1
|
Elahi R, Mesones Mancilla S, Sievert ML, Ribeiro Dinis L, Adewale-Fasoro O, Mann A, Zur Y, Prigge ST. Decoding the Minimal Translation System of the Plasmodium falciparum Apicoplast: Essential tRNA-modifying Enzymes and Their Roles in Organelle Maintenance. J Mol Biol 2025:169156. [PMID: 40335414 DOI: 10.1016/j.jmb.2025.169156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
Post-transcriptional tRNA modifications are essential for accurate and efficient protein translation across all organisms. The apicoplast organelle genome of Plasmodium falciparum contains a minimal set of 25 complete tRNA isotypes, making it an ideal model for studying minimal translational machinery. Efficient decoding of mRNA codons by this limited tRNA set depends on post-transcriptional modifications. In this study, we sought to define the minimal set of tRNA-modifying enzymes. Using comparative genomics and apicoplast protein localization prediction tools, we identified 16 nucleus-encoded tRNA-modifying enzymes predicted to localize to the apicoplast. Experimental studies confirmed apicoplast localization for 14 enzymes, including two with dual localization. Combining an apicoplast metabolic bypass parasite line with gene disruption tools, we disrupted 12 of the 14 apicoplast-localized enzymes. Six of these enzymes were found to be essential for parasite survival, and six were dispensable. All six essential enzymes are thought to catalyze modifications in the anticodon loop of tRNAs, and their deletions resulted in apicoplast disruption. Of the two genes refractory to deletion, one exhibited dual localization, suggesting essential functions outside the apicoplast. The other, which appears to localize solely to the apicoplast, may play an indispensable role that is not circumvented by our metabolic bypass. Our findings suggest the apicoplast translation system relies on a minimal set of tRNA modifications concentrated in the anticodon loop. This work advances our understanding of minimal translational machinery in reduced organelles, such as the apicoplast, with promising applications in synthetic biology.
Collapse
Affiliation(s)
- Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| | - Sebastian Mesones Mancilla
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| | - Montana L Sievert
- Johns Hopkins Malaria Research Institute, Baltimore, MD, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Luciana Ribeiro Dinis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| | - Opeoluwa Adewale-Fasoro
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| | - Alexis Mann
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| | - Yonatan Zur
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Johns Hopkins Malaria Research Institute, Baltimore, MD, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
2
|
Elahi R, Prigge ST. tRNA lysidinylation is essential for the minimal translation system in the Plasmodium falciparum apicoplast. EMBO Rep 2025:10.1038/s44319-025-00420-w. [PMID: 40113990 DOI: 10.1038/s44319-025-00420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
For decades, researchers have sought to define minimal translation systems to uncover fundamental principles of life and advance biotechnology. tRNAs, essential components of this machinery, decode mRNA codons into amino acids. The apicoplast of malaria parasites contains 25 tRNA isotypes in its organellar genome-the lowest number found in known translation systems. Efficient translation in such minimal systems depends heavily on post-transcriptional tRNA modifications. One such modification, lysidine at the wobble position (C34) of tRNACAU, distinguishes between methionine (AUG) and isoleucine (AUA) codons. tRNA isoleucine lysidine synthetase (TilS) produces lysidine, which is nearly ubiquitous in bacteria and essential for cellular viability. Here, we report a TilS ortholog (PfTilS) targeted to the apicoplast of Plasmodium falciparum. We demonstrate that PfTilS activity is essential for parasite survival and apicoplast function, likely due to its role in protein translation. This study is the first to characterize TilS in an endosymbiotic organelle, contributing to research on eukaryotic organelles and minimal translational systems. Moreover, the absence of lysidine in humans highlights a potential target for antimalarial strategies.
Collapse
Affiliation(s)
- Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA.
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA.
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| |
Collapse
|
3
|
Xu W, Nwankwo I, Prigge ST, Ke H. Inheritance of the genome-less apicoplast in the "apicoplast-minus" Plasmodium falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.05.641705. [PMID: 40093041 PMCID: PMC11908255 DOI: 10.1101/2025.03.05.641705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Most apicomplexan parasites contain a plastid-derived organelle called the apicoplast, which originated through secondary endosymbiosis. As a result of this evolutionary trajectory, the non-photosynthetic apicoplast is surrounded by four membranes and contains many bacterial-like, druggable targets. It is widely accepted that asexual malaria parasites (Plasmodium falciparum) can thrive under antibiotic treatment if supplemented with high concentrations of isopentenyl pyrophosphate (IPP, 200 μM) and these IPP-rescued parasites are thought to lack the apicoplast and its 35 kb genome but possess many vesicles. However, our findings challenge this apicoplast-minus concept. In late-stage schizonts, we observed that the apicoplast-derived vesicles nearly colocalize with mitochondria and are properly distributed into merozoites during schizogony, suggesting that they are inherited rather than newly synthesized in each asexual cycle. Further, immuno-electron microscopy (immuno-EM) revealed that the "apicoplast-minus" parasites possess structures surrounded by four membranes, in addition to single-membrane-surrounded entities. The presence of four-membrane-bound structures suggests that the apicoplast has not truly disappeared in the "apicoplast-minus" P. falciparum but remains in a distinct, diminished form. We termed this genome-less apicoplast derivative the apicosome, drawing an analogy to the genome-less mitochondrial derivative known as the mitosome. We propose that apicosomes retain essential biochemical and/or structural functions, which act as barriers to the complete loss of apicoplast when the parasites face antibiotic stress and IPP rescue.
Collapse
Affiliation(s)
- Wei Xu
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA
| | - Ikechukwu Nwankwo
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA
| | - Sean T. Prigge
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Hangjun Ke
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA
| |
Collapse
|
4
|
Chen M, Koszti SG, Bonavoglia A, Maco B, von Rohr O, Peng HJ, Soldati-Favre D, Kloehn J. Dissecting apicoplast functions through continuous cultivation of Toxoplasma gondii devoid of the organelle. Nat Commun 2025; 16:2095. [PMID: 40025025 PMCID: PMC11873192 DOI: 10.1038/s41467-025-57302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
The apicoplast, a relic plastid organelle derived from secondary endosymbiosis, is crucial for many medically relevant Apicomplexa. While it no longer performs photosynthesis, the organelle retains several essential metabolic pathways. In this study, we examine the four primary metabolic pathways in the Toxoplasma gondii apicoplast, along with an accessory pathway, and identify conditions that can bypass these. Contrary to the prevailing view that the apicoplast is indispensable for T. gondii, we demonstrate that bypassing all pathways renders the apicoplast non-essential. We further show that T. gondii lacking an apicoplast (T. gondii-Apico) can be maintained indefinitely in culture, establishing a unique model to study the functions of this organelle. Through comprehensive metabolomic, transcriptomic, and proteomic analyses of T. gondii-Apico we uncover significant adaptation mechanisms following loss of the organelle and identify numerous putative apicoplast proteins revealed by their decreased abundance in T. gondii-Apico. Moreover, T. gondii-Apico parasites exhibit reduced sensitivity to apicoplast targeting compounds, providing a valuable tool for discovering new drugs acting on the organelle. The capability to culture T. gondii without its plastid offers new avenues for exploring apicoplast biology and developing novel therapeutic strategies against apicomplexan parasites.
Collapse
Affiliation(s)
- Min Chen
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Szilamér Gyula Koszti
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Alessandro Bonavoglia
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Olivier von Rohr
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health; Key Laboratory of Infectious Diseases Research in South China (Ministry of Education), Southern Medical University, Guangzhou City, Guangdong Province, China.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Geneva, Switzerland.
