1
|
Chen Q, Ao L, Zhao Q, Tang L, Xiong Y, Yuan Y, Wu X, Xing W, Li Z, Guo W, Liang H, Zheng SG, Lian Q, Lu D, Wan W, Xu X. WTAP/YTHDF1-mediated m 6A modification amplifies IFN-γ-induced immunosuppressive properties of human MSCs. J Adv Res 2025; 71:441-455. [PMID: 38944238 DOI: 10.1016/j.jare.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
INTRODUCTION The immunosuppressive capacity of mesenchymal stem cells (MSCs) is dependent on the "license" of several pro-inflammatory factors to express immunosuppressive molecular profiles, which determines the therapeutic efficacy of MSCs in immune-mediated inflammatory diseases. Of those, interferon-γ (IFN-γ) is a key inducer for the expression of immunosuppressive molecular profiles; however, the mechanism underlying this effect is unknown. OBJECTIVES To elucidate the regulation mechanism and biological functions of N6-methyladenosine (m6A) modification in the immunosuppressive functions by the IFN-γ-licensing MSCs. METHODS Epitranscriptomic microarray analysis and MeRIP-qPCR assay were performed to identify the regulatory effect of WTAP in the IFN-γ-licensing MSCs. RIP-qPCR, western blot, qRT-PCR and RNA stability assays were used to determine the regulation of WTAP/m6A/YTHDF1 signaling axis in the expression of immunosuppressive molecules. Further, functional capacity of T cells was tested using flow cytometry, and both DSS-induced colitis mice and CIA mice were constructed to clarify the effect of WTAP and YTHDF1 in MSC-mediated immunosuppression. RESULTS We identified that IFN-γ increased the m6A methylation levels of immunosuppressive molecules, while WTAP deficiency abolished the IFN-γ-induced promotion of m6A modification. IFN-γ activated ERK signaling, which induced WTAP phosphorylation. Additionally, the stabilization of WTAP post-transcriptionally increased the mRNA expression of immunosuppressive molecules (IDO1, PD-L1, ICAM1, and VCAM1) in an m6A-YTHDF1-dependent manner; this effect further impacted the immunosuppressive capacity of IFN-γ licensing MSCs on activated T cells. Notably, WTAP/YTHDF1 overexpression enhanced the therapeutic efficacy of IFN-γ licensing MSCs and restructures the ecology of inflammation in both colitis and arthritis models. CONCLUSION Our results showed that m6A modification of IDO1, PD-L1, ICAM1, and VCAM1 mRNA mediated by WTAP-YTHDF1 is involved in the regulation of IFN-γ licensing MSCs immunosuppressive abilities, and shed a light to enhance the clinical therapeutic potential of IFN-γ-licensing MSCs.
Collapse
Affiliation(s)
- Quan Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Luoquan Ao
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qing Zhao
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Lu Tang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yanli Xiong
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China; Cancer Center, Daping Hospital, Army Medical University, Chongqing, China, No.10 Changjiang Zhi Rd, Yuzhong District, Chongqing 400042, China
| | - Yuchuan Yuan
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiaofeng Wu
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Xing
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhan Li
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Guo
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Huaping Liang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Song Guo Zheng
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201600, China
| | - Qizhou Lian
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510000, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Di Lu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Weijun Wan
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Xiang Xu
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China; Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
2
|
von Bülow S, Tesei G, Zaidi FK, Mittag T, Lindorff-Larsen K. Prediction of phase-separation propensities of disordered proteins from sequence. Proc Natl Acad Sci U S A 2025; 122:e2417920122. [PMID: 40131954 PMCID: PMC12002312 DOI: 10.1073/pnas.2417920122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
Phase separation is one possible mechanism governing the selective cellular enrichment of biomolecular constituents for processes such as transcriptional activation, mRNA regulation, and immune signaling. Phase separation is mediated by multivalent interactions of macromolecules including intrinsically disordered proteins and regions (IDRs). Despite considerable advances in experiments, theory, and simulations, the prediction of the thermodynamics of IDR phase behavior remains challenging. We combined coarse-grained molecular dynamics simulations and active learning to develop a fast and accurate machine learning model to predict the free energy and saturation concentration for phase separation directly from sequence. We validate the model using computational and previously measured experimental data, as well as new experimental data for six proteins. We apply our model to all 27,663 IDRs of chain length up to 800 residues in the human proteome and find that 1,420 of these (5%) are predicted to undergo homotypic phase separation with transfer free energies < -2 kBT. We use our model to understand the relationship between single-chain compaction and phase separation and find that changes from charge- to hydrophobicity-mediated interactions can break the symmetry between intra- and intermolecular interactions. We also provide proof of principle for how the model can be used in force field refinement. Our work refines and quantifies the established rules governing the connection between sequence features and phase-separation propensities, and our prediction models will be useful for interpreting and designing cellular experiments on the role of phase separation, and for the design of IDRs with specific phase-separation propensities.
