Here we combine Hi-C, biophysical modeling, and microscopy to characterize the 3D genome architecture of the silkmoth, Bombyx mori. In contrast to other eukaryotes, B. mori chromosomes form highly separated territories. Similar to other eukaryotes, B. mori chromosomes segregate into active A and inactive B compartments, yet unlike in vertebrate systems, contacts between euchromatic A regions appear to be a strong driver of compartmentalization. Remarkably, we also identify a third compartment, called secluded "S," with a unique contact pattern. Each S region shows prominent short-range self-contacts and is remarkably devoid of contacts with the rest of the chromosome, including other S regions. Compartment S hosts a unique combination of genetic and epigenetic features, localizes towards the periphery of CTs, and shows developmental plasticity. Biophysical modeling reveals that the formation of such secluded domains requires highly localized loop extrusion within them, along with a low level of extrusion in A and B. Our Hi-C data supports predicted genome-wide and localized extrusion. Such a broad, non-uniform distribution of extruders has not been seen in other organisms. Overall, our analyses support loop extrusion in insects and highlight the evolutionary plasticity of 3D genome organization, driven by a new combination of known processes.
Collapse
Affiliation(s)
- J. Gil
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France
| | - E. Navarrete
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - L.F. Rosin
- Nuclear Organization and Gene Expression Section; Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - N. Chowdhury
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - S. Abraham
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - G. Cornilleau
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France
| | - E.P. Lei
- Nuclear Organization and Gene Expression Section; Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - J. Mozziconacci
- StrInG Lab, Museum National d’Histoire Naturelle, Paris, France
| | - L.A. Mirny
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - H. Muller
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France
| | - I.A. Drinnenberg
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France
| |
Collapse
|
11
|
Haase MAB, Lazar-Stefanita L, Ólafsson G, Wudzinska A, Shen MJ, Truong DM, Boeke JD. macroH2A1 drives nucleosome dephasing and genome instability in histone humanized yeast. Cell Rep 2024; 43:114472. [PMID: 38990716 DOI: 10.1016/j.celrep.2024.114472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/15/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
In addition to replicative histones, eukaryotic genomes encode a repertoire of non-replicative variant histones, providing additional layers of structural and epigenetic regulation. Here, we systematically replace individual replicative human histones with non-replicative human variant histones using a histone replacement system in yeast. We show that variants H2A.J, TsH2B, and H3.5 complement their respective replicative counterparts. However, macroH2A1 fails to complement, and its overexpression is toxic in yeast, negatively interacting with yeast's native histones and kinetochore genes. To isolate yeast with macroH2A1 chromatin, we uncouple the effects of its macro and histone fold domains, revealing that both domains suffice to override native nucleosome positioning. Furthermore, both uncoupled constructs of macroH2A1 exhibit lower nucleosome occupancy, decreased short-range chromatin interactions (<20 kb), disrupted centromeric clustering, and increased chromosome instability. Our observations demonstrate that lack of a canonical histone H2A dramatically alters chromatin organization in yeast, leading to genome instability and substantial fitness defects.
Collapse
Affiliation(s)
- Max A B Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY 10016, USA
| | - Luciana Lazar-Stefanita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Guðjón Ólafsson
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Aleksandra Wudzinska
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Michael J Shen
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - David M Truong
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA.
| |
Collapse
|
12
|
Gil J, Rosin LF, Navarrete E, Chowdhury N, Abraham S, Cornilleau G, Lei EP, Mozziconacci J, Mirny LA, Muller H, Drinnenberg IA. Unique territorial and compartmental organization of chromosomes in the holocentric silkmoth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.14.557757. [PMID: 37745315 PMCID: PMC10515926 DOI: 10.1101/2023.09.14.557757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The hallmarks of chromosome organization in multicellular eukaryotes are chromosome territories (CT), chromatin compartments, and insulated domains, including topologically associated domains (TADs). Yet, most of these elements of chromosome organization are derived from analyses of a limited set of model organisms, while large eukaryotic groups, including insects, remain mostly unexplored. Here we combine Hi-C, biophysical modeling, and microscopy to characterize the 3D genome architecture of the silkworm, Bombyx mori. In contrast to other eukaryotes, B. mori chromosomes form highly separated territories. Similar to other eukaryotes, B. mori chromosomes segregate into active A and inactive B compartments, yet unlike in vertebrate systems, contacts between euchromatic A regions appear to be a strong driver of compartmentalization. Remarkably, we also identify a third compartment, called secluded S, with a unique contact pattern. Each S region shows prominent short-range self-contacts and is remarkably devoid of contacts with the rest of the chromosome, including other S regions. Compartment S hosts a unique combination of genetic and epigenetic features, localizes towards the periphery of CTs, and shows developmental plasticity. Biophysical modeling reveals that the formation of such secluded domains requires highly localized loop extrusion within them, along with a low level of extrusion in A and B. Our Hi-C data supports predicted genome-wide and localized extrusion. Such a broad, non-uniform distribution of extruders has not been seen in other organisms. Overall, our analyses support loop extrusion in insects and highlight the evolutionary plasticity of 3D genome organization, driven by a new combination of known processes.
Collapse
|
13
|
Fouziya S, Krietenstein N, Mir US, Mieczkowski J, Khan MA, Baba A, Dar MA, Altaf M, Wani AH. Genome wide nucleosome landscape shapes 3D chromatin organization. SCIENCE ADVANCES 2024; 10:eadn2955. [PMID: 38848364 PMCID: PMC11160460 DOI: 10.1126/sciadv.adn2955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
The hierarchical chromatin organization begins with formation of nucleosomes, which fold into chromatin domains punctuated by boundaries and ultimately chromosomes. In a hierarchal organization, lower levels shape higher levels. However, the dependence of higher-order 3D chromatin organization on the nucleosome-level organization has not been studied in cells. We investigated the relationship between nucleosome-level organization and higher-order chromatin organization by perturbing nucleosomes across the genome by deleting Imitation SWItch (ISWI) and Chromodomain Helicase DNA-binding (CHD1) chromatin remodeling factors in budding yeast. We find that changes in nucleosome-level properties are accompanied by changes in 3D chromatin organization. Short-range chromatin contacts up to a few kilo-base pairs decrease, chromatin domains weaken, and boundary strength decreases. Boundary strength scales with accessibility and moderately with width of nucleosome-depleted region. Change in nucleosome positioning seems to alter the stiffness of chromatin, which can affect formation of chromatin contacts. Our results suggest a biomechanical "bottom-up" mechanism by which nucleosome distribution across genome shapes 3D chromatin organization.
Collapse
Affiliation(s)
- Shah Fouziya
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, J&K, 190006, India
| | - Nils Krietenstein
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Denmark
| | - Ulfat Syed Mir
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, J&K, 190006, India
| | - Jakub Mieczkowski
- International Research Agenda 3P Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Masood A. Khan
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, J&K, 190006, India
| | - Aemon Baba
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, J&K, 190006, India
| | - Mohmmad Abaas Dar
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, J&K, 190006, India
| | - Mohammad Altaf
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, J&K, 190006, India
| | - Ajazul H. Wani
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, J&K, 190006, India
| |
Collapse
|
14
|
Keller D, Stinus S, Umlauf D, Gourbeyre E, Biot E, Olivier N, Mahou P, Beaurepaire E, Andrey P, Crabbe L. Non-random spatial organization of telomeres varies during the cell cycle and requires LAP2 and BAF. iScience 2024; 27:109343. [PMID: 38510147 PMCID: PMC10951912 DOI: 10.1016/j.isci.2024.109343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Spatial genome organization within the nucleus influences major biological processes and is impacted by the configuration of linear chromosomes. Here, we applied 3D spatial statistics and modeling on high-resolution telomere and centromere 3D-structured illumination microscopy images in cancer cells. We found a multi-scale organization of telomeres that dynamically evolved from a mixed clustered-and-regular distribution in early G1 to a purely regular distribution as cells progressed through the cell cycle. In parallel, our analysis revealed two pools of peripheral and internal telomeres, the proportions of which were inverted during the cell cycle. We then conducted a targeted screen using MadID to identify the molecular pathways driving or maintaining telomere anchoring to the nuclear envelope observed in early G1. Lamina-associated polypeptide (LAP) proteins were found transiently localized to telomeres in anaphase, a stage where LAP2α initiates the reformation of the nuclear envelope, and impacted telomere redistribution in the next interphase together with their partner barrier-to-autointegration factor (BAF).
Collapse
Affiliation(s)
- Debora Keller
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
- Laboratory for Optics and Biosciences, École polytechnique, CNRS, INSERM, IP Paris, 91128 Palaiseau, France
| | - Sonia Stinus
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - David Umlauf
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Edith Gourbeyre
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Eric Biot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Nicolas Olivier
- Laboratory for Optics and Biosciences, École polytechnique, CNRS, INSERM, IP Paris, 91128 Palaiseau, France
| | - Pierre Mahou
- Laboratory for Optics and Biosciences, École polytechnique, CNRS, INSERM, IP Paris, 91128 Palaiseau, France
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, École polytechnique, CNRS, INSERM, IP Paris, 91128 Palaiseau, France
| | - Philippe Andrey
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Laure Crabbe
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
15
|
Bastié N, Chapard C, Cournac A, Nejmi S, Mboumba H, Gadal O, Thierry A, Beckouët F, Koszul R. Sister chromatid cohesion halts DNA loop expansion. Mol Cell 2024; 84:1139-1148.e5. [PMID: 38452765 DOI: 10.1016/j.molcel.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/02/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024]
Abstract
Eukaryotic genomes are folded into DNA loops mediated by structural maintenance of chromosomes (SMC) complexes such as cohesin, condensin, and Smc5/6. This organization regulates different DNA-related processes along the cell cycle, such as transcription, recombination, segregation, and DNA repair. During the G2 stage, SMC-mediated DNA loops coexist with cohesin complexes involved in sister chromatid cohesion (SCC). However, the articulation between the establishment of SCC and the formation of SMC-mediated DNA loops along the chromatin remains unknown. Here, we show that SCC is indeed a barrier to cohesin-mediated DNA loop expansion along G2/M Saccharomyces cerevisiae chromosomes.
