1
|
Aynaci A, Toussaint M, Gilis F, Albert M, Gaussin JF, Jadot M, Boonen M. Disruption of Man-6-P-Dependent Sorting to Lysosomes Confers IGF1R-Mediated Apoptosis Resistance. Int J Mol Sci 2025; 26:3586. [PMID: 40332073 PMCID: PMC12026698 DOI: 10.3390/ijms26083586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Mutations in GNPTAB underlie mucolipidosis II and mucolipidosis III α/β, which are inherited lysosomal storage disorders caused by a defective UDP-N-acetylglucosamine:lysosomal-enzyme N-acetylglucosamine phosphotransferase. As a result, newly synthesized acid hydrolases fail to acquire Mannose-6-Phosphate (Man-6-P) sorting signals, or do so to a lesser extent, and exhibit an impaired trafficking to lysosomes. Interestingly, we found that GNPTAB knockout HeLa cells are resistant to several cytotoxic agents: doxorubicin, chloroquine, staurosporine and paclitaxel. While we detected an increased trapping of weak bases in the expanded lysosomal population of these cells, which could reduce the effect of doxorubicin and chloroquine; the decreased cell response to staurosporine and paclitaxel suggested the involvement of alternative resistance mechanisms. Indeed, further investigation revealed that the hyperactivation of the Insulin-like Growth Factor 1 Receptor (IGF1R) pathway is a central player in the apoptosis resistance exhibited by Man-6-P sorting deficient cells.
Collapse
Affiliation(s)
- Asena Aynaci
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium; (A.A.); (M.T.); (F.G.); (M.A.); (J.-F.G.)
- Laboratory of Physiological Chemistry, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium;
| | - Maxence Toussaint
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium; (A.A.); (M.T.); (F.G.); (M.A.); (J.-F.G.)
- Laboratory of Physiological Chemistry, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium;
| | - Florentine Gilis
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium; (A.A.); (M.T.); (F.G.); (M.A.); (J.-F.G.)
- Laboratory of Physiological Chemistry, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium;
| | - Martine Albert
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium; (A.A.); (M.T.); (F.G.); (M.A.); (J.-F.G.)
| | - Jean-François Gaussin
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium; (A.A.); (M.T.); (F.G.); (M.A.); (J.-F.G.)
| | - Michel Jadot
- Laboratory of Physiological Chemistry, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium;
| | - Marielle Boonen
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium; (A.A.); (M.T.); (F.G.); (M.A.); (J.-F.G.)
| |
Collapse
|
2
|
Sun J, Lin W, Hao X, Baudry M, Bi X. LAMTOR1 regulates dendritic lysosomal positioning in hippocampal neurons through TRPML1 inhibition. Front Cell Neurosci 2024; 18:1495546. [PMID: 39650798 PMCID: PMC11621854 DOI: 10.3389/fncel.2024.1495546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Intracellular lysosomal trafficking and positioning are fundamental cellular processes critical for proper neuronal function. Among the diverse array of proteins involved in regulating lysosomal positioning, the Transient Receptor Potential Mucolipin 1 (TRPML1) and the Ragulator complex have emerged as central players. TRPML1, a lysosomal cation channel, has been implicated in lysosomal biogenesis, endosomal/lysosomal trafficking including in neuronal dendrites, and autophagy. LAMTOR1, a subunit of the Ragulator complex, also participates in the regulation of lysosomal trafficking. Here we report that LAMTOR1 regulates lysosomal positioning in dendrites of hippocampal neurons by interacting with TRPML1. LAMTOR1 knockdown (KD) increased lysosomal accumulation in proximal dendrites of cultured hippocampal neurons, an effect reversed by TRPML1 KD or inhibition. On the other hand, TRPML1 activation with ML-SA1 or prevention of TRPML1 interaction with LAMTOR1 using a TAT-decoy peptide induced dendritic lysosomal accumulation. LAMTOR1 KD-induced proximal dendritic lysosomal accumulation was blocked by the dynein inhibitor, ciliobrevin D, suggesting the involvement of a dynein-mediated transport. These results indicate that LAMTOR1-mediated inhibition of TRPML1 is critical for normal dendritic lysosomal distribution and that release of this inhibition or direct activation of TRPML1 results in abnormal dendritic lysosomal accumulation. The roles of LAMTOR1-TRPML1 interactions in lysosomal trafficking and positioning could have broad implications for understanding cognitive disorders associated with lysosomal pathology and calcium dysregulation.
Collapse
Affiliation(s)
- Jiandong Sun
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Weiju Lin
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Xiaoning Hao
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Michel Baudry
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
3
|
Patel S, Yule DI. Stretching the role of TMEM63a to gatekeeping Ca 2+ release in pancreatic acinar cells. Cell Calcium 2024; 121:102890. [PMID: 38759307 DOI: 10.1016/j.ceca.2024.102890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Affiliation(s)
- Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT, London, UK
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
4
|
Lee JJ, Wang T, Wiggins K, Lu PN, Underwood C, Ochenkowska K, Samarut E, Pollard LM, Flanagan-Steet H, Steet R. Dysregulated lysosomal exocytosis drives protease-mediated cartilage pathogenesis in multiple lysosomal disorders. iScience 2024; 27:109293. [PMID: 38495824 PMCID: PMC10940929 DOI: 10.1016/j.isci.2024.109293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 03/19/2024] Open
Abstract
The classic view of the lysosome as a static recycling center has been replaced with one of a dynamic and mobile hub of metabolic regulation. This revised view raises new questions about how dysfunction of this organelle causes pathology in inherited lysosomal disorders. Here we provide evidence for increased lysosomal exocytosis in the developing cartilage of three lysosomal disease zebrafish models with distinct etiologies. Dysregulated exocytosis was linked to altered cartilage development, increased activity of multiple cathepsin proteases, and cathepsin- and TGFβ-mediated pathogenesis in these models. Moreover, inhibition of cathepsin activity or direct blockade of exocytosis with small molecule modulators improved the cartilage phenotypes, reinforcing a connection between excessive extracellular protease activity and cartilage pathogenesis. This study highlights the pathogenic consequences in early cartilage development arising from uncontrolled release of lysosomal enzymes via exocytosis, and suggests that pharmacological enhancement of this process could be detrimental during tissue development.
