1
|
Wang Z, Yu H, Gu Z, Shi X, Ma J, Shao Q, Yao Y, Yao S, Xu Y, Gu Y, Dai J, Liu Q, Shi J, Qi R, Jin Y, Liu Y, Shen X, Huang W, Liu HJ, Jin M, Liu W, Brook M, Chen D. RNA-binding proteins DND1 and NANOS3 cooperatively suppress the entry of germ cell lineage. Nat Commun 2025; 16:4792. [PMID: 40410171 PMCID: PMC12102168 DOI: 10.1038/s41467-025-57490-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/24/2025] [Indexed: 05/25/2025] Open
Abstract
Specification of primordial germ cells (PGCs) establishes germline development during early embryogenesis, yet the underlying mechanisms in humans remain largely unknown. Here, we reveal the functional roles of germline-specific RNA-binding protein (RBP) DND1 in human PGC (hPGC) specification. We discovered that DND1 forms a complex with another RBP, NANOS3, to restrict hPGC specification. Furthermore, by analyzing the mRNAs bound by DND1 and NANOS3, we found that DND1 facilitates the binding of NANOS3 to hPGC-like cells-related mRNAs. We identified SOX4 mRNAs as the key downstream factor for the DND1 and NANOS3 complex. Mechanistically, DND1 and NANOS3 function in processing bodies (P-bodies) to repress the translation of SOX4 mRNAs, with NANOS3 mediating the interaction between DND1 and the translational repressor 4E-T. Altogether, these findings identify the RBP complex formed by DND1 and NANOS3 functioning as a "braking system" to restrict the entry of germ cell fate in humans.
Collapse
Affiliation(s)
- Ziqi Wang
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, China
| | - Honglin Yu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Zhaoyu Gu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, China
| | - Xiaohui Shi
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, China
| | - Jiayue Ma
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, China
| | - Qizhe Shao
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, China
| | - Yao Yao
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, China
| | - Shuo Yao
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, China
| | - Yan Xu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, China
| | - Yashi Gu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Jiayue Dai
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Qi Liu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, China
| | - Jingyan Shi
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, China
| | - Rujie Qi
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, China
| | - Yue Jin
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Center for Infection Immunity and Cancer, Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, China
| | - Yuqian Liu
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Center for Infection Immunity and Cancer, Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, China
| | - Xinchen Shen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, China
| | - Wenwen Huang
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, China
| | - Heng-Jia Liu
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Center for Infection Immunity and Cancer, Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, China
| | - Min Jin
- Center for Reproductive Medicine of The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wanlu Liu
- Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Center of Biomedical Systems and Informatics of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), International Campus, Zhejiang University, Haining, Zhejiang, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, Zhejiang, China
| | - Matthew Brook
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK.
| | - Di Chen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, China.
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
- State Key Laboratory of Biobased Transportation Fuel Technology, Haining, Zhejiang, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Wharton TH, Marhabaie M, Wharton RP. Significant roles in RNA-binding for the amino-terminal regions of Drosophila Pumilio and Nanos. PLoS Genet 2025; 21:e1011616. [PMID: 40163518 PMCID: PMC11981137 DOI: 10.1371/journal.pgen.1011616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/09/2025] [Accepted: 02/11/2025] [Indexed: 04/02/2025] Open
Abstract
The Drosophila Pumilio (Pum) and Nanos (Nos) RNA-binding proteins govern abdominal segmentation in the early embryo, as well as a variety of other events during development. They bind together to a compound Nanos Response Element (NRE) present in thousands of maternal mRNAs in the ovary and embryo, including hunchback (hb) mRNA, thereby regulating poly-adenylation, translation, and stability. Many studies support a model in which mRNA recognition and effector recruitment are carried out by distinct regions of each protein. The well-ordered Pum and Nos RNA-binding domains (RBDs) are sufficient to specifically recognize NREs; the larger intrinsically disordered N-terminal regions (NTRs) of each protein have been thought to act by recruiting mRNA regulators. Here we use yeast interaction assays and experiments testing the regulation of hb mRNA in vivo to show that the NTRs play a significant role in recognition of the NRE, acting via two mechanisms. First, the Pum and Nos NTRs interact in trans to promote assembly of the Pum/Nos/NRE ternary complex. Second, the Pum NTR acts via an unknown mechanism in cis, modifying NRE recognition by its RBD. The ability of the NTR to alter binding to the NRE is conserved in human Pum2.
Collapse
Affiliation(s)
- Tammy H. Wharton
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Mohammad Marhabaie
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
- Current address: The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Robin P. Wharton
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
3
|
Li N, Yu J, Feng YQ, Xu P, Wang X, Zhou M, Li H, Xu Y, Wang Z. Conditional ablation of DIS3L2 ribonuclease in pre-meiotic germ cells causes defective spermatogenesis and infertility in male mice. Theranostics 2024; 14:5621-5642. [PMID: 39310107 PMCID: PMC11413780 DOI: 10.7150/thno.98620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Rationale: Spermatogenesis is a highly organized cell differentiation process in mammals, involving mitosis, meiosis, and spermiogenesis. DIS3L2, which is primarily expressed in the cytoplasm, is an RNA exosome-independent ribonuclease. In female mice, Dis3l2-deficient oocytes fail to resume meiosis, resulting in arrest at the germinal vesicle stage and complete infertility. However, the role of DIS3L2 in germ cell development in males has remained largely unexplored. Methods: We established a pre-meiotic germ cell conditional knockout mouse model and investigated the biological function of DIS3L2 in spermatogenesis and male fertility through bulk RNA-seq and scRNA-seq analyses. Results: This study unveils that conditional ablation of Dis3l2 in pre-meiotic germ cells with Stra8-Cre mice impairs spermatogonial differentiation and hinders spermatocyte meiotic progression coupled with cell apoptosis. Such conditional ablation leads to defective spermatogenesis and sterility in adults. Bulk RNA-seq analysis revealed that Dis3l2 deficiency significantly disrupted the transcriptional expression pattern of genes related to the cell cycle, spermatogonial differentiation, and meiosis in Dis3l2 conditional knockout testes. Additionally, scRNA-seq analysis indicated that absence of DIS3L2 in pre-meiotic germ cells causes disrupted RNA metabolism, downregulated expression of cell cycle genes, and aberrant expression of spermatogonial differentiation genes, impeding spermatogonial differentiation. In meiotic spermatocytes, loss of DIS3L2 results in disturbed RNA metabolism, abnormal translation, and disrupted meiotic genes that perturb meiotic progression and induce cell apoptosis, leading to subsequent failure of spermatogenesis and male infertility. Conclusions: Collectively, these findings highlight the critical role of DIS3L2 ribonuclease-mediated RNA degradation in safeguarding the correct transcriptome during spermatogonial differentiation and spermatocyte meiotic progression, thus ensuring normal spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Nana Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Junjie Yu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yan-Qin Feng
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Phoebe Xu
- Enloe High School, Raleigh, North Carolina 27610, USA
| | - Xiao Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Meiyang Zhou
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Hong Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yu Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zhengpin Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
4
|
Wang Z, Wu D, Xu X, Yu G, Li N, Wang X, Li JL, Dean J. DIS3 ribonuclease is essential for spermatogenesis and male fertility in mice. Development 2024; 151:dev202579. [PMID: 38953252 PMCID: PMC11266750 DOI: 10.1242/dev.202579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/07/2024] [Indexed: 07/03/2024]
Abstract
Spermatogonial stem cell (SSC) self-renewal and differentiation provide foundational support for long-term, steady-state spermatogenesis in mammals. Here, we have investigated the essential role of RNA exosome associated DIS3 ribonuclease in maintaining spermatogonial homeostasis and facilitating germ cell differentiation. We have established male germ-cell Dis3 conditional knockout (cKO) mice in which the first and subsequent waves of spermatogenesis are disrupted. This leads to a Sertoli cell-only phenotype and sterility in adult male mice. Bulk RNA-seq documents that Dis3 deficiency partially abolishes RNA degradation and causes significant increases in the abundance of transcripts. This also includes pervasively transcribed PROMoter uPstream Transcripts (PROMPTs), which accumulate robustly in Dis3 cKO testes. In addition, scRNA-seq analysis indicates that Dis3 deficiency in spermatogonia significantly disrupts RNA metabolism and gene expression, and impairs early germline cell development. Overall, we document that exosome-associated DIS3 ribonuclease plays crucial roles in maintaining early male germ cell lineage in mice.
Collapse
Affiliation(s)
- Zhengpin Wang
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Di Wu
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaojiang Xu
- Integrative Bioinformatics Support Group, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Guoyun Yu
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nana Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xiao Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Bush SJ, Nikola R, Han S, Suzuki S, Yoshida S, Simons BD, Goriely A. Adult Human, but Not Rodent, Spermatogonial Stem Cells Retain States with a Foetal-like Signature. Cells 2024; 13:742. [PMID: 38727278 PMCID: PMC11083513 DOI: 10.3390/cells13090742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Spermatogenesis involves a complex process of cellular differentiation maintained by spermatogonial stem cells (SSCs). Being critical to male reproduction, it is generally assumed that spermatogenesis starts and ends in equivalent transcriptional states in related species. Based on single-cell gene expression profiling, it has been proposed that undifferentiated human spermatogonia can be subclassified into four heterogenous subtypes, termed states 0, 0A, 0B, and 1. To increase the resolution of the undifferentiated compartment and trace the origin of the spermatogenic trajectory, we re-analysed the single-cell (sc) RNA-sequencing libraries of 34 post-pubescent human testes to generate an integrated atlas of germ cell differentiation. We then used this atlas to perform comparative analyses of the putative SSC transcriptome both across human development (using 28 foetal and pre-pubertal scRNA-seq libraries) and across species (including data from sheep, pig, buffalo, rhesus and cynomolgus macaque, rat, and mouse). Alongside its detailed characterisation, we show that the transcriptional heterogeneity of the undifferentiated spermatogonial cell compartment varies not only between species but across development. Our findings associate 'state 0B' with a suppressive transcriptomic programme that, in adult humans, acts to functionally oppose proliferation and maintain cells in a ready-to-react state. Consistent with this conclusion, we show that human foetal germ cells-which are mitotically arrested-can be characterised solely as state 0B. While germ cells with a state 0B signature are also present in foetal mice (and are likely conserved at this stage throughout mammals), they are not maintained into adulthood. We conjecture that in rodents, the foetal-like state 0B differentiates at birth into the renewing SSC population, whereas in humans it is maintained as a reserve population, supporting testicular homeostasis over a longer reproductive lifespan while reducing mutagenic load. Together, these results suggest that SSCs adopt differing evolutionary strategies across species to ensure fertility and genome integrity over vastly differing life histories and reproductive timeframes.