Collapse
Affiliation(s)
- Nathalie Bastié
- Molecular, Cellular, and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Christophe Chapard
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015 Paris, France
| | - Axel Cournac
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015 Paris, France
| | - Sanae Nejmi
- Cancer Research Centre of Toulouse, INSERM UMR 1037, 31037 Toulouse, France
| | - Henri Mboumba
- Molecular, Cellular, and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Olivier Gadal
- Molecular, Cellular, and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015 Paris, France
| | - Frederic Beckouët
- Molecular, Cellular, and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France.
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015 Paris, France.
| |
Collapse
|
16
|
Oberbeckmann E, Quililan K, Cramer P, Oudelaar AM. In vitro reconstitution of chromatin domains shows a role for nucleosome positioning in 3D genome organization. Nat Genet 2024; 56:483-492. [PMID: 38291333 PMCID: PMC10937381 DOI: 10.1038/s41588-023-01649-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024]
Abstract
Eukaryotic genomes are organized into chromatin domains. The molecular mechanisms driving the formation of these domains are difficult to dissect in vivo and remain poorly understood. Here we reconstitute Saccharomyces cerevisiae chromatin in vitro and determine its 3D organization at subnucleosome resolution by micrococcal nuclease-based chromosome conformation capture and molecular dynamics simulations. We show that regularly spaced and phased nucleosome arrays form chromatin domains in vitro that resemble domains in vivo. This demonstrates that neither loop extrusion nor transcription is required for basic domain formation in yeast. In addition, we find that the boundaries of reconstituted domains correspond to nucleosome-free regions and that insulation strength scales with their width. Finally, we show that domain compaction depends on nucleosome linker length, with longer linkers forming more compact structures. Together, our results demonstrate that regular nucleosome positioning is important for the formation of chromatin domains and provide a proof-of-principle for bottom-up 3D genome studies.
Collapse
Affiliation(s)
- Elisa Oberbeckmann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany.
| | - Kimberly Quililan
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Göttingen, Germany
- The Francis Crick Institute, London, UK
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - A Marieke Oudelaar
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Göttingen, Germany.
| |
Collapse
|
17
|
Jiang S, Cai Z, Wang Y, Zeng C, Zhang J, Yu W, Su C, Zhao S, Chen Y, Shen Y, Ma Y, Cai Y, Dai J. High plasticity of ribosomal DNA organization in budding yeast. Cell Rep 2024; 43:113742. [PMID: 38324449 DOI: 10.1016/j.celrep.2024.113742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
In eukaryotic genomes, rDNA generally resides as a highly repetitive and dynamic structure, making it difficult to study. Here, a synthetic rDNA array on chromosome III in budding yeast was constructed to serve as the sole source of rRNA. Utilizing the loxPsym site within each rDNA repeat and the Cre recombinase, we were able to reduce the copy number to as few as eight copies. Additionally, we constructed strains with two or three rDNA arrays and found that the presence of multiple arrays did not affect the formation of a single nucleolus. Although alteration of the position and number of rDNA arrays did impact the three-dimensional genome structure, the additional rDNA arrays had no deleterious influence on cell growth or transcriptomes. Overall, this study sheds light on the high plasticity of rDNA organization and opens up opportunities for future rDNA engineering.
Collapse
Affiliation(s)
- Shuangying Jiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Zelin Cai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Wang
- BGI Research, BGI, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Cheng Zeng
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiaying Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Wenfei Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghao Su
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shijun Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, BGI, Shenzhen 518083, China
| | - Yue Shen
- BGI Research, BGI, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; College of Life Sciences and Oceanography, Shenzhen University, 1066 Xueyuan Road, Shenzhen 518055, China.
| |
Collapse
|
18
|
Serizay J, Matthey-Doret C, Bignaud A, Baudry L, Koszul R. Orchestrating chromosome conformation capture analysis with Bioconductor. Nat Commun 2024; 15:1072. [PMID: 38316789 PMCID: PMC10844600 DOI: 10.1038/s41467-024-44761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024] Open
Abstract
Genome-wide chromatin conformation capture assays provide formidable insights into the spatial organization of genomes. However, due to the complexity of the data structure, their integration in multi-omics workflows remains challenging. We present data structures, computational methods and visualization tools available in Bioconductor to investigate Hi-C, micro-C and other 3C-related data, in R. An online book ( https://bioconductor.org/books/OHCA/ ) further provides prospective end users with a number of workflows to process, import, analyze and visualize any type of chromosome conformation capture data.
Collapse
Affiliation(s)
- Jacques Serizay
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France.
| | - Cyril Matthey-Doret
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
- Swiss Data Science Center, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Amaury Bignaud
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Lyam Baudry
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
- Université de Lausanne, Center for Integrative Genomics, Quartier Sorge, 1015, Lausanne, Switzerland
| | - Romain Koszul
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| |
Collapse
|
19
|
Poinsignon T, Gallopin M, Grognet P, Malagnac F, Lelandais G, Poulain P. 3D models of fungal chromosomes to enhance visual integration of omics data. NAR Genom Bioinform 2023; 5:lqad104. [PMID: 38058589 PMCID: PMC10696920 DOI: 10.1093/nargab/lqad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/11/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
The functions of eukaryotic chromosomes and their spatial architecture in the nucleus are reciprocally dependent. Hi-C experiments are routinely used to study chromosome 3D organization by probing chromatin interactions. Standard representation of the data has relied on contact maps that show the frequency of interactions between parts of the genome. In parallel, it has become easier to build 3D models of the entire genome based on the same Hi-C data, and thus benefit from the methodology and visualization tools developed for structural biology. 3D modeling of entire genomes leverages the understanding of their spatial organization. However, this opportunity for original and insightful modeling is underexploited. In this paper, we show how seeing the spatial organization of chromosomes can bring new perspectives to omics data integration. We assembled state-of-the-art tools into a workflow that goes from Hi-C raw data to fully annotated 3D models and we re-analysed public omics datasets available for three fungal species. Besides the well-described properties of the spatial organization of their chromosomes (Rabl conformation, hypercoiling and chromosome territories), our results highlighted (i) in Saccharomyces cerevisiae, the backbones of the cohesin anchor regions, which were aligned all along the chromosomes, (ii) in Schizosaccharomyces pombe, the oscillations of the coiling of chromosome arms throughout the cell cycle and (iii) in Neurospora crassa, the massive relocalization of histone marks in mutants of heterochromatin regulators. 3D modeling of the chromosomes brings new opportunities for visual integration of omics data. This holistic perspective supports intuition and lays the foundation for building new concepts.
Collapse
Affiliation(s)
- Thibault Poinsignon
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Mélina Gallopin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Pierre Grognet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Fabienne Malagnac
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Gaëlle Lelandais
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Pierre Poulain
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
20
|
Schindler D, Walker RSK, Jiang S, Brooks AN, Wang Y, Müller CA, Cockram C, Luo Y, García A, Schraivogel D, Mozziconacci J, Pena N, Assari M, Sánchez Olmos MDC, Zhao Y, Ballerini A, Blount BA, Cai J, Ogunlana L, Liu W, Jönsson K, Abramczyk D, Garcia-Ruiz E, Turowski TW, Swidah R, Ellis T, Pan T, Antequera F, Shen Y, Nieduszynski CA, Koszul R, Dai J, Steinmetz LM, Boeke JD, Cai Y. Design, construction, and functional characterization of a tRNA neochromosome in yeast. Cell 2023; 186:5237-5253.e22. [PMID: 37944512 DOI: 10.1016/j.cell.2023.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Here, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the ∼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes. To maximize stability, the design incorporates orthogonal genetic elements from non-S. cerevisiae yeast species. Furthermore, the presence of 283 rox recombination sites enables an orthogonal tRNA SCRaMbLE system. Following construction in yeast, we obtained evidence of a potent selective force, manifesting as a spontaneous doubling in cell ploidy. Furthermore, tRNA sequencing, transcriptomics, proteomics, nucleosome mapping, replication profiling, FISH, and Hi-C were undertaken to investigate questions of tRNA neochromosome behavior and function. Its construction demonstrates the remarkable tractability of the yeast model and opens up opportunities to directly test hypotheses surrounding these essential non-coding RNAs.
