1
|
Maity A, Maidantchik VD, Weidenfeld K, Larisch S, Barkan D, Haick H. Chemical Tomography of Cancer Organoids and Cyto-Proteo-Genomic Development Stages Through Chemical Communication Signals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413017. [PMID: 39935131 PMCID: PMC11938034 DOI: 10.1002/adma.202413017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/13/2024] [Indexed: 02/13/2025]
Abstract
Organoids mimic human organ function, offering insights into development and disease. However, non-destructive, real-time monitoring is lacking, as traditional methods are often costly, destructive, and low-throughput. In this article, a non-destructive chemical tomographic strategy is presented for decoding cyto-proteo-genomics of organoid using volatile signaling molecules, hereby, Volatile Organic Compounds (VOCs), to indicate metabolic activity and development of organoids. Combining a hierarchical design of graphene-based sensor arrays with AI-driven analysis, this method maps VOC spatiotemporal distribution and generate detailed digital profiles of organoid morphology and proteo-genomic features. Lens- and label-free, it avoids phototoxicity, distortion, and environmental disruption. Results from testing organoids with the reported chemical tomography approach demonstrate effective differentiation between cyto-proteo-genomic profiles of normal and diseased states, particularly during dynamic transitions such as epithelial-mesenchymal transition (EMT). Additionally, the reported approach identifies key VOC-related biochemical pathways, metabolic markers, and pathways associated with cancerous transformations such as aromatic acid degradation and lipid metabolism. This real-time, non-destructive approach captures subtle genetic and structural variations with high sensitivity and specificity, providing a robust platform for multi-omics integration and advancing cancer biomarker discovery.
Collapse
Affiliation(s)
- Arnab Maity
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Vivian Darsa Maidantchik
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Keren Weidenfeld
- Department of Human Biology and Medical SciencesUniversity of HaifaHaifa3498838Israel
| | - Sarit Larisch
- Department of Human Biology and Medical SciencesUniversity of HaifaHaifa3498838Israel
| | - Dalit Barkan
- Department of Human Biology and Medical SciencesUniversity of HaifaHaifa3498838Israel
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
- Life Science Technology (LiST) GroupDanube Private UniversityFakultät Medizin/Zahnmedizin, Steiner Landstraße 124Krems‐Stein3500Austria
| |
Collapse
|
2
|
Ma Z, Huang X, Kuang J, Wang Q, Qin Y, Huang T, Liang Z, Li W, Fu Y, Li P, Fan Y, Zhai Z, Wang X, Ming J, Zhao C, Wang B, Pei D. Cpt1a Drives primed-to-naïve pluripotency transition through lipid remodeling. Commun Biol 2024; 7:1223. [PMID: 39349670 PMCID: PMC11442460 DOI: 10.1038/s42003-024-06874-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
Metabolism has been implicated in cell fate determination, particularly through epigenetic modifications. Similarly, lipid remodeling also plays a role in regulating cell fate. Here, we present comprehensive lipidomics analysis during BMP4-driven primed to naive pluripotency transition or BiPNT and demonstrate that lipid remodeling plays an essential role. We further identify Cpt1a as a rate-limiting factor in BiPNT, driving lipid remodeling and metabolic reprogramming while simultaneously increasing intracellular acetyl-CoA levels and enhancing H3K27ac at chromatin open sites. Perturbation of BiPNT by histone acetylation inhibitors suppresses lipid remodeling and pluripotency transition. Together, our study suggests that lipid remodeling promotes pluripotency transitions and further regulates cell fate decisions, implicating Cpt1a as a critical regulator between primed-naive cell fate control.
Collapse
Affiliation(s)
- Zhaoyi Ma
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xingnan Huang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Qiannan Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yue Qin
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Tao Huang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Zechuan Liang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wei Li
- Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Fu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Pengli Li
- Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yixin Fan
- Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziwei Zhai
- Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomin Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jin Ming
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Chengchen Zhao
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Hangzhou, China
| | - Bo Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Hangzhou, China
- Zhejiang University of Science and Technology School of Information and Electronic Engineering, Hangzhou, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Perez-Estrada JR, Tangeman JA, Proto-Newton M, Sanaka H, Smucker B, Del Rio-Tsonis K. Metabolic states influence chicken retinal pigment epithelium cell fate decisions. Development 2024; 151:dev202462. [PMID: 39120084 PMCID: PMC11708821 DOI: 10.1242/dev.202462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
During tissue regeneration, proliferation, dedifferentiation and reprogramming are necessary to restore lost structures. However, it is not fully understood how metabolism intersects with these processes. Chicken embryos can regenerate their retina through retinal pigment epithelium (RPE) reprogramming when treated with fibroblast factor 2 (FGF2). Using transcriptome profiling, we uncovered extensive regulation of gene sets pertaining to proliferation, neurogenesis and glycolysis throughout RPE-to-neural retina reprogramming. By manipulating cell media composition, we determined that glucose, glutamine or pyruvate are individually sufficient to support RPE reprogramming, identifying glycolysis as a requisite. Conversely, the activation of pyruvate dehydrogenase by inhibition of pyruvate dehydrogenase kinases, induces epithelial-to-mesenchymal transition, while simultaneously blocking the activation of neural retina fate. We also identified that epithelial-to-mesenchymal transition fate is partially driven by an oxidative environment. Our findings provide evidence that metabolism controls RPE cell fate decisions and provide insights into the metabolic state of RPE cells, which are prone to fate changes in regeneration and pathologies, such as proliferative vitreoretinopathy.