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Geneva, Switzerland.
| |
Collapse
|
5
|
Morano AA, Xu W, Navarro FM, Shadija N, Dvorin JD, Ke H. The dynamin-related protein PfDyn2 is essential for both apicoplast and mitochondrial fission in Plasmodium falciparum. mBio 2025; 16:e0303624. [PMID: 39611847 PMCID: PMC11708027 DOI: 10.1128/mbio.03036-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
Dynamins, or dynamin-related proteins (DRPs), are large mechano-sensitive GTPases that mediate membrane dynamics or organellar fission/fusion events. Plasmodium falciparum encodes three dynamin-like proteins whose functions are poorly understood. Here, we demonstrate that one of these dynamin-related proteins, PfDyn2, is required to divide both the apicoplast and the mitochondrion, a striking divergence from the biology of related parasites. Using super-resolution and ultrastructure expansion microscopy (U-ExM), we show that PfDyn2 is expressed in dividing schizonts, and that it localizes to both the apicoplast and the mitochondrion. Our use of long-term, live-cell microscopy allows for the visualization of apicoplast and mitochondrial division in live parasites at super resolution for the first time, and demonstrates that in PfDyn2-deficient parasites, while the apicoplast and mitochondrion increase in size and complexity, they do not undergo fission. We also show that these organellar fission defects prevent successful individualization of the schizont mass and the formation of new daughter cells, or merozoites because the basal complex, the cytokinetic ring of Plasmodium, cannot fully contract in PfDyn2-deficient parasites, a phenotype secondary to physical blockage by undivided organelles occluding the ring. PfDyn2's singular role in mediating both apicoplast and mitochondrial fission has not been observed in other organisms possessing two endosymbiotic organelles, including other Apicomplexans, thus reflecting a unique, potentially exploitable method of organellar division in P. falciparum.IMPORTANCEPlasmodium falciparum remains a significant global pathogen, causing over 200 million infections and over 600,000 deaths per year. One significant obstacle to the control of malaria is increasing resistance to first-line artemisinin-based antimalarials. Another is a lack of basic knowledge about the cell biology of the parasite. Along with the mitochondrion, Plasmodium contains a second organelle descended from an endosymbiotic event, the apicoplast. Both organelles are common targets for antimalarials, but because many proteins involved in organellar fission are not conserved in Plasmodium, until now, the mechanisms underlying apicoplast and mitochondrial division have been unknown. In this study, we demonstrate that PfDyn2, a dynamin-related protein (DRP), is required for the division of both organelles. We also show that defects in organellar division hinder segmentation of the schizont and formation of invasive merozoites by preventing full contraction of the basal complex. By demonstrating its necessity for the proper division of both the apicoplast and the mitochondria, this study highlights PfDyn2 as a potential target for new antimalarials.
Collapse
Affiliation(s)
- Alexander A. Morano
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Wei Xu
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Francesca M. Navarro
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Neeta Shadija
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jeffrey D. Dvorin
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Hangjun Ke
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Elahi R, Dinis LR, Swift RP, Liu HB, Prigge ST. tRNA modifying enzymes MnmE and MnmG are essential for Plasmodium falciparum apicoplast maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.21.629855. [PMID: 39763917 PMCID: PMC11702754 DOI: 10.1101/2024.12.21.629855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The circular genome of the Plasmodium falciparum apicoplast contains a complete minimal set of tRNAs, positioning the apicoplast as an ideal model for studying the fundamental factors required for protein translation. Modifications at tRNA wobble base positions, such as xm5s2U, are critical for accurate protein translation. These modifications are ubiquitously found in tRNAs decoding two-family box codons ending in A or G in prokaryotes and in eukaryotic organelles. Here, we investigated the xm5s2U biosynthetic pathway in the apicoplast organelle of P. falciparum. Through comparative genomics, we identified orthologs of enzymes involved in this process: SufS, MnmA, MnmE, and MnmG. While SufS and MnmA were previously shown to catalyze s2U modifications, we now show that MnmE and MnmG are apicoplast-localized and contain features required for xm5s2U biosynthetic activity. Notably, we found that P. falciparum lacks orthologs of MnmC, MnmL, and MnmM, suggesting that the parasites contain a minimal xm5s2U biosynthetic pathway similar to that found in bacteria with reduced genomes. Deletion of either MnmE or MnmG resulted in apicoplast disruption and parasite death, mimicking the phenotype observed in ΔmnmA and ΔsufS parasites. Our data strongly support the presence and essentiality of xm5s2U modifications in apicoplast tRNAs. This study advances our understanding of the minimal requirements for protein translation in the apicoplast organelle.
Collapse
Affiliation(s)
- Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Luciana Ribeiro Dinis
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Russell P. Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Hans B. Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Chen X, Suo X, Zhu G, Shen B. The apicoplast biogenesis and metabolism: current progress and questions. Trends Parasitol 2024; 40:1144-1158. [PMID: 39567343 DOI: 10.1016/j.pt.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024]
Abstract
Many apicomplexan parasites have a chloroplast-derived apicoplast containing several metabolic pathways. Recent studies have greatly expanded our understanding of apicoplast biogenesis and metabolism while also raising new questions. Here, we review recent progress on the biological roles of individual metabolic pathways, focusing on two medically important parasites, Plasmodium spp. and Toxoplasma gondii. We highlight the similarities and differences in how similar apicoplast metabolic pathways are utilized to adapt to different parasitic lifestyles. The execution of apicoplast metabolic functions requires extensive interactions with other subcellular compartments, but the underlying mechanisms remain largely unknown. Apicoplast metabolic functions have historically been considered attractive drug targets, and a comprehensive understanding of their metabolic capacities and interactions with other organelles is essential to fully realize their potential.
Collapse
Affiliation(s)
- Xiaowei Chen
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guan Zhu
- State Key Laboratory for the Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA.
| | - Bang Shen
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
8
|
Rajaram K, Rangel GW, Munro JT, Nair SC, Llinás M, Prigge ST. MULTIPLE, REDUNDANT CARBOXYLIC ACID TRANSPORTERS SUPPORT MITOCHONDRIAL METABOLISM IN PLASMODIUM FALCIPARUM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.624872. [PMID: 39651245 PMCID: PMC11623635 DOI: 10.1101/2024.11.26.624872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The mitochondrion of the deadliest human malaria parasite, Plasmodium falciparum, is an essential source of cellular acetyl-CoA during the asexual blood-stage of the parasite life cycle. Blocking mitochondrial acetyl-CoA synthesis leads to a hypoacetylated proteome and parasite death. We previously determined that mitochondrial acetyl-CoA is primarily synthesized from glucose-derived pyruvate by α-ketoacid dehydrogenases. Here, we asked if inhibiting the import of glycolytic pyruvate across the mitochondrial inner membrane would affect acetyl-CoA production and, thus, could be a potential target for antimalarial drug development. We selected the two predicted mitochondrial pyruvate carrier proteins ( Pf MPC1 and Pf MPC2) for genetic knockout and isotopic metabolite tracing via HPLC-MS metabolomic analysis. Surprisingly, we observed that asexual blood-stage parasites could survive the loss of either or both Pf MPCs with only minor growth defects, despite a substantial reduction in the amount of glucose-derived isotopic labelling into acetyl-CoA. Furthermore, genetic deletion of two additional mitochondrial carboxylic acid transporters - DTC (di/tricarboxylic acid carrier) and YHM2 (a putative citrate/α-ketoglutarate carrier protein) - only mildly affected asexual blood-stage replication, even in the context of Pf MPC deficiency. Although we observed no added impact on the incorporation of glucose carbon into acetyl-CoA in these quadruple knockout mutants, we noted a large decrease in glutamine-derived label in tricarboxylic acid cycle metabolites, suggesting that DTC and YHM2 both import glutamine derivatives into the mitochondrion. Altogether, our results expose redundant routes used to fuel the blood-stage malaria parasite mitochondrion with imported carbon from two major sources - glucose and glutamine. SIGNIFICANCE The mitochondrion of malaria parasites generates key molecules, such as acetyl-CoA, that are required for numerous cellular processes. To support mitochondrial biosynthetic pathways, the parasites must transport carbon sources into this organelle. By studying how the mitochondrion obtains pyruvate, a molecule derived from glucose, we have uncovered redundant carbon transport systems that ensure parasite survival in red blood cells. This metabolic redundancy poses a challenge for drug development, as it enables the parasite to adapt and survive by relying on alternative pathways when one is disrupted.