Collapse
Affiliation(s)
- Sören von Bülow
- Department of Biology, Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen2200, Denmark
| | - Giulio Tesei
- Department of Biology, Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen2200, Denmark
| | - Fatima Kamal Zaidi
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Kresten Lindorff-Larsen
- Department of Biology, Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen2200, Denmark
| |
Collapse
|
3
|
Shan C, Dong K, Wen D, Cui Z, Cao J. A review of m 6A modification in plant development and potential quality improvement. Int J Biol Macromol 2025; 308:142597. [PMID: 40157682 DOI: 10.1016/j.ijbiomac.2025.142597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
N6-methyladenosine (m6A) represents the most prevalent internal modification observed in eukaryotic mRNAs. As a pivotal regulator of gene expression, m6A exerts influence over a number of processes, including splicing, transport, translation, degradation, and the stability of mRNAs. It thus plays a crucial role in plant development and resistance to biotic and abiotic stressors. The writers, erasers, and readers of m6A, which deposit, eliminate and decode this modification, are also of critical importance and have been identified and characterized in multiple plant species. The advent of next-generation sequencing (NGS) and m6A detection technologies has precipitated a surge in research on m6A in recent years. Extensive research has elucidated the specific roles of m6A in plants and its underlying molecular mechanisms, indicating significant potential for crop improvement. This review presents a comprehensive overview of recent studies on m6A and its regulatory proteins in plant development and stress tolerance. It highlights the potential applications of this modification and its writers, erasers, and readers for plant improvement, with a particular focus on leaf development, floral transition, trichome morphogenesis, fruit ripening, and resilience to pests, diseases and abiotic stresses.
Collapse
Affiliation(s)
- Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Dongyu Wen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zifan Cui
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
4
|
Ge L, Pan F, Jia M, Pott DM, He H, Shan H, Lozano-Durán R, Wang A, Zhou X, Li F. RNA modifications in plant biotic interactions. PLANT COMMUNICATIONS 2025; 6:101232. [PMID: 39722456 PMCID: PMC11897454 DOI: 10.1016/j.xplc.2024.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The chemical modifications of DNA and proteins are powerful mechanisms for regulating molecular and biological functions, influencing a wide array of signaling pathways in eukaryotes. Recent advancements in epitranscriptomics have shown that RNA modifications play crucial roles in diverse biological processes. Since their discovery in the 1970s, scientists have sought to decipher, identify, and elucidate the functions of these modifications across biological systems. Over the past decade, mounting evidence has demonstrated the importance of RNA modification pathways in plants, prompting significant efforts to decipher their physiological relevance. With the advent of high-resolution mapping techniques for RNA modifications and the gradual uncovering of their biological roles, our understanding of this additional layer of regulation is beginning to take shape. In this review, we summarize recent findings on the major RNA modifications identified in plants, with an emphasis on N6-methyladenosine (m6A), the most extensively studied modification. We discuss the functional significance of the effector components involved in m6A modification and its diverse roles in plant biotic interactions, including plant-virus, plant-bacterium, plant-fungus, and plant-insect relationships. Furthermore, we highlight new technological developments driving research progress in this field and outline key challenges that remain to be addressed.