Collapse
Affiliation(s)
- J. Raúl Perez-Estrada
- Department of Biology, Miami University, Oxford, OH 45056, USA
- Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Jared A. Tangeman
- Department of Biology, Miami University, Oxford, OH 45056, USA
- Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | | | | | - Byran Smucker
- Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
- Department of Statistics, Miami University, Oxford, OH 45056, USA
| | - Katia Del Rio-Tsonis
- Department of Biology, Miami University, Oxford, OH 45056, USA
- Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
4
|
Xiong M, Li L, Wen L, Zhao A. Decidual stromal cell-derived exosomes deliver miR-22-5p_R-1 to suppress trophoblast metabolic switching from mitochondrial respiration to glycolysis by targeting PDK4 in unexplained recurrent spontaneous abortion. Placenta 2024; 153:1-21. [PMID: 38810540 DOI: 10.1016/j.placenta.2024.05.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/29/2024] [Accepted: 05/19/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Studies have shown that EMT (epithelial-mesenchymal transition) and energy metabolism influence each other, and it is unclear whether the trophoblast energy metabolism phenotype is dominated by glycolysis or mitochondrial respiration, and the relationship between trophoblast energy metabolism and EMT is still unclear. METHODS Exosomes were isolated from the DSC of URSA patients and their miRNA profile was characterized by miRNA sequencing. Wound healing assays and transwell assays were used to assess the invasion and migration ability of trophoblasts. Mitochondrial stress and glycolysis stress test were used to evaluate energy metabolism phenotype of trophoblast. Luciferase reporter assays, qRT-PCR and WB were conducted to uncover the underlying mechanism. Finally, animal experiments were employed to explore the effect of DSC-exos on embryo absorption in mice. RESULTS Our results showed that URSA-DSC-exos suppressed trophoblast EMT to reduce their migration and invasion, miR-22-5p_R-1 was the most upregulated miRNAs. URSA-DSC-exos can suppress trophoblast MGS (metabolic switch from mitochondrial respiration to glycolysis) and inhibit trophoblast migration and invasion by transferring miR-22-5p_R-1. Mechanistically, miR-22-5p_R-1 suppress trophoblast MGS and inhibit trophoblast EMT by directly suppressing PDK4 expression at the post-transcriptional level. Furthermore, in vivo experiment suggested that URSA-DSC-exos aggravated embryo absorption in mice. Clinically, PDK4 and EMT molecule were aberrant in villous of URSA patients, and negative correlations were found between miR-22-5p_R-1 and PDK4. DISCUSSION Our findings indicated that URSA-DSC-exos induced MGS obstacle playing an important role in intercellular communication between trophoblast and DSC, illuminating a novel mechanism in DSC regulation of trophoblasts and their role in URSA.
Collapse
Affiliation(s)
- Miao Xiong
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China; Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li Li
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Liping Wen
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Aimin Zhao
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China.
| |
Collapse
|
5
|
Thiery JP, Sheng G, Shu X, Runyan R. How studies in developmental epithelial-mesenchymal transition and mesenchymal-epithelial transition inspired new research paradigms in biomedicine. Development 2024; 151:dev200128. [PMID: 38300897 DOI: 10.1242/dev.200128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Epithelial-mesenchymal transition (EMT) and its reverse mechanism, mesenchymal-epithelial transition (MET), are evolutionarily conserved mechanisms initially identified in studies of early metazoan development. EMT may even have been established in choanoflagellates, the closest unicellular relative of Metazoa. These crucial morphological transitions operate during body plan formation and subsequently in organogenesis. These findings have prompted an increasing number of investigators in biomedicine to assess the importance of such mechanisms that drive epithelial cell plasticity in multiple diseases associated with congenital disabilities and fibrosis, and, most importantly, in the progression of carcinoma. EMT and MET also play crucial roles in regenerative medicine, notably by contributing epigenetic changes in somatic cells to initiate reprogramming into stem cells and their subsequent differentiation into distinct lineages.
Collapse
Affiliation(s)
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Xiaodong Shu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Raymond Runyan
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
6
|
Liang L, He M, Zhang Y, Wang C, Qin Z, Li Q, Yang T, Meng F, Zhou Y, Ge H, Song W, Chen S, Dong L, Ren Q, Li C, Guo L, Sun H, Zhang W, Pei D, Zheng H. Unraveling the 2,3-diketo-L-gulonic acid-dependent and -independent impacts of L-ascorbic acid on somatic cell reprogramming. Cell Biosci 2023; 13:218. [PMID: 38037169 PMCID: PMC10688016 DOI: 10.1186/s13578-023-01160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND L-ascorbic acid (Asc) plays a pivotal role in regulating various biological processes, including somatic cell reprogramming, through multiple pathways. However, it remains unclear whether Asc regulates reprogramming directly or functions through its metabolites. RESULTS Asc exhibited dual capabilities in promoting reprogramming through both 2,3-diketo-L-gulonic acid (DKG), a key metabolite during Asc degradation, dependent and independent routes. On the one hand, Asc facilitated reprogramming by promoting cell proliferation and inducing the conversion from pre-induced pluripotent stem cells (pre-iPSCs) to iPSCs through DKG-independent pathways. Additionally, Asc triggered mesenchymal-epithelial transition (MET) and activated glycolysis via DKG-dependent mechanisms. Notably, DKG alone activated a non-canonical tricarboxylic acid cycle characterized by increased succinate, fumarate, and malate. Consequently, this shift redirected oxidative phosphorylation toward glycolysis and induced MET. Moreover, owing to its antioxidant capabilities, Asc directly inhibited glycolysis, thereby preventing positive feedback between glycolysis and epithelial-mesenchymal transition, ultimately resulting in a higher level of MET. CONCLUSION These findings unveil the intricate functions of Asc in the context of reprogramming. This study sheds light on the DKG-dependent and -independent activities of Asc during reprogramming, offering novel insights that may extend the application of Asc to other biological processes.