Collapse
|
9
|
Micchelli CE, Percopo C, Traver M, Brzostowski J, Amin SN, Prigge ST, Sá JM, Wellems TE. Progressive heterogeneity of enlarged and irregularly shaped apicoplasts in Plasmodium falciparum persister blood stages after drug treatment. PNAS NEXUS 2024; 3:pgae424. [PMID: 39381646 PMCID: PMC11460358 DOI: 10.1093/pnasnexus/pgae424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/14/2024] [Indexed: 10/10/2024]
Abstract
Morphological modifications and shifts in organelle relationships are hallmarks of dormancy in eukaryotic cells. Communications between altered mitochondria and nuclei are associated with metabolic quiescence of cancer cells that can survive chemotherapy. In plants, changes in the pathways between nuclei, mitochondria, and chloroplasts are associated with cold stress and bud dormancy. Plasmodium falciparum parasites, the deadliest agent of malaria in humans, contain a chloroplast-like organelle (apicoplast) derived from an ancient photosynthetic symbiont. Antimalarial treatments can fail because a fraction of the blood-stage parasites enter dormancy and recrudesce after drug exposure. Altered mitochondrial-nuclear interactions in these persisters have been described for P. falciparum, but interactions of the apicoplast remained to be characterized. In the present study, we examined the apicoplasts of persisters obtained after exposure to dihydroartemisinin (a first-line antimalarial drug) followed by sorbitol treatment, or after exposure to sorbitol treatment alone. As previously observed, the mitochondrion of persisters was consistently enlarged and in close association with the nucleus. In contrast, the apicoplast varied from compact and oblate, like those of active ring-stage parasites, to enlarged and irregularly shaped. Enlarged apicoplasts became more prevalent later in dormancy, but regular size apicoplasts subsequently predominated in actively replicating recrudescent parasites. All three organelles, nucleus, mitochondrion, and apicoplast, became closer during dormancy. Understanding their relationships in erythrocytic-stage persisters may lead to new strategies to prevent recrudescences and protect the future of malaria chemotherapy.
Collapse
Affiliation(s)
- Chiara E Micchelli
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caroline Percopo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Traver
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph Brzostowski
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuchi N Amin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sean T Prigge
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Tarumoto S, Inoue S, Yanagimoto R, Saitoh T. Monitoring of enzymatic cleavage reaction of GST-fusion protein on biolayer interferometry sensor. Biophys Physicobiol 2024; 21:e210019. [PMID: 39802746 PMCID: PMC11718170 DOI: 10.2142/biophysico.bppb-v21.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/13/2024] [Indexed: 01/16/2025] Open
Abstract
Biolayer interferometry (BLI) is an optical sensor-based analytical method primarily used for analyzing interactions between biomolecules. In this study, we explored the application of BLI to observe the cleavage reaction of glutathione S-transferase (GST)-tagged fusion protein by human rhinovirus (HRV) 3C protease on a BLI sensor as a new application of the BLI method. The soluble domain of the Tic22 protein from Plasmodium falciparum was expressed and purified as a GST-tagged fusion protein, GST-Tic22, in Escherichia coli. A cleavage sequence for HRV 3C protease was inserted between the GST tag and the soluble domain of Tic22. First, we confirmed that GST-Tic22 was specifically cleaved at the inserted sequence by HRV 3C protease using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Following this, GST-Tic22 was immobilized on a BLI sensor, and enzymatic cleavage by the HRV 3C protease was monitored. We observed that the soluble domain of Tic22 was cleaved and released into the buffer over time, and this reaction was dependent on the enzyme concentration. This result demonstrates that the BLI method can be used to evaluate the cleavage of the GST tag by the HRV 3C protease in real time under different conditions. This method enables a more efficient search for the optimal conditions for the tag cleavage reaction in fusion proteins, a process that has historically required a substantial amount of time and effort.
Collapse
Affiliation(s)
- Sena Tarumoto
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido 006-8585, Japan
| | - Sei Inoue
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido 006-8585, Japan
| | - Rina Yanagimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido 006-8585, Japan
| | - Takashi Saitoh
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido 006-8585, Japan
| |
Collapse
|
11
|
Elahi R, Prigge ST. tRNA lysidinylation is essential for the minimal translation system found in the apicoplast of Plasmodium falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612944. [PMID: 39314434 PMCID: PMC11419160 DOI: 10.1101/2024.09.13.612944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
For decades, researchers have sought to define minimal genomes to elucidate the fundamental principles of life and advance biotechnology. tRNAs, essential components of this machinery, decode mRNA codons into amino acids. The apicoplast of malaria parasites encodes 25 tRNA isotypes in its organellar genome - the lowest number found in known translation systems. Efficient translation in such minimal systems depends heavily on post-transcriptional tRNA modifications, especially at the wobble anticodon position. Lysidine modification at the wobble position (C34) of tRNACAU distinguishes between methionine (AUG) and isoleucine (AUA) codons, altering the amino acid delivered by this tRNA and ensuring accurate protein synthesis. Lysidine is formed by the enzyme tRNA isoleucine lysidine synthetase (TilS) and is nearly ubiquitous in bacteria and essential for cellular viability. We identified a TilS ortholog (PfTilS) located in the apicoplast of Plasmodium falciparum parasites. By complementing PfTilS with a bacterial ortholog, we demonstrated that the lysidinylation activity of PfTilS is critical for parasite survival and apicoplast maintenance, likely due to its impact on apicoplast protein translation. Our findings represent the first characterization of TilS in an endosymbiotic organelle, advancing eukaryotic organelle research and our understanding of minimal translational machinery. Due to the absence of lysidine modifications in humans, this research also exposes a potential vulnerability in malaria parasites that could be targeted by antimalarial strategies.
Collapse
Affiliation(s)
- Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Bulloch MS, Huynh LK, Kennedy K, Ralton JE, McConville MJ, Ralph SA. Apicoplast-derived isoprenoids are essential for biosynthesis of GPI protein anchors, and consequently for egress and invasion in Plasmodium falciparum. PLoS Pathog 2024; 20:e1012484. [PMID: 39241090 PMCID: PMC11414934 DOI: 10.1371/journal.ppat.1012484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/20/2024] [Accepted: 08/06/2024] [Indexed: 09/08/2024] Open
Abstract
Glycophosphatidylinositol (GPI) anchors are the predominant glycoconjugate in Plasmodium parasites, enabling modified proteins to associate with biological membranes. GPI biosynthesis commences with donation of a mannose residue held by dolichol-phosphate at the endoplasmic reticulum membrane. In Plasmodium dolichols are derived from isoprenoid precursors synthesised in the Plasmodium apicoplast, a relict plastid organelle of prokaryotic origin. We found that treatment of Plasmodium parasites with apicoplast inhibitors decreases the synthesis of isoprenoid and GPI intermediates resulting in GPI-anchored proteins becoming untethered from their normal membrane association. Even when other isoprenoids were chemically rescued, GPI depletion led to an arrest in schizont stage parasites, which had defects in segmentation and egress. In those daughter parasites (merozoites) that did form, proteins that would normally be GPI-anchored were mislocalised, and when these merozoites were artificially released they were able to attach to but not invade new red blood cells. Our data provides further evidence for the importance of GPI biosynthesis during the asexual cycle of P. falciparum, and indicates that GPI biosynthesis, and by extension egress and invasion, is dependent on isoprenoids synthesised in the apicoplast.