Collapse
Affiliation(s)
- Stephen J. Bush
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Rafail Nikola
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Seungmin Han
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Shinnosuke Suzuki
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Benjamin D. Simons
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Wellcome—MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Science, University of Cambridge, Cambridge CB3 0WA, UK
| | - Anne Goriely
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
- NIHR Biomedical Research Centre, Oxford OX3 7JX, UK
| |
Collapse
|
6
|
Cassani M, Seydoux G. P-body-like condensates in the germline. Semin Cell Dev Biol 2024; 157:24-32. [PMID: 37407370 PMCID: PMC10761593 DOI: 10.1016/j.semcdb.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
P-bodies are cytoplasmic condensates that accumulate low-translation mRNAs for temporary storage before translation or degradation. P-bodies have been best characterized in yeast and mammalian tissue culture cells. We describe here related condensates in the germline of animal models. Germline P-bodies have been reported at all stages of germline development from primordial germ cells to gametes. The activity of the universal germ cell fate regulator, Nanos, is linked to the mRNA decay function of P-bodies, and spatially-regulated condensation of P-body like condensates in embryos is required to localize mRNA regulators to primordial germ cells. In most cases, however, it is not known whether P-bodies represent functional compartments or non-functional condensation by-products that arise when ribonucleoprotein complexes saturate the cytoplasm. We speculate that the ubiquity of P-body-like condensates in germ cells reflects the strong reliance of the germline on cytoplasmic, rather than nuclear, mechanisms of gene regulation.
Collapse
Affiliation(s)
- Madeline Cassani
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Geraldine Seydoux
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Kumari P, Thuestad L, Ciosk R. Post-transcriptional repression of CFP-1 expands the regulatory repertoire of LIN-41/TRIM71. Nucleic Acids Res 2023; 51:10668-10680. [PMID: 37670562 PMCID: PMC10602926 DOI: 10.1093/nar/gkad729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
The Caenorhabditis elegans LIN-41/TRIM71 is a well-studied example of a versatile regulator of mRNA fate, which plays different biological functions involving distinct post-transcriptional mechanisms. In the soma, LIN-41 determines the timing of developmental transitions between larval stages. The somatic LIN-41 recognizes specific mRNAs via LREs (LIN-41 Recognition Elements) and elicits either mRNA decay or translational repression. In the germline, LIN-41 controls the oocyte-to-embryo transition (OET), although the relevant targets and regulatory mechanisms are poorly understood. The germline LIN-41 was suggested to regulate mRNAs indirectly by associating with another RNA-binding protein. We show here that LIN-41 can also regulate germline mRNAs via the LREs. Through a computational-experimental analysis, we identified the germline mRNAs potentially controlled via LREs and validated one target, the cfp-1 mRNA, encoding a conserved chromatin modifier. Our analysis suggests that cfp-1 may be a long-sought target whose LIN-41-mediated regulation during OET facilitates the transcriptional reprogramming underlying the switch from germ- to somatic cell identity.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | | | - Rafal Ciosk
- Department of Biosciences, University of Oslo, Oslo 0316, Norway
| |
Collapse
|
8
|
Wharton TH, Marhabaie M, Wharton RP. Significant roles in RNA-binding for the amino-terminal domains of Drosophila Pumilio and Nanos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563753. [PMID: 37961211 PMCID: PMC10634786 DOI: 10.1101/2023.10.24.563753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The Drosophila Pumilio (Pum) and Nanos (Nos) RNA-binding proteins govern abdominal segmentation in the early embryo, as well as a variety of other events during development. They bind together to a compound Nanos Response Element (NRE) present in thousands of maternal mRNAs in the ovary and embryo, including hunchback ( hb ) mRNA, thereby regulating poly-adenylation, translation, and stability. Many studies support a model in which mRNA recognition and effector recruitment are achieved by distinct regions of each protein. The well-ordered Pum and Nos RNA-binding domains (RBDs) are sufficient to specifically recognize NREs; the relatively larger low-complexity N-terminal domains (NTDs) of each protein have been thought to act by recruiting mRNA regulators. Here we use yeast interaction assays to show that the NTDs also play a significant role in recognition of the NRE, acting via two mechanisms. First, the Pum and Nos NTDs interact in trans to promote assembly of the Pum/Nos/NRE ternary complex. Second, the Pum NTD acts via an unknown mechanism in cis, modifying base recognition by its RBD. These activities of the Pum NTD are important for its regulation of maternal hb mRNA in vivo.
Collapse
|
9
|
Chen Q, Malki S, Xu X, Bennett B, Lackford BL, Kirsanov O, Geyer CB, Hu G. Cnot3 is required for male germ cell development and spermatogonial stem cell maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562256. [PMID: 37873304 PMCID: PMC10592795 DOI: 10.1101/2023.10.13.562256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The foundation of spermatogenesis and lifelong fertility is provided by spermatogonial stem cells (SSCs). SSCs divide asymmetrically to either replenish their numbers (self-renewal) or produce undifferentiated progenitors that proliferate before committing to differentiation. However, regulatory mechanisms governing SSC maintenance are poorly understood. Here, we show that the CCR4-NOT mRNA deadenylase complex subunit CNOT3 plays a critical role in maintaining spermatogonial populations in mice. Cnot3 is highly expressed in undifferentiated spermatogonia, and its deletion in spermatogonia resulted in germ cell loss and infertility. Single cell analyses revealed that Cnot3 deletion led to the de-repression of transcripts encoding factors involved in spermatogonial differentiation, including those in the glutathione redox pathway that are critical for SSC maintenance. Together, our study reveals that CNOT3 - likely via the CCR4-NOT complex - actively degrades transcripts encoding differentiation factors to sustain the spermatogonial pool and ensure the progression of spermatogenesis, highlighting the importance of CCR4-NOT-mediated post-transcriptional gene regulation during male germ cell development.
Collapse
Affiliation(s)
- Qing Chen
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
- Present address: Clinical Microbiome Unit (CMU), Laboratory of Host Immunity and Microbiome (LHIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Safia Malki
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xiaojiang Xu
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
- Present address: Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112
| | - Brian Bennett
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Brad L. Lackford
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Oleksandr Kirsanov
- Department of Anatomy & Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Christopher B. Geyer
- Department of Anatomy & Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute East Carolina University, Greenville, NC, USA
| | - Guang Hu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
10
|
Gura MA, Bartholomew MA, Abt KM, Relovská S, Seymour KA, Freiman RN. Transcription and chromatin regulation by TAF4b during cellular quiescence of developing prospermatogonia. Front Cell Dev Biol 2023; 11:1270408. [PMID: 37900284 PMCID: PMC10600471 DOI: 10.3389/fcell.2023.1270408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Prospermatogonia (ProSpg) link the embryonic development of male primordial germ cells to the healthy establishment of postnatal spermatogonia and spermatogonial stem cells. While these spermatogenic precursor cells undergo the characteristic transitions of cycling and quiescence, the transcriptional events underlying these developmental hallmarks remain unknown. Here, we investigated the expression and function of TBP-associated factor 4b (Taf4b) in the timely development of quiescent mouse ProSpg using an integration of gene expression profiling and chromatin mapping. We find that Taf4b mRNA expression is elevated during the transition of mitotic-to-quiescent ProSpg and Taf4b-deficient ProSpg are delayed in their entry into quiescence. Gene ontology, protein network analysis, and chromatin mapping demonstrate that TAF4b is a direct and indirect regulator of chromatin and cell cycle-related gene expression programs during ProSpg quiescence. Further validation of these cell cycle mRNA changes due to the loss of TAF4b was accomplished via immunostaining for proliferating cell nuclear antigen (PCNA). Together, these data indicate that TAF4b is a key transcriptional regulator of the chromatin and quiescent state of the developing mammalian spermatogenic precursor lineage.
Collapse
Affiliation(s)
| | | | | | - Soňa Relovská
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Kimberly A. Seymour
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Richard N. Freiman
- MCB Graduate Program, Providence, RI, United States
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| |
Collapse
|
11
|
Bustamante-Marin XM, Capel B. Oxygen availability influences the incidence of testicular teratoma in Dnd1Ter/+ mice. Front Genet 2023; 14:1179256. [PMID: 37180974 PMCID: PMC10169730 DOI: 10.3389/fgene.2023.1179256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
Testicular teratomas and teratocarcinomas are the most common testicular germ cell tumors in early childhood and young men, and they are frequently found unilaterally in the left testis. In 129/SvJ mice carrying a heterozygous copy of the potent modifier of tumor incidence Ter, a point mutation in the dead-end homolog one gene (Dnd1 Ter/+), ∼70% of the unilateral teratomas arise in the left testis. We previously showed that in mice, left/right differences in vascular architecture are associated with reduced hemoglobin saturation and increased levels of the hypoxia inducible factor-1 alpha (HIF-1α) in the left compared to the right testis. To test the hypothesis that systemic reduction of oxygen availability in Dnd1 Ter/+ mice would lead to an increased incidence of bilateral tumors, we placed pregnant females from 129/SvJ Dnd1 Ter/+ intercross matings in a hypobaric chamber for 12-h intervals. Our results show that in 129/SvJ Dnd1 Ter/+ male gonads, the incidence of bilateral teratoma increased from 3.3% to 64% when fetuses were exposed to acute low oxygen conditions for 12-h between E13.8 and E14.3. The increase in tumor incidence correlated with the maintenance of high expression of pluripotency genes Oct4, Sox2 and Nanog, elevated activity of the Nodal signaling pathway, and suppression of germ cell mitotic arrest. We propose that the combination of heterozygosity for the Ter mutation and hypoxia causes a delay in male germ cell differentiation that promotes teratoma initiation.
Collapse
Affiliation(s)
- Ximena M. Bustamante-Marin
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
- Departamento Biomédico, Facultad de Ciencias De La Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
12
|
Imai A, Matsuda K, Niimi Y, Suzuki A. Loss of Dead end1 induces testicular teratomas from primordial germ cells that failed to undergo sexual differentiation in embryonic testes. Sci Rep 2023; 13:6398. [PMID: 37076592 PMCID: PMC10115811 DOI: 10.1038/s41598-023-33706-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/18/2023] [Indexed: 04/21/2023] Open
Abstract
Spontaneous testicular teratomas (STTs) are tumours comprising a diverse array of cell and tissue types, which are derived from pluripotent stem-like cells called embryonal carcinoma cells (ECCs). Although mouse ECCs originate from primordial germ cells (PGCs) in embryonic testes, the molecular basis underlying ECC development remains unclear. This study shows that the conditional deletion of mouse Dead end1 (Dnd1) from migrating PGCs leads to STT development. In Dnd1-conditional knockout (Dnd1-cKO) embryos, PGCs colonise the embryonic testes but fail to undergo sexual differentiation; subsequently, ECCs develop from a portion of the PGCs. Transcriptomic analyses reveal that PGCs not only fail to undergo sexual differentiation but are also prone to transformation into ECCs by upregulating the expression of marker genes for primed pluripotency in the testes of Dnd1-cKO embryos. Thus, our results clarify the role of Dnd1 in developing STTs and developmental process of ECC from PGC, providing novel insights into pathogenic mechanisms of STTs.
Collapse
Affiliation(s)
- Atsuki Imai
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Kazuya Matsuda
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Yuki Niimi
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
- Research & Development Group, Center for Exploratory Research, Hitachi, Ltd., Kobe, Hyogo, Japan
| | - Atsushi Suzuki
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan.