Collapse
Affiliation(s)
- Jen-Jie Lee
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Tong Wang
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Kali Wiggins
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Po Nien Lu
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Christina Underwood
- Biochemical Genetics Laboratory, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Katarzyna Ochenkowska
- Research Center, Centre hospitalier de l’Université de Montréal (CHUM), Montreal, Canada
- Department of Neuroscience, Université de Montréal, Montréal, Canada
| | - Eric Samarut
- Research Center, Centre hospitalier de l’Université de Montréal (CHUM), Montreal, Canada
- Department of Neuroscience, Université de Montréal, Montréal, Canada
| | - Laura M. Pollard
- Biochemical Genetics Laboratory, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | | | - Richard Steet
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| |
Collapse
|
5
|
Song S, Wang Y, Wang H, Tian X, Zhang X, Zhang Q, Wei Q, Ji K. Fucoidan-induced reduction of lipid accumulation in foam cells through overexpression of lysosome genes. Int J Biol Macromol 2024; 263:130451. [PMID: 38408582 DOI: 10.1016/j.ijbiomac.2024.130451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Atherosclerosis (AS) is the common basis for the onset of cardiovascular events. The lipid metabolism theory considers foam cell formation as an important marker for the initiation of AS. Fucoidan is an acidic polysaccharide that can reduce lipid accumulation in foam cells. Studies show that tea polysaccharides can be transported to lysosomes via the tubulin pathway. However, the specific mechanism of action of fucoidan on foam cells has not been extensively studied. Therefore, we further explored the mechanism of action of fucoidan and evaluated whether it could reduce lipid accumulation in foam cells by affecting the expression of lysosomal pathway-related genes and proteins. In this study, three inhibitors, CPZ, EIPA, and colchicine, were used to inhibit endocytosis, macropinocytosis, and the tubulin pathway, respectively, to study the pathways of action. Transcriptomics and proteomics analysis, as well as western blotting and qRT-PCR were used to determine the effects of fucoidan and the inhibitors on lysosomal genes and proteins. Fucoidan could enter foam cells through both endocytosis and via macropinocytosis, and then further undergo intracellular transport via the tubulin pathway. After fucoidan treatment, the expression of lysosomal pathway-related genes and proteins including LAMP2, AP3, AP4, MCOLN1, and TFEB in foam cells increased significantly (P < 0.01). However, the expression of lysosomal genes and proteins after colchicine intervention was comparable with that in the model group. Therefore, the tubulin pathway inhibited by colchicine is an important pathway for the transport and distribution of fucoidan within cells. In summary, fucoidan may be transported to lysosomes via the tubulin pathway and may enhance the expression of lysosomal genes, promoting autophagy, thereby accelerating lipid clearance in foam cells. Due to its significant lipid-lowering effect, it can be used in the clinical treatment of AS.
Collapse
Affiliation(s)
- Shuliang Song
- Marine College, Shandong University, Weihai, Shandong 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| | - Yan Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Hongming Wang
- Binzhou Inspection and Testing Center, Binzhou 256600, China
| | - Xiao Tian
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiao Zhang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Qian Zhang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Qiang Wei
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Kai Ji
- Department of Plastic Surgery, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
6
|
Szenci G, Glatz G, Takáts S, Juhász G. The Ykt6-Snap29-Syx13 SNARE complex promotes crinophagy via secretory granule fusion with Lamp1 carrier vesicles. Sci Rep 2024; 14:3200. [PMID: 38331993 PMCID: PMC10853563 DOI: 10.1038/s41598-024-53607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
In the Drosophila larval salivary gland, developmentally programmed fusions between lysosomes and secretory granules (SGs) and their subsequent acidification promote the maturation of SGs that are secreted shortly before puparium formation. Subsequently, ongoing fusions between non-secreted SGs and lysosomes give rise to degradative crinosomes, where the superfluous secretory material is degraded. Lysosomal fusions control both the quality and quantity of SGs, however, its molecular mechanism is incompletely characterized. Here we identify the R-SNARE Ykt6 as a novel regulator of crinosome formation, but not the acidification of maturing SGs. We show that Ykt6 localizes to Lamp1+ carrier vesicles, and forms a SNARE complex with Syntaxin 13 and Snap29 to mediate fusion with SGs. These Lamp1 carriers represent a distinct vesicle population that are functionally different from canonical Arl8+, Cathepsin L+ lysosomes, which also fuse with maturing SGs but are controlled by another SNARE complex composed of Syntaxin 13, Snap29 and Vamp7. Ykt6- and Vamp7-mediated vesicle fusions also determine the fate of SGs, as loss of either of these SNAREs prevents crinosomes from acquiring endosomal PI3P. Our results highlight that fusion events between SGs and different lysosome-related vesicle populations are critical for fine regulation of the maturation and crinophagic degradation of SGs.
Collapse
Affiliation(s)
- Győző Szenci
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, 1117, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Gábor Glatz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Szabolcs Takáts
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, 1117, Hungary.
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, 1117, Hungary.
- Institute of Genetics, HUN-REN Biological Research Centre Szeged, Szeged, 6726, Hungary.
| |
Collapse
|
7
|
He X, Li X, Tian W, Li C, Li P, Zhao J, Yang S, Li S. The role of redox-mediated lysosomal dysfunction and therapeutic strategies. Biomed Pharmacother 2023; 165:115121. [PMID: 37418979 DOI: 10.1016/j.biopha.2023.115121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023] Open
Abstract
Redox homeostasis refers to the dynamic equilibrium between oxidant and reducing agent in the body which plays a crucial role in maintaining normal physiological activities of the body. The imbalance of redox homeostasis can lead to the development of various human diseases. Lysosomes regulate the degradation of cellular proteins and play an important role in influencing cell function and fate, and lysosomal dysfunction is closely associated with the development of various diseases. In addition, several studies have shown that redox homeostasis plays a direct or indirect role in regulating lysosomes. Therefore, this paper systematically reviews the role and mechanisms of redox homeostasis in the regulation of lysosomal function. Therapeutic strategies based on the regulation of redox exerted to disrupt or restore lysosomal function are further discussed. Uncovering the role of redox in the regulation of lysosomes helps to point new directions for the treatment of many human diseases.