Collapse
Affiliation(s)
- Michaela S. Bulloch
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Long K. Huynh
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Kit Kennedy
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Julie E. Ralton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm J. McConville
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Micchelli CE, Percopo C, Traver M, Brzostowski J, Amin SN, Prigge ST, Sá JM, Wellems TE. Progressive heterogeneity of enlarged and irregularly shaped apicoplasts in P. falciparum persister blood stages after drug treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574077. [PMID: 38410435 PMCID: PMC10896342 DOI: 10.1101/2024.01.03.574077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Morphological modifications and shifts in organelle relationships are hallmarks of dormancy in eukaryotic cells. Communications between altered mitochondria and nuclei are associated with metabolic quiescence of cancer cells that can survive chemotherapy. In plants, changes in the pathways between nuclei, mitochondria, and chloroplasts are associated with cold stress and bud dormancy. Plasmodium falciparum parasites, the deadliest agent of malaria in humans, contain a chloroplast-like organelle (apicoplast) derived from an ancient photosynthetic symbiont. Antimalarial treatments can fail because a small fraction of the blood stage parasites enter dormancy and recrudesce after drug exposure. Altered mitochondrial-nuclear interactions in these persisters have been described for P. falciparum, but interactions of the apicoplast remained to be characterized. In the present study, we examined the apicoplasts of persisters obtained after exposure to dihydroartemisinin (a first-line antimalarial drug) followed by sorbitol treatment, or after exposure to sorbitol treatment alone. As previously observed, the mitochondrion of persisters was consistently enlarged and in close association with the nucleus. In contrast, the apicoplast varied from compact and oblate, like those of active ring stage parasites, to enlarged and irregularly shaped. Enlarged apicoplasts became more prevalent later in dormancy, but regular size apicoplasts subsequently predominated in actively replicating recrudescent parasites. All three organelles, nucleus, mitochondrion, and apicoplast, became closer during dormancy. Understanding their relationships in erythrocytic-stage persisters may lead to new strategies to prevent recrudescences and protect the future of malaria chemotherapy.
Collapse
Affiliation(s)
- Chiara E. Micchelli
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Caroline Percopo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Traver
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph Brzostowski
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shuchi N. Amin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sean T. Prigge
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore Maryland, USA
| | - Juliana M. Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas E. Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Morano AA, Xu W, Shadija N, Dvorin JD, Ke H. The dynamin-related protein Dyn2 is essential for both apicoplast and mitochondrial fission in Plasmodium falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585229. [PMID: 38559241 PMCID: PMC10980034 DOI: 10.1101/2024.03.15.585229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Dynamins, or dynamin-related proteins (DRPs), are large mechano-sensitive GTPases mediating membrane dynamics or organellar fission/fusion events. Plasmodium falciparum encodes three dynamin-like proteins whose functions are poorly understood. Here, we demonstrate that PfDyn2 mediates both apicoplast and mitochondrial fission. Using super-resolution and ultrastructure expansion microscopy, we show that PfDyn2 is expressed in the schizont stage and localizes to both the apicoplast and mitochondria. Super-resolution long-term live cell microscopy shows that PfDyn2-deficient parasites cannot complete cytokinesis because the apicoplast and mitochondria do not undergo fission. Further, the basal complex or cytokinetic ring in Plasmodium cannot fully contract upon PfDyn2 depletion, a phenotype secondary to physical blockage of undivided organelles in the middle of the ring. Our data suggest that organellar fission defects result in aberrant schizogony, generating unsuccessful merozoites. The unique biology of PfDyn2, mediating both apicoplast and mitochondrial fission, has not been observed in other organisms possessing two endosymbiotic organelles. Highlights PfDyn2 is essential for schizont-stage development.PfDyn2 mediates both apicoplast and mitochondrial fission.Deficiency of PfDyn2 leads to organellar fission failures and blockage of basal complex contraction.Addition of apicoplast-derived metabolite IPP does not rescue the growth defects.
Collapse
|
15
|
Crispim M, Verdaguer IB, Hernández A, Kronenberger T, Fenollar À, Yamaguchi LF, Alberione MP, Ramirez M, de Oliveira SS, Katzin AM, Izquierdo L. Beyond the MEP Pathway: A novel kinase required for prenol utilization by malaria parasites. PLoS Pathog 2024; 20:e1011557. [PMID: 38277417 PMCID: PMC10849223 DOI: 10.1371/journal.ppat.1011557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/07/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
A proposed treatment for malaria is a combination of fosmidomycin and clindamycin. Both compounds inhibit the methylerythritol 4-phosphate (MEP) pathway, the parasitic source of farnesyl and geranylgeranyl pyrophosphate (FPP and GGPP, respectively). Both FPP and GGPP are crucial for the biosynthesis of several essential metabolites such as ubiquinone and dolichol, as well as for protein prenylation. Dietary prenols, such as farnesol (FOH) and geranylgeraniol (GGOH), can rescue parasites from MEP inhibitors, suggesting the existence of a missing pathway for prenol salvage via phosphorylation. In this study, we identified a gene in the genome of P. falciparum, encoding a transmembrane prenol kinase (PolK) involved in the salvage of FOH and GGOH. The enzyme was expressed in Saccharomyces cerevisiae, and its FOH/GGOH kinase activities were experimentally validated. Furthermore, conditional knockout parasites (Δ-PolK) were created to investigate the biological importance of the FOH/GGOH salvage pathway. Δ-PolK parasites were viable but displayed increased susceptibility to fosmidomycin. Their sensitivity to MEP inhibitors could not be rescued by adding prenols. Additionally, Δ-PolK parasites lost their capability to utilize prenols for protein prenylation. Experiments using culture medium supplemented with whole/delipidated human plasma in transgenic parasites revealed that human plasma has components that can diminish the effectiveness of fosmidomycin. Mass spectrometry tests indicated that both bovine supplements used in culture and human plasma contain GGOH. These findings suggest that the FOH/GGOH salvage pathway might offer an alternate source of isoprenoids for malaria parasites when de novo biosynthesis is inhibited. This study also identifies a novel kind of enzyme related to isoprenoid metabolism.
Collapse
Affiliation(s)
- Marcell Crispim
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Ignasi Bofill Verdaguer
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Agustín Hernández
- Center for Biological and Health Sciences, Integrated Unit for Research in Biodiversity (BIOTROP-CCBS), Federal University of São Carlos, São Carlos, Brazil
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Excellence Cluster "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany
| | - Àngel Fenollar
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | | | - María Pía Alberione
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Miriam Ramirez
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | | | - Alejandro Miguel Katzin
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Luis Izquierdo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
16
|
Okada M, Sigala PA. The interdependence of isoprenoid synthesis and apicoplast biogenesis in malaria parasites. PLoS Pathog 2023; 19:e1011713. [PMID: 37883328 PMCID: PMC10602226 DOI: 10.1371/journal.ppat.1011713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Isoprenoid precursor synthesis is an ancient and fundamental function of plastid organelles and a critical metabolic activity of the apicoplast in Plasmodium malaria parasites [1-3]. Over the past decade, our understanding of apicoplast properties and functions has increased enormously [4], due in large part to our ability to rescue blood-stage parasites from apicoplast-specific dysfunctions by supplementing cultures with isopentenyl pyrophosphate (IPP), a key output of this organelle [5,6]. In this Pearl, we explore the interdependence between isoprenoid metabolism and apicoplast biogenesis in P. falciparum and highlight critical future questions to answer.
Collapse
Affiliation(s)
- Megan Okada
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States
| |
Collapse
|
17
|
Siqueira-Neto JL, Wicht KJ, Chibale K, Burrows JN, Fidock DA, Winzeler EA. Antimalarial drug discovery: progress and approaches. Nat Rev Drug Discov 2023; 22:807-826. [PMID: 37652975 PMCID: PMC10543600 DOI: 10.1038/s41573-023-00772-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Recent antimalarial drug discovery has been a race to produce new medicines that overcome emerging drug resistance, whilst considering safety and improving dosing convenience. Discovery efforts have yielded a variety of new molecules, many with novel modes of action, and the most advanced are in late-stage clinical development. These discoveries have led to a deeper understanding of how antimalarial drugs act, the identification of a new generation of drug targets, and multiple structure-based chemistry initiatives. The limited pool of funding means it is vital to prioritize new drug candidates. They should exhibit high potency, a low propensity for resistance, a pharmacokinetic profile that favours infrequent dosing, low cost, preclinical results that demonstrate safety and tolerability in women and infants, and preferably the ability to block Plasmodium transmission to Anopheles mosquito vectors. In this Review, we describe the approaches that have been successful, progress in preclinical and clinical development, and existing challenges. We illustrate how antimalarial drug discovery can serve as a model for drug discovery in diseases of poverty.