Collapse
Affiliation(s)
- Lining Liang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Meiai He
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yixin Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenchen Wang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
| | - Zhaohui Qin
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- Guangzhou Laboratory, Guangzhou, China
| | - Tingting Yang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Fei Meng
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yusheng Zhou
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Haofei Ge
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Weining Song
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiyu Chen
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linna Dong
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiwen Ren
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changpeng Li
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
| | - Lin Guo
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
| | - Hao Sun
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
| | - Wei Zhang
- Guangzhou Laboratory, Guangzhou, China
| | - Duanqing Pei
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
| | - Hui Zheng
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Li X, Luo LL, Li RF, Chen CL, Sun M, Lin S. Pantothenate Kinase 4 Governs Lens Epithelial Fibrosis by Negatively Regulating Pyruvate Kinase M2-Related Glycolysis. Aging Dis 2023; 14:1834-1852. [PMID: 37196116 PMCID: PMC10529755 DOI: 10.14336/ad.2023.0216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/16/2023] [Indexed: 05/19/2023] Open
Abstract
Lens fibrosis is one of the leading causes of cataract in the elderly population. The primary energy substrate of the lens is glucose from the aqueous humor, and the transparency of mature lens epithelial cells (LECs) is dependent on glycolysis for ATP. Therefore, the deconstruction of reprogramming of glycolytic metabolism can contribute to further understanding of LEC epithelial-mesenchymal transition (EMT). In the present study, we found a novel pantothenate kinase 4 (PANK4)-related glycolytic mechanism that regulates LEC EMT. The PANK4 level was correlated with aging in cataract patients and mice. Loss of function of PANK4 significantly contributed to alleviating LEC EMT by upregulating pyruvate kinase M2 isozyme (PKM2), which was phosphorylated at Y105, thus switching oxidative phosphorylation to glycolysis. However, PKM2 regulation did not affect PANK4, demonstrating the downstream role of PKM2. Inhibition of PKM2 in Pank4-/- mice caused lens fibrosis, which supports the finding that the PANK4-PKM2 axis is required for LEC EMT. Glycolytic metabolism-governed hypoxia inducible factor (HIF) signaling is involved in PANK4-PKM2-related downstream signaling. However, HIF-1α elevation was independent of PKM2 (S37) but PKM2 (Y105) when PANK4 was deleted, which demonstrated that PKM2 and HIF-1α were not involved in a classic positive feedback loop. Collectively, these results indicate a PANK4-related glycolysis switch that may contribute to HIF-1 stabilization and PKM2 phosphorylation at Y105 and inhibit LEC EMT. The mechanism elucidation in our study may also shed light on fibrosis treatments for other organs.
Collapse
Affiliation(s)
- Xue Li
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China.
| | - Lin-Lin Luo
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China.
| | - Rui-Feng Li
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China.
| | - Chun-Lin Chen
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China.
| | - Min Sun
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China.
| | - Sen Lin
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
8
|
Perez-Estrada JR, Tangeman JA, Proto-Newton M, Sanaka H, Smucker B, Del Rio-Tsonis K. DISTINCT METABOLIC STATES DIRECT RETINAL PIGMENT EPITHELIUM CELL FATE DECISIONS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559631. [PMID: 37808829 PMCID: PMC10557760 DOI: 10.1101/2023.09.26.559631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
During tissue regeneration, proliferation, dedifferentiation, and reprogramming are necessary to restore lost structures. However, it is not fully understood how metabolism intersects with these processes. Chicken embryos can regenerate their retina through retinal pigment epithelium (RPE) reprogramming when treated with fibroblast factor 2 (FGF2). Using transcriptome profiling, we uncovered extensive regulation of gene sets pertaining to proliferation, neurogenesis, and glycolysis throughout RPE-to-neural retina reprogramming. By manipulating cell media composition, we determined that glucose, glutamine, or pyruvate are sufficient to support RPE reprogramming identifying glycolysis as a requisite. Conversely, the induction of oxidative metabolism by activation of pyruvate dehydrogenase induces Epithelial-to-mesenchymal transition (EMT), while simultaneously blocking the activation of neural retina fate. We also identify that EMT is partially driven by an oxidative environment. Our findings provide evidence that metabolism controls RPE cell fate decisions and provide insights into the metabolic state of RPE cells, which are prone to fate changes in regeneration and pathologies, such as proliferative vitreoretinopathy.
Collapse
|
9
|
Li Y, Yang T, Cheng Y, Hou J, Liu Z, Zhao Y, Chen S, Qin Z, Wang C, Song W, Ge H, Li C, Liang L, Guo L, Sun H, Wu L, Zheng H. Low glutaminase and glycolysis correlate with a high transdifferentiation efficiency in mouse cortex. Cell Prolif 2023; 56:e13422. [PMID: 36786003 PMCID: PMC10212695 DOI: 10.1111/cpr.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
Both exogenous transcriptional factors and chemical-defined medium can transdifferentiate astrocytes into functional neurons. However, the regional preference for such transdifferentiation has not been fully studied. A previously reported 5C medium was infused into the mouse cortex and striatum to determine the regional preference for transdifferentiation from astrocytes to neurons. The numbers of NeuN+ GFAP+ EdU+ cells (intermediates) and NeuN+ EdU+ cells (end products) were determined by immunofluorescence to explore the regional preference of transdifferentiation. In addition, to optimize the delivery of the transdifferentiation medium, three key growth factors, insulin, bFGF and transferrin, were loaded onto chitosan nanoparticles, mixed with gelatin methacryloyl and tested in animals with motor cortex injury. A higher transdifferentiation efficiency was identified in the mouse cortex. Differences in cellular respiration and the balance between glutaminase (Gls) and glutamine synthetase were confirmed to be key regulators. In addition, the sustained drug release system induced transdifferentiation of cortex astrocytes both in vivo and in vitro, and partially facilitated the behaviour recovery of mice with motor cortex injury. We also applied this method in pigs and obtained consistent results. In summary, low Gls and glycolysis can be used to predict high transdifferentiation efficiency, which may be useful to identify better indications for the current transdifferentiation system. In addition, the current drug delivery system has the potential to treat diseases related to cortex injuries.