Collapse
Affiliation(s)
- Linhao Ge
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fuan Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mingxuan Jia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Delphine M Pott
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, 72076 Tübingen, Germany
| | - Hao He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongying Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Rosa Lozano-Durán
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, 72076 Tübingen, Germany
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
5
|
Li Y, Chen J, Sun Z. N6-methyladenosine (m6A) modification: Emerging regulators in plant-virus interactions. Virology 2025; 603:110373. [PMID: 39729962 DOI: 10.1016/j.virol.2024.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
N6-methyladenosine (m6A), a reversible epigenetic modification, is widely present on both cellular and viral RNAs. This modification undergoes catalysis by methyltransferases (writers), removal by demethylases (erasers), and recognition by m6A-binding proteins (readers), ultimately influencing the fate and function of modified RNA molecules. With recent advances in sequencing technologies, the genome-wide mapping of m6A has become possible, enabling a deeper exploration of its roles during viral infections. So far, while the significance of m6A in regulating virus-host interactions has been well-established in animal viruses, research on its involvement in plant viruses remains in its early stages. In this review, we summarize the current knowledge regarding the functions and molecular mechanisms of m6A in plant-virus interactions. A better understanding of these complex interactions may provide valuable insights for developing novel antiviral strategies, potentially leading to more effective control of plant viral diseases in the field.
Collapse
Affiliation(s)
- Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
6
|
Secco N, Sheikh AH, Hirt H. Insights into the role of N6-methyladenosine (m6A) in plant-virus interactions. J Virol 2025; 99:e0159824. [PMID: 39570081 PMCID: PMC11784248 DOI: 10.1128/jvi.01598-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
N6-methyladenosine (m6A) is a common and dynamic epitranscriptomic modification in eukaryotic RNAs, affecting stability, splicing, translation, and degradation. Recent technological advancements have revealed the complex nature of m6A modifications, highlighting their importance in plant and animal species. The m6A modification is a reversible process, with "writers" depositing methylation, "erasers" demethylating it, and "reader" proteins recognizing m6A and executing various biological functions. Studying the relationship between m6A methylation and viral infection is crucial. Animal viruses, including retroviruses, RNA viruses, and DNA viruses, often employ the host's m6A machinery to replicate or avoid immune responses. In plant viruses, host methyltransferases or demethylases can stabilize or degrade viral RNA, depending on the virus-host interaction. Additionally, viral infections can modify the host's m6A machinery, impacting the viral life cycle. This review examines the role of m6A modifications in plant viral pathogenesis, focussing on RNA viruses infecting crops like alfalfa, turnip, wheat, rice, and potato. Understanding the role of m6A in virus-host interactions can aid in studying plant viral disease development and discovering novel antiviral targets for crop protection. In this review, we summarize current information on m6A in RNA biology, focussing on its function in viral infections and plant-virus interactions.
Collapse
Affiliation(s)
- Nicola Secco
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Arsheed H. Sheikh
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Heribert Hirt
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
7
|
Nguyen TKH, Kang H. Reading m 6A marks in mRNA: A potent mechanism of gene regulation in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2586-2599. [PMID: 39364713 PMCID: PMC11622538 DOI: 10.1111/jipb.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
Modifications to RNA have recently been recognized as a pivotal regulator of gene expression in living organisms. More than 170 chemical modifications have been identified in RNAs, with N6-methyladenosine (m6A) being the most abundant modification in eukaryotic mRNAs. The addition and removal of m6A marks are catalyzed by methyltransferases (referred to as "writers") and demethylases (referred to as "erasers"), respectively. In addition, the m6A marks in mRNAs are recognized and interpreted by m6A-binding proteins (referred to as "readers"), which regulate the fate of mRNAs, including stability, splicing, transport, and translation. Therefore, exploring the mechanism underlying the m6A reader-mediated modulation of RNA metabolism is essential for a much deeper understanding of the epigenetic role of RNA modification in plants. Recent discoveries have improved our understanding of the functions of m6A readers in plant growth and development, stress response, and disease resistance. This review highlights the latest developments in m6A reader research, emphasizing the diverse RNA-binding domains crucial for m6A reader function and the biological and cellular roles of m6A readers in the plant response to developmental and environmental signals. Moreover, we propose and discuss the potential future research directions and challenges in identifying novel m6A readers and elucidating the cellular and mechanistic role of m6A readers in plants.