Collapse
Affiliation(s)
| | - Kathryn J Wicht
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Kelly Chibale
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | | | - David A Fidock
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | |
Collapse
|
18
|
dos Santos DA, Souza HFS, Silber AM, de Souza TDACB, Ávila AR. Protein kinases on carbon metabolism: potential targets for alternative chemotherapies against toxoplasmosis. Front Cell Infect Microbiol 2023; 13:1175409. [PMID: 37287468 PMCID: PMC10242022 DOI: 10.3389/fcimb.2023.1175409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
The apicomplexan parasite Toxoplasma gondii is the causative agent of toxoplasmosis, a global disease that significantly impacts human health. The clinical manifestations are mainly observed in immunocompromised patients, including ocular damage and neuronal alterations leading to psychiatric disorders. The congenital infection leads to miscarriage or severe alterations in the development of newborns. The conventional treatment is limited to the acute phase of illness, without effects in latent parasites; consequently, a cure is not available yet. Furthermore, considerable toxic effects and long-term therapy contribute to high treatment abandonment rates. The investigation of exclusive parasite pathways would provide new drug targets for more effective therapies, eliminating or reducing the side effects of conventional pharmacological approaches. Protein kinases (PKs) have emerged as promising targets for developing specific inhibitors with high selectivity and efficiency against diseases. Studies in T. gondii have indicated the presence of exclusive PKs without homologs in human cells, which could become important targets for developing new drugs. Knockout of specific kinases linked to energy metabolism have shown to impair the parasite development, reinforcing the essentiality of these enzymes in parasite metabolism. In addition, the specificities found in the PKs that regulate the energy metabolism in this parasite could bring new perspectives for safer and more efficient therapies for treating toxoplasmosis. Therefore, this review provides an overview of the limitations for reaching an efficient treatment and explores the role of PKs in regulating carbon metabolism in Toxoplasma, discussing their potential as targets for more applied and efficient pharmacological approaches.
Collapse
Affiliation(s)
| | - Higo Fernando Santos Souza
- Laboratory of Biochemistry of Trypanosomes (LabTryp), Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ariel M. Silber
- Laboratory of Biochemistry of Trypanosomes (LabTryp), Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Andréa Rodrigues Ávila
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz, Curitiba, Brazil
| |
Collapse
|
19
|
Swift RP, Elahi R, Rajaram K, Liu HB, Prigge ST. The Plasmodium falciparum apicoplast cysteine desulfurase provides sulfur for both iron-sulfur cluster assembly and tRNA modification. eLife 2023; 12:e84491. [PMID: 37166116 PMCID: PMC10219651 DOI: 10.7554/elife.84491] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/10/2023] [Indexed: 05/12/2023] Open
Abstract
Iron-sulfur clusters (FeS) are ancient and ubiquitous protein cofactors that play fundamental roles in many aspects of cell biology. These cofactors cannot be scavenged or trafficked within a cell and thus must be synthesized in any subcellular compartment where they are required. We examined the FeS synthesis proteins found in the relict plastid organelle, called the apicoplast, of the human malaria parasite Plasmodium falciparum. Using a chemical bypass method, we deleted four of the FeS pathway proteins involved in sulfur acquisition and cluster assembly and demonstrated that they are all essential for parasite survival. However, the effect that these deletions had on the apicoplast organelle differed. Deletion of the cysteine desulfurase SufS led to disruption of the apicoplast organelle and loss of the organellar genome, whereas the other deletions did not affect organelle maintenance. Ultimately, we discovered that the requirement of SufS for organelle maintenance is not driven by its role in FeS biosynthesis, but rather, by its function in generating sulfur for use by MnmA, a tRNA modifying enzyme that we localized to the apicoplast. Complementation of MnmA and SufS activity with a bacterial MnmA and its cognate cysteine desulfurase strongly suggests that the parasite SufS provides sulfur for both FeS biosynthesis and tRNA modification in the apicoplast. The dual role of parasite SufS is likely to be found in other plastid-containing organisms and highlights the central role of this enzyme in plastid biology.
Collapse
Affiliation(s)
- Russell P Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins UniversityBaltimoreUnited States
- The Johns Hopkins Malaria Research InstituteBaltimoreUnited States
| | - Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins UniversityBaltimoreUnited States
- The Johns Hopkins Malaria Research InstituteBaltimoreUnited States
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins UniversityBaltimoreUnited States
- The Johns Hopkins Malaria Research InstituteBaltimoreUnited States
| | - Hans B Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins UniversityBaltimoreUnited States
- The Johns Hopkins Malaria Research InstituteBaltimoreUnited States
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins UniversityBaltimoreUnited States
- The Johns Hopkins Malaria Research InstituteBaltimoreUnited States
| |
Collapse
|
20
|
Nair SC, Munro JT, Mann A, Llinás M, Prigge ST. The mitochondrion of Plasmodium falciparum is required for cellular acetyl-CoA metabolism and protein acetylation. Proc Natl Acad Sci U S A 2023; 120:e2210929120. [PMID: 37068227 PMCID: PMC10151609 DOI: 10.1073/pnas.2210929120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/28/2023] [Indexed: 04/19/2023] Open
Abstract
Coenzyme A (CoA) biosynthesis is an excellent target for antimalarial intervention. While most studies have focused on the use of CoA to produce acetyl-CoA in the apicoplast and the cytosol of malaria parasites, mitochondrial acetyl-CoA production is less well understood. In the current study, we performed metabolite-labeling experiments to measure endogenous metabolites in Plasmodium falciparum lines with genetic deletions affecting mitochondrial dehydrogenase activity. Our results show that the mitochondrion is required for cellular acetyl-CoA biosynthesis and identify a synthetic lethal relationship between the two main ketoacid dehydrogenase enzymes. The activity of these enzymes is dependent on the lipoate attachment enzyme LipL2, which is essential for parasite survival solely based on its role in supporting acetyl-CoA metabolism. We also find that acetyl-CoA produced in the mitochondrion is essential for the acetylation of histones and other proteins outside of the mitochondrion. Taken together, our results demonstrate that the mitochondrion is required for cellular acetyl-CoA metabolism and protein acetylation essential for parasite survival.
Collapse
Affiliation(s)
- Sethu C. Nair
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21218
| | - Justin T. Munro
- Department of Chemistry, Pennsylvania State University, University Park, PA16802
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA16802
| | - Alexis Mann
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21218
| | - Manuel Llinás
- Department of Chemistry, Pennsylvania State University, University Park, PA16802
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA16802
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA16802
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
21
|
Elahi R, Prigge ST. New insights into apicoplast metabolism in blood-stage malaria parasites. Curr Opin Microbiol 2023; 71:102255. [PMID: 36563485 PMCID: PMC9852000 DOI: 10.1016/j.mib.2022.102255] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
The apicoplast of Plasmodium falciparum is the only source of essential isoprenoid precursors and Coenzyme A (CoA) in the parasite. Isoprenoid precursor synthesis relies on the iron-sulfur cluster (FeS) cofactors produced within the apicoplast, rendering FeS synthesis an essential function of this organelle. Recent reports provide important insights into the roles of FeS cofactors and the use of isoprenoid precursors and CoA both inside and outside the apicoplast. Here, we review the recent insights into the roles of these metabolites in blood-stage malaria parasites and discuss new questions that have been raised in light of these discoveries.