Collapse
Affiliation(s)
- Yuan Li
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Tingting Yang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yingying Cheng
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Jinfei Hou
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- Department of Plastic SurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Zhaoming Liu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Yu Zhao
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Shiyu Chen
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhaohui Qin
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chenchen Wang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- Department of Plastic SurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Weining Song
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Haofei Ge
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Changpeng Li
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Lining Liang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Lin Guo
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Hao Sun
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Lin‐Ping Wu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hui Zheng
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
- Institutes for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| |
Collapse
|
10
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
11
|
Petrella G, Corsi F, Ciufolini G, Germini S, Capradossi F, Pelliccia A, Torino F, Ghibelli L, Cicero DO. Metabolic Reprogramming of Castration-Resistant Prostate Cancer Cells as a Response to Chemotherapy. Metabolites 2022; 13:metabo13010065. [PMID: 36676990 PMCID: PMC9865398 DOI: 10.3390/metabo13010065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Prostate cancer at the castration-resistant stage (CRPC) is a leading cause of death among men due to resistance to anticancer treatments, including chemotherapy. We set up an in vitro model of therapy-induced cancer repopulation and acquired cell resistance (CRAC) on etoposide-treated CRPC PC3 cells, witnessing therapy-induced epithelial-to-mesenchymal-transition (EMT) and chemoresistance among repopulating cells. Here, we explore the metabolic changes leading to chemo-induced CRAC, measuring the exchange rates cell/culture medium of 36 metabolites via Nuclear Magnetic Resonance spectroscopy. We studied the evolution of PC3 metabolism throughout recovery from etoposide, encompassing the degenerative, quiescent, and repopulating phases. We found that glycolysis is immediately shut off by etoposide, gradually recovering together with induction of EMT and repopulation. Instead, OXPHOS, already high in untreated PC3, is boosted by etoposide to decline afterward, though stably maintaining values higher than control. Notably, high levels of EMT, crucial in the acquisition of chemoresistance, coincide with a strong acceleration of metabolism, especially in the exchange of principal nutrients and their end products. These results provide novel information on the energy metabolism of cancer cells repopulating from cytotoxic drug treatment, paving the way for uncovering metabolic vulnerabilities to be possibly pharmacologically targeted and providing novel clinical options for CRPC.
Collapse
Affiliation(s)
- Greta Petrella
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-06-7259-4835
| | - Francesca Corsi
- Dipartimento di Biologia, Università di Roma “Tor Vergata”, 00133 Rome, Italy
| | - Giorgia Ciufolini
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, 00133 Rome, Italy
| | - Sveva Germini
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, 00133 Rome, Italy
| | | | - Andrea Pelliccia
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, 00133 Rome, Italy
- Dipartimento di Biologia, Università di Roma “Tor Vergata”, 00133 Rome, Italy
| | - Francesco Torino
- Dipartimento di Medicina dei Sistemi, Oncologia Medica, Università di Roma “Tor Vergata”, 00133 Rome, Italy
| | - Lina Ghibelli
- Dipartimento di Biologia, Università di Roma “Tor Vergata”, 00133 Rome, Italy
| | - Daniel Oscar Cicero
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
12
|
Metabolomic and Mitochondrial Fingerprinting of the Epithelial-to-Mesenchymal Transition (EMT) in Non-Tumorigenic and Tumorigenic Human Breast Cells. Cancers (Basel) 2022; 14:cancers14246214. [PMID: 36551699 PMCID: PMC9776482 DOI: 10.3390/cancers14246214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is key to tumor aggressiveness, therapy resistance, and immune escape in breast cancer. Because metabolic traits might be involved along the EMT continuum, we investigated whether human breast epithelial cells engineered to stably acquire a mesenchymal phenotype in non-tumorigenic and H-RasV12-driven tumorigenic backgrounds possess unique metabolic fingerprints. We profiled mitochondrial-cytosolic bioenergetic and one-carbon (1C) metabolites by metabolomic analysis, and then questioned the utilization of different mitochondrial substrates by EMT mitochondria and their sensitivity to mitochondria-centered inhibitors. "Upper" and "lower" glycolysis were the preferred glucose fluxes activated by EMT in non-tumorigenic and tumorigenic backgrounds, respectively. EMT in non-tumorigenic and tumorigenic backgrounds could be distinguished by the differential contribution of the homocysteine-methionine 1C cycle to the transsulfuration pathway. Both non-tumorigenic and tumorigenic EMT-activated cells showed elevated mitochondrial utilization of glycolysis end-products such as lactic acid, β-oxidation substrates including palmitoyl-carnitine, and tricarboxylic acid pathway substrates such as succinic acid. Notably, mitochondria in tumorigenic EMT cells distinctively exhibited a significant alteration in the electron flow intensity from succinate to mitochondrial complex III as they were highly refractory to the inhibitory effects of antimycin A and myxothiazol. Our results show that the bioenergetic/1C metabolic signature, the utilization rates of preferred mitochondrial substrates, and sensitivity to mitochondrial drugs significantly differs upon execution of EMT in non-tumorigenic and tumorigenic backgrounds, which could help to resolve the relationship between EMT, malignancy, and therapeutic resistance in breast cancer.
Collapse
|
13
|
Wen GM, Xu XY, Xia P. Metabolism in Cancer Stem Cells: Targets for Clinical Treatment. Cells 2022; 11:3790. [PMID: 36497050 PMCID: PMC9736883 DOI: 10.3390/cells11233790] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer stem cells (CSCs) have high tumorigenicity, high metastasis and high resistance to treatment. They are the key factors for the growth, metastasis and drug resistance of malignant tumors, and are also the important reason for the occurrence and recurrence of tumors. Metabolic reprogramming refers to the metabolic changes that occur when tumor cells provide sufficient energy and nutrients for themselves. Metabolic reprogramming plays an important role in regulating the growth and activity of cancer cells and cancer stem cells. In addition, the immune cells or stromal cells in the tumor microenvironment (TME) will change due to the metabolic reprogramming of cancer cells. Summarizing the characteristics and molecular mechanisms of metabolic reprogramming of cancer stem cells will provide new ideas for the comprehensive treatment of malignant tumors. In this review, we summarized the changes of the main metabolic pathways in cancer cells and cancer stem cells.
Collapse
Affiliation(s)
- Gui-Min Wen
- Department of Basic Nursing, College of Nursing, Jinzhou Medical University, Jinzhou 121001, China
| | - Xiao-Yan Xu
- College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Pu Xia
- Biological Anthropology Institute, College of Basic Medical Science, Jinzhou Medical University, Jinzhou 121001, China
| |
Collapse
|
14
|
Hou C, Ye Z, Yang S, Jiang Z, Wang J, Wang E. Lysine demethylase 1B (Kdm1b) enhances somatic reprogramming through inducing pluripotent gene expression and promoting cell proliferation. Exp Cell Res 2022; 420:113339. [PMID: 36075448 DOI: 10.1016/j.yexcr.2022.113339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
Lysine demethylase 1B (Kdm1b) is known as an epigenetic modifier with demethylase activity against H3K4 and H3K9 histones and plays an important role in tumor progression and tumor stem cell enrichment. In this study, we attempted to elucidate the role of Kdm1b in somatic cell reprogramming. We found that exogenous expression of Kdm1b in human dermal fibroblasts (HDFs) can influence the epigenetic modifications of histones. Subsequent analysis further suggests that the overexpression of Kdm1b can promote cell proliferation, reprogram metabolism and inhibit cell apoptosis. In addition, a series of multipotent factors including Sox2 and Nanog, and several epigenetic factors that may reduce epigenetic barriers were upregulated to varying degrees. More importantly, HDFs transfected with the combination of Oct4 (POU5F1), Sox2, Klf4 and c-Myc and Kdm1b (OSKMK) achieved higher reprogramming efficiency. Therefore, we suggest that Kdm1b is an important epigenetic factor associated with pluripotency.