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan.
| |
Collapse
|
13
|
Ruthig VA, Hatkevich T, Hardy J, Friedersdorf MB, Mayère C, Nef S, Keene JD, Capel B. The RNA binding protein DND1 is elevated in a subpopulation of pro-spermatogonia and targets chromatin modifiers and translational machinery during late gestation. PLoS Genet 2023; 19:e1010656. [PMID: 36857387 PMCID: PMC10010562 DOI: 10.1371/journal.pgen.1010656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 03/13/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
DND1 is essential to maintain germ cell identity. Loss of Dnd1 function results in germ cell differentiation to teratomas in some inbred strains of mice or to somatic fates in zebrafish. Using our knock-in mouse line in which a functional fusion protein between DND1 and GFP is expressed from the endogenous locus (Dnd1GFP), we distinguished two male germ cell (MGC) populations during late gestation cell cycle arrest (G0), consistent with recent reports of heterogeneity among MGCs. Most MGCs express lower levels of DND1-GFP (DND1-GFP-lo), but some MGCs express elevated levels of DND1-GFP (DND1-GFP-hi). A RNA-seq time course confirmed high Dnd1 transcript levels in DND1-GFP-hi cells along with 5-10-fold higher levels for multiple epigenetic regulators. Using antibodies against DND1-GFP for RNA immunoprecipitation (RIP)-sequencing, we identified multiple epigenetic and translational regulators that are binding targets of DND1 during G0 including DNA methyltransferases (Dnmts), histone deacetylases (Hdacs), Tudor domain proteins (Tdrds), actin dependent regulators (Smarcs), and a group of ribosomal and Golgi proteins. These data suggest that in DND1-GFP-hi cells, DND1 hosts coordinating mRNA regulons that consist of functionally related and localized groups of epigenetic enzymes and translational components.
Collapse
Affiliation(s)
- Victor A. Ruthig
- Sexual Medicine Lab, Department of Urology, Weill Cornell Medicine, New York, New York, United States of America
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Talia Hatkevich
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Josiah Hardy
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Matthew B. Friedersdorf
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Chloé Mayère
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Jack D. Keene
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
14
|
The solution structure of Dead End bound to AU-rich RNA reveals an unusual mode of tandem RRM-RNA recognition required for mRNA regulation. Nat Commun 2022; 13:5892. [PMID: 36202814 PMCID: PMC9537309 DOI: 10.1038/s41467-022-33552-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/22/2022] [Indexed: 11/08/2022] Open
Abstract
Dead End (DND1) is an RNA-binding protein essential for germline development through its role in post-transcriptional gene regulation. The molecular mechanisms behind selection and regulation of its targets are unknown. Here, we present the solution structure of DND1's tandem RNA Recognition Motifs (RRMs) bound to AU-rich RNA. The structure reveals how an NYAYUNN element is specifically recognized, reconciling seemingly contradictory sequence motifs discovered in recent genome-wide studies. RRM1 acts as a main binding platform, including atypical extensions to the canonical RRM fold. RRM2 acts cooperatively with RRM1, capping the RNA using an unusual binding pocket, leading to an unusual mode of tandem RRM-RNA recognition. We show that the consensus motif is sufficient to mediate upregulation of a reporter gene in human cells and that this process depends not only on RNA binding by the RRMs, but also on DND1's double-stranded RNA binding domain (dsRBD), which is dispensable for binding of a subset of targets in cellulo. Our results point to a model where DND1 target selection is mediated by a non-canonical mode of AU-rich RNA recognition by the tandem RRMs and a role for the dsRBD in the recruitment of effector complexes responsible for target regulation.
Collapse
|
15
|
Xie X, Khan M, Zubair M, Khan A, Khan R, Zhou J, Zhang Y, Said M, Khan SA, Zaman Q, Murtaza G, Khan MA, Liu W, Hou X, Zhang H, Xu B, Jiang X, Bai S, Shi Q. A homozygous missense variant in DND1 causes non-obstructive azoospermia in humans. Front Genet 2022; 13:1017302. [PMID: 36246621 PMCID: PMC9561125 DOI: 10.3389/fgene.2022.1017302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Non-obstructive azoospermia (NOA) is a severe factor of male infertility; it affects approximately 1% of the global male population and accounts for 40% of male infertility cases. However, the majority of NOA cases remain idiopathic. This is the first study using whole-exome sequencing (WES) to identify a novel missense mutation in the DND1 gene (c.212A>C, p. E71A) from a Pakistani family, that includes three males with NOA. This mutation is predicted to cause DND1 protein misfolding and weaken the DND1 interaction with NANOS2, a significant regulator in primordial germ cell development. Our study identified a DND1 pathogenic mutation in NOA patients and highlighted its critical role in male fertility in humans.
Collapse
Affiliation(s)
- Xuefeng Xie
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Mazhar Khan
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Muhammad Zubair
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ranjha Khan
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Jianteng Zhou
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Yuanwei Zhang
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Muzafar Said
- Malka Andrology, Fertility and IVF Center, Roshan Specialized Hospital, saidu sharif, Pakistan
| | - Sher Ali Khan
- Malka Andrology, Fertility and IVF Center, Roshan Specialized Hospital, saidu sharif, Pakistan
| | - Qamar Zaman
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Ghulam Murtaza
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Muzamil Ahmad Khan
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | - Wei Liu
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Xiaoning Hou
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Huan Zhang
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Bo Xu
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Xiaohua Jiang
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Shun Bai
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Qinghua Shi
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| |
Collapse
|
16
|
Peart NJ, Johnson TA, Lee S, Sears MJ, Yang F, Quesnel-Vallières M, Feng H, Recinos Y, Barash Y, Zhang C, Hermann BP, Wang PJ, Geyer CB, Carstens RP. The germ cell-specific RNA binding protein RBM46 is essential for spermatogonial differentiation in mice. PLoS Genet 2022; 18:e1010416. [PMID: 36129965 PMCID: PMC9529142 DOI: 10.1371/journal.pgen.1010416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/03/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Control over gene expression is exerted, in multiple stages of spermatogenesis, at the post-transcriptional level by RNA binding proteins (RBPs). We identify here an essential role in mammalian spermatogenesis and male fertility for 'RNA binding protein 46' (RBM46). A highly evolutionarily conserved gene, Rbm46 is also essential for fertility in both flies and fish. We found Rbm46 expression was restricted to the mouse germline, detectable in males in the cytoplasm of premeiotic spermatogonia and meiotic spermatocytes. To define its requirement for spermatogenesis, we generated Rbm46 knockout (KO, Rbm46-/-) mice; although male Rbm46-/- mice were viable and appeared grossly normal, they were infertile. Testes from adult Rbm46-/- mice were small, with seminiferous tubules containing only Sertoli cells and few undifferentiated spermatogonia. Using genome-wide unbiased high throughput assays RNA-seq and 'enhanced crosslinking immunoprecipitation' coupled with RNA-seq (eCLIP-seq), we discovered RBM46 could bind, via a U-rich conserved consensus sequence, to a cohort of mRNAs encoding proteins required for completion of differentiation and subsequent meiotic initiation. In summary, our studies support an essential role for RBM46 in regulating target mRNAs during spermatogonia differentiation prior to the commitment to meiosis in mice.
Collapse
Affiliation(s)
- Natoya J. Peart
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Taylor A. Johnson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Sungkyoung Lee
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew J. Sears
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Fang Yang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mathieu Quesnel-Vallières
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Huijuan Feng
- Department of Systems Biology and Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Yocelyn Recinos
- Department of Systems Biology and Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Chaolin Zhang
- Department of Systems Biology and Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Brian P. Hermann
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Christopher B. Geyer
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
- East Carolina Diabetes and Obesity Institute at East Carolina University, Greenville, North Carolina, United States of America
| | - Russ P. Carstens
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
17
|
Hirano T, Wright D, Suzuki A, Saga Y. A cooperative mechanism of target RNA selection via germ-cell-specific RNA-binding proteins NANOS2 and DND1. Cell Rep 2022; 39:110894. [PMID: 35705038 DOI: 10.1016/j.celrep.2022.110894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 12/09/2021] [Accepted: 05/06/2022] [Indexed: 11/03/2022] Open
Abstract
The germ-cell-specific RNA-binding protein (RBP) NANOS2 plays a pivotal role in male gonocyte differentiation and spermatogonial stem cell maintenance. Although NANOS2 interacts with the CNOT deadenylation complex and Dead end 1 (DND1) to repress target RNAs, the molecular mechanisms underlying target mRNA selection remain unclear because of the limited cell resource in vivo. Here, we demonstrate that exogenous NANOS2-DND1 suppresses target mRNAs in somatic cells. Using this somatic cell system, we find that NANOS2 interacts with RNA-bound DND1 and recruits the CNOT complex to the mRNAs. However, a fusion construct composed of the CNOT1-binding site of NANOS2 (NIM) and DND1 fails to repress the target gene expression. Therefore, NANOS2 is required not only for recruitment of the CNOT complex but also for selecting the target mRNA with DND1. This study reveals that NANOS2 functions as a second-layer RBP for the target recognition and functional adaptation of DND1.
Collapse
Affiliation(s)
- Takamasa Hirano
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Mishima, Shizuoka 411-8582, Japan
| | - Danelle Wright
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Mishima, Shizuoka 411-8582, Japan; Department of Genetics, SOKENDAI, 1111 Mishima, Shizuoka 411-8582, Japan
| | - Atsushi Suzuki
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501 Japan
| | - Yumiko Saga
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Mishima, Shizuoka 411-8582, Japan; Department of Genetics, SOKENDAI, 1111 Mishima, Shizuoka 411-8582, Japan; Division for Development of Genetic-Engineered Mouse Resource, Genetic Resource Center, National Institute of Genetics, 1111 Mishima, Shizuoka 411-8582, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
18
|
Inoue H, Sakurai T, Hasegawa K, Suzuki A, Saga Y. NANOS3 suppresses premature spermatogonial differentiation to expand progenitors and fine-tunes spermatogenesis in mice. Biol Open 2022; 11:274984. [PMID: 35394008 PMCID: PMC9002807 DOI: 10.1242/bio.059146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/25/2022] [Indexed: 12/19/2022] Open
Abstract
In the mouse testis, sperm originate from spermatogonial stem cells (SSCs). SSCs give rise to spermatogonial progenitors, which expand their population until entering the differentiation process that is precisely regulated by a fixed time-scaled program called the seminiferous cycle. Although this expansion process of progenitors is highly important, its regulatory mechanisms remain unclear. NANOS3 is an RNA-binding protein expressed in the progenitor population. We demonstrated that the conditional deletion of Nanos3 at a later embryonic stage results in the reduction of spermatogonial progenitors in the postnatal testis. This reduction was associated with the premature differentiation of progenitors. Furthermore, this premature differentiation caused seminiferous stage disagreement between adjacent spermatogenic cells, which influenced spermatogenic epithelial cycles, leading to disruption of the later differentiation pathway. Our study suggests that NANOS3 plays an important role in timing progenitor expansion to adjust to the proper differentiation timing by blocking the retinoic acid (RA) signaling pathway.