Collapse
Affiliation(s)
- Daniel Schindler
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, 35032 Marburg, Germany
| | - Roy S K Walker
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3BF, Scotland; School of Natural Sciences and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| | - Shuangying Jiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Aaron N Brooks
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Yun Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Carolin A Müller
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 7TU, UK
| | - Charlotte Cockram
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015 Paris, France
| | - Yisha Luo
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Alicia García
- Instituto de Biología Funcional y Genómica (IBFG), CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Daniel Schraivogel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Julien Mozziconacci
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015 Paris, France
| | - Noah Pena
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Mahdi Assari
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | | | - Yu Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Alba Ballerini
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Benjamin A Blount
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK
| | - Jitong Cai
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Lois Ogunlana
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland
| | - Wei Liu
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland
| | - Katarina Jönsson
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland
| | - Dariusz Abramczyk
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland
| | - Eva Garcia-Ruiz
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Tomasz W Turowski
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland
| | - Reem Swidah
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Francisco Antequera
- Instituto de Biología Funcional y Genómica (IBFG), CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Yue Shen
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK; BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Conrad A Nieduszynski
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 7TU, UK
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015 Paris, France
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; Department of Genetics and Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
21
|
Zhao Y, Coelho C, Hughes AL, Lazar-Stefanita L, Yang S, Brooks AN, Walker RSK, Zhang W, Lauer S, Hernandez C, Cai J, Mitchell LA, Agmon N, Shen Y, Sall J, Fanfani V, Jalan A, Rivera J, Liang FX, Bader JS, Stracquadanio G, Steinmetz LM, Cai Y, Boeke JD. Debugging and consolidating multiple synthetic chromosomes reveals combinatorial genetic interactions. Cell 2023; 186:5220-5236.e16. [PMID: 37944511 DOI: 10.1016/j.cell.2023.09.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 01/03/2023] [Accepted: 09/25/2023] [Indexed: 11/12/2023]
Abstract
The Sc2.0 project is building a eukaryotic synthetic genome from scratch. A major milestone has been achieved with all individual Sc2.0 chromosomes assembled. Here, we describe the consolidation of multiple synthetic chromosomes using advanced endoreduplication intercrossing with tRNA expression cassettes to generate a strain with 6.5 synthetic chromosomes. The 3D chromosome organization and transcript isoform profiles were evaluated using Hi-C and long-read direct RNA sequencing. We developed CRISPR Directed Biallelic URA3-assisted Genome Scan, or "CRISPR D-BUGS," to map phenotypic variants caused by specific designer modifications, known as "bugs." We first fine-mapped a bug in synthetic chromosome II (synII) and then discovered a combinatorial interaction associated with synIII and synX, revealing an unexpected genetic interaction that links transcriptional regulation, inositol metabolism, and tRNASerCGA abundance. Finally, to expedite consolidation, we employed chromosome substitution to incorporate the largest chromosome (synIV), thereby consolidating >50% of the Sc2.0 genome in one strain.
Collapse
Affiliation(s)
- Yu Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Camila Coelho
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Amanda L Hughes
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Luciana Lazar-Stefanita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Sandy Yang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Aaron N Brooks
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Roy S K Walker
- School of Engineering, Institute for Bioengineering, the University of Edinburgh, Edinburgh EH9 3BF
| | - Weimin Zhang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Stephanie Lauer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Cindy Hernandez
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Jitong Cai
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Leslie A Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Neta Agmon
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Yue Shen
- BGI, Shenzhen, Beishan, Industrial Zone, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI, Shenzhen, Shenzhen 518120, China
| | - Joseph Sall
- Microscopy Laboratory, NYU Langone Health, New York, NY 10016, USA
| | - Viola Fanfani
- School of Biological Sciences, the University of Edinburgh, Edinburgh EH9 3BF
| | - Anavi Jalan
- Department of Biology, New York University, New York, NY, USA
| | - Jordan Rivera
- Department of Biology, New York University, New York, NY, USA
| | - Feng-Xia Liang
- Microscopy Laboratory, NYU Langone Health, New York, NY 10016, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; Department of Genetics and Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| | - Yizhi Cai
- Manchester Institute of Biotechnology, the University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, New York, NY 11201, USA.
| |
Collapse
|
22
|
Luo J, Vale-Silva LA, Raghavan AR, Mercy G, Heldrich J, Sun X, Li MK, Zhang W, Agmon N, Yang K, Cai J, Stracquadanio G, Thierry A, Zhao Y, Coelho C, McCulloch LH, Lauer S, Kaback DB, Bader JS, Mitchell LA, Mozziconacci J, Koszul R, Hochwagen A, Boeke JD. Synthetic chromosome fusion: Effects on mitotic and meiotic genome structure and function. CELL GENOMICS 2023; 3:100439. [PMID: 38020967 PMCID: PMC10667551 DOI: 10.1016/j.xgen.2023.100439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 08/23/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
We designed and synthesized synI, which is ∼21.6% shorter than native chrI, the smallest chromosome in Saccharomyces cerevisiae. SynI was designed for attachment to another synthetic chromosome due to concerns surrounding potential instability and karyotype imbalance and is now attached to synIII, yielding the first synthetic yeast fusion chromosome. Additional fusion chromosomes were constructed to study nuclear function. ChrIII-I and chrIX-III-I fusion chromosomes have twisted structures, which depend on silencing protein Sir3. As a smaller chromosome, chrI also faces special challenges in assuring meiotic crossovers required for efficient homolog disjunction. Centromere deletions into fusion chromosomes revealed opposing effects of core centromeres and pericentromeres in modulating deposition of the crossover-promoting protein Red1. These effects extend over 100 kb and promote disproportionate Red1 enrichment, and thus crossover potential, on small chromosomes like chrI. These findings reveal the power of synthetic genomics to uncover new biology and deconvolute complex biological systems.
Collapse
Affiliation(s)
- Jingchuan Luo
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Biochemistry, Cellular and Molecular Biology Graduate program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | - Guillaume Mercy
- Institut Pasteur, CNRS UMR3525, Université de Paris, Unité Régulation Spatiale des Génomes, 75015 Paris, France
- Collège Doctoral, Sorbonne Université, 75005 Paris, France
| | - Jonna Heldrich
- Department of Biology, New York University, New York, NY 10003, USA
| | - Xiaoji Sun
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Mingyu Kenneth Li
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Weimin Zhang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Neta Agmon
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Kun Yang
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering, JHU, Baltimore, MD 21218, USA
| | - Jitong Cai
- Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering, JHU, Baltimore, MD 21218, USA
| | - Giovanni Stracquadanio
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering, JHU, Baltimore, MD 21218, USA
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR3525, Université de Paris, Unité Régulation Spatiale des Génomes, 75015 Paris, France
| | - Yu Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Camila Coelho
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Laura H. McCulloch
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Stephanie Lauer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - David B. Kaback
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, International Center for Public Health, Newark, NJ 07101-1709, USA
| | - Joel S. Bader
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leslie A. Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Julien Mozziconacci
- Structure and instability of Genomes Lab, UMR 7196, Muséum National d'Histoire Naturelle (MNHN), 75005 Paris, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR3525, Université de Paris, Unité Régulation Spatiale des Génomes, 75015 Paris, France
| | | | - Jef D. Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, Tandon School of Engineering, Brooklyn, NY 11201, USA
| |
Collapse
|
23
|
Lauer S, Luo J, Lazar-Stefanita L, Zhang W, McCulloch LH, Fanfani V, Lobzaev E, Haase MA, Easo N, Zhao Y, Yu F, Cai J, Bader JS, Stracquadanio G, Boeke JD. Context-dependent neocentromere activity in synthetic yeast chromosome VIII. CELL GENOMICS 2023; 3:100437. [PMID: 38020969 PMCID: PMC10667555 DOI: 10.1016/j.xgen.2023.100437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/20/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Pioneering advances in genome engineering, and specifically in genome writing, have revolutionized the field of synthetic biology, propelling us toward the creation of synthetic genomes. The Sc2.0 project aims to build the first fully synthetic eukaryotic organism by assembling the genome of Saccharomyces cerevisiae. With the completion of synthetic chromosome VIII (synVIII) described here, this goal is within reach. In addition to writing the yeast genome, we sought to manipulate an essential functional element: the point centromere. By relocating the native centromere sequence to various positions along chromosome VIII, we discovered that the minimal 118-bp CEN8 sequence is insufficient for conferring chromosomal stability at ectopic locations. Expanding the transplanted sequence to include a small segment (∼500 bp) of the CDEIII-proximal pericentromere improved chromosome stability, demonstrating that minimal centromeres display context-dependent functionality.
Collapse
Affiliation(s)
- Stephanie Lauer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Jingchuan Luo
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Luciana Lazar-Stefanita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Weimin Zhang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Laura H. McCulloch
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Viola Fanfani
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Evgenii Lobzaev
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
- School of Informatics, The University of Edinburgh, Edinburgh, UK
| | - Max A.B. Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Nicole Easo
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Yu Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Fangzhou Yu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Jitong Cai
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Joel S. Bader
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Jef D. Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| |
Collapse
|
24
|
Ma CH, Kumar D, Jayaram M, Ghosh SK, Iyer VR. The selfish yeast plasmid exploits a SWI/SNF-type chromatin remodeling complex for hitchhiking on chromosomes and ensuring high-fidelity propagation. PLoS Genet 2023; 19:e1010986. [PMID: 37812641 PMCID: PMC10586699 DOI: 10.1371/journal.pgen.1010986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/19/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
Extra-chromosomal selfish DNA elements can evade the risk of being lost at every generation by behaving as chromosome appendages, thereby ensuring high fidelity segregation and stable persistence in host cell populations. The yeast 2-micron plasmid and episomes of the mammalian gammaherpes and papilloma viruses that tether to chromosomes and segregate by hitchhiking on them exemplify this strategy. We document for the first time the utilization of a SWI/SNF-type chromatin remodeling complex as a conduit for chromosome association by a selfish element. One principal mechanism for chromosome tethering by the 2-micron plasmid is the bridging interaction of the plasmid partitioning proteins (Rep1 and Rep2) with the yeast RSC2 complex and the plasmid partitioning locus STB. We substantiate this model by multiple lines of evidence derived from genomics, cell biology and interaction analyses. We describe a Rep-STB bypass system in which a plasmid engineered to non-covalently associate with the RSC complex mimics segregation by chromosome hitchhiking. Given the ubiquitous prevalence of SWI/SNF family chromatin remodeling complexes among eukaryotes, it is likely that the 2-micron plasmid paradigm or analogous ones will be encountered among other eukaryotic selfish elements.