Collapse
Affiliation(s)
- Cuicui Hou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; College of Chemistry, Jilin University, Changchun, Jilin, 130021, PR China
| | - Zhikai Ye
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Songqin Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Zhenlong Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China.
| | - Jin Wang
- Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, United States.
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; College of Chemistry, Jilin University, Changchun, Jilin, 130021, PR China.
| |
Collapse
|
15
|
Ye Z, Chen G, Hou C, Jiang Z, Wang E, Wang J. LMCD1 facilitates the induction of pluripotency via cell proliferation, metabolism, and epithelial-mesenchymal transition. Cell Biol Int 2022; 46:1409-1422. [PMID: 35842772 DOI: 10.1002/cbin.11858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/22/2022] [Accepted: 03/06/2022] [Indexed: 11/08/2022]
Abstract
Somatic cell reprogramming was achieved by lentivirus mediated overexpression of four transcription factors called OSKM: OCT3/4, SOX2, KLF4, and c-MYC but it was not very efficient. Here, we reported that the transcription factor, LMCD1 (LIM and cysteine rich domains 1) together with OSKM can induce reprogramming of human dermal fibroblasts into induced pluripotent stem cells (iPSCs) more efficiently than OSKM alone. At the same time, the number of iPSCs clones were reduced when we knocked down LMCD1. Further study showed that LMCD1 can enhance the cell proliferation, the glycolytic capability, the epithelial-mesenchymal transition (EMT), and reduce the epigenetic barrier by upregulating epigenetic factors (EZH2, WDR5, BMI1, and KDM2B) in the early stage of reprogramming, making the cells more accessible to gain pluripotency. Additional research suggested that LMCD1 can not only inhibit the developmental gene GATA6, but also promote multiple signaling pathways, such as AKT and glycolysis, which are closely related to reprogramming efficiency. Therefore, we identified the novel function of the transcription factor LMCD1, which reduces the barriers of the reprogramming from somatic to pluripotent cells in several ways in the early stage of reprogramming.
Collapse
Affiliation(s)
- Zhikai Ye
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Ge Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Cuicui Hou
- College of Chemistry, Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhenlong Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Jin Wang
- Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, New York, USA
| |
Collapse
|
16
|
Is my PET in my genes? Pediatr Nephrol 2022; 37:1175-1178. [PMID: 35079873 DOI: 10.1007/s00467-022-05452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
|
17
|
Zhang L, Wang L, Hu X, Hou M, Xiao Y, Xiang J, Xie J, Chen Z, Yang T, Nie Q, Fu J, Wang Y, Zheng S, Liu Y, Gan Y, Gao Q, Bai Y, Wang J, Qi R, Zou M, Ke Q, Zhu X, Gong L, Liu Y, Li DW. MYPT1/PP1-Mediated EZH2 Dephosphorylation at S21 Promotes Epithelial-Mesenchymal Transition in Fibrosis through Control of Multiple Families of Genes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105539. [PMID: 35293697 PMCID: PMC9108659 DOI: 10.1002/advs.202105539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Indexed: 05/25/2023]
Abstract
The methyltransferase EZH2 plays an important role in regulating chromatin conformation and gene transcription. Phosphorylation of EZH2 at S21 by AKT kinase suppresses its function. However, protein phosphatases responsible for the dephosphorylation of EZH2-S21 remain elusive. Here, it is demonstrated that EZH2 is highly expressed in the ocular lens, and AKT-EZH2 axis is important in TGFβ-induced epithelial-mesenchymal transition (EMT). More importantly, it is identified that MYPT1/PP1 dephosphorylates EZH2-S21 and thus modulates its functions. MYPT1 knockout accelerates EMT, but expression of the EZH2-S21A mutant suppresses EMT through control of multiple families of genes. Furthermore, the phosphorylation status and gene expression modulation of EZH2 are implicated in control of anterior subcapsular cataracts (ASC) in human and mouse eyes. Together, the results identify the specific phosphatase for EZH2-S21 and reveal EZH2 dephosphorylation control of several families of genes implicated in lens EMT and ASC pathogenesis. These results provide important novel information in EZH2 function and regulation.
Collapse
Affiliation(s)
- Lan Zhang
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Ling Wang
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Xue‐Bin Hu
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Min Hou
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Yuan Xiao
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Jia‐Wen Xiang
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Jie Xie
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Zhi‐Gang Chen
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Tian‐Heng Yang
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Qian Nie
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Jia‐Ling Fu
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Yan Wang
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Shu‐Yu Zheng
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Yun‐Fei Liu
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Yu‐Wen Gan
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Qian Gao
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Yue‐Yue Bai
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Jing‐Miao Wang
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Rui‐Li Qi
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Ming Zou
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Qin Ke
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Xing‐Fei Zhu
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Lili Gong
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Yizhi Liu
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - David Wan‐Cheng Li
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| |
Collapse
|
18
|
Molugu K, Battistini GA, Heaster TM, Rouw J, Guzman EC, Skala MC, Saha K. Label-Free Imaging to Track Reprogramming of Human Somatic Cells. GEN BIOTECHNOLOGY 2022; 1:176-191. [PMID: 35586336 PMCID: PMC9092522 DOI: 10.1089/genbio.2022.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/28/2022] [Indexed: 11/12/2022]
Abstract
The process of reprogramming patient samples to human-induced pluripotent stem cells (iPSCs) is stochastic, asynchronous, and inefficient, leading to a heterogeneous population of cells. In this study, we track the reprogramming status of patient-derived erythroid progenitor cells (EPCs) at the single-cell level during reprogramming with label-free live-cell imaging of cellular metabolism and nuclear morphometry to identify high-quality iPSCs. EPCs isolated from human peripheral blood of three donors were used for our proof-of-principle study. We found distinct patterns of autofluorescence lifetime for the reduced form of nicotinamide adenine dinucleotide (phosphate) and flavin adenine dinucleotide during reprogramming. Random forest models classified iPSCs with ∼95% accuracy, which enabled the successful isolation of iPSC lines from reprogramming cultures. Reprogramming trajectories resolved at the single-cell level indicated significant reprogramming heterogeneity along different branches of cell states. This combination of micropatterning, autofluorescence imaging, and machine learning provides a unique, real-time, and nondestructive method to assess the quality of iPSCs in a biomanufacturing process, which could have downstream impacts in regenerative medicine, cell/gene therapy, and disease modeling.