Collapse
Affiliation(s)
- Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA; The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA; The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| |
Collapse
|
22
|
Bofill Verdaguer I, Sussmann RAC, Santiago VF, Palmisano G, Moura GC, Mesquita JT, Yamaguchi LF, Kato MJ, Katzin AM, Crispim M. Isoprenoid alcohols utilization by malaria parasites. Front Chem 2022; 10:1035548. [PMID: 36531309 PMCID: PMC9751614 DOI: 10.3389/fchem.2022.1035548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/15/2022] [Indexed: 05/14/2024] Open
Abstract
Plasmodium falciparum is the etiological agent of human malaria, one of the most widespread diseases in tropical and subtropical regions. Drug resistance is one of the biggest problems in controlling the disease, which leads to the need to discover new antimalarial compounds. One of the most promissory drugs purposed is fosmidomycin, an inhibitor of the biosynthesis of isoprene units by the methylerythritol 4-phosphate (MEP) pathway, which in some cases failed in clinical studies. Once formed, isoprene units are condensed to form longer structures such as farnesyl and geranylgeranyl pyrophosphate, which are necessary for Heme O and A formation, ubiquinone, and dolichyl phosphate biosynthesis as well as for protein isoprenylation. Even though the natural substrates of polyprenyl transferases and synthases are polyprenyl pyrophosphates, it was already demonstrated that isoprenoid alcohols (polyprenols) such as farnesol (FOH) and geranylgeraniol (GGOH) can rescue parasites from fosmidomycin. This study better investigated how this rescue phenomenon occurs by performing drug-rescue assays. Similarly, to FOH and GGOH, it was observed that phytol (POH), a 20-carbon plant isoprenoid, as well as unsaponifiable lipid extracts from foods rescue parasites from the antimalarial effect of fosmidomycin. Contrarily, neither dolichols nor nonaprenol rescue parasites from fosmidomycin. Considering this, here we characterized the transport of FOH, GGOH, and POH. Once incorporated, it was observed that these substances are phosphorylated, condensed into longer isoprenoid alcohols, and incorporated into proteins and dolichyl phosphates. Through proteomic and radiolabelling approaches, it was found that prenylated proteins are naturally attached to several isoprenoids, derived from GGOH, dolichol, and POH if exogenously added. Furthermore, the results suggest the presence of at least two promiscuous protein prenyltransferases in the parasite: one enzyme which can use FPP among other unidentified substrates and another enzyme that can use GGPP, phytyl pyrophosphate (PPP), and dolichols, among other substrates not identified here. Thus, further evidence was obtained for dolichols and other isoprenoid products attached to proteins. This study helps to better understand the apicoplast-targeting antimalarial mechanism of action and a novel post-translational modification of proteins in P. falciparum.
Collapse
Affiliation(s)
- Ignasi Bofill Verdaguer
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Rodrigo A C Sussmann
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
- Center for Environmental Sciences, Institute of Humanities, Arts and Sciences, Federal University of Southern Bahia, Bahia, Brazil
| | - Verônica Feijoli Santiago
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Gabriel Cândido Moura
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Juliana Tonini Mesquita
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Lydia Fumiko Yamaguchi
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Massuo Jorge Kato
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alejandro Miguel Katzin
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Marcell Crispim
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Niu Z, Ye S, Liu J, Lyu M, Xue L, Li M, Lyu C, Zhao J, Shen B. Two apicoplast dwelling glycolytic enzymes provide key substrates for metabolic pathways in the apicoplast and are critical for Toxoplasma growth. PLoS Pathog 2022; 18:e1011009. [PMID: 36449552 PMCID: PMC9744290 DOI: 10.1371/journal.ppat.1011009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/12/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022] Open
Abstract
Many apicomplexan parasites harbor a non-photosynthetic plastid called the apicoplast, which hosts important metabolic pathways like the methylerythritol 4-phosphate (MEP) pathway that synthesizes isoprenoid precursors. Yet many details in apicoplast metabolism are not well understood. In this study, we examined the physiological roles of four glycolytic enzymes in the apicoplast of Toxoplasma gondii. Many glycolytic enzymes in T. gondii have two or more isoforms. Endogenous tagging each of these enzymes found that four of them were localized to the apicoplast, including pyruvate kinase2 (PYK2), phosphoglycerate kinase 2 (PGK2), triosephosphate isomerase 2 (TPI2) and phosphoglyceraldehyde dehydrogenase 2 (GAPDH2). The ATP generating enzymes PYK2 and PGK2 were thought to be the main energy source of the apicoplast. Surprisingly, deleting PYK2 and PGK2 individually or simultaneously did not cause major defects on parasite growth or virulence. In contrast, TPI2 and GAPDH2 are critical for tachyzoite proliferation. Conditional depletion of TPI2 caused significant reduction in the levels of MEP pathway intermediates and led to parasite growth arrest. Reconstitution of another isoprenoid precursor synthesis pathway called the mevalonate pathway in the TPI2 depletion mutant partially rescued its growth defects. Similarly, knocking down the GAPDH2 enzyme that produces NADPH also reduced isoprenoid precursor synthesis through the MEP pathway and inhibited parasite proliferation. In addition, it reduced de novo fatty acid synthesis in the apicoplast. Together, these data suggest a model that the apicoplast dwelling TPI2 provides carbon source for the synthesis of isoprenoid precursor, whereas GAPDH2 supplies reducing power for pathways like MEP, fatty acid synthesis and ferredoxin redox system in T. gondii. As such, both enzymes are critical for parasite growth and serve as potential targets for anti-toxoplasmic intervention designs. On the other hand, the dispensability of PYK2 and PGK2 suggest additional sources for energy in the apicoplast, which deserves further investigation.
Collapse
Affiliation(s)
- Zhipeng Niu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Shu Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Jiaojiao Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Mengyu Lyu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Lilan Xue
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Muxiao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Congcong Lyu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province, PR China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province, PR China
- Hubei Hongshan Laboratory, Wuhan, Hubei Province, PR China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong Province, PR China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, PR China
- * E-mail:
| |
Collapse
|
24
|
Burns AL, Sleebs BE, Gancheva M, McLean KT, Siddiqui G, Venter H, Beeson JG, O’Handley R, Creek DJ, Ma S, Frölich S, Goodman CD, McFadden GI, Wilson DW. Targeting malaria parasites with novel derivatives of azithromycin. Front Cell Infect Microbiol 2022; 12:1063407. [PMID: 36530422 PMCID: PMC9748569 DOI: 10.3389/fcimb.2022.1063407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/09/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction The spread of artemisinin resistant Plasmodium falciparum parasites is of global concern and highlights the need to identify new antimalarials for future treatments. Azithromycin, a macrolide antibiotic used clinically against malaria, kills parasites via two mechanisms: 'delayed death' by inhibiting the bacterium-like ribosomes of the apicoplast, and 'quick-killing' that kills rapidly across the entire blood stage development. Methods Here, 22 azithromycin analogues were explored for delayed death and quick-killing activities against P. falciparum (the most virulent human malaria) and P. knowlesi (a monkey parasite that frequently infects humans). Results Seventeen analogues showed improved quick-killing against both Plasmodium species, with up to 38 to 20-fold higher potency over azithromycin after less than 48 or 28 hours of treatment for P. falciparum and P. knowlesi, respectively. Quick-killing analogues maintained activity throughout the blood stage lifecycle, including ring stages of P. falciparum parasites (<12 hrs treatment) and were >5-fold more selective against P. falciparum than human cells. Isopentenyl pyrophosphate supplemented parasites that lacked an apicoplast were equally sensitive to quick-killing analogues, confirming that the quick killing activity of these drugs was not directed at the apicoplast. Further, activity against the related apicoplast containing parasite Toxoplasma gondii and the gram-positive bacterium Streptococcus pneumoniae did not show improvement over azithromycin, highlighting the specific improvement in antimalarial quick-killing activity. Metabolomic profiling of parasites subjected to the most potent compound showed a build-up of non-haemoglobin derived peptides that was similar to chloroquine, while also exhibiting accumulation of haemoglobin-derived peptides that was absent for chloroquine treatment. Discussion The azithromycin analogues characterised in this study expand the structural diversity over previously reported quick-killing compounds and provide new starting points to develop azithromycin analogues with quick-killing antimalarial activity.