Collapse
Affiliation(s)
- Xiaomeng He
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuening Li
- Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Wei Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenyu Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Pengfei Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shilei Yang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
8
|
Morimoto M, Bhambhani V, Gazzaz N, Davids M, Sathiyaseelan P, Macnamara EF, Lange J, Lehman A, Zerfas PM, Murphy JL, Acosta MT, Wang C, Alderman E, Reichert S, Thurm A, Adams DR, Introne WJ, Gorski SM, Boerkoel CF, Gahl WA, Tifft CJ, Malicdan MCV. Bi-allelic ATG4D variants are associated with a neurodevelopmental disorder characterized by speech and motor impairment. NPJ Genom Med 2023; 8:4. [PMID: 36765070 PMCID: PMC9918471 DOI: 10.1038/s41525-022-00343-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/06/2022] [Indexed: 02/12/2023] Open
Abstract
Autophagy regulates the degradation of damaged organelles and protein aggregates, and is critical for neuronal development, homeostasis, and maintenance, yet few neurodevelopmental disorders have been associated with pathogenic variants in genes encoding autophagy-related proteins. We report three individuals from two unrelated families with a neurodevelopmental disorder characterized by speech and motor impairment, and similar facial characteristics. Rare, conserved, bi-allelic variants were identified in ATG4D, encoding one of four ATG4 cysteine proteases important for autophagosome biogenesis, a hallmark of autophagy. Autophagosome biogenesis and induction of autophagy were intact in cells from affected individuals. However, studies evaluating the predominant substrate of ATG4D, GABARAPL1, demonstrated that three of the four ATG4D patient variants functionally impair ATG4D activity. GABARAPL1 is cleaved or "primed" by ATG4D and an in vitro GABARAPL1 priming assay revealed decreased priming activity for three of the four ATG4D variants. Furthermore, a rescue experiment performed in an ATG4 tetra knockout cell line, in which all four ATG4 isoforms were knocked out by gene editing, showed decreased GABARAPL1 priming activity for the two ATG4D missense variants located in the cysteine protease domain required for priming, suggesting that these variants impair the function of ATG4D. The clinical, bioinformatic, and functional data suggest that bi-allelic loss-of-function variants in ATG4D contribute to the pathogenesis of this syndromic neurodevelopmental disorder.
Collapse
Affiliation(s)
- Marie Morimoto
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vikas Bhambhani
- Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, 55404, USA
| | - Nour Gazzaz
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
- Provincial Medical Genetics Program, British Columbia Women's and Children's Hospital, Vancouver, BC, V6H 3N1, Canada
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mariska Davids
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Paalini Sathiyaseelan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Ellen F Macnamara
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Anna Lehman
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - Patricia M Zerfas
- Diagnostic and Research Services Branch, Office of Research Services, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jennifer L Murphy
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria T Acosta
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Camille Wang
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily Alderman
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
- Provincial Medical Genetics Program, British Columbia Women's and Children's Hospital, Vancouver, BC, V6H 3N1, Canada
| | - Sara Reichert
- Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, 55404, USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David R Adams
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20892, USA
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wendy J Introne
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20892, USA
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sharon M Gorski
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Cornelius F Boerkoel
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
- Provincial Medical Genetics Program, British Columbia Women's and Children's Hospital, Vancouver, BC, V6H 3N1, Canada
| | - William A Gahl
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20892, USA
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cynthia J Tifft
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20892, USA
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - May Christine V Malicdan
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20892, USA.
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Boda A, Varga LP, Nagy A, Szenci G, Csizmadia T, Lőrincz P, Juhász G. Rab26 controls secretory granule maturation and breakdown in Drosophila. Cell Mol Life Sci 2023; 80:24. [PMID: 36600084 PMCID: PMC9813115 DOI: 10.1007/s00018-022-04674-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023]
Abstract
At the onset of Drosophila metamorphosis, plenty of secretory glue granules are released from salivary gland cells and the glue is deposited on the ventral side of the forming (pre)pupa to attach it to a dry surface. Prior to this, a poorly understood maturation process takes place during which secretory granules gradually grow via homotypic fusions, and their contents are reorganized. Here we show that the small GTPase Rab26 localizes to immature (smaller, non-acidic) glue granules and its presence prevents vesicle acidification. Rab26 mutation accelerates the maturation, acidification and release of these secretory vesicles as well as the lysosomal breakdown (crinophagy) of residual, non-released glue granules. Strikingly, loss of Mon1, an activator of the late endosomal and lysosomal fusion factor Rab7, results in Rab26 remaining associated even with the large glue granules and a concomitant defect in glue release, similar to the effects of Rab26 overexpression. Our data thus identify Rab26 as a key regulator of secretory vesicle maturation that promotes early steps (vesicle growth) and inhibits later steps (lysosomal transport, acidification, content reorganization, release, and breakdown), which is counteracted by Mon1.
Collapse
Affiliation(s)
- Attila Boda
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Luca Petra Varga
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Anikó Nagy
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Győző Szenci
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Csizmadia
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary.
- Institute of Genetics, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
10
|
Abstract
Ca2+ is a universal second messenger that plays a wide variety of fundamental roles in cellular physiology. Thus, to warrant selective responses and to allow rapid mobilization upon specific stimuli, Ca2+ is accumulated in organelles to keep it at very low levels in the cytoplasm during resting conditions. Major Ca2+ storage organelles include the endoplasmic reticulum (ER), the mitochondria, and as recently demonstrated, the lysosome (Xu and Ren, Annu Rev Physiol 77:57-80, 2015). The importance of Ca2+ signaling deregulation in human physiology is underscored by its involvement in several human diseases, including lysosomal storage disorders, neurodegenerative disease and cancer (Shen et al., Nat Commun 3:731, 2012; Bae et al., J Neurosci 34:11485-11503, 2014). Recent evidence strongly suggests that lysosomal Ca2+ plays a major role in the regulation of lysosomal adaptation to nutrient availability through a lysosomal signaling pathway involving the lysosomal Ca2+ channel TRPML1 and the transcription factor TFEB, a master regulator for lysosomal function and autophagy (Sardiello et al., Science 325:473-477, 2009; Settembre et al., Science 332:1429-1433, 2011; Medina et al., Nat Cell Biol 17:288-299, 2015; Di Paola et al., Cell Calcium 69:112-121, 2018). Due to the tight relationship of this lysosomal Ca2+ channel and TFEB, in this chapter, we will focus on the role of the TRPML1/TFEB pathway in the regulation of lysosomal function and autophagy.
Collapse
Affiliation(s)
- Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.
| |
Collapse
|
11
|
Sun J, Liu Y, Hao X, Lin W, Su W, Chiang E, Baudry M, Bi X. LAMTOR1 inhibition of TRPML1‐dependent lysosomal calcium release regulates dendritic lysosome trafficking and hippocampal neuronal function. EMBO J 2022; 41:e108119. [PMID: 35099830 PMCID: PMC8886530 DOI: 10.15252/embj.2021108119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 02/05/2023] Open
Abstract
Lysosomes function not only as degradatory compartments but also as dynamic intracellular calcium ion stores. The transient receptor potential mucolipin 1 (TRPML1) channel mediates lysosomal Ca2+ release, thereby participating in multiple cellular functions. The pentameric Ragulator complex, which plays a critical role in the activation of mTORC1, is also involved in lysosomal trafficking and is anchored to lysosomes through its LAMTOR1 subunit. Here, we report that the Ragulator restricts lysosomal trafficking in dendrites of hippocampal neurons via LAMTOR1‐mediated tonic inhibition of TRPML1 activity, independently of mTORC1. LAMTOR1 directly interacts with TRPML1 through its N‐terminal domain. Eliminating this inhibition in hippocampal neurons by LAMTOR1 deletion or by disrupting LAMTOR1‐TRPML1 binding increases TRPML1‐mediated Ca2+ release and facilitates dendritic lysosomal trafficking powered by dynein. LAMTOR1 deletion in the hippocampal CA1 region of adult mice results in alterations in synaptic plasticity, and in impaired object‐recognition memory and contextual fear conditioning, due to TRPML1 activation. Mechanistically, changes in synaptic plasticity are associated with increased GluA1 dephosphorylation by calcineurin and lysosomal degradation. Thus, LAMTOR1‐mediated inhibition of TRPML1 is critical for regulating dendritic lysosomal motility, synaptic plasticity, and learning.