Collapse
Affiliation(s)
- Kaivalya Molugu
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA; Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; Madison, Wisconsin, USA
| | - Giovanni A. Battistini
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; Madison, Wisconsin, USA
| | - Tiffany M. Heaster
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Jacob Rouw
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and Madison, Wisconsin, USA
| | | | - Melissa C. Skala
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and Madison, Wisconsin, USA
| |
Collapse
|
19
|
Quantifying the Patterns of Metabolic Plasticity and Heterogeneity along the Epithelial–Hybrid–Mesenchymal Spectrum in Cancer. Biomolecules 2022; 12:biom12020297. [PMID: 35204797 PMCID: PMC8961667 DOI: 10.3390/biom12020297] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer metastasis is the leading cause of cancer-related mortality and the process of the epithelial-to-mesenchymal transition (EMT) is crucial for cancer metastasis. Both partial and complete EMT have been reported to influence the metabolic plasticity of cancer cells in terms of switching among the oxidative phosphorylation, fatty acid oxidation and glycolysis pathways. However, a comprehensive analysis of these major metabolic pathways and their associations with EMT across different cancers is lacking. Here, we analyse more than 180 cancer cell datasets and show the diverse associations of these metabolic pathways with the EMT status of cancer cells. Our bulk data analysis shows that EMT generally positively correlates with glycolysis but negatively with oxidative phosphorylation and fatty acid metabolism. These correlations are also consistent at the level of their molecular master regulators, namely AMPK and HIF1α. Yet, these associations are shown to not be universal. The analysis of single-cell data for EMT induction shows dynamic changes along the different axes of metabolic pathways, consistent with general trends seen in bulk samples. Further, assessing the association of EMT and metabolic activity with patient survival shows that a higher extent of EMT and glycolysis predicts a worse prognosis in many cancers. Together, our results reveal the underlying patterns of metabolic plasticity and heterogeneity as cancer cells traverse through the epithelial–hybrid–mesenchymal spectrum of states.
Collapse
|
20
|
Jiang Z, Generoso SF, Badia M, Payer B, Carey LB. A conserved expression signature predicts growth rate and reveals cell & lineage-specific differences. PLoS Comput Biol 2021; 17:e1009582. [PMID: 34762642 PMCID: PMC8610284 DOI: 10.1371/journal.pcbi.1009582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/23/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
Isogenic cells cultured together show heterogeneity in their proliferation rate. To determine the differences between fast and slow-proliferating cells, we developed a method to sort cells by proliferation rate, and performed RNA-seq on slow and fast proliferating subpopulations of pluripotent mouse embryonic stem cells (mESCs) and mouse fibroblasts. We found that slowly proliferating mESCs have a more naïve pluripotent character. We identified an evolutionarily conserved proliferation-correlated transcriptomic signature that is common to all eukaryotes: fast cells have higher expression of genes for protein synthesis and protein degradation. This signature accurately predicted growth rate in yeast and cancer cells, and identified lineage-specific proliferation dynamics during development, using C. elegans scRNA-seq data. In contrast, sorting by mitochondria membrane potential revealed a highly cell-type specific mitochondria-state related transcriptome. mESCs with hyperpolarized mitochondria are fast proliferating, while the opposite is true for fibroblasts. The mitochondrial electron transport chain inhibitor antimycin affected slow and fast subpopulations differently. While a major transcriptional-signature associated with cell-to-cell heterogeneity in proliferation is conserved, the metabolic and energetic dependency of cell proliferation is cell-type specific. By performing RNA sequencing on cells sorted by their proliferation rate, this study identifies a gene expression signature capable of predicting proliferation rates in diverse eukaryotic cell types and species. This signature, applied to single-cell RNA sequencing data from embryos of the roundworm C. elegans, reveals lineage-specific proliferation differences during development. In contrast to the universality of the proliferation signature, mitochondria and metabolism related genes show a high degree of cell-type specificity; mouse pluripotent stem cells (mESCs) and differentiated cells (fibroblasts) exhibit opposite relations between mitochondria state and proliferation. Furthermore, we identified a slow proliferating subpopulation of mESCs with higher expression of pluripotency genes. Finally, we show that fast and slow proliferating subpopulations are differentially sensitive to mitochondria inhibitory drugs in different cell types. Highlights:
A FACS-based method to determine the transcriptomes of fast and slow proliferating subpopulations. A universal proliferation-correlated transcriptional signature indicates high protein synthesis and degradation in fast proliferating cells across cell types and species. Applied to scRNA-seq, the expression signature predicts the global proliferation slowdown during C. elegans development. Mitochondria membrane potential predicts proliferation rate in a cell-type specific manner, with ETC complex III inhibitor having distinct effects on fibroblasts vs mESCs.