Collapse
Affiliation(s)
- Thi Kim Hang Nguyen
- Department of Applied Biology, College of Agriculture and Life SciencesChonnam National UniversityGwangju61186Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life SciencesChonnam National UniversityGwangju61186Korea
| |
Collapse
|
8
|
Wen Z, Hu R, Pi Q, Zhang D, Duan J, Li Z, Li Q, Zhao X, Yang M, Zhao X, Liu D, Su Z, Li D, Zhang Y. DEAD-box RNA helicase RH20 positively regulates RNAi-based antiviral immunity in plants by associating with SGS3/RDR6 bodies. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3295-3311. [PMID: 39166471 PMCID: PMC11606427 DOI: 10.1111/pbi.14448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
RNA silencing plays a crucial role in defending against viral infections in diverse eukaryotic hosts. Despite extensive studies on core components of the antiviral RNAi pathway such as DCLs, AGOs and RDRs proteins, host factors involved in antiviral RNAi remain incompletely understood. In this study, we employed the proximity labelling approach to identify the host factors required for antiviral RNAi in Nicotiana benthamiana. Using the barley stripe mosaic virus (BSMV)-encoded γb, a viral suppressor of RNA silencing (VSR), as the bait protein, we identified the DEAD-box RNA helicase RH20, a broadly conserved protein in plants and animals with a homologous human protein known as DDX5. We demonstrated the interaction between RH20 and BSMV γb. Knockdown or knockout of RH20 attenuates the accumulation of viral small interfering RNAs, leading to increased susceptibility to BSMV, while overexpression of RH20 enhances resistance to BSMV, a process requiring the cytoplasmic localization and RNA-binding activity of RH20. In addition to BSMV, RH20 also negatively regulates the infection of several other positive-sense RNA viruses, suggesting the broad-spectrum antiviral activity of RH20. Mechanistic analysis revealed the colocalization and interaction of RH20 with SGS3/RDR6, and disruption of either SGS3 or RDR6 undermines the antiviral function of RH20, suggesting RH20 as a new component of the SGS3/RDR6 bodies. As a counter-defence, BSMV γb VSR subverts the RH20-mediated antiviral defence by interfering with the RH20-SGS3 interaction. Our results uncover RH20 as a new positive regulator of antiviral RNAi and provide new potential targets for controlling plant viral diseases.
Collapse
Affiliation(s)
- Zhiyan Wen
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Rujian Hu
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Qinglin Pi
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jiangning Duan
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Qian Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xiaoyun Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Meng Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xiaofei Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Deshui Liu
- Beijing Life Science AcademyBeijingChina
| | - Zhen Su
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
9
|
Brodersen P, Arribas-Hernández L. The m 6A-YTH regulatory system in plants: A status. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102650. [PMID: 39488190 DOI: 10.1016/j.pbi.2024.102650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 11/04/2024]
Abstract
Plants use mRNA methylation to regulate gene expression. As in other eukaryotes, the only abundant methylated nucleotide in plant mRNA bodies is N6-methyladenosine (m6A). The conserved core components of m6A-based genetic control are a multi-subunit nuclear methyltransferase, and a set of nuclear and cytoplasmic RNA-binding proteins consisting of an m6A recognition module, the YT521-B homology (YTH) domain, and long intrinsically disordered regions (IDRs). In plants, this system is essential for growth during embryonic and post-embryonic development, but emerging evidence also points to key functions in plant-virus interactions and stimulus-dependent gene regulation. Cytoplasmic YTH-domain proteins are particularly important for these functions, and recent progress has identified two elements of the underlying molecular mechanisms: IDR-mediated phase separation and conserved short linear motifs mediating interactions with other key mRNA-binding proteins.