Collapse
Affiliation(s)
- Jiandong Sun
- College of Osteopathic Medicine of the Pacific Western University of Health Sciences Pomona CA USA
| | - Yan Liu
- Graduate College of Biomedical Sciences Western University of Health Sciences Pomona CA USA
| | - Xiaoning Hao
- College of Osteopathic Medicine of the Pacific Western University of Health Sciences Pomona CA USA
| | - Weiju Lin
- Graduate College of Biomedical Sciences Western University of Health Sciences Pomona CA USA
| | - Wenyue Su
- Graduate College of Biomedical Sciences Western University of Health Sciences Pomona CA USA
| | - Emerald Chiang
- Graduate College of Biomedical Sciences Western University of Health Sciences Pomona CA USA
| | - Michel Baudry
- Graduate College of Biomedical Sciences Western University of Health Sciences Pomona CA USA
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific Western University of Health Sciences Pomona CA USA
| |
Collapse
|
12
|
Zhu F, Miao Y, Cheng M, Ye X, Chen A, Zheng G, Tian X. The CACNA1A Mutant Disrupts Lysosome Calcium Homeostasis in Cerebellar Neurons and the Resulting Endo-Lysosomal Fusion Defect Can be Improved by Calcium Modulation. Neurochem Res 2021; 47:249-263. [PMID: 34476720 DOI: 10.1007/s11064-021-03438-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022]
Abstract
Mutations in P/Q type voltage gated calcium channel (VGCC) lead severe human neurological diseases such as episodic ataxia 2, familial hemiplegic migraine 1, absence epilepsy, progressive ataxia and spinocerebellar ataxia 6. The pathogenesis of these diseases remains unclear. Mice with spontaneous mutation in the Cacna1a gene encoding the pore-forming subunit of P/Q type VGCC also exhibit ataxia, epilepsy and neurodegeneration. Based on the previous work showing that the P/Q type VGCC in neurons regulates lysosomal fusion through its calcium channel activity on lysosomes, we utilized CACNA1A mutant mice to further investigate the mechanism by which P/Q-type VGCCs regulate lysosomal function and neuronal homeostasis. We found CACNA1A mutant neurons have reduced lysosomal calcium storage without changing the resting calcium concentration in cytoplasm and the acidification of lysosomes. Immunohistochemistry and transmission electron microscopy reveal axonal degeneration due to lysosome dysfunction in the CACNA1A mutant cerebella. The calcium modulating drug thapsigargin, by depleting the ER calcium store, which locally increases the calcium concentration can alleviate the defective lysosomal fusion in mutant neurons. We propose a model that in cerebellar neurons, P/Q-type VGCC maintains the integrity of the nervous system by regulating lysosomal calcium homeostasis to affect lysosomal fusion, which in turn regulates multiple important cellular processes such as autophagy and endocytosis. This study helps us to better understand the pathogenesis of P/Q-type VGCC related neurodegenerative diseases and provides a feasible direction for future pharmacological treatment.
Collapse
Affiliation(s)
- Feng Zhu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, 310013, China.,Department of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Yunping Miao
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, 310013, China.,Department of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Min Cheng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, 310013, China.,Department of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Xiaodi Ye
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, 310013, China.,Department of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Aiying Chen
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, 310013, China.,Department of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Gaoli Zheng
- National Zhejiang Center for Safety Evaluation of New Drugs, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, 310013, China
| | - Xuejun Tian
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, 310013, China. .,Department of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China. .,Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Early onset effects of single substrate accumulation recapitulate major features of LSD in patient-derived lysosomes. iScience 2021; 24:102707. [PMID: 34258549 PMCID: PMC8253970 DOI: 10.1016/j.isci.2021.102707] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/06/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022] Open
Abstract
Lysosome functions mainly rely on their ability to either degrade substrates or release them into the extracellular space. Lysosomal storage disorders (LSDs) are commonly characterized by a chronic lysosomal accumulation of different substrates, thereby causing lysosomal dysfunctions and secretion defects. However, the early effects of substrate accumulation on lysosomal homeostasis have not been analyzed so far. Here, we describe how the acute accumulation of a single substrate determines a rapid centripetal redistribution of the lysosomes, triggering their expansion and reducing their secretion, by limiting the motility of these organelles toward the plasma membrane. Moreover, we provide evidence that such defects could be explained by a trapping mechanism exerted by the extensive contacts between the enlarged lysosomes and the highly intertwined membrane structures of the endoplasmic reticulum which might represent a crucial biological cue ultimately leading to the clinically relevant secondary defects observed in the LSD experimental models and patients. LEU-ME triggers a rapid expansion of the lysosomal compartment Expanded lysosomes display motility and secretion defects Enlarged lysosomes display extended endoplasmic reticulum membrane contact sites
Collapse
|
14
|
Tegeder I, Kögel D. When lipid homeostasis runs havoc: Lipotoxicity links lysosomal dysfunction to autophagy. Matrix Biol 2021; 100-101:99-117. [DOI: 10.1016/j.matbio.2020.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
|
15
|
Huizing M, Gahl WA. Inherited disorders of lysosomal membrane transporters. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183336. [PMID: 32389669 PMCID: PMC7508925 DOI: 10.1016/j.bbamem.2020.183336] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/01/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Disorders caused by defects in lysosomal membrane transporters form a distinct subgroup of lysosomal storage disorders (LSDs). To date, defects in only 10 lysosomal membrane transporters have been associated with inherited disorders. The clinical presentations of these diseases resemble the phenotypes of other LSDs; they are heterogeneous and often present in children with neurodegenerative manifestations. However, for pathomechanistic and therapeutic studies, lysosomal membrane transport defects should be distinguished from LSDs caused by defective hydrolytic enzymes. The involved proteins differ in function, localization, and lysosomal targeting, and the diseases themselves differ in their stored material and therapeutic approaches. We provide an overview of the small group of disorders of lysosomal membrane transporters, emphasizing discovery, pathomechanism, clinical features, diagnostic methods and therapeutic aspects. We discuss common aspects of lysosomal membrane transporter defects that can provide the basis for preclinical research into these disorders.