Collapse
Affiliation(s)
- Hiroki Inoue
- Department of Gene Function and Phenomics, Mammalian Development Laboratory, National Institute of Genetics, Mishima, 411-8540Japan
| | - Takayuki Sakurai
- Department of Genetics, School of Life Science, The Graduate University for Advised Studies (SOKENDAI), Mishima, 411-8540Japan
| | - Kazuteru Hasegawa
- Department of Genetics, School of Life Science, The Graduate University for Advised Studies (SOKENDAI), Mishima, 411-8540Japan
| | - Atsushi Suzuki
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa, 240-8501Japan
| | - Yumiko Saga
- Department of Gene Function and Phenomics, Mammalian Development Laboratory, National Institute of Genetics, Mishima, 411-8540Japan.,Department of Genetics, School of Life Science, The Graduate University for Advised Studies (SOKENDAI), Mishima, 411-8540Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
19
|
Spiller C, Bowles J. Instructing Mouse Germ Cells to Adopt a Female Fate. Sex Dev 2022:1-13. [PMID: 35320803 DOI: 10.1159/000523763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/20/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Germ cells are critical for the survival of our species. They are the only cells that undergo meiosis - the reductive form of cell division that is necessary for genetic reassortment of chromosomes and production of the haploid gametes, the sperm and eggs. Remarkably, the initial female/male fate decision in fetal germ cells does not depend on whether they are chromosomally XX or XY; rather, initial sexual fate is imposed by influences from the surrounding tissue. In mammals, the female germline is particularly precious: despite recent suggestions that germline stem cells exist in the ovary, it is still generally accepted that the ovarian reserve is finite, and its size is dependant on germ cells of the fetal ovary initiating meiosis in a timely manner. SUMMARY Prior to 2006, evidence suggested that gonadal germ cells initiate meiotic prophase I by default, but more recent data support a key role for the signalling molecule retinoic acid (RA) in instructing female germ cell fate. Newer findings also support a key meiosis-inducing role for another signalling molecule, bone morphogenic protein (BMP). Nonetheless, many questions remain. KEY MESSAGES Here, we review knowledge thus far regarding extrinsic and intrinsic determinants of a female germ cell fate, focusing on the mouse model.
Collapse
Affiliation(s)
- Cassy Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
20
|
Saga Y. How Germ Cells Determine Their Own Sexual Fate in Mice. Sex Dev 2022:1-13. [PMID: 35263749 DOI: 10.1159/000520976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Whether to produce sperm or eggs is the most basic and important choice from the perspective of germ cell development and differentiation. However, the induction mechanism has not received much attention until relatively recently. This is because the issue of sexual differentiation has generally been considered a theme of somatic cells to make a testis or ovary. Basically, the sex of individual somatic cells and germ cells matches. Therefore, the sex of germ cells is thought to follow the sex of somatic cells once determined. However, researchers realized that a big, open question remained: What somatic cell signals actually induce the sexual differentiation of germ cells and what is the sex determinant in germ cells? SUMMARY In vitro experiments demonstrated that 2 somatic signals (BMP and RA) act directly on germ cells to induce oogonia. Therefore, these 2 signals may be referred to as oogonia inducers. From the viewpoint of germ cells, an independent experiment identified SMAD4 and STRA8, which are directly downstream of BMP and RA, respectively, acting in germ cells as female determinants. However, what about male? If these factors are female determinants, their absence may result in the induction of spermatogonia. This may be true in vivo because germ cells enter a male pathway if they do not receive these signals even in the ovary. However, this has not been confirmed in an in vitro culture system. There should be signals required for germ cells to enter a male pathway. KEY MESSAGES The important message is that although testis-specific factors secreted from the testis are considered to include male-inducing factors for germ cells, this may not be the case, and the male-inducing factor, if it exists, also exists in the ovary.
Collapse
Affiliation(s)
- Yumiko Saga
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Zhang Y, Li Y, Chachad D, Liu B, Godavarthi JD, Williams-Villalobo A, Lasisi L, Xiong S, Matin A. In silico analysis of DND1 and its co-expressed genes in human cancers. Biochem Biophys Rep 2022; 29:101206. [PMID: 35059511 PMCID: PMC8760529 DOI: 10.1016/j.bbrep.2022.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 10/31/2022] Open
Abstract
Dead-End (DND1) is an RNA-binding protein involved in translational regulation. Defects in DND1 gene causes germ cell tumors and sterility in rodents. Experimental studies with human somatic cancer cells indicate that DND1 has anti-proliferative and pro-apoptotic function in some while oncogenic function in other cells. We examined The Cancer Genome Atlas data for gene alterations and gene expression changes in DND1 in a variety of human cancers. We found that DND1 is amplified, deleted or mutated in multiple human cancers. In different cancers, DND1 alteration correlates with increased diagnosis age of patients, shift in tumor spectrum or change of tumor sites and in some cases is significantly associated with worse survival for cancer patients. For 15 cancers, we retrieved expression data of thousands of genes that co-expressed with DND1. We found that these cancers contain different percentage of genes that are positively or negatively co-expressed with DND1. Ingenuity Pathway Analysis was performed to explore the biological implications of these genes. More than 10 canonical pathways were identified and each cancer type exhibits unique pathway profiles. Comparison analysis across all 15 cancer types showed that some cancers exhibit strikingly similar profiles of DND1-correlated signaling pathway activation or suppression. Our data reinforce the notion that the biological role of DND1 is cell-type specific and suggest that DND1 may play opposing role by exerting anti-proliferative effects in some cancer cells while being pro-proliferative in others. Our study provides valuable insights to direct experimental investigations of DND1 function in somatic cancers. DND1 is altered with different frequencies in multiple human cancers. DND1 changes in cancers correlate with clinical outcomes including worse prognosis. DND1 is co-expressed with a large number of genes across multiple cancer types. DND1 correlates with activation or suppression of canonical biological pathways.
Collapse
|
22
|
Du S, Zhou L, Wang X, Xu S, Li J, Song Z, Liu Q. Characterization of vasa and dnd homologs in summer flounder, Paralichthys dentatus: Expression analysis and colocalization of PGCs during embryogenesis. Theriogenology 2022; 181:180-189. [PMID: 35121562 DOI: 10.1016/j.theriogenology.2022.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 02/04/2023]
Abstract
Specification of primordial germ cells (PGCs) is particularly important for germline formation. Many maternal-effect genes such as vasa, dnd, and nanos have been identified. However, the research on distribution patterns of PGCs in marine fish is limited. Vasa has been widely used as a germ cell marker to identify its origination in teleosts because vasa RNA is a component of germ plasm. Dnd is known to be an RNA binding protein that protects germline-specific RNAs from degradation. In this study, we isolated full-length vasa and dnd cDNA from summer flounder to track germ cell origination and their expression patterns by RT-PCR and ISH. The results demonstrated that deduced amino acid sequence of Pdvas and Pddnd shared typically conserved motifs of their homologues and demonstrated high identities with other teleosts. Both vasa and dnd transcripts were exclusively detected in germ cells of the gonads. During embryogenesis, vasa and dnd RNA were located at the cleavage furrows of early cleavage stages, and then through proliferation and migration they eventually moved to a location at the predetermined genital ridge. Phylogenetic analysis revealed that summer flounder belongs to the Euteleostei species, but vasa/dnd transcripts localized at the cleavage furrows was similar to that in zebrafish (Osteriophysans). This suggests that germ cells differentiating at early embryogenesis have no direct relation with phylogenesis. At the same time, we found the spatio-temporal expression pattern of dnd was highly consistent with vasa during this process, which indicated the important function of dnd in keeping the target RNA from being degraded to maintain germ cell fate. These results will provide further understanding of germ plasm localization and PGC differentiation in teleosts, and facilitate germ cell manipulation in marine fishes.
Collapse
Affiliation(s)
- Shuran Du
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Zhou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Life Science, Ningde Normal University, Engineering Research Center of Mindong Aquatic Product Deep-Processing,Fujian Province University, Ningde, 352100, China
| | - Xueying Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shihong Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zongcheng Song
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd., Weihai, 264319, China.
| | - Qinghua Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
23
|
Mercer M, Jang S, Ni C, Buszczak M. The Dynamic Regulation of mRNA Translation and Ribosome Biogenesis During Germ Cell Development and Reproductive Aging. Front Cell Dev Biol 2021; 9:710186. [PMID: 34805139 PMCID: PMC8595405 DOI: 10.3389/fcell.2021.710186] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/07/2021] [Indexed: 01/21/2023] Open
Abstract
The regulation of mRNA translation, both globally and at the level of individual transcripts, plays a central role in the development and function of germ cells across species. Genetic studies using flies, worms, zebrafish and mice have highlighted the importance of specific RNA binding proteins in driving various aspects of germ cell formation and function. Many of these mRNA binding proteins, including Pumilio, Nanos, Vasa and Dazl have been conserved through evolution, specifically mark germ cells, and carry out similar functions across species. These proteins typically influence mRNA translation by binding to specific elements within the 3′ untranslated region (UTR) of target messages. Emerging evidence indicates that the global regulation of mRNA translation also plays an important role in germ cell development. For example, ribosome biogenesis is often regulated in a stage specific manner during gametogenesis. Moreover, oocytes need to produce and store a sufficient number of ribosomes to support the development of the early embryo until the initiation of zygotic transcription. Accumulating evidence indicates that disruption of mRNA translation regulatory mechanisms likely contributes to infertility and reproductive aging in humans. These findings highlight the importance of gaining further insights into the mechanisms that control mRNA translation within germ cells. Future work in this area will likely have important impacts beyond germ cell biology.
Collapse
Affiliation(s)
- Marianne Mercer
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Seoyeon Jang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chunyang Ni
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Michael Buszczak
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
24
|
Morgan M, Kumar L, Li Y, Baptissart M. Post-transcriptional regulation in spermatogenesis: all RNA pathways lead to healthy sperm. Cell Mol Life Sci 2021; 78:8049-8071. [PMID: 34748024 DOI: 10.1007/s00018-021-04012-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 01/22/2023]
Abstract
Multiple RNA pathways are required to produce functional sperm. Here, we review RNA post-transcriptional regulation during spermatogenesis with particular emphasis on the role of 3' end modifications. From early studies in the 1970s, it became clear that spermiogenesis transcripts could be stored for days only to be translated at advanced stages of spermatid differentiation. The transition between the translationally repressed and active states was observed to correlate with the shortening of the transcripts' poly(A) tail, establishing a link between RNA 3' end metabolism and male germ cell differentiation. Since then, numerous RNA metabolic pathways have been implicated not only in the progression through spermatogenesis, but also in the maintenance of genomic integrity. Recent studies have characterized the elusive 3' biogenesis of Piwi-interacting RNAs (piRNAs), identified a critical role for messenger RNA (mRNA) 3' uridylation in meiotic progression, established the mechanisms that destabilize transcripts with long 3' untranslated regions (3'UTRs) in post-mitotic cells, and defined the physiological relevance of RNA exonucleases and deadenylases in male germ cells. In this review, we discuss RNA processing in the male germline in the light of the most recent findings. A brief recollection of different RNA-processing events will aid future studies exploring post-transcriptional regulation in spermatogenesis.