Collapse
Affiliation(s)
- Chien-Hui Ma
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Deepanshu Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Makkuni Jayaram
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Santanu K. Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Vishwanath R. Iyer
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- Livestrong Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
25
|
Batty P, Langer CCH, Takács Z, Tang W, Blaukopf C, Peters J, Gerlich DW. Cohesin-mediated DNA loop extrusion resolves sister chromatids in G2 phase. EMBO J 2023; 42:e113475. [PMID: 37357575 PMCID: PMC10425840 DOI: 10.15252/embj.2023113475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023] Open
Abstract
Genetic information is stored in linear DNA molecules, which are highly folded inside cells. DNA replication along the folded template path yields two sister chromatids that initially occupy the same nuclear region in an intertwined arrangement. Dividing cells must disentangle and condense the sister chromatids into separate bodies such that a microtubule-based spindle can move them to opposite poles. While the spindle-mediated transport of sister chromatids has been studied in detail, the chromosome-intrinsic mechanics presegregating sister chromatids have remained elusive. Here, we show that human sister chromatids resolve extensively already during interphase, in a process dependent on the loop-extruding activity of cohesin, but not that of condensins. Increasing cohesin's looping capability increases sister DNA resolution in interphase nuclei to an extent normally seen only during mitosis, despite the presence of abundant arm cohesion. That cohesin can resolve sister chromatids so extensively in the absence of mitosis-specific activities indicates that DNA loop extrusion is a generic mechanism for segregating replicated genomes, shared across different Structural Maintenance of Chromosomes (SMC) protein complexes in all kingdoms of life.
Collapse
Affiliation(s)
- Paul Batty
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Christoph CH Langer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | - Zsuzsanna Takács
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | - Wen Tang
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
| | - Claudia Blaukopf
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | - Jan‐Michael Peters
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| |
Collapse
|
26
|
Santana-Sosa S, Matos-Perdomo E, Ayra-Plasencia J, Machín F. A Yeast Mitotic Tale for the Nucleus and the Vacuoles to Embrace. Int J Mol Sci 2023; 24:9829. [PMID: 37372977 DOI: 10.3390/ijms24129829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The morphology of the nucleus is roughly spherical in most eukaryotic cells. However, this organelle shape needs to change as the cell travels through narrow intercellular spaces during cell migration and during cell division in organisms that undergo closed mitosis, i.e., without dismantling the nuclear envelope, such as yeast. In addition, the nuclear morphology is often modified under stress and in pathological conditions, being a hallmark of cancer and senescent cells. Thus, understanding nuclear morphological dynamics is of uttermost importance, as pathways and proteins involved in nuclear shaping can be targeted in anticancer, antiaging, and antifungal therapies. Here, we review how and why the nuclear shape changes during mitotic blocks in yeast, introducing novel data that associate these changes with both the nucleolus and the vacuole. Altogether, these findings suggest a close relationship between the nucleolar domain of the nucleus and the autophagic organelle, which we also discuss here. Encouragingly, recent evidence in tumor cell lines has linked aberrant nuclear morphology to defects in lysosomal function.
Collapse
Affiliation(s)
- Silvia Santana-Sosa
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Emiliano Matos-Perdomo
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Jessel Ayra-Plasencia
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Félix Machín
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
- Faculty of Health Sciences, Fernando Pessoa Canarias University, 35450 Santa María de Guía, Spain
| |
Collapse
|
27
|
Haase MAB, Lazar-Stefanita L, Ólafsson G, Wudzinska A, Shen MJ, Truong DM, Boeke JD. Human macroH2A1 drives nucleosome dephasing and genome instability in histone-humanized yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.538725. [PMID: 37205538 PMCID: PMC10187286 DOI: 10.1101/2023.05.06.538725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In addition to replicative histones, eukaryotic genomes encode a repertoire of non-replicative variant histones providing additional layers of structural and epigenetic regulation. Here, we systematically replaced individual replicative human histones with non-replicative human variant histones using a histone replacement system in yeast. Variants H2A.J, TsH2B, and H3.5 complemented for their respective replicative counterparts. However, macroH2A1 failed to complement and its expression was toxic in yeast, negatively interacting with native yeast histones and kinetochore genes. To isolate yeast with "macroH2A1 chromatin" we decoupled the effects of its macro and histone fold domains, which revealed that both domains sufficed to override native yeast nucleosome positioning. Furthermore, both modified constructs of macroH2A1 exhibited lower nucleosome occupancy that correlated with decreased short-range chromatin interactions (<20 Kb), disrupted centromeric clustering, and increased chromosome instability. While supporting viability, macroH2A1 dramatically alters chromatin organization in yeast, leading to genome instability and massive fitness defects.
Collapse
Affiliation(s)
- Max A. B. Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 430 East 29th Street, New York, 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY, 10016, USA
| | - Luciana Lazar-Stefanita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 430 East 29th Street, New York, 10016, USA
| | - Guðjón Ólafsson
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 430 East 29th Street, New York, 10016, USA
| | - Aleksandra Wudzinska
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 430 East 29th Street, New York, 10016, USA
| | - Michael J. Shen
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 430 East 29th Street, New York, 10016, USA
| | - David M. Truong
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, 11201, USA
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D. Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 430 East 29th Street, New York, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, 11201, USA
| |
Collapse
|
28
|
Lazar-Stefanita L, Luo J, Haase MAB, Zhang W, Boeke JD. Two differentially stable rDNA loci coexist on the same chromosome and form a single nucleolus. Proc Natl Acad Sci U S A 2023; 120:e2219126120. [PMID: 36821584 PMCID: PMC9992848 DOI: 10.1073/pnas.2219126120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/20/2023] [Indexed: 02/24/2023] Open
Abstract
The nucleolus is the most prominent membraneless compartment within the nucleus-dedicated to the metabolism of ribosomal RNA. Nucleoli are composed of hundreds of ribosomal DNA (rDNA) repeated genes that form large chromosomal clusters, whose high recombination rates can cause nucleolar dysfunction and promote genome instability. Intriguingly, the evolving architecture of eukaryotic genomes appears to have favored two strategic rDNA locations-where a single locus per chromosome is situated either near the centromere (CEN) or the telomere. Here, we deployed an innovative genome engineering approach to cut and paste to an ectopic chromosomal location-the ~1.5 mega-base rDNA locus in a single step using CRISPR technology. This "megablock" rDNA engineering was performed in a fused-karyotype strain of Saccharomyces cerevisiae. The strategic repositioning of this locus within the megachromosome allowed experimentally mimicking and monitoring the outcome of an rDNA migratory event, in which twin rDNA loci coexist on the same chromosomal arm. We showed that the twin-rDNA yeast readily adapts, exhibiting wild-type growth and maintaining rRNA homeostasis, and that the twin loci form a single nucleolus throughout the cell cycle. Unexpectedly, the size of each rDNA array appears to depend on its position relative to the CEN, in that the locus that is CEN-distal undergoes size reduction at a higher frequency compared to the CEN-proximal counterpart. Finally, we provided molecular evidence supporting a mechanism called paralogous cis-rDNA interference, which potentially explains why placing two identical repeated arrays on the same chromosome may negatively affect their function and structural stability.
Collapse
Affiliation(s)
- Luciana Lazar-Stefanita
- Institute for Systems Genetics, NYU Langone Health, New York, NY10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY10016
| | - Jingchuan Luo
- Institute for Systems Genetics, NYU Langone Health, New York, NY10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY10016
| | - Max A. B. Haase
- Institute for Systems Genetics, NYU Langone Health, New York, NY10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY10016
- Vilcek Institute of Graduate Biomedical Sciences at NYU School of Medicine, New York, NY10016
| | - Weimin Zhang
- Institute for Systems Genetics, NYU Langone Health, New York, NY10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY10016
| | - Jef D. Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY10016
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY11201
| |
Collapse
|
29
|
Kakui Y, Barrington C, Kusano Y, Thadani R, Fallesen T, Hirota T, Uhlmann F. Chromosome arm length, and a species-specific determinant, define chromosome arm width. Cell Rep 2022; 41:111753. [PMID: 36476849 DOI: 10.1016/j.celrep.2022.111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/05/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Mitotic chromosomes in different organisms adopt various dimensions. What defines these dimensions is scarcely understood. Here, we compare mitotic chromosomes in budding and fission yeasts harboring similarly sized genomes distributed among 16 or 3 chromosomes, respectively. Hi-C analyses and superresolution microscopy reveal that budding yeast chromosomes are characterized by shorter-ranging mitotic chromatin contacts and are thinner compared with the thicker fission yeast chromosomes that contain longer-ranging mitotic contacts. These distinctions persist even after budding yeast chromosomes are fused to form three fission-yeast-length entities, revealing a species-specific organizing principle. Species-specific widths correlate with the known binding site intervals of the chromosomal condensin complex. Unexpectedly, within each species, we find that longer chromosome arms are always thicker and harbor longer-ranging contacts, a trend that we also observe with human chromosomes. Arm length as a chromosome width determinant informs mitotic chromosome formation models.