Collapse
Affiliation(s)
- Zhisheng Jiang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Serena F. Generoso
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Badia
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- * E-mail: (BP); (LBC)
| | - Lucas B. Carey
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- * E-mail: (BP); (LBC)
| |
Collapse
|
21
|
Mehrotra R, Stanaway IB, Jarvik GP, Lambie M, Morelle J, Perl J, Himmelfarb J, Heimburger O, Johnson DW, Imam TH, Robinson B, Stenvinkel P, Devuyst O, Davies SJ. A genome-wide association study suggests correlations of common genetic variants with peritoneal solute transfer rates in patients with kidney failure receiving peritoneal dialysis. Kidney Int 2021; 100:1101-1111. [PMID: 34197840 PMCID: PMC8545920 DOI: 10.1016/j.kint.2021.05.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/17/2022]
Abstract
Movement of solutes across the peritoneum allows for the use of peritoneal dialysis to treat kidney failure. However, there is a large inter-individual variability in the peritoneal solute transfer rate (PSTR). Here, we tested the hypothesis that common genetic variants are associated with variability in PSTR. Of the 3561 participants from 69 centers in six countries, 2850 with complete data were included in a genome-wide association study. PSTR was defined as the four-hour dialysate/plasma creatinine ratio from the first peritoneal equilibration test after starting PD. Heritability of PSTR was estimated using genomic-restricted maximum-likelihood analysis, and the association of PSTR with a genome-wide polygenic risk score was also tested. The mean four-hour dialysate/plasma creatinine ratio in participants was 0.70. In 2212 participants of European ancestry, no signal reached genome-wide significance but 23 single nucleotide variants at four loci demonstrated suggestive associations with PSTR. Meta-analysis of ancestry-stratified regressions in 2850 participants revealed five single-nucleotide variants at four loci with suggestive correlations with PSTR. Association across ancestry strata was consistent for rs28644184 at the KDM2B locus. The estimated heritability of PSTR was 19%, and a permuted model polygenic risk score was significantly associated with PSTR. Thus, this genome-wide association study of patients receiving peritoneal dialysis bolsters evidence for a genetic contribution to inter-individual variability in PSTR.
Collapse
Affiliation(s)
- Rajnish Mehrotra
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA.
| | - Ian B Stanaway
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Gail P Jarvik
- Department of Medicine (Medical Genetics), University of Washington, Seattle, Washington, USA; Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Mark Lambie
- School of Medicine, Faculty of Medicine and Health Sciences, Keele University, Keele, UK
| | - Johann Morelle
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Experimentale et Clinique, UClouvain, Brussels, Belgium
| | - Jeffrey Perl
- Division of Nephrology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Himmelfarb
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Olof Heimburger
- Division of Renal Medicine, Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Stockholm, Sweden
| | - David W Johnson
- Australasian Trials Network, University of Queensland, Brisbane, Australia
| | - Talha H Imam
- Department of Nephrology, Kaiser Permanente, Fontana, California, USA
| | - Bruce Robinson
- Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Stockholm, Sweden
| | - Olivier Devuyst
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Experimentale et Clinique, UClouvain, Brussels, Belgium
| | - Simon J Davies
- School of Medicine, Faculty of Medicine and Health Sciences, Keele University, Keele, UK
| |
Collapse
|
22
|
Ye Z, Li W, Jiang Z, Wang E, Wang J. An intermediate state in trans-differentiation with proliferation, metabolic, and epigenetic switching. iScience 2021; 24:103057. [PMID: 34541470 PMCID: PMC8441076 DOI: 10.1016/j.isci.2021.103057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/23/2021] [Accepted: 08/25/2021] [Indexed: 01/03/2023] Open
Abstract
Although TGF-β signaling can effectively activate fibroblasts to transform to myofibroblasts, the underlying mechanisms involved in the cell fate switching for trans-differentiation have not been fully elucidated. In this study, we found the evidence of an intermediate state in the process of trans-differentiation. In the early stage of trans-differentiation, cells enter the intermediate state first with multiple characteristics such as accelerating cell cycle, metabolic switching, enhanced anti-apoptotic ability, and pluripotency, which is very similar to the early stage of reprogramming. As the trans-differentiation continues, these characteristics get switched. Therefore, trans-differentiation appears to require the switching of cell proliferation ability, metabolic pathway, and “stemness” to complete the process. In this study, we can conclude that an intermediate state may be necessary with high pluripotency in trans-differentiation from fibroblasts to myofibroblasts. Only after passing the intermediate state, the trans-differentiation is finally completed and will not easily return to the original state. Smads and Akt/p38MAPK pathways play the key role in fibroblast transition There is a cell proliferation capability switching induced by TGF-β1 Metabolic reprogramming is required during trans-differentiation An intermediate state appeared with high pluripotency in trans-differentiation
Collapse
Affiliation(s)
- Zhikai Ye
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Wenbo Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Zhenlong Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Jin Wang
- Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook., Stony Brook, NY 11794-3400, USA
| |
Collapse
|
23
|
YAP and TAZ Mediators at the Crossroad between Metabolic and Cellular Reprogramming. Metabolites 2021; 11:metabo11030154. [PMID: 33800464 PMCID: PMC7999074 DOI: 10.3390/metabo11030154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cell reprogramming can either refer to a direct conversion of a specialized cell into another or to a reversal of a somatic cell into an induced pluripotent stem cell (iPSC). It implies a peculiar modification of the epigenetic asset and gene regulatory networks needed for a new cell, to better fit the new phenotype of the incoming cell type. Cellular reprogramming also implies a metabolic rearrangement, similar to that observed upon tumorigenesis, with a transition from oxidative phosphorylation to aerobic glycolysis. The induction of a reprogramming process requires a nexus of signaling pathways, mixing a range of local and systemic information, and accumulating evidence points to the crucial role exerted by the Hippo pathway components Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ). In this review, we will first provide a synopsis of the Hippo pathway and its function during reprogramming and tissue regeneration, then we introduce the latest knowledge on the interplay between YAP/TAZ and metabolism and, finally, we discuss the possible role of YAP/TAZ in the orchestration of the metabolic switch upon cellular reprogramming.