Collapse
Affiliation(s)
- Marcos Morgan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA.
| | - Lokesh Kumar
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Yin Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Marine Baptissart
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| |
Collapse
|
25
|
High DND1 Level Indicates a Poor Prognostic Factor in Prostate Cancer. DISEASE MARKERS 2021; 2021:9948241. [PMID: 34721738 PMCID: PMC8556102 DOI: 10.1155/2021/9948241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/13/2021] [Accepted: 09/05/2021] [Indexed: 11/21/2022]
Abstract
Background Dead end 1 (DND1) plays a vital role during oncogenesis and cancer progression by regulating the mRNA content via competitive combination with miRNA, but what function it exerts in prostate cancer has been unclear. The purpose of this paper is to explore the correlation between DND1 expression levels and clinical characteristics in prostate cancer (PCa) patients. Materials and Methods To assess the expression of DND1 in tumor specimens compared with paired paracancerous tissues, the sample from 83 patients was analyzed by immunohistochemistry. The Cancer Genome Atlas (TCGA) database was used to verify our results. Subsequently, we statistically analyzed the relationship between DND1 expression and the clinical prognosis of PCa patients. Results Compared with paracancerous tissues, DND1 has a higher expression level in prostate cancer. The overexpression of DND1 in protein level was significantly associated with the higher clinical stage (P = 0.006), ISUP grading group (P < 0.001), seminal vesicle invasion (P = 0.006), and PSA density (P = 0.002). Furthermore, the overexpression of DND1 indicates a poor clinical prognosis in prostate cancer patients. Conclusion High-level expression of DND1 was associated with tumor progression and poor clinical prognosis. Hence, DND1 may become a potential prognostic biomarker for PCa.
Collapse
|
26
|
Binsila B, Selvaraju S, Ranjithkumaran R, Archana SS, Krishnappa B, Ghosh SK, Kumar H, Subbarao RB, Arangasamy A, Bhatta R. Current scenario and challenges ahead in application of spermatogonial stem cell technology in livestock. J Assist Reprod Genet 2021; 38:3155-3173. [PMID: 34661801 DOI: 10.1007/s10815-021-02334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Spermatogonial stem cells (SSCs) are the source for the mature male gamete. SSC technology in humans is mainly focusing on preserving fertility in cancer patients. Whereas in livestock, it is used for mining the factors associated with male fertility. The review discusses the present status of SSC biology, methodologies developed for in vitro culture, and challenges ahead in establishing SSC technology for the propagation of superior germplasm with special reference to livestock. METHOD Published literatures from PubMed and Google Scholar on topics of SSCs isolation, purification, characterization, short and long-term culture of SSCs, stemness maintenance, epigenetic modifications of SSCs, growth factors, and SSC cryopreservation and transplantation were used for the study. RESULT The fine-tuning of SSC isolation and culture conditions with special reference to feeder cells, growth factors, and additives need to be refined for livestock. An insight into the molecular mechanisms involved in maintaining stemness and proliferation of SSCs could facilitate the dissemination of superior germplasm through transplantation and transgenesis. The epigenetic influence on the composition and expression of the biomolecules during in vitro differentiation of cultured cells is essential for sustaining fertility. The development of surrogate males through gene-editing will be historic achievement for the foothold of the SSCs technology. CONCLUSION Detailed studies on the species-specific factors regulating the stemness and differentiation of the SSCs are required for the development of a long-term culture system and in vitro spermatogenesis in livestock. Epigenetic changes in the SSCs during in vitro culture have to be elucidated for the successful application of SSCs for improving the productivity of the animals.
Collapse
Affiliation(s)
- Balakrishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India.
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Rajan Ranjithkumaran
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Santhanahalli Siddalingappa Archana
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Balaganur Krishnappa
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Subrata Kumar Ghosh
- Animal Reproduction Division, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Harendra Kumar
- Animal Reproduction Division, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Raghavendra B Subbarao
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Arunachalam Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Raghavendra Bhatta
- Indian council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| |
Collapse
|
27
|
Shimada R, Koike H, Hirano T, Kato Y, Saga Y. NANOS2 suppresses the cell cycle by repressing mTORC1 activators in embryonic male germ cells. iScience 2021; 24:102890. [PMID: 34401671 PMCID: PMC8350546 DOI: 10.1016/j.isci.2021.102890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 12/25/2022] Open
Abstract
During murine germ cell development, male germ cells enter the mitotically arrested G0 stage, which is an initial step of sexually dimorphic differentiation. The male-specific RNA-binding protein NANOS2 has a key role in suppressing the cell cycle in germ cells. However, the detailed mechanism of how NANOS2 regulates the cell cycle remains unclear. Using single-cell RNA sequencing (scRNA-seq), we extracted the cell cycle state of each germ cell in wild-type and Nanos2-KO testes and revealed that Nanos2 expression starts in mitotic cells and induces mitotic arrest. We identified Rheb, a regulator of mTORC1, and Ptma as possible targets of NANOS2. We propose that repression of the cell cycle is a primary function of NANOS2 and that it is mediated via the suppression of mTORC1 activity through the repression of Rheb in a post-transcriptional manner.
Collapse
Affiliation(s)
- Ryuki Shimada
- Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Hiroko Koike
- Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Takamasa Hirano
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Yuzuru Kato
- Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Yumiko Saga
- Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Division for the Development of Genetically Engineered Mouse Resources, Genetic Resource Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
28
|
Codino A, Turowski T, van de Lagemaat LN, Ivanova I, Tavosanis A, Much C, Auchynnikava T, Vasiliauskaitė L, Morgan M, Rappsilber J, Allshire RC, Kranc KR, Tollervey D, O'Carroll D. NANOS2 is a sequence-specific mRNA-binding protein that promotes transcript degradation in spermatogonial stem cells. iScience 2021; 24:102762. [PMID: 34278268 PMCID: PMC8271163 DOI: 10.1016/j.isci.2021.102762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
Spermatogonial stem cells (SSCs) sustain spermatogenesis and fertility throughout adult male life. The conserved RNA-binding protein NANOS2 is essential for the maintenance of SSCs, but its targets and mechanisms of function are not fully understood. Here, we generated a fully functional epitope-tagged Nanos2 mouse allele and applied the highly stringent cross-linking and analysis of cDNAs to define NANOS2 RNA occupancy in SSC lines. NANOS2 recognizes the AUKAAWU consensus motif, mostly found in the 3' untranslated region of defined messenger RNAs (mRNAs). We find that NANOS2 is a regulator of key signaling and metabolic pathways whose dosage or activity are known to be critical for SSC maintenance. NANOS2 interacts with components of CCR4-NOT deadenylase complex in SSC lines, and consequently, NANOS2 binding reduces the half-lives of target transcripts. In summary, NANOS2 contributes to SSC maintenance through the regulation of target mRNA stability and key self-renewal pathways.
Collapse
Affiliation(s)
- Azzurra Codino
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Tomasz Turowski
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Louie N. van de Lagemaat
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ivayla Ivanova
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Andrea Tavosanis
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Christian Much
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Tania Auchynnikava
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Lina Vasiliauskaitė
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Marcos Morgan
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Robin C. Allshire
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Kamil R. Kranc
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
29
|
Zhang Y, Godavarthi JD, Williams-Villalobo A, Polk S, Matin A. The Role of DND1 in Cancers. Cancers (Basel) 2021; 13:cancers13153679. [PMID: 34359581 PMCID: PMC8345090 DOI: 10.3390/cancers13153679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
The Ter mutation in Dead-End 1 (Dnd1), Dnd1Ter, which leads to a premature stop codon, has been determined to be the cause for primordial germ cell deficiency, accompanied with a high incidence of congenital testicular germ cell tumors (TGCTs) or teratomas in the 129/Sv-Ter mice. As an RNA-binding protein, DND1 can bind the 3'-untranslated region (3'-UTR) of mRNAs and function in translational regulation. DND1 can block microRNA (miRNA) access to the 3'-UTR of target mRNAs, thus inhibiting miRNA-mediated mRNA degradation and up-regulating translation or can also function to degrade or repress mRNAs. Other mechanisms of DND1 activity include promoting translation initiation and modifying target protein activity. Although Dnd1Ter mutation causes spontaneous TGCT only in male 129 mice, it can also cause ovarian teratomas in mice when combined with other genetic defects or cause germ cell teratomas in both genders in the WKY/Ztm rat strain. Furthermore, studies on human cell lines, patient cancer tissues, and the use of human cancer genome analysis indicate that DND1 may possess either tumor-suppressive or -promoting functions in a variety of somatic cancers. Here we review the involvement of DND1 in cancers, including what appears to be its emerging role in somatic cancers.
Collapse
Affiliation(s)
- Yun Zhang
- Correspondence: (Y.Z.); (A.M.); Tel.: +1-713-313-7557 (Y.Z.); +1-713-313-7160 (A.M.)
| | | | | | | | - Angabin Matin
- Correspondence: (Y.Z.); (A.M.); Tel.: +1-713-313-7557 (Y.Z.); +1-713-313-7160 (A.M.)
| |
Collapse
|
30
|
Duan X, Cheng X, Yin X, Ke Z, Song J. Systematic analysis of the function and prognostic value of RNA binding protein in head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 2021; 279:1535-1547. [PMID: 34218307 DOI: 10.1007/s00405-021-06929-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/01/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Dysregulation of RNA binding proteins (RBPs) plays an important role in controlling processes in cancer development. However, the function of RBPs has not been thoroughly and systematically documented in head and neck cancer. We aim to explore the role of RPB in the pathogenesis of HNSC. METHODS We obtained HNSC gene expression data and corresponding clinical information from The Cancer Genome Atlas (TCGA) and the GEO databases, and identified aberrantly expressed RBPs between tumors and normal tissues. Meanwhile, we performed a series of bioinformatics to explore the function and prognostic value of these RBPs. RESULTS A total of 249 abnormally expressed RBPs were identified, including 101 downregulated RBPs and 148 upregulated RBPs. Using least absolute shrinkage and selection operator (LASSO) and univariate Cox regression analysis, the 15 RPBs were identified as hub genes. With the 15 RPBS, the prognostic prediction model was constructed. Further analysis showed that the high-risk score of the patients expressed a better survival outcome. The prediction model was validated in another HNSC dataset, and similar findings were observed. CONCLUSIONS Our results provide novel insights into the pathogenesis of HNSC. The fifteen RBP gene signature exhibited the predictive value of moderate HNSC prognosis, and have potential application value in clinical decision-making and individualized treatment.
Collapse
Affiliation(s)
- Xiaofeng Duan
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Xianlin Cheng
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Xinhai Yin
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Zhao Ke
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Jukun Song
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
31
|
Kumari P, Bhavesh NS. Human DND1-RRM2 forms a non-canonical domain swapped dimer. Protein Sci 2021; 30:1184-1195. [PMID: 33860980 PMCID: PMC8138521 DOI: 10.1002/pro.4083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/09/2022]
Abstract
RNA recognition motif (RRM) being the most abundant RNA binding domain in eukaryotes, is a major player in cellular regulation. Several variations in the canonical βαββαβ topology have been observed. We have determined the 2.3 Å crystal structure of the human DND1-RRM2 domain. The structure revealed an interesting non-canonical RRM fold, which is maintained by the formation of a 3D domain swapped dimer between β1 and β4 strands across protomers. We have delineated the structural basis of the stable domain swapped dimer formation using the residue level dynamics of protein explored by NMR spectroscopy and MD simulations. Our structural and dynamics studies substantiate major determinants and molecular basis for domain swapped dimerization observed in the RRM domain.