Collapse
Affiliation(s)
- Yasutaka Kakui
- Waseda Institute for Advanced Study, Waseda University, Tokyo 169-0051, Japan; Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences, Waseda University, Tokyo 162-8480, Japan; Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Christopher Barrington
- Bioinformatics & Biostatistics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Yoshiharu Kusano
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Rahul Thadani
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Todd Fallesen
- Advanced Light Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
30
|
Boutet I, Alves Monteiro HJ, Baudry L, Takeuchi T, Bonnivard E, Billoud B, Farhat S, Gonzales‐Araya R, Salaun B, Andersen AC, Toullec J, Lallier FH, Flot J, Guiglielmoni N, Guo X, Li C, Allam B, Pales‐Espinosa E, Hemmer‐Hansen J, Moreau P, Marbouty M, Koszul R, Tanguy A. Chromosomal assembly of the flat oyster ( Ostrea edulis L.) genome as a new genetic resource for aquaculture. Evol Appl 2022; 15:1730-1748. [PMID: 36426129 PMCID: PMC9679248 DOI: 10.1111/eva.13462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/01/2022] Open
Abstract
The European flat oyster (Ostrea edulis L.) is a native bivalve of the European coasts. Harvest of this species has declined during the last decades because of the appearance of two parasites that have led to the collapse of the stocks and the loss of the natural oyster beds. O. edulis has been the subject of numerous studies in population genetics and on the detection of the parasites Bonamia ostreae and Marteilia refringens. These studies investigated immune responses to these parasites at the molecular and cellular levels. Several genetic improvement programs have been initiated especially for parasite resistance. Within the framework of a European project (PERLE 2) that aims to produce genetic lines of O. edulis with hardiness traits (growth, survival, resistance) for the purpose of repopulating natural oyster beds in Brittany and reviving the culture of this species in the foreshore, obtaining a reference genome becomes essential as done recently in many bivalve species of aquaculture interest. Here, we present a chromosome-level genome assembly and annotation for the European flat oyster, generated by combining PacBio, Illumina, 10X linked, and Hi-C sequencing. The finished assembly is 887.2 Mb with a scaffold-N50 of 97.1 Mb scaffolded on the expected 10 pseudochromosomes. Annotation of the genome revealed the presence of 35,962 protein-coding genes. We analyzed in detail the transposable element (TE) diversity in the flat oyster genome, highlighted some specificities in tRNA and miRNA composition, and provided the first insight into the molecular response of O. edulis to M. refringens. This genome provides a reference for genomic studies on O. edulis to better understand its basic physiology and as a useful resource for genetic breeding in support of aquaculture and natural reef restoration.
Collapse
Affiliation(s)
- Isabelle Boutet
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | | | - Lyam Baudry
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Takeshi Takeuchi
- Marine Genomics UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Eric Bonnivard
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Bernard Billoud
- Sorbonne Université, CNRSUMR 8227, Station Biologique de RoscoffRoscoffFrance
| | - Sarah Farhat
- Marine Animal Disease Laboratory, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
| | | | - Benoit Salaun
- Centre Régional de la Conchyliculture Bretagne NordMorlaixFrance
| | - Ann C. Andersen
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Jean‐Yves Toullec
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - François H. Lallier
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Jean‐François Flot
- Evolutionary Biology and EcologyUniversité Libre de BruxellesBrusselsBelgium
| | - Nadège Guiglielmoni
- Evolutionary Biology and EcologyUniversité Libre de BruxellesBrusselsBelgium
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal SciencesRutgers UniversityPort NorrisNew JerseyUSA
| | - Cui Li
- Department of Marine Organism Taxonomy and Phylogeny, Institute of OceanologyChinese Academy of SciencesQingdaoChina
| | - Bassem Allam
- Marine Animal Disease Laboratory, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
| | - Emmanuelle Pales‐Espinosa
- Marine Animal Disease Laboratory, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
| | - Jakob Hemmer‐Hansen
- National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Pierrick Moreau
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Martial Marbouty
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Romain Koszul
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Arnaud Tanguy
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| |
Collapse
|
31
|
Matos-Perdomo E, Santana-Sosa S, Ayra-Plasencia J, Medina-Suárez S, Machín F. The vacuole shapes the nucleus and the ribosomal DNA loop during mitotic delays. Life Sci Alliance 2022; 5:5/10/e202101161. [PMID: 35961781 PMCID: PMC9375157 DOI: 10.26508/lsa.202101161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Chromosome structuring and condensation is one of the main features of mitosis. Here, Matos-Perdomo et al show how the nuclear envelope reshapes around the vacuole to give rise to the outstanding ribosomal DNA loop in budding yeast. The ribosomal DNA (rDNA) array of Saccharomyces cerevisiae has served as a model to address chromosome organization. In cells arrested before anaphase (mid-M), the rDNA acquires a highly structured chromosomal organization referred to as the rDNA loop, whose length can double the cell diameter. Previous works established that complexes such as condensin and cohesin are essential to attain this structure. Here, we report that the rDNA loop adopts distinct presentations that arise as spatial adaptations to changes in the nuclear morphology triggered during mid-M arrests. Interestingly, the formation of the rDNA loop results in the appearance of a space under the loop (SUL) which is devoid of nuclear components yet colocalizes with the vacuole. We show that the rDNA-associated nuclear envelope (NE) often reshapes into a ladle to accommodate the vacuole in the SUL, with the nucleus becoming bilobed and doughnut-shaped. Finally, we demonstrate that the formation of the rDNA loop and the SUL require TORC1, membrane synthesis and functional vacuoles, yet is independent of nucleus–vacuole junctions and rDNA-NE tethering.
Collapse
Affiliation(s)
- Emiliano Matos-Perdomo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Silvia Santana-Sosa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Jessel Ayra-Plasencia
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Sara Medina-Suárez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Félix Machín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain .,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Santa María de Guía, Spain
| |
Collapse
|
32
|
García Fernández F, Almayrac E, Carré Simon À, Batrin R, Khalil Y, Boissac M, Fabre E. Global chromatin mobility induced by a DSB is dictated by chromosomal conformation and defines the HR outcome. eLife 2022; 11:78015. [PMID: 36125964 PMCID: PMC9489209 DOI: 10.7554/elife.78015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/08/2022] [Indexed: 12/16/2022] Open
Abstract
Repair of DNA double-strand breaks (DSBs) is crucial for genome integrity. A conserved response to DSBs is an increase in chromatin mobility that can be local, at the site of the DSB, or global, at undamaged regions of the genome. Here, we address the function of global chromatin mobility during homologous recombination (HR) of a single, targeted, controlled DSB. We set up a system that tracks HR in vivo over time and show that two types of DSB-induced global chromatin mobility are involved in HR, depending on the position of the DSB. Close to the centromere, a DSB induces global mobility that depends solely on H2A(X) phosphorylation and accelerates repair kinetics, but is not essential. In contrast, the global mobility induced by a DSB away from the centromere becomes essential for HR repair and is triggered by homology search through a mechanism that depends on H2A(X) phosphorylation, checkpoint progression, and Rad51. Our data demonstrate that global mobility is governed by chromosomal conformation and differentially coordinates repair by HR.
Collapse
Affiliation(s)
| | - Etienne Almayrac
- Université de Paris, IRSL, INSERM, U944, CNRS, UMR7212, Paris, France
| | - Ànnia Carré Simon
- Université de Paris, IRSL, INSERM, U944, CNRS, UMR7212, Paris, France
| | - Renaud Batrin
- Université de Paris, IRSL, INSERM, U944, CNRS, UMR7212, Paris, France
| | - Yasmine Khalil
- Université de Paris, IRSL, INSERM, U944, CNRS, UMR7212, Paris, France
| | - Michel Boissac
- Université de Paris, IRSL, INSERM, U944, CNRS, UMR7212, Paris, France
| | - Emmanuelle Fabre
- Université de Paris, IRSL, INSERM, U944, CNRS, UMR7212, Paris, France
| |
Collapse
|
33
|
Lazar-Stefanita L, Luo J, Montagne R, Thierry A, Sun X, Mercy G, Mozziconacci J, Koszul R, Boeke JD. Karyotype engineering reveals spatio-temporal control of replication firing and gene contacts. CELL GENOMICS 2022; 2:None. [PMID: 35983101 PMCID: PMC9365758 DOI: 10.1016/j.xgen.2022.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/30/2022] [Accepted: 07/06/2022] [Indexed: 10/27/2022]
Abstract
Eukaryotic genomes vary in terms of size, chromosome number, and genetic complexity. Their temporal organization is complex, reflecting coordination between DNA folding and function. Here, we used fused karyotypes of budding yeast to characterize the effects of chromosome length on nuclear architecture. We found that size-matched megachromosomes expand to occupy a larger fraction of the enlarged nucleus. Hi-C maps reveal changes in the three-dimensional structure corresponding to inactivated centromeres and telomeres. De-clustering of inactive centromeres results in their loss of early replication, highlighting a functional correlation between genome organization and replication timing. Repositioning of former telomere-proximal regions on chromosome arms exposed a subset of contacts between flocculin genes. Chromatin reorganization of megachromosomes during cell division remained unperturbed, and it revealed that centromere-rDNA contacts in anaphase, extending over 0.3 Mb on wild-type chromosome, cannot exceed ∼1.7 Mb. Our results highlight the relevance of engineered karyotypes to unveiling relationships between genome organization and function.
Collapse
|
34
|
Shintomi K. Making Mitotic Chromosomes in a Test Tube. EPIGENOMES 2022; 6:20. [PMID: 35893016 PMCID: PMC9326633 DOI: 10.3390/epigenomes6030020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Mitotic chromosome assembly is an essential preparatory step for accurate transmission of the genome during cell division. During the past decades, biochemical approaches have uncovered the molecular basis of mitotic chromosomes. For example, by using cell-free assays of frog egg extracts, the condensin I complex central for the chromosome assembly process was first identified, and its functions have been intensively studied. A list of chromosome-associated proteins has been almost completed, and it is now possible to reconstitute structures resembling mitotic chromosomes with a limited number of purified factors. In this review, I introduce how far we have come in understanding the mechanism of chromosome assembly using cell-free assays and reconstitution assays, and I discuss their potential applications to solve open questions.