Collapse
Affiliation(s)
- Peter Brodersen
- University of Copenhagen, Copenhagen Plant Science Center, Department of Biology, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark.
| | - Laura Arribas-Hernández
- University of Copenhagen, Copenhagen Plant Science Center, Department of Biology, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark; Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM), 29750 Algarrobo-Costa, Málaga, Spain.
| |
Collapse
|
10
|
Yang L, Wang B, Zhao D, Li X, Qin Y, Ouyang N, Xiao Z, Zhang Z, Galili G, Li J, Peled-Zehavi H, Wu J. Selective recognition of PTRE1 transcripts mediated by protein-protein interaction between the m 6A reader ECT2 and PTRE1. PLANT COMMUNICATIONS 2024; 5:101043. [PMID: 39091029 PMCID: PMC11589301 DOI: 10.1016/j.xplc.2024.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
N6-methyladenosine (m6A) is a prevalent internal post-transcriptional modification in eukaryotic RNAs executed by m6A-binding proteins known as "readers." Our previous research demonstrated that the Arabidopsis m6A reader ECT2 positively regulates transcript levels of the proteasome regulator PTRE1 and several 20S proteasome subunits, thereby enhancing 26S proteasome activity. However, mechanism underlying the selective recognition of m6A targets by readers, such as ECT2, remains elusive. In this study, we further demonstrate that ECT2 physically interacts with PTRE1 and several 20S proteasome subunits. This interaction, which occurs on the ribosome, involves the N terminus of PTRE1, suggesting that ECT2 might bind to the nascent PTRE1 polypeptide. Deleting ECT2's protein interaction domain impairs its mRNA-binding ability, whereas mutations in the m6A-RNA-binding site do not affect protein-protein interactions. Moreover, introducing a novel protein-binding domain into ECT2 increases transcript levels of proteins interacting with this domain. Our findings indicate that interaction with the PTRE1 protein enhances ECT2's binding to PTRE1 m6A mRNAs during translation, thereby regulating PTRE1 mRNA levels.
Collapse
Affiliation(s)
- Li Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Bo Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Duanmu Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xuechun Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yifei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Ning Ouyang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhili Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhibing Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Gad Galili
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hadas Peled-Zehavi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jian Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Horner SM, Reaves JV. Recent insights into N 6-methyladenosine during viral infection. Curr Opin Genet Dev 2024; 87:102213. [PMID: 38901100 DOI: 10.1016/j.gde.2024.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
The RNA modification of N6-methyladenosine (m6A) controls many aspects of RNA function that impact biological processes, including viral infection. In this review, we highlight recent work that shapes our current understanding of the diverse mechanisms by which m6A can regulate viral infection by acting on viral or cellular mRNA molecules. We focus on emerging concepts and understanding, including how viral infection alters the localization and function of m6A machinery proteins, how m6A regulates antiviral innate immunity, and the multiple roles of m6A in regulating specific viral infections. We also summarize the recent studies on m6A during SARS-CoV-2 infection, focusing on points of convergence and divergence. Ultimately, this review provides a snapshot of the latest research on m6A during viral infection.
Collapse
Affiliation(s)
- Stacy M Horner
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Jordan V Reaves
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
12
|
Xiang Y, Zhang D, Li L, Xue YX, Zhang CY, Meng QF, Wang J, Tan XL, Li YL. Detection, distribution, and functions of RNA N 6-methyladenosine (m 6A) in plant development and environmental signal responses. FRONTIERS IN PLANT SCIENCE 2024; 15:1429011. [PMID: 39081522 PMCID: PMC11286456 DOI: 10.3389/fpls.2024.1429011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
The epitranscriptomic mark N 6-methyladenosine (m6A) is the most common type of messenger RNA (mRNA) post-transcriptional modification in eukaryotes. With the discovery of the demethylase FTO (FAT MASS AND OBESITY-ASSOCIATED PROTEIN) in Homo Sapiens, this modification has been proven to be dynamically reversible. With technological advances, research on m6A modification in plants also rapidly developed. m6A modification is widely distributed in plants, which is usually enriched near the stop codons and 3'-UTRs, and has conserved modification sequences. The related proteins of m6A modification mainly consist of three components: methyltransferases (writers), demethylases (erasers), and reading proteins (readers). m6A modification mainly regulates the growth and development of plants by modulating the RNA metabolic processes and playing an important role in their responses to environmental signals. In this review, we briefly outline the development of m6A modification detection techniques; comparatively analyze the distribution characteristics of m6A in plants; summarize the methyltransferases, demethylases, and binding proteins related to m6A; elaborate on how m6A modification functions in plant growth, development, and response to environmental signals; and provide a summary and outlook on the research of m6A in plants.