Collapse
Affiliation(s)
- Pooja Kumari
- Transcription Regulation GroupInternational Centre for Genetic Engineering and Biotechnology (ICGEB)New DelhiIndia
| | - Neel Sarovar Bhavesh
- Transcription Regulation GroupInternational Centre for Genetic Engineering and Biotechnology (ICGEB)New DelhiIndia
| |
Collapse
|
32
|
Ibayashi M, Aizawa R, Tsukamoto S. mRNA decapping factor Dcp1a is essential for embryonic growth in mice. Biochem Biophys Res Commun 2021; 555:128-133. [PMID: 33813271 DOI: 10.1016/j.bbrc.2021.03.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
mRNA decapping is a critical step in posttranscriptional regulation of gene expression in eukaryotes. Although Dcp1a is a well characterized and widely conserved mRNA decapping factor, little is known about its physiological function. To extend our understanding of Dcp1a function in vivo, we employed a transgenic rescue strategy to produce Dcp1a-deficient mice using the CRISPR/Cas9 system. This approach arrowed us to generate heterozygous Dcp1a mice and define the phenotype of Dcp1a-deficient embryos. We found that expression of Dcp1a protein, which is detectable in most mouse tissues, was developmentally regulated through embryonic growth, and that depletion of the Dcp1a gene resulted in embryonic lethality around embryonic day 10.5 (E10.5) concomitant with massive growth retardation and cardiac developmental defects. Moreover, the embryonic lethality was fully rescued by transgenic expression of exogenous human Dcp1a. Together, our results suggest that Dcp1a is required for embryonic growth.
Collapse
Affiliation(s)
- Megumi Ibayashi
- Laboratory of Animal and Genome Sciences Section, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Chiba, 263-8555, Japan
| | - Ryutaro Aizawa
- Laboratory of Animal and Genome Sciences Section, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Chiba, 263-8555, Japan
| | - Satoshi Tsukamoto
- Laboratory of Animal and Genome Sciences Section, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Chiba, 263-8555, Japan.
| |
Collapse
|
33
|
Dai X, Jiang Y, Gu J, Jiang Z, Wu Y, Yu C, Yin H, Zhang J, Shi Q, Shen L, Sha Q, Fan H. The CNOT4 Subunit of the CCR4-NOT Complex is Involved in mRNA Degradation, Efficient DNA Damage Repair, and XY Chromosome Crossover during Male Germ Cell Meiosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003636. [PMID: 34026442 PMCID: PMC8132151 DOI: 10.1002/advs.202003636] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/23/2021] [Indexed: 05/03/2023]
Abstract
The CCR4-NOT complex is a major mRNA deadenylase in eukaryotes, comprising the catalytic subunits CNOT6/6L and CNOT7/8, as well as CNOT4, a regulatory subunit with previously undetermined functions. These subunits have been hypothesized to play synergistic biochemical functions during development. Cnot7 knockout male mice have been reported to be infertile. In this study, viable Cnot6/6l double knockout mice are constructed, and the males are fertile. These results indicate that CNOT7 has CNOT6/6L-independent functions in vivo. It is also demonstrated that CNOT4 is required for post-implantation embryo development and meiosis progression during spermatogenesis. Conditional knockout of Cnot4 in male germ cells leads to defective DNA damage repair and homologous crossover between X and Y chromosomes. CNOT4 functions as a previously unrecognized mRNA adaptor of CCR4-NOT by targeting mRNAs to CNOT7 for deadenylation of poly(A) tails, thereby mediating the degradation of a subset of transcripts from the zygotene to pachytene stage. The mRNA removal promoted by the CNOT4-regulated CCR4-NOT complex during the zygotene-to-pachytene transition is crucial for the appropriate expression of genes involved in the subsequent events of spermatogenesis, normal DNA double-strand break repair during meiosis, efficient crossover between X and Y chromosomes, and ultimately, male fertility.
Collapse
Affiliation(s)
- Xing‐Xing Dai
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Yu Jiang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Jia‐Hui Gu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Zhi‐Yan Jiang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Yun‐Wen Wu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Chao Yu
- College of Life ScienceZhejiang UniversityHangzhou310058China
| | - Hao Yin
- First Affiliated Hospital of USTCHefei National Laboratory for Physical Sciences at MicroscaleSchool of Basic Medical SciencesDivision of Life Sciences and MedicineCAS Center for Excellence in Molecular Cell ScienceUniversity of Science and Technology of ChinaHefei230027China
| | - Jue Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XIANGYAChangsha410008China
| | - Qing‐Hua Shi
- First Affiliated Hospital of USTCHefei National Laboratory for Physical Sciences at MicroscaleSchool of Basic Medical SciencesDivision of Life Sciences and MedicineCAS Center for Excellence in Molecular Cell ScienceUniversity of Science and Technology of ChinaHefei230027China
| | - Li Shen
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Qian‐Qian Sha
- Fertility Preservation LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhou510317China
| | - Heng‐Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| |
Collapse
|
34
|
Webster NJ, Maywald RL, Benton SM, Dawson EP, Murillo OD, LaPlante EL, Milosavljevic A, Lanza DG, Heaney JD. Testicular germ cell tumors arise in the absence of sex-specific differentiation. Development 2021; 148:260592. [PMID: 33912935 DOI: 10.1242/dev.197111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/22/2021] [Indexed: 01/09/2023]
Abstract
In response to signals from the embryonic testis, the germ cell intrinsic factor NANOS2 coordinates a transcriptional program necessary for the differentiation of pluripotent-like primordial germ cells toward a unipotent spermatogonial stem cell fate. Emerging evidence indicates that genetic risk factors contribute to testicular germ cell tumor initiation by disrupting sex-specific differentiation. Here, using the 129.MOLF-Chr19 mouse model of testicular teratomas and a NANOS2 reporter allele, we report that the developmental phenotypes required for tumorigenesis, including failure to enter mitotic arrest, retention of pluripotency and delayed sex-specific differentiation, were exclusive to a subpopulation of germ cells failing to express NANOS2. Single-cell RNA sequencing revealed that embryonic day 15.5 NANOS2-deficient germ cells and embryonal carcinoma cells developed a transcriptional profile enriched for MYC signaling, NODAL signaling and primed pluripotency. Moreover, lineage-tracing experiments demonstrated that embryonal carcinoma cells arose exclusively from germ cells failing to express NANOS2. Our results indicate that NANOS2 is the nexus through which several genetic risk factors influence tumor susceptibility. We propose that, in the absence of sex specification, signals native to the developing testis drive germ cell transformation.
Collapse
Affiliation(s)
- Nicholas J Webster
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rebecca L Maywald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan M Benton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Emily P Dawson
- Department of Cell Biology, New York University, New York, NY 10003, USA
| | - Oscar D Murillo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Emily L LaPlante
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Denise G Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
35
|
Yang G, He Y, Yang H. The involvement of bioactive factors in the self-renewal and stemness maintenance of spermatogonial stem cells. Mol Cell Biochem 2021; 476:1813-1823. [PMID: 33459979 DOI: 10.1007/s11010-020-04028-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022]
Abstract
Spermatogenesis is usually accompanied throughout mammalian lifetime, transmitting genetic information to the next generation, which is mainly dependent on the self-renewal and differentiation of spermatogonial stem cells (SSCs). With further investigation on profiles of SSCs, the previous prevailing orthodoxy that SSCs are unipotent stem cells to differentiate into spermatids only, has been challenged. More notably, accumulating evidence has demonstrated that SSCs are capable of giving rise to cell lineages of the three germ layers, highlighting potential important applications of SSCs for regenerative medicine. Nevertheless, it is unknown how the proliferation and stemness maintenance of SSCs are regulated intrinsically and strictly controlled in a special niche microenvironment in the seminiferous tubules. Based on the special niche microenvironment for SSCs, it is of vital interest to summarize the recent knowledge regarding several critical bioactive molecules in the self-renewal and stemness maintenance of SSCs. In this review, we discuss most recent findings about these critical bioactive factors and further address the new advances on the self-renewal and stemness maintenance of SSCs.
Collapse
Affiliation(s)
- Guoqing Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Yuqing He
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Hao Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, 712000, Shaanxi, China.
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China.
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
36
|
Ruthig VA, Yokonishi T, Friedersdorf MB, Batchvarova S, Hardy J, Garness JA, Keene JD, Capel B. A transgenic DND1GFP fusion allele reports in vivo expression and RNA-binding targets in undifferentiated mouse germ cells†. Biol Reprod 2021; 104:861-874. [PMID: 33394034 PMCID: PMC8324984 DOI: 10.1093/biolre/ioaa233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 01/20/2023] Open
Abstract
In vertebrates, the RNA-binding protein (RBP) dead end 1 (DND1) is essential for primordial germ cell (PGC) survival and maintenance of cell identity. In multiple species, Dnd1 loss or mutation leads to severe PGC loss soon after specification or, in some species, germ cell transformation to somatic lineages. Our investigations into the role of DND1 in PGC specification and differentiation have been limited by the absence of an available antibody. To address this problem, we used CRISPR/Cas9 gene editing to establish a transgenic mouse line carrying a DND1GFP fusion allele. We present imaging analysis of DND1GFP expression showing that DND1GFP expression is heterogeneous among male germ cells (MGCs) and female germ cells (FGCs). DND1GFP was detected in MGCs throughout fetal life but lost from FGCs at meiotic entry. In postnatal and adult testes, DND1GFP expression correlated with classic markers for the premeiotic spermatogonial population. Utilizing the GFP tag for RNA immunoprecipitation (RIP) analysis in MGCs validated this transgenic as a tool for identifying in vivo transcript targets of DND1. The DND1GFP mouse line is a novel tool for isolation and analysis of embryonic and fetal germ cells, and the spermatogonial population of the postnatal and adult testis.
Collapse
Affiliation(s)
- Victor A Ruthig
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | | | - Matthew B Friedersdorf
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Sofia Batchvarova
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Josiah Hardy
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Jason A Garness
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Jack D Keene
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
37
|
MiR-141-3p overexpression suppresses the malignancy of osteosarcoma by targeting FUS to degrade LDHB. Biosci Rep 2021; 40:225113. [PMID: 32484203 PMCID: PMC7286874 DOI: 10.1042/bsr20193404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/27/2022] Open
Abstract
Osteosarcoma (OS) is a common malignant bone cancer. Lactate dehydrogenase B (LDHB) has been revealed to act as a tumor promoter in several cancers. It is also revealed to be correlated with poor prognosis in OS, but its molecular mechanism in OS remains veiled. Our work illustrated that LDHB was overexpressed in OS tissues and cells, and it could enhance cell proliferation, migration, and invasion in OS. Subsequently, it was confirmed that fused in sarcoma (FUS) could bind with LDHB to positively regulate the stability of LDHB messenger RNA (mRNA). Besides, FUS expression was revealed to be elevated in OS tissues and positively correlate with LDHB expression. Furthermore, miR-141-3p, down-regulated in OS cells, was identified as the upstream regulator of FUS in OS cells. Besides, miR-141-3p overexpression decreased mRNA and protein levels of FUS and LDHB. More importantly, overexpression of miR-141-3p could impair FUS overexpression-mediated promotion on LDHB mRNA stability and expression. Finally, rescue assays indicated that miR-141-3p regulated OS cells cellular process via regulating LDHB. In sum, miR-141-3p targets FUS to degrade LDHB, thereby attenuating the malignancy of OS cells.