Collapse
Affiliation(s)
- Amy L. Burns
- Research Centre for Infectious Diseases, School of Biological Sciences, the University of Adelaide, Adelaide, SA, Australia,School of Science and Technology, the University of New England, Armidale, NSW, Australia
| | - Brad E. Sleebs
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Maria Gancheva
- Research Centre for Infectious Diseases, School of Biological Sciences, the University of Adelaide, Adelaide, SA, Australia
| | - Kimberley T. McLean
- Research Centre for Infectious Diseases, School of Biological Sciences, the University of Adelaide, Adelaide, SA, Australia
| | - Ghizal Siddiqui
- Drug Delivery Disposition and Dynamics, Monash University, Parkville, VIC, Australia
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - James G. Beeson
- Healthy Mothers, Healthy Babies Program, Burnet Institute, Melbourne, VIC, Australia,Department of Medicine, University of Melbourne, Parkville, VIC, Australia,Central Clinical School, Monash University, Melbourne, Vic, Australia,Department of Microbiology, Monash University, Melbourne, Vic, Australia
| | - Ryan O’Handley
- School of Animal and Veterinary Science, University of Adelaide, Adelaide, SA, Australia,Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, SA, Australia
| | - Darren J. Creek
- Drug Delivery Disposition and Dynamics, Monash University, Parkville, VIC, Australia
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Sonja Frölich
- Research Centre for Infectious Diseases, School of Biological Sciences, the University of Adelaide, Adelaide, SA, Australia
| | | | | | - Danny W. Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, the University of Adelaide, Adelaide, SA, Australia,Healthy Mothers, Healthy Babies Program, Burnet Institute, Melbourne, VIC, Australia,Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, SA, Australia,*Correspondence: Danny W. Wilson,
| |
Collapse
|
25
|
Dephospho-Coenzyme A Kinase Is an Exploitable Drug Target against Plasmodium falciparum: Identification of Selective Inhibitors by High-Throughput Screening of a Large Chemical Compound Library. Antimicrob Agents Chemother 2022; 66:e0042022. [DOI: 10.1128/aac.00420-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria is a mosquito-borne fatal infectious disease that affects humans and is caused by
Plasmodium
parasites, primarily
Plasmodium falciparum
. Widespread drug resistance compels us to discover novel compounds and alternative drug discovery targets.
Collapse
|
26
|
Rajaram K, Tewari SG, Wallqvist A, Prigge ST. Metabolic changes accompanying the loss of fumarate hydratase and malate-quinone oxidoreductase in the asexual blood stage of Plasmodium falciparum. J Biol Chem 2022; 298:101897. [PMID: 35398098 PMCID: PMC9118666 DOI: 10.1016/j.jbc.2022.101897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/03/2022] Open
Abstract
In the glucose-rich milieu of red blood cells, asexually replicating malarial parasites mainly rely on glycolysis for ATP production, with limited carbon flux through the mitochondrial tricarboxylic acid (TCA) cycle. By contrast, gametocytes and mosquito-stage parasites exhibit an increased dependence on the TCA cycle and oxidative phosphorylation for more economical energy generation. Prior genetic studies supported these stage-specific metabolic preferences by revealing that six of eight TCA cycle enzymes are completely dispensable during the asexual blood stages of Plasmodium falciparum, with only fumarate hydratase (FH) and malate-quinone oxidoreductase (MQO) being refractory to deletion. Several hypotheses have been put forth to explain the possible essentiality of FH and MQO, including their participation in a malate shuttle between the mitochondrial matrix and the cytosol. However, using newer genetic techniques like CRISPR and dimerizable Cre, we were able to generate deletion strains of FH and MQO in P. falciparum. We employed metabolomic analyses to characterize a double knockout mutant of FH and MQO (ΔFM) and identified changes in purine salvage and urea cycle metabolism that may help to limit fumarate accumulation. Correspondingly, we found that the ΔFM mutant was more sensitive to exogenous fumarate, which is known to cause toxicity by modifying and inactivating proteins and metabolites. Overall, our data indicate that P. falciparum is able to adequately compensate for the loss of FH and MQO, rendering them unsuitable targets for drug development.
Collapse
Affiliation(s)
- Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shivendra G Tewari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Ft. Detrick, Maryland, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Ft. Detrick, Maryland, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
27
|
Elaagip A, Absalon S, Florentin A. Apicoplast Dynamics During Plasmodium Cell Cycle. Front Cell Infect Microbiol 2022; 12:864819. [PMID: 35573785 PMCID: PMC9100674 DOI: 10.3389/fcimb.2022.864819] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
The deadly malaria parasite, Plasmodium falciparum, contains a unique subcellular organelle termed the apicoplast, which is a clinically-proven antimalarial drug target. The apicoplast is a plastid with essential metabolic functions that evolved via secondary endosymbiosis. As an ancient endosymbiont, the apicoplast retained its own genome and it must be inherited by daughter cells during cell division. During the asexual replication of P. falciparum inside human red blood cells, both the parasite, and the apicoplast inside it, undergo massive morphological changes, including DNA replication and division. The apicoplast is an integral part of the cell and thus its development is tightly synchronized with the cell cycle. At the same time, certain aspects of its dynamics are independent of nuclear division, representing a degree of autonomy in organelle biogenesis. Here, we review the different aspects of organelle dynamics during P. falciparum intraerythrocytic replication, summarize our current understanding of these processes, and describe the many open questions in this area of parasite basic cell biology.
Collapse
Affiliation(s)
- Arwa Elaagip
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Sabrina Absalon, ; Anat Florentin,
| | - Anat Florentin
- The Kuvin Center for the Study of Infectious and Tropical Diseases, Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Sabrina Absalon, ; Anat Florentin,
| |
Collapse
|
28
|
Lunghi M, Kloehn J, Krishnan A, Varesio E, Vadas O, Soldati-Favre D. Pantothenate biosynthesis is critical for chronic infection by the neurotropic parasite Toxoplasma gondii. Nat Commun 2022; 13:345. [PMID: 35039477 PMCID: PMC8764084 DOI: 10.1038/s41467-022-27996-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022] Open
Abstract
Coenzyme A (CoA) is an essential molecule acting in metabolism, post-translational modification, and regulation of gene expression. While all organisms synthesize CoA, many, including humans, are unable to produce its precursor, pantothenate. Intriguingly, like most plants, fungi and bacteria, parasites of the coccidian subgroup of Apicomplexa, including the human pathogen Toxoplasma gondii, possess all the enzymes required for de novo synthesis of pantothenate. Here, the importance of CoA and pantothenate biosynthesis for the acute and chronic stages of T. gondii infection is dissected through genetic, biochemical and metabolomic approaches, revealing that CoA synthesis is essential for T. gondii tachyzoites, due to the parasite's inability to salvage CoA or intermediates of the pathway. In contrast, pantothenate synthesis is only partially active in T. gondii tachyzoites, making the parasite reliant on its uptake. However, pantothenate synthesis is crucial for the establishment of chronic infection, offering a promising target for intervention against the persistent stage of T. gondii.
Collapse
Affiliation(s)
- Matteo Lunghi
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Emmanuel Varesio
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
- Mass Spectrometry Core Facility (MZ 2.0), University of Geneva, 1211, Geneva, Switzerland
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
- Protein and peptide purification platform, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland.
| |
Collapse
|
29
|
Buchanan HD, Goodman CD, McFadden GI. Roles of the apicoplast across the life cycles of rodent and human malaria parasites. J Eukaryot Microbiol 2022; 69:e12947. [PMID: 36070203 PMCID: PMC9828729 DOI: 10.1111/jeu.12947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Malaria parasites are diheteroxenous, requiring two hosts-a vertebrate and a mosquito-to complete their life cycle. Mosquitoes are the definitive host where malaria parasite sex occurs, and vertebrates are the intermediate host, supporting asexual amplification and more significant geographic spread. In this review, we examine the roles of a single malaria parasite compartment, the relict plastid known as the apicoplast, at each life cycle stage. We focus mainly on two malaria parasite species-Plasmodium falciparum and P. berghei-comparing the changing, yet ever crucial, roles of their apicoplasts.