Collapse
|
24
|
Sun J, Yang J, Miao X, Loh HH, Pei D, Zheng H. Proteins in DNA methylation and their role in neural stem cell proliferation and differentiation. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:7. [PMID: 33649938 PMCID: PMC7921253 DOI: 10.1186/s13619-020-00070-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/25/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Epigenetic modifications, namely non-coding RNAs, DNA methylation, and histone modifications such as methylation, phosphorylation, acetylation, ubiquitylation, and sumoylation play a significant role in brain development. DNA methyltransferases, methyl-CpG binding proteins, and ten-eleven translocation proteins facilitate the maintenance, interpretation, and removal of DNA methylation, respectively. Different forms of methylation, including 5-methylcytosine, 5-hydroxymethylcytosine, and other oxidized forms, have been detected by recently developed sequencing technologies. Emerging evidence suggests that the diversity of DNA methylation patterns in the brain plays a key role in fine-tuning and coordinating gene expression in the development, plasticity, and disorders of the mammalian central nervous system. Neural stem cells (NSCs), originating from the neuroepithelium, generate neurons and glial cells in the central nervous system and contribute to brain plasticity in the adult mammalian brain. MAIN BODY Here, we summarized recent research in proteins responsible for the establishment, maintenance, interpretation, and removal of DNA methylation and those involved in the regulation of the proliferation and differentiation of NSCs. In addition, we discussed the interactions of chemicals with epigenetic pathways to regulate NSCs as well as the connections between proteins involved in DNA methylation and human diseases. CONCLUSION Understanding the interplay between DNA methylation and NSCs in a broad biological context can facilitate the related studies and reduce potential misunderstanding.
Collapse
Affiliation(s)
- Jiaqi Sun
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China.
| | - Junzheng Yang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China
| | - Xiaoli Miao
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China
| | - Horace H Loh
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China
| | - Duanqing Pei
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China.,CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China.,Institutes for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,School of Life Science, Westlake University, Hangzhou, 310024, China
| | - Hui Zheng
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China. .,CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China. .,Institutes for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
25
|
Wang Q, Xiong Y, Zhang S, Sui Y, Yu C, Liu P, Li H, Guo W, Gao Y, Przepiorski A, Davidson AJ, Guo M, Zhang X. The Dynamics of Metabolic Characterization in iPSC-Derived Kidney Organoid Differentiation via a Comparative Omics Approach. Front Genet 2021; 12:632810. [PMID: 33643392 PMCID: PMC7902935 DOI: 10.3389/fgene.2021.632810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022] Open
Abstract
The use of differentiating human induced pluripotent stem cells (hiPSCs) in mini-tissue organoids provides an invaluable resource for regenerative medicine applications, particularly in the field of disease modeling. However, most studies using a kidney organoid model, focused solely on the transcriptomics and did not explore mechanisms of regulating kidney organoids related to metabolic effects and maturational phenotype. Here, we applied metabolomics coupled with transcriptomics to investigate the metabolic dynamics and function during kidney organoid differentiation. Not only did we validate the dominant metabolic alteration from glycolysis to oxidative phosphorylation in the iPSC differentiation process but we also showed that glycine, serine, and threonine metabolism had a regulatory role during kidney organoid formation and lineage maturation. Notably, serine had a role in regulating S-adenosylmethionine (SAM) to facilitate kidney organoid formation by altering DNA methylation. Our data revealed that analysis of metabolic characterization broadens our ability to understand phenotype regulation. The utilization of this comparative omics approach, in studying kidney organoid formation, can aid in deciphering unique knowledge about the biological and physiological processes involved in organoid-based disease modeling or drug screening.
Collapse
Affiliation(s)
- Qizheng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yucui Xiong
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Sheng Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yufei Sui
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Cunlai Yu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Peng Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Heying Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wenjing Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yubo Gao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Aneta Przepiorski
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Alan J. Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiao Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
26
|
Lai X, Li Q, Wu F, Lin J, Chen J, Zheng H, Guo L. Epithelial-Mesenchymal Transition and Metabolic Switching in Cancer: Lessons From Somatic Cell Reprogramming. Front Cell Dev Biol 2020; 8:760. [PMID: 32850862 PMCID: PMC7423833 DOI: 10.3389/fcell.2020.00760] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) and its critical roles during cancer progression have long been recognized and extensively reviewed. Recent studies on the generation of induced pluripotent stem cells (iPSCs) have established the connections among EMT, energy metabolism, DNA methylation, and histone modification. Since energy metabolism, DNA methylation, and histone modification are important for cancer development and there are common characteristics between cancer cells and stem cells, it is reasonable to identify mechanisms that have been established during both reprogramming and cancer progression. In the current review, we start from a brief review on EMT and related processes during cancer progression, and then switch to the EMT during somatic cell reprogramming. We summarize the connection between EMT and metabolic switch during reprogramming, and further review the involvements of DNA methylation and cell proliferation. The connections between EMT and mesenchymal-epithelial transition (MET) and cellular aspects including DNA methylation, histone modification and energy metabolism may provide potential new targets for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaowei Lai
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Fang Wu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jiechun Lin
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Hui Zheng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Lin Guo
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| |
Collapse
|
27
|
Sun H, Yang X, Liang L, Zhang M, Li Y, Chen J, Wang F, Yang T, Meng F, Lai X, Li C, He J, He M, Xu Q, Li Q, Lin L, Pei D, Zheng H. Metabolic switch and epithelial-mesenchymal transition cooperate to regulate pluripotency. EMBO J 2020; 39:e102961. [PMID: 32090361 PMCID: PMC7156961 DOI: 10.15252/embj.2019102961] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
Both metabolic switch from oxidative phosphorylation to glycolysis (OGS) and epithelial-mesenchymal transition (EMT) promote cellular reprogramming at early stages. However, their connections have not been elucidated. Here, when a chemically defined medium was used to induce early EMT during mouse reprogramming, a facilitated OGS was also observed at the same time. Additional investigations suggested that the two events formed a positive feedback loop via transcriptional activation, cooperated to upregulate epigenetic factors such as Bmi1, Ctcf, Ezh2, Kdm2b, and Wdr5, and accelerated pluripotency induction at the early stage. However, at late stages, by over-inducing glycolysis and preventing the necessary mesenchymal-epithelial transition, the two events trapped the cells at a new pluripotency state between naïve and primed states and inhibited further reprogramming toward the naïve state. In addition, the pluripotent stem cells at the new state have high similarity to epiblasts from E4.5 and E5.5 embryos, and have distinct characteristics from the previously reported epiblast-like or formative states. Therefore, the time-dependent cooperation between OGS and EMT in regulating pluripotency should extend our understanding of related fields.
Collapse
|