Collapse
Affiliation(s)
- Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - William A Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Lavanderos B, Silva I, Cruz P, Orellana-Serradell O, Saldías MP, Cerda O. TRP Channels Regulation of Rho GTPases in Brain Context and Diseases. Front Cell Dev Biol 2020; 8:582975. [PMID: 33240883 PMCID: PMC7683514 DOI: 10.3389/fcell.2020.582975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Neurological and neuropsychiatric disorders are mediated by several pathophysiological mechanisms, including developmental and degenerative abnormalities caused primarily by disturbances in cell migration, structural plasticity of the synapse, and blood-vessel barrier function. In this context, critical pathways involved in the pathogenesis of these diseases are related to structural, scaffolding, and enzymatic activity-bearing proteins, which participate in Ca2+- and Ras Homologs (Rho) GTPases-mediated signaling. Rho GTPases are GDP/GTP binding proteins that regulate the cytoskeletal structure, cellular protrusion, and migration. These proteins cycle between GTP-bound (active) and GDP-bound (inactive) states due to their intrinsic GTPase activity and their dynamic regulation by GEFs, GAPs, and GDIs. One of the most important upstream inputs that modulate Rho GTPases activity is Ca2+ signaling, positioning ion channels as pivotal molecular entities for Rho GTPases regulation. Multiple non-selective cationic channels belonging to the Transient Receptor Potential (TRP) family participate in cytoskeletal-dependent processes through Ca2+-mediated modulation of Rho GTPases. Moreover, these ion channels have a role in several neuropathological events such as neuronal cell death, brain tumor progression and strokes. Although Rho GTPases-dependent pathways have been extensively studied, how they converge with TRP channels in the development or progression of neuropathologies is poorly understood. Herein, we review recent evidence and insights that link TRP channels activity to downstream Rho GTPase signaling or modulation. Moreover, using the TRIP database, we establish associations between possible mediators of Rho GTPase signaling with TRP ion channels. As such, we propose mechanisms that might explain the TRP-dependent modulation of Rho GTPases as possible pathways participating in the emergence or maintenance of neuropathological conditions.
Collapse
Affiliation(s)
- Boris Lavanderos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Ian Silva
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Pablo Cruz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Octavio Orellana-Serradell
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - María Paz Saldías
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
17
|
Patel S, Malmberg KJ. Preventing a shock to the system. Two-pore channel 1 negatively regulates anaphylaxis. Cell Calcium 2020; 92:102289. [PMID: 33027744 DOI: 10.1016/j.ceca.2020.102289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/13/2020] [Accepted: 09/13/2020] [Indexed: 12/29/2022]
Abstract
The mammalian two-pore channels TPC1 and TPC2 are patho-physiologically relevant endo-lysosomal cation channels regulated by the Ca2+ mobilising messenger NAADP and the phosphoinositide PI(3,5)P2. Recent work by Arlt et al shows that genetic or chemical inhibition of TPC1 in mice promotes anaphylaxis in vivo through a mechanism involving enhanced endoplasmic reticulum Ca2+ release and secretion in mast cells.
Collapse
Affiliation(s)
- Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Karl-Johan Malmberg
- Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway; Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14186, Stockholm, Sweden
| |
Collapse
|
18
|
Mitochondria-lysosome contacts regulate mitochondrial Ca 2+ dynamics via lysosomal TRPML1. Proc Natl Acad Sci U S A 2020; 117:19266-19275. [PMID: 32703809 DOI: 10.1073/pnas.2003236117] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondria and lysosomes are critical for cellular homeostasis, and dysfunction of both organelles has been implicated in numerous diseases. Recently, interorganelle contacts between mitochondria and lysosomes were identified and found to regulate mitochondrial dynamics. However, whether mitochondria-lysosome contacts serve additional functions by facilitating the direct transfer of metabolites or ions between the two organelles has not been elucidated. Here, using high spatial and temporal resolution live-cell microscopy, we identified a role for mitochondria-lysosome contacts in regulating mitochondrial calcium dynamics through the lysosomal calcium efflux channel, transient receptor potential mucolipin 1 (TRPML1). Lysosomal calcium release by TRPML1 promotes calcium transfer to mitochondria, which was mediated by tethering of mitochondria-lysosome contact sites. Moreover, mitochondrial calcium uptake at mitochondria-lysosome contact sites was modulated by the outer and inner mitochondrial membrane channels, voltage-dependent anion channel 1 and the mitochondrial calcium uniporter, respectively. Since loss of TRPML1 function results in the lysosomal storage disorder mucolipidosis type IV (MLIV), we examined MLIV patient fibroblasts and found both altered mitochondria-lysosome contact dynamics and defective contact-dependent mitochondrial calcium uptake. Thus, our work highlights mitochondria-lysosome contacts as key contributors to interorganelle calcium dynamics and their potential role in the pathophysiology of disorders characterized by dysfunctional mitochondria or lysosomes.
Collapse
|
19
|
Jezela-Stanek A, Ciara E, Stepien KM. Neuropathophysiology, Genetic Profile, and Clinical Manifestation of Mucolipidosis IV-A Review and Case Series. Int J Mol Sci 2020; 21:ijms21124564. [PMID: 32604955 PMCID: PMC7348969 DOI: 10.3390/ijms21124564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/23/2022] Open
Abstract
Mucolipidosis type IV (MLIV) is an ultra-rare lysosomal storage disorder caused by biallelic mutations in MCOLN1 gene encoding the transient receptor potential channel mucolipin-1. So far, 35 pathogenic or likely pathogenic MLIV-related variants have been described. Clinical manifestations include severe intellectual disability, speech deficit, progressive visual impairment leading to blindness, and myopathy. The severity of the condition may vary, including less severe psychomotor delay and/or ocular findings. As no striking recognizable facial dysmorphism, skeletal anomalies, organomegaly, or lysosomal enzyme abnormalities in serum are common features of MLIV, the clinical diagnosis may be significantly improved because of characteristic ophthalmological anomalies. This review aims to outline the pathophysiology and genetic defects of this condition with a focus on the genotype–phenotype correlation amongst cases published in the literature. The authors will present their own clinical observations and long-term outcomes in adult MLIV cases.