Collapse
|
13
|
Jin H, Li C, Jia Y, Qi Y, Piao W. Revealing the hidden RBP-RNA interactions with RNA modification enzyme-based strategies. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1863. [PMID: 39392204 PMCID: PMC11469752 DOI: 10.1002/wrna.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 10/12/2024]
Abstract
RNA-binding proteins (RBPs) are powerful and versatile regulators in living creatures, playing fundamental roles in organismal development, metabolism, and various diseases by the regulation of gene expression at multiple levels. The requirements of deep research on RBP function have promoted the rapid development of RBP-RNA interplay detection methods. Recently, the detection method of fusing RNA modification enzymes (RME) with RBP of interest has become a hot topic. Here, we reviewed RNA modification enzymes in adenosine deaminases that act on RNA (ADAR), terminal nucleotidyl transferase (TENT), and activation-induced cytosine deaminase/ApoB mRNA editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family, regarding the biological function, biochemical activity, and substrate specificity originated from enzyme selves, their domains and partner proteins. In addition, we discussed the RME activity screening system, and the RME mutations with engineered enzyme activity. Furthermore, we provided a systematic overview of the basic principles, advantages, disadvantages, and applications of the RME-based and cross-linking and immunopurification (CLIP)-based RBP target profiling strategies, including targets of RNA-binding proteins identified by editing (TRIBE), RNA tagging, surveying targets by APOBEC-mediated profiling (STAMP), CLIP-seq, and their derivative technology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| | - Chong Li
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yunxiao Jia
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yuxuan Qi
- Faculty of ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Weilan Piao
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| |
Collapse
|
14
|
Ge L, Zhou X, Li F. Plant-virus arms race beyond RNA interference. TRENDS IN PLANT SCIENCE 2024; 29:16-19. [PMID: 37953079 DOI: 10.1016/j.tplants.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023]
Abstract
Plants use RNA interference for basal antiviral immunity, but emerging evidence suggests that additional RNA-targeting defense mechanisms also defend against invading viruses. Recent advancements in the understanding of RNA decay, RNA quality control, and N6-methyladenosine (m6A) RNA modifications have unveiled new insights into the molecular arms race between plants and viruses.
Collapse
Affiliation(s)
- Linhao Ge
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
15
|
Seigneurin-Berny D, Karczewski C, Delaforge E, Yaacoub K, Gaspar Litholdo C, Favory JJ, Ringkjøbing Jensen M, Bousquet-Antonelli C, Verdel A. ECT2 peptide sequences outside the YTH domain regulate its m 6A-RNA binding. RNA Biol 2024; 21:1-13. [PMID: 39267376 PMCID: PMC11404569 DOI: 10.1080/15476286.2024.2399914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024] Open
Abstract
The m6A epitranscriptomic mark is the most abundant and widespread internal RNA chemical modification, which through the control of RNA acts as an important factor of eukaryote reproduction, growth, morphogenesis and stress response. The main m6A readers constitute a super family of proteins with hundreds of members that share a so-called YTH RNA binding domain. The majority of YTH proteins carry no obvious additional domain except for an Intrinsically Disordered Region (IDR). In Arabidopsis thaliana IDRs are important for the functional specialization among the different YTH proteins, known as Evolutionarily Conserved C-Terminal region, ECT 1 to 12. Here by studying the ECT2 protein and using an in vitro biochemical characterization, we show that full-length ECT2 and its YTH domain alone have a distinct ability to bind m6A, conversely to previously characterized YTH readers. We identify peptide regions outside of ECT2 YTH domain, in the N-terminal IDR, that regulate its binding to m6A-methylated RNA. Furthermore, we show that the selectivity of ECT2 binding for m6A is enhanced by a high uridine content within its neighbouring sequence, where ECT2 N-terminal IDR is believed to contact the target RNA in vivo. Finally, we also identify small structural elements, located next to ECT2 YTH domain and conserved in a large set of YTH proteins, that enhance its binding to m6A-methylated RNA. We propose from these findings that some of these regulatory regions are not limited to ECT2 or YTH readers of flowering plants but may be widespread among eukaryotic YTH readers.