Collapse
Affiliation(s)
- Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN, Wako 351-0198, Saitama, Japan
| |
Collapse
|
35
|
Mirny L, Dekker J. Mechanisms of Chromosome Folding and Nuclear Organization: Their Interplay and Open Questions. Cold Spring Harb Perspect Biol 2022; 14:a040147. [PMID: 34518339 PMCID: PMC9248823 DOI: 10.1101/cshperspect.a040147] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Microscopy and genomic approaches provide detailed descriptions of the three-dimensional folding of chromosomes and nuclear organization. The fundamental question is how activity of molecules at the nanometer scale can lead to complex and orchestrated spatial organization at the scale of chromosomes and the whole nucleus. At least three key mechanisms can bridge across scales: (1) tethering of specific loci to nuclear landmarks leads to massive reorganization of the nucleus; (2) spatial compartmentalization of chromatin, which is driven by molecular affinities, results in spatial isolation of active and inactive chromatin; and (3) loop extrusion activity of SMC (structural maintenance of chromosome) complexes can explain many features of interphase chromatin folding and underlies key phenomena during mitosis. Interestingly, many features of chromosome organization ultimately result from collective action and the interplay between these mechanisms, and are further modulated by transcription and topological constraints. Finally, we highlight some outstanding questions that are critical for our understanding of nuclear organization and function. We believe many of these questions can be answered in the coming years.
Collapse
Affiliation(s)
- Leonid Mirny
- Institute for Medical Engineering and Science, and Department of Physics, MIT, Cambridge, Massachusetts 02139, USA
| | - Job Dekker
- Howard Hughes Medical Institute, and Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
36
|
Jeppsson K, Sakata T, Nakato R, Milanova S, Shirahige K, Björkegren C. Cohesin-dependent chromosome loop extrusion is limited by transcription and stalled replication forks. SCIENCE ADVANCES 2022; 8:eabn7063. [PMID: 35687682 PMCID: PMC9187231 DOI: 10.1126/sciadv.abn7063] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 12/15/2021] [Accepted: 04/27/2022] [Indexed: 05/31/2023]
Abstract
Genome function depends on regulated chromosome folding, and loop extrusion by the protein complex cohesin is essential for this multilayered organization. The chromosomal positioning of cohesin is controlled by transcription, and the complex also localizes to stalled replication forks. However, the role of transcription and replication in chromosome looping remains unclear. Here, we show that reduction of chromosome-bound RNA polymerase weakens normal cohesin loop extrusion boundaries, allowing cohesin to form new long-range chromosome cis interactions. Stress response genes induced by transcription inhibition are also shown to act as new loop extrusion boundaries. Furthermore, cohesin loop extrusion during early S phase is jointly controlled by transcription and replication units. Together, the results reveal that replication and transcription machineries are chromosome-folding regulators that block the progression of loop-extruding cohesin, opening for new perspectives on cohesin's roles in genome function and stability.
Collapse
Affiliation(s)
- Kristian Jeppsson
- Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83 Huddinge, Sweden
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden
- Institute for Quantitative Bioscience, Tokyo University, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Toyonori Sakata
- Institute for Quantitative Bioscience, Tokyo University, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Ryuichiro Nakato
- Institute for Quantitative Bioscience, Tokyo University, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Stefina Milanova
- Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83 Huddinge, Sweden
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden
| | - Katsuhiko Shirahige
- Institute for Quantitative Bioscience, Tokyo University, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Camilla Björkegren
- Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83 Huddinge, Sweden
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden
| |
Collapse
|
37
|
Bastié N, Chapard C, Dauban L, Gadal O, Beckouët F, Koszul R. Smc3 acetylation, Pds5 and Scc2 control the translocase activity that establishes cohesin-dependent chromatin loops. Nat Struct Mol Biol 2022; 29:575-585. [PMID: 35710835 DOI: 10.1038/s41594-022-00780-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/04/2022] [Indexed: 02/07/2023]
Abstract
Cohesin is a DNA translocase that is instrumental in the folding of the genome into chromatin loops, with functional consequences on DNA-related processes. Chromatin loop length and organization likely depend on cohesin processivity, translocation rate and stability on DNA. Here, we investigate and provide a comprehensive overview of the roles of various cohesin regulators in tuning chromatin loop expansion in budding yeast Saccharomyces cerevisiae. We demonstrate that Scc2, which stimulates cohesin ATPase activity, is also essential for cohesin translocation, driving loop expansion in vivo. Smc3 acetylation during the S phase counteracts this activity through the stabilization of Pds5, which finely tunes the size and stability of loops in G2.
Collapse
Affiliation(s)
- Nathalie Bastié
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christophe Chapard
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Lise Dauban
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Olivier Gadal
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Frédéric Beckouët
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Romain Koszul
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France.
| |
Collapse
|
38
|
Choi EH, Yoon S, Koh YE, Hong TK, Do JT, Lee BK, Hahn Y, Kim KP. Meiosis-specific cohesin complexes display essential and distinct roles in mitotic embryonic stem cell chromosomes. Genome Biol 2022; 23:70. [PMID: 35241136 PMCID: PMC8892811 DOI: 10.1186/s13059-022-02632-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cohesin is a chromosome-associated SMC-kleisin complex that mediates sister chromatid cohesion, recombination, and most chromosomal processes during mitosis and meiosis. However, it remains unclear whether meiosis-specific cohesin complexes are functionally active in mitotic chromosomes. RESULTS Through high-resolution 3D-structured illumination microscopy (3D-SIM) and functional analyses, we report multiple biological processes associated with the meiosis-specific cohesin components, α-kleisin REC8 and STAG3, and the distinct loss of function of meiotic cohesin during the cell cycle of embryonic stem cells (ESCs). First, we show that STAG3 is required for the efficient localization of REC8 to the nucleus by interacting with REC8. REC8-STAG3-containing cohesin regulates topological properties of chromosomes and maintains sister chromatid cohesion. Second, REC8-cohesin has additional sister chromatid cohesion roles in concert with mitotic RAD21-cohesin on ESC chromosomes. SIM imaging of REC8 and RAD21 co-staining revealed that the two types of α-kleisin subunits exhibited distinct loading patterns along ESC chromosomes. Third, knockdown of REC8 or RAD21-cohesin not only leads to higher rates of premature sister chromatid separation and delayed replication fork progression, which can cause proliferation and developmental defects, but also enhances chromosome compaction by hyperloading of retinoblastoma protein-condensin complexes from the prophase onward. CONCLUSIONS Our findings indicate that the delicate balance between mitotic and meiotic cohesins may regulate ESC-specific chromosomal organization and the mitotic program.
Collapse
Affiliation(s)
- Eui-Hwan Choi
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Seobin Yoon
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Young Eun Koh
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Tae Kyung Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, South Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, South Korea
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University of Albany-State University of New York, Rensselaer, NY, USA
| | - Yoonsoo Hahn
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Keun P Kim
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
39
|
Chemically Induced Chromosomal Interaction (CICI) method to study chromosome dynamics and its biological roles. Nat Commun 2022; 13:757. [PMID: 35140210 PMCID: PMC8828778 DOI: 10.1038/s41467-022-28416-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/14/2022] [Indexed: 01/01/2023] Open
Abstract
Numerous intra- and inter-chromosomal contacts have been mapped in eukaryotic genomes, but it remains challenging to link these 3D structures to their regulatory functions. To establish the causal relationships between chromosome conformation and genome functions, we develop a method, Chemically Induced Chromosomal Interaction (CICI), to selectively perturb the chromosome conformation at targeted loci. Using this method, long-distance chromosomal interactions can be induced dynamically between intra- or inter-chromosomal loci pairs, including the ones with very low Hi-C contact frequencies. Measurement of CICI formation time allows us to probe chromosome encounter dynamics between different loci pairs across the cell cycle. We also conduct two functional tests of CICI. We perturb the chromosome conformation near a DNA double-strand break and observe altered donor preference in homologous recombination; we force interactions between early and late-firing DNA replication origins and find no significant changes in replication timing. These results suggest that chromosome conformation plays a deterministic role in homology-directed DNA repair, but not in the establishment of replication timing. Overall, our study demonstrates that CICI is a powerful tool to study chromosome dynamics and 3D genome function. Methods to selectively manipulate specific long-distance chromosomal interactions are limited. Here the authors develop a method called Chemically Induced Chromosomal Interaction (CICI) to engineer interactions and demonstrate that 3D conformation plays a causal role in establishing donor DNA preference during DNA repair.
Collapse
|
40
|
Barton RE, Massari LF, Robertson D, Marston AL. Eco1-dependent cohesin acetylation anchors chromatin loops and cohesion to define functional meiotic chromosome domains. eLife 2022; 11:e74447. [PMID: 35103590 PMCID: PMC8856730 DOI: 10.7554/elife.74447] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cohesin organizes the genome by forming intra-chromosomal loops and inter-sister chromatid linkages. During gamete formation by meiosis, chromosomes are reshaped to support crossover recombination and two consecutive rounds of chromosome segregation. Here we show that meiotic chromosomes are organised into functional domains by Eco1 acetyltransferase-dependent positioning of both chromatin loops and sister chromatid cohesion in budding yeast. Eco1 acetylates the Smc3 cohesin subunit in meiotic S phase to establish chromatin boundaries, independently of DNA replication. Boundary formation by Eco1 is critical for prophase exit and for the maintenance of cohesion until meiosis II, but is independent of the ability of Eco1 to antagonize the cohesin-release factor, Wpl1. Conversely, prevention of cohesin release by Wpl1 is essential for centromeric cohesion, kinetochore monoorientation and co-segregation of sister chromatids in meiosis I. Our findings establish Eco1 as a key determinant of chromatin boundaries and cohesion positioning, revealing how local chromosome structuring directs genome transmission into gametes.