Collapse
Affiliation(s)
- Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland;
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children’s Memorial Heath Institute, 04-730 Warsaw, Poland;
| | - Karolina M. Stepien
- Adult Inherited Metabolic Diseases, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
- Correspondence:
| |
Collapse
|
20
|
Pfefferle A, Jacobs B, Haroun-Izquierdo A, Kveberg L, Sohlberg E, Malmberg KJ. Deciphering Natural Killer Cell Homeostasis. Front Immunol 2020; 11:812. [PMID: 32477340 PMCID: PMC7235169 DOI: 10.3389/fimmu.2020.00812] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/08/2020] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells have a central role within the innate immune system, eliminating virally infected, foreign and transformed cells through their natural cytotoxic capacity. Release of their cytotoxic granules is tightly controlled through the balance of a large repertoire of inhibitory and activating receptors, and it is the unique combination of these receptors expressed by individual cells that confers immense diversity both in phenotype and functionality. The diverse, yet unique, NK cell repertoire within an individual is surprisingly stable over time considering the constant renewal of these cells at steady state. Here we give an overview of NK cell differentiation and discuss metabolic requirements, intra-lineage plasticity and transcriptional reprogramming during IL-15-driven homeostatic proliferation. New insights into the regulation of NK cell differentiation and homeostasis could pave the way for the successful implementation of NK cell-based immunotherapy against cancer.
Collapse
Affiliation(s)
- Aline Pfefferle
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Benedikt Jacobs
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alvaro Haroun-Izquierdo
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Lise Kveberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ebba Sohlberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
21
|
Bhat OM, Li G, Yuan X, Huang D, Gulbins E, Kukreja RC, Li PL. Arterial Medial Calcification through Enhanced small Extracellular Vesicle Release in Smooth Muscle-Specific Asah1 Gene Knockout Mice. Sci Rep 2020; 10:1645. [PMID: 32015399 PMCID: PMC6997457 DOI: 10.1038/s41598-020-58568-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/17/2020] [Indexed: 11/09/2022] Open
Abstract
Arterial medial calcification (AMC) involves an increased small extracellular vesicle (sEV) secretion and apatite calcium precipitation in the arterial wall. The mechanisms mediating AMC remain poorly understood. In the present study, smooth muscle-specific acid ceramidase (Ac) gene knockout mice (Asah1fl/fl/SMCre) were used to demonstrate the role of lysosomal ceramide signaling pathway in AMC. Asah1fl/fl/SMCre mice were found to have more severe AMC in both aorta and coronary arteries compared to their littermates (Asah1fl/fl/SMwt and WT/WT mice) after receiving a high dose vitamin D. These mice also had pronounced upregulation of osteopontin and RUNX2 (osteogenic markers), CD63, AnX2 (sEV markers) and ALP expression (mineralization marker) in the arterial media. In cultured coronary arterial smooth muscle cells (CASMCs) from Asah1fl/fl/SMCre mice, high dose of Pi led to a significantly increased calcium deposition, phenotypic change and sEV secretion compared to WT CASMCs, which was associated with reduced lysosome-multivesicular body (MVB) interaction. Also, GW4869, sEV release inhibitor decreased sEV secretion and calcification in these cells. Lysosomal transient receptor potential mucolipin 1 (TRPML1) channels regulating lysosome interaction with MVBs were found remarkably inhibited in Asah1fl/fl/SMCre CASMCs as shown by GCaMP3 Ca2+ imaging and Port-a-Patch patch clamping of lysosomes. Lysosomal Ac in SMCs controls sEV release by regulating lysosomal TRPML1 channel activity and lysosome-MVB interaction, which importantly contributes to phenotypic transition and AMC.
Collapse
MESH Headings
- Acid Ceramidase/genetics
- Acid Ceramidase/metabolism
- Animals
- Aorta/metabolism
- Aorta/pathology
- Calcium Signaling
- Cells, Cultured
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Disease Models, Animal
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/pathology
- Farber Lipogranulomatosis/genetics
- Farber Lipogranulomatosis/metabolism
- Lysosomes/metabolism
- Male
- Metabolic Networks and Pathways
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Cardiovascular
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Sphingolipids/metabolism
- Transient Receptor Potential Channels/agonists
- Transient Receptor Potential Channels/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Owais M Bhat
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Guangbi Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Dandan Huang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany and Dept. of Surgery, University of Cincinnati, Cincinnati, USA
| | - Rakesh C Kukreja
- VCU Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA, 23298-0204, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
22
|
Yu J, Yang J. Ion channels as potential redox sensors in lysosomes. Channels (Austin) 2019; 13:477-482. [PMID: 31662029 PMCID: PMC6833971 DOI: 10.1080/19336950.2019.1684428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/26/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023] Open
Abstract
Lysosomes are central organelles that recycle materials and energy to maintain intracellular homeostasis. Lysosomes are capable of sensing environmental cues such as nutrition to regulate their function accordingly. Whether lysosomes can sense redox signaling, however, was unclear. Here in this review, we summarized recent evidence of lysosomal ion channel as redox sensors for this organelle. We also discussed their roles in lysosomal diseases that features imbalanced redox.
Collapse
Affiliation(s)
- Jie Yu
- Sports Science Research Center, Zhejiang College of Sports, Hangzhou, China
| | - Junsheng Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
23
|
Calcium Dyshomeostasis and Lysosomal Ca 2+ Dysfunction in Amyotrophic Lateral Sclerosis. Cells 2019; 8:cells8101216. [PMID: 31597311 PMCID: PMC6829585 DOI: 10.3390/cells8101216] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
Recent findings in the understanding of amyotrophic lateral sclerosis (ALS) revealed that alteration in calcium (Ca2+) homeostasis may largely contribute to motor neuron demise. A large part of these alterations is due to dysfunctional Ca2+-storing organelles, including the endoplasmic reticulum (ER) and mitochondria. Very recently, lysosomal Ca2+ dysfunction has emerged as an important pathological change leading to neuronal loss in ALS. Remarkably, the Ca2+-storing organelles are interacting with each other at specialized domains controlling mitochondrial dynamics, ER/lysosomal function, and autophagy. This occurs as a result of interaction between specific ionic channels and Ca2+-dependent proteins located in each structure. Therefore, the dysregulation of these ionic mechanisms could be considered as a key element in the neurodegenerative process. This review will focus on the possible role of lysosomal Ca2+ dysfunction in the pathogenesis of several neurodegenerative diseases, including ALS and shed light on the possibility that specific lysosomal Ca2+ channels might represent new promising targets for preventing or at least delaying neurodegeneration in ALS.