Collapse
|
38
|
Wright D, Kiso M, Saga Y. Genetic and structural analysis of the in vivo functional redundancy between murine NANOS2 and NANOS3. Development 2021; 148:dev191916. [PMID: 33199444 DOI: 10.1242/dev.191916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/04/2020] [Indexed: 01/26/2023]
Abstract
NANOS2 and NANOS3 are evolutionarily conserved RNA-binding proteins involved in murine germ cell development. NANOS3 is required for protection from apoptosis during migration and gonadal colonization in both sexes, whereas NANOS2 is male-specific and required for the male-type differentiation of germ cells. Ectopic NANOS2 rescues the functions of NANOS3, but NANOS3 cannot rescue NANOS2 function, even though its expression is upregulated in Nanos2-null conditions. It is unknown why NANOS3 cannot rescue NANOS2 function and it is unclear whether NANOS3 plays any role in male germ cell differentiation. To address these questions, we made conditional Nanos3/Nanos2 knockout mice and chimeric mice expressing chimeric NANOS proteins. Conditional double knockout of Nanos2 and Nanos3 led to the rapid loss of germ cells, and in vivo and in vitro experiments revealed that DND1 and NANOS2 binding is dependent on the specific NANOS2 zinc-finger structure. Moreover, murine NANOS3 failed to bind CNOT1, an interactor of NANOS2 at its N-terminal. Collectively, our study suggests that the inability of NANOS3 to rescue NANOS2 function is due to poor DND1 recruitment and CNOT1 binding.
Collapse
Affiliation(s)
- Danelle Wright
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima 411-8540, Japan
| | - Makoto Kiso
- Department of Gene Function and Phenomics, Mammalian Development Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Yumiko Saga
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima 411-8540, Japan
- Department of Gene Function and Phenomics, Mammalian Development Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
39
|
Yan YB. Diverse functions of deadenylases in DNA damage response and genomic integrity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1621. [PMID: 32790161 DOI: 10.1002/wrna.1621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
DNA damage response (DDR) is a coordinated network of diverse cellular processes including the detection, signaling, and repair of DNA lesions, the adjustment of metabolic network and cell fate determination. To deal with the unavoidable DNA damage caused by either endogenous or exogenous stresses, the cells need to reshape the gene expression profile to allow efficient transcription and translation of DDR-responsive messenger RNAs (mRNAs) and to repress the nonessential mRNAs. A predominant method to adjust RNA fate is achieved by modulating the 3'-end oligo(A) or poly(A) length via the opposing actions of polyadenylation and deadenylation. Poly(A)-specific ribonuclease (PARN) and the carbon catabolite repressor 4 (CCR4)-Not complex, the major executors of deadenylation, are indispensable to DDR and genomic integrity in eukaryotic cells. PARN modulates cell cycle progression by regulating the stabilities of mRNAs and microRNA (miRNAs) involved in the p53 pathway and contributes to genomic stability by affecting the biogenesis of noncoding RNAs including miRNAs and telomeric RNA. The CCR4-Not complex is involved in diverse pathways of DDR including transcriptional regulation, signaling pathways, mRNA stabilities, translation regulation, and protein degradation. The RNA targets of deadenylases are tuned by the DDR signaling pathways, while in turn the deadenylases can regulate the levels of DNA damage-responsive proteins. The mutual feedback between deadenylases and the DDR signaling pathways allows the cells to precisely control DDR by dynamically adjusting the levels of sensors and effectors of the DDR signaling pathways. Here, the diverse functions of deadenylases in DDR are summarized and the underlying mechanisms are proposed according to recent findings. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
40
|
Imai A, Hagiwara Y, Niimi Y, Tokumoto T, Saga Y, Suzuki A. Mouse dead end1 acts with Nanos2 and Nanos3 to regulate testicular teratoma incidence. PLoS One 2020; 15:e0232047. [PMID: 32339196 PMCID: PMC7185693 DOI: 10.1371/journal.pone.0232047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/06/2020] [Indexed: 11/19/2022] Open
Abstract
Spontaneous testicular teratomas (STTs) derived from primordial germ cells (PGCs) in the mouse embryonic testes predominantly develop in the 129 family inbred strain. Ter (spontaneous mutation) is a single nucleotide polymorphism that generates a premature stop codon of Dead end1 (Dnd1) and increases the incidence of STTs in the 129 genetic background. We previously found that DND1 interacts with NANOS2 or NANOS3 and that these complexes play a vital role in male embryonic germ cells and adult spermatogonia. However, the following are unclear: (a) whether DND1 works with NANOS2 or NANOS3 to regulate teratoma incidence, and (b) whether Ter simply causes Dnd1 loss or produces a short mutant DND1 protein. In the current study, we newly established a conventional Dnd1-knockout mouse line and found that these mice showed phenotypes similar to those of Ter mutant mice in spermatogenesis, oogenesis, and teratoma incidence, with a slight difference in spermiogenesis. In addition, we found that the amount of DND1 in Dnd1+/Ter embryos decreased to half of that in wild-type embryos, while the expression of the short mutant DND1 was not detected. We also found that double mutants for Dnd1 and Nanos2 or Nanos3 showed synergistic increase in the incidence of STTs. These data support the idea that Ter causes Dnd1 loss, leading to an increase in STT incidence, and that DND1 acts with NANOS2 and NANOS3 to regulate the development of teratoma from PGCs in the 129 genetic background. Thus, our results clarify the role of Dnd1 in the development of STTs and provide a novel insight into its pathogenic mechanism.
Collapse
Affiliation(s)
- Atsuki Imai
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Yoshihiko Hagiwara
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Yuki Niimi
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Toshinobu Tokumoto
- Biological Science Course, Graduate School of Science, National University Corporation Shizuoka University, Suruga, Shizuoka, Japan
| | - Yumiko Saga
- Division of Mammalian Development, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Atsushi Suzuki
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| |
Collapse
|
41
|
Du G, Wang X, Luo M, Xu W, Zhou T, Wang M, Yu L, Li L, Cai L, Wang PJ, Zhong Li J, Oatley JM, Wu X. mRBPome capture identifies the RNA-binding protein TRIM71, an essential regulator of spermatogonial differentiation. Development 2020; 147:dev184655. [PMID: 32188631 PMCID: PMC10679512 DOI: 10.1242/dev.184655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/23/2020] [Indexed: 12/15/2022]
Abstract
Continual spermatogenesis relies on the actions of an undifferentiated spermatogonial population that is composed of stem cells and progenitors. Here, using mouse models, we explored the role of RNA-binding proteins (RBPs) in regulation of the biological activities of this population. Proteins bound to polyadenylated RNAs in primary cultures of undifferentiated spermatogonia were captured with oligo (dT)-conjugated beads after UV-crosslinking and profiled by proteomics (termed mRBPome capture), yielding a putative repertoire of 473 RBPs. From this database, the RBP TRIM71 was identified and found to be expressed by stem and progenitor spermatogonia in prepubertal and adult mouse testes. Tissue-specific deletion of TRIM71 in the male germline led to reduction of the undifferentiated spermatogonial population and a block in transition to the differentiating state. Collectively, these findings demonstrate a key role of the RBP system in regulation of the spermatogenic lineage and may provide clues about the influence of RBPs on the biology of progenitor cell populations in other lineages.
Collapse
Affiliation(s)
- Guihua Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Xinrui Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Rare Metabolic Diseases & Jiangsu Province Key Laboratory of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
| | - Mengcheng Luo
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Weiya Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Tao Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Mei Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Luping Yu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lufan Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Li'e Cai
- Key Laboratory of Rare Metabolic Diseases & Jiangsu Province Key Laboratory of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - John Zhong Li
- Key Laboratory of Rare Metabolic Diseases & Jiangsu Province Key Laboratory of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
42
|
Wu X, Luo C, Hu L, Chen X, Chen Y, Fan J, Cheng CY, Sun F. Unraveling epigenomic abnormality in azoospermic human males by WGBS, RNA-Seq, and transcriptome profiling analyses. J Assist Reprod Genet 2020; 37:789-802. [PMID: 32056059 DOI: 10.1007/s10815-020-01716-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/06/2020] [Indexed: 02/02/2023] Open
Abstract
PURPOSE To determine associations between genomic DNA methylation in testicular cells and azoospermia in human males. METHODS This was a case-control study investigating the differences and conservations in DNA methylation, genome-wide DNA methylation, and bulk RNA-Seq for transcriptome profiling using testicular biopsy tissues from NOA and OA patients. Differential methylation and different conserved methylation regions associated with azoospermia were identified by comparing genomic DNA methylation of testicular seminiferous cells derived from NOA and OA patients. RESULTS The genome methylation modification of testicular cells from NOA patients was disordered, and the reproductive-related gene expression was significantly different. CONCLUSION Our findings not only provide valuable knowledge of human spermatogenesis but also paved the way for the identification of genes/proteins involved in male germ cell development. The approach presented in this report provides a powerful tool to identify responsible biomolecules, and/or cellular changes (e.g., epigenetic abnormality) that induce male reproductive dysfunction such as OA and NOA.
Collapse
Affiliation(s)
- Xiaolong Wu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | - Chunhai Luo
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | - Longfei Hu
- Singleron Biotechnologies Ltd., 211 Pubin Road, Nanjing, Jiangsu, People's Republic of China
| | - Xue Chen
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yunmei Chen
- Singleron Biotechnologies Ltd., 211 Pubin Road, Nanjing, Jiangsu, People's Republic of China
| | - Jue Fan
- Singleron Biotechnologies Ltd., 211 Pubin Road, Nanjing, Jiangsu, People's Republic of China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, 10065, USA.
| | - Fei Sun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
43
|
Gross-Thebing T, Raz E. Dead end and Detour: The function of the RNA-binding protein Dnd in posttranscriptional regulation in the germline. Curr Top Dev Biol 2020; 140:181-208. [DOI: 10.1016/bs.ctdb.2019.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Xu J, Chen RM, Chen SQ, Chen K, Tang LM, Yang DH, Yang X, Zhang Y, Song HS, Huang YP. Identification of a germline-expression promoter for genome editing in Bombyx mori. INSECT SCIENCE 2019; 26:991-999. [PMID: 30549429 DOI: 10.1111/1744-7917.12657] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Identification of stage- and tissue-specific cis-regulatory elements will enable more precise genomic editing. In previous studies of the silkworm Bombyx mori, we identified and characterized several tissue- and sex-specific cis-regulatory elements using transgenic technology, including a female- and fat body-specific promoter, vitellogenin, testis-specific promoters, Radial spoke head 1 (BmR1) and beta-tubulin 4 (Bmβ4). Here we report a cis-regulatory element specific for a somatic and germ cell-expressed promoter, nanos (Bmnos). We investigated activities of three truncated promoter sequences upstream of the transcriptional initiation site sequences of Bmnos in vitro (nos-0.6kb, nos-1kb and nos-2kb) and in vivo (nos-2kb). In BmN cultured cells, all three lengths drove expression of the gene encoding enhanced green fluorescence protein (EGFP), although nos-2kb had the highest fluorescence activity. In transgenic silkworms, nos-2kb drove EGFP expression at the early embryonic stage, and fluorescence was concentrated in the gonads at later embryonic stages. In addition, this cis-regulatory element was not sex differentiated. The fluorescence intensity gradually weakened following the larval developmental stage in the gonads and were broadly expressed in the whole body. The nos-2kb promoter drove the Cas9 system with efficiency comparable to that of the broad-spectrum strong IE1 promoter. These results indicate that Bmnos is an effective endogenous cis-regulatory element in the early embryo and in the gonad that can be used in applications involving the clustered, regularly interspaced, short palindromic repeats (CRISPR)/Cas9 system.