Collapse
Affiliation(s)
- Rachael E Barton
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, Michael Swann Building, Max Born CrescentEdinburghUnited Kingdom
| | - Lucia F Massari
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, Michael Swann Building, Max Born CrescentEdinburghUnited Kingdom
| | - Daniel Robertson
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, Michael Swann Building, Max Born CrescentEdinburghUnited Kingdom
| | - Adèle L Marston
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, Michael Swann Building, Max Born CrescentEdinburghUnited Kingdom
| |
Collapse
|
41
|
Carron L, Morlot JB, Lesne A, Mozziconacci J. The 3D Organization of Chromatin Colors in Mammalian Nuclei. Methods Mol Biol 2022; 2301:317-336. [PMID: 34415544 DOI: 10.1007/978-1-0716-1390-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While many computational methods have been proposed for 3D chromosome reconstruction from chromosomal contact maps, these methods are rarely used for the interpretation of such experimental data, in particular Hi-C data. We posit that this is due to the lack of an easy-to-use implementation of the proposed algorithms, as well as to the important computational cost of most methods. We here give a detailed implementation of the fast ShRec3D algorithm. We provide a tutorial that will enable the reader to reconstruct 3D consensus structures for human chromosomes and to decorate these structures with chromatin epigenetic states. We use this methodology to show that the bivalent chromatin, including Polycomb-rich domains, is spatially segregated and located in between the active and the quiescent chromatin compartments.
Collapse
Affiliation(s)
- Leopold Carron
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, Paris, France
- Sorbonne Université, CNRS, Laboratory of Computational and Quantitative Biology, Paris, France
| | - Jean-Baptiste Morlot
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, Paris, France
| | - Annick Lesne
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, Paris, France.
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| | - Julien Mozziconacci
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, Paris, France.
- Muséum National d'Histoire Naturelle, Structure et Instabilité des Genomes, Paris, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
42
|
Matthey-Doret C, Baudry L, Mortaza S, Moreau P, Koszul R, Cournac A. Normalization of Chromosome Contact Maps: Matrix Balancing and Visualization. Methods Mol Biol 2022; 2301:1-15. [PMID: 34415528 DOI: 10.1007/978-1-0716-1390-0_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Over the last decade, genomic proximity ligation approaches have reshaped our vision of chromosomes 3D organizations, from bacteria nucleoids to larger eukaryotic genomes. The different protocols (3Cseq, Hi-C, TCC, MicroC [XL], Hi-CO, etc.) rely on common steps (chemical fixation digestion, ligation…) to detect pairs of genomic positions in close proximity. The most common way to represent these data is a matrix, or contact map, which allows visualizing the different chromatin structures (compartments, loops, etc.) that can be associated to other signals such as transcription, protein occupancy, etc. as well as, in some instances, to biological functions.In this chapter we present and discuss the filtering of the events recovered in proximity ligation experiments as well as the application of the balancing normalization procedure on the resulting contact map. We also describe a computational tool for visualizing normalized contact data dubbed Scalogram.The different processes described here are illustrated and supported by the laboratory custom-made scripts pooled into "hicstuff," an open-access python package accessible on github ( https://github.com/koszullab/hicstuff ).
Collapse
Affiliation(s)
- Cyril Matthey-Doret
- Institut Pasteur, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Lyam Baudry
- Institut Pasteur, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Shogofa Mortaza
- Institut Pasteur, Unité Régulation Spatiale des Génomes, Paris, France
| | - Pierrick Moreau
- Institut Pasteur, Unité Régulation Spatiale des Génomes, Paris, France
| | - Romain Koszul
- Institut Pasteur, Unité Régulation Spatiale des Génomes, Paris, France
| | - Axel Cournac
- Institut Pasteur, Unité Régulation Spatiale des Génomes, Paris, France.
| |
Collapse
|
43
|
3D Genome Organization: Causes and Consequences for DNA Damage and Repair. Genes (Basel) 2021; 13:genes13010007. [PMID: 35052348 PMCID: PMC8775012 DOI: 10.3390/genes13010007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 01/02/2023] Open
Abstract
The inability to repair damaged DNA severely compromises the integrity of any organism. In eukaryotes, the DNA damage response (DDR) operates within chromatin, a tightly organized DNA–histone complex in a non-random manner within the nucleus. Chromatin thus orchestrates various cellular processes, including repair. Here, we examine the chromatin landscape before, during, and after the DNA damage, focusing on double strand breaks (DSBs). We study how chromatin is modified during the repair process, not only around the damaged region (in cis), but also genome-wide (in trans). Recent evidence has highlighted a complex landscape in which different chromatin parameters (stiffness, compaction, loops) are transiently modified, defining “codes” for each specific stage of the DDR. We illustrate a novel aspect of DDR where chromatin modifications contribute to the movement of DSB-damaged chromatin, as well as undamaged chromatin, ensuring the mobilization of DSBs, their clustering, and their repair processes.
Collapse
|
44
|
Chu WT, Yan Z, Chu X, Zheng X, Liu Z, Xu L, Zhang K, Wang J. Physics of biomolecular recognition and conformational dynamics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:126601. [PMID: 34753115 DOI: 10.1088/1361-6633/ac3800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Biomolecular recognition usually leads to the formation of binding complexes, often accompanied by large-scale conformational changes. This process is fundamental to biological functions at the molecular and cellular levels. Uncovering the physical mechanisms of biomolecular recognition and quantifying the key biomolecular interactions are vital to understand these functions. The recently developed energy landscape theory has been successful in quantifying recognition processes and revealing the underlying mechanisms. Recent studies have shown that in addition to affinity, specificity is also crucial for biomolecular recognition. The proposed physical concept of intrinsic specificity based on the underlying energy landscape theory provides a practical way to quantify the specificity. Optimization of affinity and specificity can be adopted as a principle to guide the evolution and design of molecular recognition. This approach can also be used in practice for drug discovery using multidimensional screening to identify lead compounds. The energy landscape topography of molecular recognition is important for revealing the underlying flexible binding or binding-folding mechanisms. In this review, we first introduce the energy landscape theory for molecular recognition and then address four critical issues related to biomolecular recognition and conformational dynamics: (1) specificity quantification of molecular recognition; (2) evolution and design in molecular recognition; (3) flexible molecular recognition; (4) chromosome structural dynamics. The results described here and the discussions of the insights gained from the energy landscape topography can provide valuable guidance for further computational and experimental investigations of biomolecular recognition and conformational dynamics.
Collapse
Affiliation(s)
- Wen-Ting Chu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Zhiqiang Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Xiakun Chu
- Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, NY 11794, United States of America
| | - Xiliang Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Li Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Kun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jin Wang
- Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, NY 11794, United States of America
| |
Collapse
|
45
|
Jo H, Kim T, Chun Y, Jung I, Lee D. A compendium of chromatin contact maps reflecting regulation by chromatin remodelers in budding yeast. Nat Commun 2021; 12:6380. [PMID: 34737268 PMCID: PMC8569116 DOI: 10.1038/s41467-021-26629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/14/2021] [Indexed: 11/09/2022] Open
Abstract
We herein employ in situ Hi-C with an auxin-inducible degron (AID) system to examine the effect of chromatin remodeling on 3D genome organization in yeast. Eight selected ATP-dependent chromatin remodelers representing various subfamilies contribute to 3D genome organization differently. Among the studied remodelers, the temporary depletions of Chd1p, Swr1p, and Sth1p (a catalytic subunit of the Remodeling the Structure of Chromatin [RSC] complex) cause the most significant defects in intra-chromosomal contacts, and the regulatory roles of these three remodelers in 3D genome organization differ depending on the chromosomal context and cell cycle stage. Furthermore, even though Chd1p and Isw1p are known to share functional similarities/redundancies, their depletions lead to distinct effects on 3D structures. The RSC and cohesin complexes also differentially modulate 3D genome organization within chromosome arm regions, whereas RSC appears to support the function of cohesin in centromeric clustering at G2 phase. Our work suggests that the ATP-dependent chromatin remodelers control the 3D genome organization of yeast through their chromatin-remodeling activities.
Collapse
Affiliation(s)
- Hyelim Jo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Taemook Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yujin Chun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
46
|
Piazza A, Bordelet H, Dumont A, Thierry A, Savocco J, Girard F, Koszul R. Cohesin regulates homology search during recombinational DNA repair. Nat Cell Biol 2021; 23:1176-1186. [PMID: 34750581 DOI: 10.1038/s41556-021-00783-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Homologous recombination repairs DNA double-strand breaks (DSB) using an intact dsDNA molecule as a template. It entails a homology search step, carried out along a conserved RecA/Rad51-ssDNA filament assembled on each DSB end. Whether, how and to what extent a DSB impacts chromatin folding, and how this (re)organization in turns influences the homology search process, remain ill-defined. Here we characterize two layers of spatial chromatin reorganization following DSB formation in Saccharomyces cerevisiae. Although cohesin folds chromosomes into cohesive arrays of ~20-kb-long chromatin loops as cells arrest in G2/M, the DSB-flanking regions interact locally in a resection- and 9-1-1 clamp-dependent manner, independently of cohesin, Mec1ATR, Rad52 and Rad51. This local structure blocks cohesin progression, constraining the DSB region at the base of a loop. Functionally, cohesin promotes DSB-dsDNA interactions and donor identification in cis, while inhibiting them in trans. This study identifies multiple direct and indirect ways by which cohesin regulates homology search during recombinational DNA repair.
Collapse
Affiliation(s)
- Aurèle Piazza
- Institut Pasteur, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015, Paris, France.