Collapse
|
24
|
Chacon J, Rosas L, Cuajungco MP. ZnT3 expression levels are down-regulated in the brain of Mcoln1 knockout mice. Mol Brain 2019; 12:24. [PMID: 30914059 PMCID: PMC6434829 DOI: 10.1186/s13041-019-0446-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/14/2019] [Indexed: 12/03/2022] Open
Abstract
Aim Zinc is a critical divalent cation in mammalian brain, but its concentration must be strictly-controlled. Within certain subsets of glutamatergic neurons, ZnT3 (encoded by the Slc30a3 gene) facilitates the transport and storage of zinc in synaptic vesicles. It has been previously reported that Slc30a3 mRNA levels are perturbed in numerous neurodegenerative disorders. Given the growing evidence of zinc dysregulation in another neurodegenerative disease known as Mucolipidosis IV (MLIV), we hypothesized that abnormal ZnT3 expression would be observed in the brain of MLIV mouse model. Elucidating the link between abnormal ZnT3 and zinc levels could reveal the neuropathological correlates between MLIV and other age-related brain disorders. Methods Total RNAs from cortical tissues of Mucolipin-1 knockout (Mcoln1−/− KO) and Mcoln1+/+ wild-type (WT) littermate control mice were analyzed for differential gene expression (DGE) using RNA sequencing (RNA-seq). Real-time quantitative PCR (qPCR) and Western blot techniques were used to validate the data. Results RNA-seq analysis showed a marked decrease in baseline levels of Slc30a3 mRNA in Mcoln1−/− mice. Real-time qPCR and Western blot analyses confirmed that Slc30a3 transcripts and its protein levels were significantly reduced. Our observations add MLIV to a growing list of neurodegenerative diseases that parallels abnormal ZnT3 expression with zinc dyshomeostasis. Electronic supplementary material The online version of this article (10.1186/s13041-019-0446-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan Chacon
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| | - Lauren Rosas
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| | - Math P Cuajungco
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA, 92831, USA. .,Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA, 92831, USA.
| |
Collapse
|
25
|
Exosomal release through TRPML1-mediated lysosomal exocytosis is required for adipogenesis. Biochem Biophys Res Commun 2019; 510:409-415. [PMID: 30711251 PMCID: PMC9883805 DOI: 10.1016/j.bbrc.2019.01.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/26/2019] [Indexed: 01/31/2023]
Abstract
The lysosomal Ca2+ permeable channel TRPML1 (MCOLN1) plays key roles in lysosomal membrane trafficking, including the fusion of late endosomes to lysosomes and lysosomal exocytosis, both of which are essential for release of exosomes into the extracellular milieu. Multiple lines of evidence indicate that the contents of adipocyte-derived exosomes mediate diverse cellular responses, including adipogenic differentiation. In this study, we aimed to define the potential roles of TRPML1 in lysosomal membrane trafficking during adipogenesis and in exosomal release. In response to adipogenic stimuli, the endogenous TRPML1 expression in OP9 pre-adipocytes was increased in a time-dependent manner, and the acute deletion of TRPML1 reduced lipid synthesis and expression of differentiation-related marker genes. Notably, mature adipocyte-derived exosomes were found to be necessary for adipogenesis and were dependent on TRPML1-mediated lysosomal exocytosis. Taken together, our findings indicate that TRPML1 mediates diverse roles in adipocyte differentiation and exosomal release. Further, we propose that TRPML1 should be considered as a regulator of obesity-related diseases.
Collapse
|
26
|
Boudewyn LC, Walkley SU. Current concepts in the neuropathogenesis of mucolipidosis type IV. J Neurochem 2019; 148:669-689. [PMID: 29770442 PMCID: PMC6239999 DOI: 10.1111/jnc.14462] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022]
Abstract
Mucolipidosis type IV (MLIV) is an autosomal recessive, lysosomal storage disorder causing progressively severe intellectual disability, motor and speech deficits, retinal degeneration often culminating in blindness, and systemic disease causing a shortened lifespan. MLIV results from mutations in the gene MCOLN1 encoding the transient receptor potential channel mucolipin-1. It is an ultra-rare disease and is currently known to affect just over 100 diagnosed individuals. The last decade has provided a wealth of research focused on understanding the role of the enigmatic mucolipin-1 protein in cell and brain function and how its absence causes disease. This review explores our current understanding of the mucolipin-1 protein in relation to neuropathogenesis in MLIV and describes recent findings implicating mucolipin-1's important role in mechanistic target of rapamycin and TFEB (transcription factor EB) signaling feedback loops as well as in the function of the greater endosomal/lysosomal system. In addition to addressing the vital role of mucolipin-1 in the brain, we also report new data on the question of whether haploinsufficiency as would be anticipated in MCOLN1 heterozygotes is associated with any evidence of neuron dysfunction or disease. Greater insights into the role of mucolipin-1 in the nervous system can be expected to shed light not only on MLIV disease but also on numerous processes governing normal brain function. This article is part of the Special Issue "Lysosomal Storage Disorders".
Collapse
Affiliation(s)
- Lauren C. Boudewyn
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Steven U. Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
27
|
Goodridge JP, Jacobs B, Saetersmoen ML, Clement D, Hammer Q, Clancy T, Skarpen E, Brech A, Landskron J, Grimm C, Pfefferle A, Meza-Zepeda L, Lorenz S, Wiiger MT, Louch WE, Ask EH, Liu LL, Oei VYS, Kjällquist U, Linnarsson S, Patel S, Taskén K, Stenmark H, Malmberg KJ. Remodeling of secretory lysosomes during education tunes functional potential in NK cells. Nat Commun 2019; 10:514. [PMID: 30705279 PMCID: PMC6355880 DOI: 10.1038/s41467-019-08384-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/04/2019] [Indexed: 01/13/2023] Open
Abstract
Inhibitory signaling during natural killer (NK) cell education translates into increased responsiveness to activation; however, the intracellular mechanism for functional tuning by inhibitory receptors remains unclear. Secretory lysosomes are part of the acidic lysosomal compartment that mediates intracellular signalling in several cell types. Here we show that educated NK cells expressing self-MHC specific inhibitory killer cell immunoglobulin-like receptors (KIR) accumulate granzyme B in dense-core secretory lysosomes that converge close to the centrosome. This discrete morphological phenotype is independent of transcriptional programs that regulate effector function, metabolism and lysosomal biogenesis. Meanwhile, interference of signaling from acidic Ca2+ stores in primary NK cells reduces target-specific Ca2+-flux, degranulation and cytokine production. Furthermore, inhibition of PI(3,5)P2 synthesis, or genetic silencing of the PI(3,5)P2-regulated lysosomal Ca2+-channel TRPML1, leads to increased granzyme B and enhanced functional potential, thereby mimicking the educated state. These results indicate an intrinsic role for lysosomal remodeling in NK cell education.