Collapse
Affiliation(s)
- Jun Xu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Rong-Mei Chen
- College of Life Sciences, Shanghai University, Shanghai, China
| | - Shu-Qing Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Kai Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lin-Meng Tang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - De-Hong Yang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xu Yang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, Nevada, USA
| | - Hong-Sheng Song
- College of Life Sciences, Shanghai University, Shanghai, China
| | - Yong-Ping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
45
|
Nunez L, Mokkapati S, Yu C, Deng JM, Behringer RR, Matin A. Generation of a novel mouse strain with conditional, cell-type specific, expression of DND1. Genesis 2019; 57:e23335. [PMID: 31513344 DOI: 10.1002/dvg.23335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 01/26/2023]
Abstract
Dead-End 1 (DND1) encodes an RNA binding protein critical for viable primordial germ cells in vertebrates. When introduced into cancer cell lines, DND1 suppresses cell proliferation and enhances apoptosis. However, the molecular function of mammalian wild-type DND1 has mostly been studied in cell lines and not verified in the organism. To facilitate study of wild-type DND1 function in mammalian systems, we generated a novel transgenic mouse line, LSL-FM-DND1 flox/+ , which conditionally expresses genetically engineered, FLAG-tagged and myc-tagged DND1 in a cell type-specific manner. We report that FLAG-myc-DND1 is indeed expressed in specific tissues of the mouse when LSL-FM-DND1 flox/+ is combined with mouse strains expressing Cre-recombinase. LSL-FM-DND1 flox/+ mice are fertile with no overt health effects. We expressed FLAG-myc-DND1 in the pancreas and found that chronic, ectopic expression of FLAG-myc-DND1 led to increase in fasting glucose levels in older mice. Thus, this novel LSL-FM-DND1 flox/+ mouse strain will facilitate studies on the biological and molecular function of wild-type DND1.
Collapse
Affiliation(s)
- Lisa Nunez
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, Texas
| | - Sharada Mokkapati
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chengtai Yu
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Jian M Deng
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Angabin Matin
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, Texas
| |
Collapse
|
46
|
Mäkelä JA, Koskenniemi JJ, Virtanen HE, Toppari J. Testis Development. Endocr Rev 2019; 40:857-905. [PMID: 30590466 DOI: 10.1210/er.2018-00140] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022]
Abstract
Production of sperm and androgens is the main function of the testis. This depends on normal development of both testicular somatic cells and germ cells. A genetic program initiated from the Y chromosome gene sex-determining region Y (SRY) directs somatic cell specification to Sertoli cells that orchestrate further development. They first guide fetal germ cell differentiation toward spermatogenic destiny and then take care of the full service to spermatogenic cells during spermatogenesis. The number of Sertoli cells sets the limits of sperm production. Leydig cells secrete androgens that determine masculine development. Testis development does not depend on germ cells; that is, testicular somatic cells also develop in the absence of germ cells, and the testis can produce testosterone normally to induce full masculinization in these men. In contrast, spermatogenic cell development is totally dependent on somatic cells. We herein review germ cell differentiation from primordial germ cells to spermatogonia and development of the supporting somatic cells. Testicular descent to scrota is necessary for normal spermatogenesis, and cryptorchidism is the most common male birth defect. This is a mild form of a disorder of sex differentiation. Multiple genetic reasons for more severe forms of disorders of sex differentiation have been revealed during the last decades, and these are described along with the description of molecular regulation of testis development.
Collapse
Affiliation(s)
- Juho-Antti Mäkelä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jaakko J Koskenniemi
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Helena E Virtanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| |
Collapse
|
47
|
Ruthig VA, Friedersdorf MB, Garness JA, Munger SC, Bunce C, Keene JD, Capel B. The RNA-binding protein DND1 acts sequentially as a negative regulator of pluripotency and a positive regulator of epigenetic modifiers required for germ cell reprogramming. Development 2019; 146:dev175950. [PMID: 31253634 PMCID: PMC6803376 DOI: 10.1242/dev.175950] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/20/2019] [Indexed: 12/18/2022]
Abstract
The adult spermatogonial stem cell population arises from pluripotent primordial germ cells (PGCs) that enter the fetal testis around embryonic day (E)10.5. PGCs undergo rapid mitotic proliferation, then enter prolonged cell cycle arrest (G1/G0), during which they transition to pro-spermatogonia. In mice homozygous for the Ter mutation in the RNA-binding protein Dnd1 (Dnd1Ter/Ter ), many male germ cells (MGCs) fail to enter G1/G0 and instead form teratomas: tumors containing many embryonic cell types. To investigate the origin of these tumors, we sequenced the MGC transcriptome in Dnd1Ter/Ter mutants at E12.5, E13.5 and E14.5, immediately prior to teratoma formation, and correlated this information with DO-RIP-Seq-identified DND1 direct targets. Consistent with previous results, we found DND1 controls downregulation of many genes associated with pluripotency and active cell cycle, including mTor, Hippo and Bmp/Nodal signaling pathway elements. However, DND1 targets also include genes associated with male differentiation, including a large group of chromatin regulators activated in wild-type but not mutant MGCs during the E13.5 and E14.5 transition. Results suggest multiple DND1 functions and link DND1 to initiation of epigenetic modifications in MGCs.
Collapse
Affiliation(s)
- Victor A Ruthig
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Matthew B Friedersdorf
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jason A Garness
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Corey Bunce
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jack D Keene
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
48
|
Li T, Wang X, Zhang H, Chen Z, Zhao X, Ma Y. Histomorphological Comparisons and Expression Patterns of BOLL Gene in Sheep Testes at Different Development Stages. Animals (Basel) 2019; 9:ani9030105. [PMID: 30901845 PMCID: PMC6466207 DOI: 10.3390/ani9030105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
BOLL is implicated in mammalian testicular function maintenance and spermatogenesis. To understand the expression patterns and biological functions of sheep BOLL, we examined the expression and immunolocalization of BOLL in the developing testes of Small-Tail Han sheep aged 0 days (D0), 2 months (2M), 5 months (5M), 1 year (1Y), and 2 years (2Y), by qPCR, Western blot, and immunohistochemistry methods. Firstly, morphological studies revealed that, in addition to spermatogonia, ordered and clear spermatocytes, as well as round and elongated spermatids and sperm, were found in the 1Y and 2Y testicular seminiferous tubules of the sheep testes, compared with the D0, 2M, and 5M testes, as analyzed by hematoxylin and eosin (H&E) staining. The diameter and area of the seminiferous tubules, epithelial thickness, and the area and perimeter of the tubule lumens gradually increased with age. BOLL was specifically expressed in testes and upregulation of BOLL transcript expression was higher in the testes of the 1Y and 2Y groups than in those of the D0, 2M, and 5M groups. Similarly, BOLL protein was expressed mainly in the 1Y and 2Y testes, ranging from primary spermatocytes to round spermatids, as well as in the spermatozoa. This study is the first demonstration that sheep BOLL might serve as a key regulator of the spermiogenesis involved in sperm maturity, in addition to its role as a crucial meiotic regulator.
Collapse
Affiliation(s)
- Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xia Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Hongyu Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Zhili Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
49
|
孙 灯, 刘 牧, 吴 华, 黄 福. [Bioinformatics analysis of expression and function of EXD3 gene in gastric cancer]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:215-221. [PMID: 30890511 PMCID: PMC6765637 DOI: 10.12122/j.issn.1673-4254.2019.02.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate the differentially expressed genes between gastric cancer and normal gastric mucosa by bioinformatics analysis, identify the important gene participating in the occurrence and progression of gastric cancer, and predict the functions of these genes. METHODS The gene expression microarray data GSE100935 (including 18 gastric cancer samples and normal gastric mucosal tissues) downloaded from the GEO expression profile database were analyzed using Morpheus to obtain the differentially expressed genes in gastric cancer, and a cluster analysis heat map was constructed. The online database UALCAN was used to obtain the expression levels of these differentially expressed genes in gastric cancer and normal gastric mucosa. The prognostic value of the differentially expressed genes in gastric cancer was evaluated with Kaplan-Meier survival analysis. GO functional enrichment analysis was performed using Fun-Rich software, and the STRING database was exploited to establish a PPI network for the differentially expressed genes. RESULTS A total of 45119 differentially expressed genes were identified from GSE100935 microarray data. Analysis with UALCAN showed an obvious high expression of EXD3 gene in gastric cancer, and survival analysis suggested that a high expression level of EXD3 was associated with a poorer prognosis of the patients with gastric cancer. GO functional enrichment analysis found that the differentially expressed genes in gastric cancer were involved mainly in the regulation of nucleotide metabolism and the activity of transcription factors in the cancer cells. CONCLUSIONS EXD3 may be a potential oncogene in gastric cancer possibly in relation to DNA damage repair. The up-regulation of EXD3 plays an important role in the development and prognosis of gastric cancer, and may serve as an important indicator for prognostic evaluation of the patients.
Collapse
Affiliation(s)
- 灯众 孙
- 蚌埠医学院 第一附属医院胃肠外科,安徽 蚌埠 233003Department of Gastrointestinal Surgery, Bengbu Medical College, Bengbu 233003, China
| | - 牧林 刘
- 蚌埠医学院 第一附属医院胃肠外科,安徽 蚌埠 233003Department of Gastrointestinal Surgery, Bengbu Medical College, Bengbu 233003, China
| | - 华彰 吴
- 蚌埠医学院 生物科学系,安徽 蚌埠 233003First Affiliated Hospital, Department of Biological Sciences, Bengbu Medical College, Bengbu 233003, China
| | - 福新 黄
- 蚌埠医学院 生物科学系,安徽 蚌埠 233003First Affiliated Hospital, Department of Biological Sciences, Bengbu Medical College, Bengbu 233003, China
| |
Collapse
|
50
|
Abstract
Germ cells are the stem cells of the species. Thus, it is critical that we have a good understanding of how they are specified, how the somatic cells instruct and support them, how they commit to one or other sex, and how they ultimately develop into functional gametes. Here, we focus on specifics of how sexual fate is determined during fetal life. Because the majority of relevant experimental work has been done using the mouse model, we focus on that species. We review evidence regarding the identity of instructive signals from the somatic cells, and the molecular responses that occur in germ cells in response to those extrinsic signals. In this way we aim to clarify progress to date regarding the mechanisms underlying the mitotic to meiosis switch in germ cells of the fetal ovary, and those involved in adopting and securing male fate in germ cells of the fetal testis.
Collapse
Affiliation(s)
- Cassy Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|