- Université de Lyon, ENS de Lyon, Université Claude Bernard, Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, INSERM U1210, 46 allée d'Italie, 69007, Lyon, France.
| | - Hélène Bordelet
- Institut Pasteur, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015, Paris, France
- Université de Lyon, ENS de Lyon, Université Claude Bernard, Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, INSERM U1210, 46 allée d'Italie, 69007, Lyon, France
| | - Agnès Dumont
- Université de Lyon, ENS de Lyon, Université Claude Bernard, Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, INSERM U1210, 46 allée d'Italie, 69007, Lyon, France
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015, Paris, France
| | - Jérôme Savocco
- Université de Lyon, ENS de Lyon, Université Claude Bernard, Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, INSERM U1210, 46 allée d'Italie, 69007, Lyon, France
| | - Fabien Girard
- Institut Pasteur, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015, Paris, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015, Paris, France.
| |
Collapse
|
47
|
Marti-Marimon M, Vialaneix N, Lahbib-Mansais Y, Zytnicki M, Camut S, Robelin D, Yerle-Bouissou M, Foissac S. Major Reorganization of Chromosome Conformation During Muscle Development in Pig. Front Genet 2021; 12:748239. [PMID: 34675966 PMCID: PMC8523936 DOI: 10.3389/fgene.2021.748239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
The spatial organization of the genome in the nucleus plays a crucial role in eukaryotic cell functions, yet little is known about chromatin structure variations during late fetal development in mammals. We performed in situ high-throughput chromosome conformation capture (Hi-C) sequencing of DNA from muscle samples of pig fetuses at two late stages of gestation. Comparative analysis of the resulting Hi-C interaction matrices between both groups showed widespread differences of different types. First, we discovered a complex landscape of stable and group-specific Topologically Associating Domains (TADs). Investigating the nuclear partition of the chromatin into transcriptionally active and inactive compartments, we observed a genome-wide fragmentation of these compartments between 90 and 110 days of gestation. Also, we identified and characterized the distribution of differential cis- and trans-pairwise interactions. In particular, trans-interactions at chromosome extremities revealed a mechanism of telomere clustering further confirmed by 3D Fluorescence in situ Hybridization (FISH). Altogether, we report major variations of the three-dimensional genome conformation during muscle development in pig, involving several levels of chromatin remodeling and structural regulation.
Collapse
Affiliation(s)
| | | | | | | | - Sylvie Camut
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - David Robelin
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | | | - Sylvain Foissac
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| |
Collapse
|
48
|
Simion P, Narayan J, Houtain A, Derzelle A, Baudry L, Nicolas E, Arora R, Cariou M, Cruaud C, Gaudray FR, Gilbert C, Guiglielmoni N, Hespeels B, Kozlowski DKL, Labadie K, Limasset A, Llirós M, Marbouty M, Terwagne M, Virgo J, Cordaux R, Danchin EGJ, Hallet B, Koszul R, Lenormand T, Flot JF, Van Doninck K. Chromosome-level genome assembly reveals homologous chromosomes and recombination in asexual rotifer Adineta vaga. SCIENCE ADVANCES 2021; 7:eabg4216. [PMID: 34613768 PMCID: PMC8494291 DOI: 10.1126/sciadv.abg4216] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Bdelloid rotifers are notorious as a speciose ancient clade comprising only asexual lineages. Thanks to their ability to repair highly fragmented DNA, most bdelloid species also withstand complete desiccation and ionizing radiation. Producing a well-assembled reference genome is a critical step to developing an understanding of the effects of long-term asexuality and DNA breakage on genome evolution. To this end, we present the first high-quality chromosome-level genome assemblies for the bdelloid Adineta vaga, composed of six pairs of homologous (diploid) chromosomes with a footprint of paleotetraploidy. The observed large-scale losses of heterozygosity are signatures of recombination between homologous chromosomes, either during mitotic DNA double-strand break repair or when resolving programmed DNA breaks during a modified meiosis. Dynamic subtelomeric regions harbor more structural diversity (e.g., chromosome rearrangements, transposable elements, and haplotypic divergence). Our results trigger the reappraisal of potential meiotic processes in bdelloid rotifers and help unravel the factors underlying their long-term asexual evolutionary success.
Collapse
Affiliation(s)
- Paul Simion
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
- Corresponding author. (K.V.D.); (J.-F.F.); (P.S.)
| | - Jitendra Narayan
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
| | - Antoine Houtain
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
| | - Alessandro Derzelle
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
| | - Lyam Baudry
- Institut Pasteur, Unité Régulation Spatiale des Génomes, UMR 3525, CNRS, Paris F-75015, France
- Collège Doctoral, Sorbonne Université, F-75005 Paris, France
| | - Emilien Nicolas
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
- Molecular Biology and Evolution, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - Rohan Arora
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
- Molecular Biology and Evolution, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - Marie Cariou
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | | | - Clément Gilbert
- Évolution, Génomes, Comportement et Écologie, Université Paris-Saclay, CNRS, IRD, UMR, 91198 Gif-sur-Yvette, France
| | - Nadège Guiglielmoni
- Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - Boris Hespeels
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
| | - Djampa K. L. Kozlowski
- INRAE, Université Côte-d’Azur, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis 06903, France
| | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Antoine Limasset
- Université de Lille, CNRS, UMR 9189 - CRIStAL, 59655 Villeneuve-d’Ascq, France
| | - Marc Llirós
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
- Institut d’Investigació Biomédica de Girona, Malalties Digestives i Microbiota, 17190 Salt, Spain
| | - Martial Marbouty
- Institut Pasteur, Unité Régulation Spatiale des Génomes, UMR 3525, CNRS, Paris F-75015, France
| | - Matthieu Terwagne
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
| | - Julie Virgo
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
| | - Richard Cordaux
- Ecologie et Biologie des interactions, Université de Poitiers, UMR CNRS 7267, 5 rue Albert Turpain, 86073 Poitiers, France
| | - Etienne G. J. Danchin
- INRAE, Université Côte-d’Azur, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis 06903, France
| | - Bernard Hallet
- LIBST, Université Catholique de Louvain (UCLouvain), Croix du Sud 4/5, Louvain-la-Neuve 1348, Belgium
| | - Romain Koszul
- Institut Pasteur, Unité Régulation Spatiale des Génomes, UMR 3525, CNRS, Paris F-75015, France
| | - Thomas Lenormand
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Jean-Francois Flot
- Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
- Interuniversity Institute of Bioinformatics in Brussels - (IB), Brussels 1050, Belgium
- Corresponding author. (K.V.D.); (J.-F.F.); (P.S.)
| | - Karine Van Doninck
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
- Molecular Biology and Evolution, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
- Corresponding author. (K.V.D.); (J.-F.F.); (P.S.)
| |
Collapse
|
49
|
Wu PS, Grosser J, Cameron DP, Baranello L, Ström L. Deficiency of Polη in Saccharomyces cerevisiae reveals the impact of transcription on damage-induced cohesion. PLoS Genet 2021; 17:e1009763. [PMID: 34499654 PMCID: PMC8454932 DOI: 10.1371/journal.pgen.1009763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/21/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
The structural maintenance of chromosome (SMC) complex cohesin mediates sister chromatid cohesion established during replication, and damage-induced cohesion formed in response to DSBs post-replication. The translesion synthesis polymerase Polη is required for damage-induced cohesion through a hitherto unknown mechanism. Since Polη is functionally associated with transcription, and transcription triggers de novo cohesion in Schizosaccharomyces pombe, we hypothesized that transcription facilitates damage-induced cohesion in Saccharomyces cerevisiae. Here, we show dysregulated transcriptional profiles in the Polη null mutant (rad30Δ), where genes involved in chromatin assembly and positive transcription regulation were downregulated. In addition, chromatin association of RNA polymerase II was reduced at promoters and coding regions in rad30Δ compared to WT cells, while occupancy of the H2A.Z variant (Htz1) at promoters was increased in rad30Δ cells. Perturbing histone exchange at promoters inactivated damage-induced cohesion, similarly to deletion of the RAD30 gene. Conversely, altering regulation of transcription elongation suppressed the deficient damage-induced cohesion in rad30Δ cells. Furthermore, transcription inhibition negatively affected formation of damage-induced cohesion. These results indicate that the transcriptional deregulation of the Polη null mutant is connected with its reduced capacity to establish damage-induced cohesion. This also suggests a linkage between regulation of transcription and formation of damage-induced cohesion after replication.
Collapse
Affiliation(s)
- Pei-Shang Wu
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Jan Grosser
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Donald P. Cameron
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Laura Baranello
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Lena Ström
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| |
Collapse
|
50
|
Murakami H, Mu X, Keeney S. How do small chromosomes know they are small? Maximizing meiotic break formation on the shortest yeast chromosomes. Curr Genet 2021; 67:431-437. [PMID: 33604699 PMCID: PMC8141002 DOI: 10.1007/s00294-021-01160-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
The programmed formation of DNA double-strand breaks (DSBs) in meiotic prophase I initiates the homologous recombination process that yields crossovers between homologous chromosomes, a prerequisite to accurately segregating chromosomes during meiosis I (MI). In the budding yeast Saccharomyces cerevisiae, proteins required for meiotic DSB formation (DSB proteins) accumulate to higher levels specifically on short chromosomes to ensure that these chromosomes make DSBs. We previously demonstrated that as-yet undefined cis-acting elements preferentially recruit DSB proteins and promote higher levels of DSBs and recombination and that these intrinsic features are subject to selection pressure to maintain the hyperrecombinogenic properties of short chromosomes. Thus, this targeted boosting of DSB protein binding may be an evolutionarily recurrent strategy to mitigate the risk of meiotic mis-segregation caused by karyotypic constraints. However, the underlining mechanisms are still elusive. Here, we discuss possible scenarios in which components of the meiotic chromosome axis (Red1 and Hop1) bind to intrinsic features independent of the meiosis-specific cohesin subunit Rec8 and DNA replication, promoting preferential binding of DSB proteins to short chromosomes. We also propose a model where chromosome position in the nucleus, influenced by centromeres, promotes the short-chromosome boost of DSB proteins.
Collapse
Affiliation(s)
- Hajime Murakami
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Xiaojing Mu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Graduate School of Medical Sciences, Cornell University, New York, NY, 10021, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Weill Graduate School of Medical Sciences, Cornell University, New York, NY, 10021, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|