Collapse
Affiliation(s)
- Daphné Seigneurin-Berny
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institut pour l’Avancée des Biosciences, Grenoble, France
| | - Claire Karczewski
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institut pour l’Avancée des Biosciences, Grenoble, France
| | - Elise Delaforge
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Karen Yaacoub
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institut pour l’Avancée des Biosciences, Grenoble, France
| | - Celso Gaspar Litholdo
- CNRS-LGDP-UMR5096, Université de Perpignan, Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Jean-Jacques Favory
- CNRS-LGDP-UMR5096, Université de Perpignan, Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | | | - Cécile Bousquet-Antonelli
- CNRS-LGDP-UMR5096, Université de Perpignan, Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - André Verdel
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institut pour l’Avancée des Biosciences, Grenoble, France
| |
Collapse
|
16
|
He H, Jia M, Liu J, Zhou X, Li F. Roles of RNA m 6A modifications in plant-virus interactions. STRESS BIOLOGY 2023; 3:57. [PMID: 38105385 PMCID: PMC10725857 DOI: 10.1007/s44154-023-00133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/31/2023] [Indexed: 12/19/2023]
Abstract
Viral RNAs have been known to contain N6-methyladenosine (m6A) modifications since the 1970s. The function of these modifications remained unknown until the development of genome-wide methods to map m6A residues. Increasing evidence has recently revealed a strong association between m6A modifications and plant viral infection. This highlight introduces advances in the roles of RNA m6A modifications in plant-virus interactions.
Collapse
Affiliation(s)
- Hao He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingxuan Jia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
17
|
Due Tankmar M, Reichel M, Arribas‐Hernández L, Brodersen P. A YTHDF-PABP interaction is required for m 6 A-mediated organogenesis in plants. EMBO Rep 2023; 24:e57741. [PMID: 38009565 PMCID: PMC10702811 DOI: 10.15252/embr.202357741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/29/2023] Open
Abstract
N6-methyladenosine (m6 A) in mRNA is key to eukaryotic gene regulation. Many m6 A functions involve RNA-binding proteins that recognize m6 A via a YT521-B Homology (YTH) domain. YTH domain proteins contain long intrinsically disordered regions (IDRs) that may mediate phase separation and interaction with protein partners, but whose precise biochemical functions remain largely unknown. The Arabidopsis thaliana YTH domain proteins ECT2, ECT3, and ECT4 accelerate organogenesis through stimulation of cell division in organ primordia. Here, we use ECT2 to reveal molecular underpinnings of this function. We show that stimulation of leaf formation requires the long N-terminal IDR, and we identify two short IDR elements required for ECT2-mediated organogenesis. Of these two, a 19-amino acid region containing a tyrosine-rich motif conserved in both plant and metazoan YTHDF proteins is necessary for binding to the major cytoplasmic poly(A)-binding proteins PAB2, PAB4, and PAB8. Remarkably, overexpression of PAB4 in leaf primordia partially rescues the delayed leaf formation in ect2 ect3 ect4 mutants, suggesting that the ECT2-PAB2/4/8 interaction on target mRNAs of organogenesis-related genes may overcome limiting PAB concentrations in primordial cells.
Collapse
Affiliation(s)
| | - Marlene Reichel
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | | | - Peter Brodersen
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
18
|
Lozano‐Durán R. More than annealing: RNAi is not alone in the fight against plant viruses. EMBO J 2023; 42:e115113. [PMID: 37592898 PMCID: PMC10505903 DOI: 10.15252/embj.2023115113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Cellular organisms have evolved different strategies to defend themselves against the invasion by viruses. In plants, RNA interference (RNAi) or RNA silencing, which is triggered by virus-derived double-stranded (ds)RNA, is considered the main antiviral defence mechanism. Martínez-Pérez et al have now uncovered an additional plant antiviral pathway, termed by the authors "m6 A-YTHDF axis," which relies on the modification and subsequent recognition of the viral RNA.
Collapse
Affiliation(s)
- Rosa Lozano‐Durán
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP)Eberhard Karls UniversityTübingenGermany
| |
Collapse
|