Collapse
Affiliation(s)
- Hayley D. Buchanan
- Department of Infectious Diseases, Faculty of Medicine, Dentistry and Health Sciences, Melbourne Medical SchoolThe University of MelbourneMelbourneVic.Australia,Faculty of Science, School of BioSciencesThe University of MelbourneMelbourneVic.Australia
| | - Christopher D. Goodman
- Faculty of Science, School of BioSciencesThe University of MelbourneMelbourneVic.Australia
| | - Geoffrey I. McFadden
- Faculty of Science, School of BioSciencesThe University of MelbourneMelbourneVic.Australia
| |
Collapse
|
30
|
de Vries LE, Lunghi M, Krishnan A, Kooij TWA, Soldati-Favre D. Pantothenate and CoA biosynthesis in Apicomplexa and their promise as antiparasitic drug targets. PLoS Pathog 2021; 17:e1010124. [PMID: 34969059 PMCID: PMC8717973 DOI: 10.1371/journal.ppat.1010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Apicomplexa phylum comprises thousands of distinct intracellular parasite species, including coccidians, haemosporidians, piroplasms, and cryptosporidia. These parasites are characterized by complex and divergent life cycles occupying a variety of host niches. Consequently, they exhibit distinct adaptations to the differences in nutritional availabilities, either relying on biosynthetic pathways or by salvaging metabolites from their host. Pantothenate (Pan, vitamin B5) is the precursor for the synthesis of an essential cofactor, coenzyme A (CoA), but among the apicomplexans, only the coccidian subgroup has the ability to synthesize Pan. While the pathway to synthesize CoA from Pan is largely conserved across all branches of life, there are differences in the redundancy of enzymes and possible alternative pathways to generate CoA from Pan. Impeding the scavenge of Pan and synthesis of Pan and CoA have been long recognized as potential targets for antimicrobial drug development, but in order to fully exploit these critical pathways, it is important to understand such differences. Recently, a potent class of pantothenamides (PanAms), Pan analogs, which target CoA-utilizing enzymes, has entered antimalarial preclinical development. The potential of PanAms to target multiple downstream pathways make them a promising compound class as broad antiparasitic drugs against other apicomplexans. In this review, we summarize the recent advances in understanding the Pan and CoA biosynthesis pathways, and the suitability of these pathways as drug targets in Apicomplexa, with a particular focus on the cyst-forming coccidian, Toxoplasma gondii, and the haemosporidian, Plasmodium falciparum.
Collapse
Affiliation(s)
- Laura E. de Vries
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Matteo Lunghi
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Taco W. A. Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
31
|
Kloehn J, Lacour CE, Soldati-Favre D. The metabolic pathways and transporters of the plastid organelle in Apicomplexa. Curr Opin Microbiol 2021; 63:250-258. [PMID: 34455306 DOI: 10.1016/j.mib.2021.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 11/26/2022]
Abstract
The apicoplast is the relict of a plastid organelle found in several disease-causing apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii. In these organisms, the organelle has lost its photosynthetic capability but harbours several fitness-conferring or essential metabolic pathways. Although maintaining the apicoplast and fuelling the metabolic pathways within requires the challenging constant import and export of numerous metabolites across its four membranes, only few apicoplast transporters have been identified to date, most of which are orphan transporters. Here we review the roles of metabolic pathways within the apicoplast and what is currently known about the few identified apicoplast metabolite transporters. We discuss what metabolites must get in and out of the apicoplast, the many transporters that are yet to be discovered, and what role these might play in parasite metabolism and as putative drug targets.
Collapse
Affiliation(s)
- Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland.
| | - Clément Em Lacour
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland.
| |
Collapse
|
32
|
Swift RP, Rajaram K, Liu HB, Prigge ST. Dephospho-CoA kinase, a nuclear-encoded apicoplast protein, remains active and essential after Plasmodium falciparum apicoplast disruption. EMBO J 2021; 40:e107247. [PMID: 34031901 PMCID: PMC8365264 DOI: 10.15252/embj.2020107247] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Malaria parasites contain an essential organelle called the apicoplast that houses metabolic pathways for fatty acid, heme, isoprenoid, and iron–sulfur cluster synthesis. Surprisingly, malaria parasites can survive without the apicoplast as long as the isoprenoid precursor isopentenyl pyrophosphate (IPP) is supplemented in the growth medium, making it appear that isoprenoid synthesis is the only essential function of the organelle in blood‐stage parasites. In the work described here, we localized an enzyme responsible for coenzyme A synthesis, DPCK, to the apicoplast, but we were unable to delete DPCK, even in the presence of IPP. However, once the endogenous DPCK was complemented with the E. coli DPCK (EcDPCK), we were successful in deleting it. We were then able to show that DPCK activity is required for parasite survival through knockdown of the complemented EcDPCK. Additionally, we showed that DPCK enzyme activity remains functional and essential within the vesicles present after apicoplast disruption. These results demonstrate that while the apicoplast of blood‐stage P. falciparum parasites can be disrupted, the resulting vesicles remain biochemically active and are capable of fulfilling essential functions.
Collapse
Affiliation(s)
- Russell P Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hans B Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
33
|
Swift RP, Rajaram K, Elahi R, Liu HB, Prigge ST. Roles of Ferredoxin-Dependent Proteins in the Apicoplast of Plasmodium falciparum Parasites. mBio 2021; 13:e0302321. [PMID: 35164549 PMCID: PMC8844926 DOI: 10.1128/mbio.03023-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022] Open
Abstract
Ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) form a redox system that is hypothesized to play a central role in the maintenance and function of the apicoplast organelle of malaria parasites. The Fd/FNR system provides reducing power to various iron-sulfur cluster (FeS)-dependent proteins in the apicoplast and is believed to help to maintain redox balance in the organelle. While the Fd/FNR system has been pursued as a target for antimalarial drug discovery, Fd, FNR, and the FeS proteins presumably reliant on their reducing power play an unknown role in parasite survival and apicoplast maintenance. To address these questions, we generated genetic deletions of these proteins in a parasite line containing an apicoplast bypass system. Through these deletions, we discovered that Fd, FNR, and certain FeS proteins are essential for parasite survival but found that none are required for apicoplast maintenance. Additionally, we addressed the question of how Fd and its downstream FeS proteins obtain FeS cofactors by deleting the FeS transfer proteins SufA and NfuApi. While individual deletions of these proteins revealed their dispensability, double deletion resulted in synthetic lethality, demonstrating a redundant role in providing FeS clusters to Fd and other essential FeS proteins. Our data support a model in which the reducing power from the Fd/FNR system to certain downstream FeS proteins is essential for the survival of blood-stage malaria parasites but not for organelle maintenance, while other FeS proteins are dispensable for this stage of parasite development. IMPORTANCE Ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) form one of the few known redox systems in the apicoplast of malaria parasites and provide reducing power to iron-sulfur (FeS) cluster proteins within the organelle. While the Fd/FNR system has been explored as a drug target, the essentiality and roles of this system and the identity of its downstream FeS proteins have not been determined. To answer these questions, we generated deletions of these proteins in an apicoplast metabolic bypass line (PfMev) and determined the minimal set of proteins required for parasite survival. Moving upstream of this pathway, we also generated individual and dual deletions of the two FeS transfer proteins that deliver FeS clusters to Fd and downstream FeS proteins. We found that both transfer proteins are dispensable, but double deletion displayed a synthetic lethal phenotype, demonstrating their functional redundancy. These findings provide important insights into apicoplast biochemistry and drug development.
Collapse
Affiliation(s)
- Russell P. Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hans B. Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|