Collapse
Affiliation(s)
- Jodie P Goodridge
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - Benedikt Jacobs
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - Michelle L Saetersmoen
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - Dennis Clement
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Trevor Clancy
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - Ellen Skarpen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - Johannes Landskron
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, 0318, Oslo, Norway
| | - Christian Grimm
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Munich (LMU), Munich, 80336, Germany
| | - Aline Pfefferle
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Leonardo Meza-Zepeda
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, 0310, Norway.,Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, 0310, Norway
| | - Susanne Lorenz
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, 0310, Norway
| | - Merete Thune Wiiger
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0424, Oslo, Norway
| | - Eivind Heggernes Ask
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - Lisa L Liu
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Vincent Yi Sheng Oei
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - Una Kjällquist
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Kjetil Taskén
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, 0318, Oslo, Norway
| | - Harald Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - Karl-Johan Malmberg
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway. .,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway. .,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14186, Stockholm, Sweden.
| |
Collapse
|
28
|
Plesch E, Chen CC, Butz E, Scotto Rosato A, Krogsaeter EK, Yinan H, Bartel K, Keller M, Robaa D, Teupser D, Holdt LM, Vollmar AM, Sippl W, Puertollano R, Medina D, Biel M, Wahl-Schott C, Bracher F, Grimm C. Selective agonist of TRPML2 reveals direct role in chemokine release from innate immune cells. eLife 2018; 7:39720. [PMID: 30479274 PMCID: PMC6257821 DOI: 10.7554/elife.39720] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Cytokines and chemokines are produced and secreted by a broad range of immune cells including macrophages. Remarkably, little is known about how these inflammatory mediators are released from the various immune cells. Here, the endolysosomal cation channel TRPML2 is shown to play a direct role in chemokine trafficking and secretion from murine macrophages. To demonstrate acute and direct involvement of TRPML2 in these processes, the first isoform-selective TRPML2 channel agonist was generated, ML2-SA1. ML2-SA1 was not only found to directly stimulate release of the chemokine CCL2 from macrophages but also to stimulate macrophage migration, thus mimicking CCL2 function. Endogenous TRPML2 is expressed in early/recycling endosomes as demonstrated by endolysosomal patch-clamp experimentation and ML2-SA1 promotes trafficking through early/recycling endosomes, suggesting CCL2 being transported and secreted via this pathway. These data provide a direct link between TRPML2 activation, CCL2 release and stimulation of macrophage migration in the innate immune response.
Collapse
Affiliation(s)
- Eva Plesch
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Cheng-Chang Chen
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Elisabeth Butz
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Einar K Krogsaeter
- Department of Pharmacology and Toxicology, Medical Faculty, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hua Yinan
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Karin Bartel
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Marco Keller
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dina Robaa
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital Munich, Munich, Germany
| | - Lesca M Holdt
- Institute of Laboratory Medicine, University Hospital Munich, Munich, Germany
| | - Angelika M Vollmar
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Diego Medina
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Franz Bracher
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christian Grimm
- Department of Pharmacology and Toxicology, Medical Faculty, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
29
|
Endolysosomal Cation Channels and Cancer-A Link with Great Potential. Pharmaceuticals (Basel) 2018; 11:ph11010004. [PMID: 29303993 PMCID: PMC5874700 DOI: 10.3390/ph11010004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/01/2018] [Accepted: 01/04/2018] [Indexed: 12/21/2022] Open
Abstract
The endolysosomal system (ES) consists of lysosomes; early, late, and recycling endosomes; and autophagosomes. It is a key regulator not only of macromolecule degradation and recycling, plasma membrane repair, homeostasis, and lipid storage, but also of antigen presentation, immune defense, cell motility, cell death signaling, tumor growth, and cancer progression. In addition, it plays a critical role in autophagy, and the autophagy-lysosome pathway is intimately associated with the hallmarks of cancer, such as escaping cell death pathways, evading immune surveillance, and deregulating metabolism. The function of endolysosomes is critically dependent on both soluble and endolysosomal membrane proteins such as ion channels and transporters. Cation channels found in the ES include members of the TRP (transient receptor potential) channel superfamily, namely TRPML channels (mucolipins) as well as two-pore channels (TPCs). In recent studies, these channels have been found to play crucial roles in endolysosomal trafficking, lysosomal exocytosis, and autophagy. Mutation or loss of these channel proteins can impact multiple endolysosomal trafficking pathways. A role for TPCs in cancer cell migration and metastasis, linked to distinct defects in endolysosomal trafficking such as integrin trafficking, has been recently established. In this review, we give an overview on the function of lysosomes in cancer with a particular focus on the roles which TPCs and TRPML channels play in the ES and how this can affect cancer cells.
Collapse
|
30
|
Griffin EF, Caldwell KA, Caldwell GA. Genetic and Pharmacological Discovery for Alzheimer's Disease Using Caenorhabditis elegans. ACS Chem Neurosci 2017; 8:2596-2606. [PMID: 29022701 DOI: 10.1021/acschemneuro.7b00361] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The societal burden presented by Alzheimer's disease warrants both innovative and expedient means by which its underlying molecular causes can be both identified and mechanistically exploited to discern novel therapeutic targets and strategies. The conserved characteristics, defined neuroanatomy, and advanced technological application of Caenorhabditis elegans render this metazoan an unmatched tool for probing neurotoxic factors. In addition, its short lifespan and importance in the field of aging make it an ideal organism for modeling age-related neurodegenerative disease. As such, this nematode system has demonstrated its value in predicting functional modifiers of human neurodegenerative disorders. Here, we review how C. elegans has been utilized to model Alzheimer's disease. Specifically, we present how the causative neurotoxic peptides, amyloid-β and tau, contribute to disease-like neurodegeneration in C. elegans and how they translate to human disease. Furthermore, we describe how a variety of transgenic animal strains, each with distinct utility, have been used to identify both genetic and pharmacological modifiers of toxicity in C. elegans. As technological advances improve the prospects for intervention, the rapidity, unparalleled accuracy, and scale that C. elegans offers researchers for defining functional modifiers of neurodegeneration should speed the discovery of improved therapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Edward F. Griffin
- Department
of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Kim A. Caldwell
- Department
of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Guy A. Caldwell
- Department
of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Departments
of Neurology and Neurobiology, Center for Neurodegeneration and Experimental
Therapeutics, The University of Alabama School of Medicine at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
31
|
Scesa G, Moyano AL, Bongarzone ER, Givogri MI. Port-to-port delivery: Mobilization of toxic sphingolipids via extracellular vesicles. J Neurosci Res 2017; 94:1333-40. [PMID: 27638615 DOI: 10.1002/jnr.23798] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/16/2016] [Accepted: 06/01/2016] [Indexed: 01/02/2023]
Abstract
The discovery that most cells produce extracellular vesicles (EVs) and release them in the extracellular milieu has spurred the idea that these membranous cargoes spread pathogenic mechanisms. In the brain, EVs may have multifold and important physiological functions, from deregulating synaptic activity to promoting demyelination to changes in microglial activity. The finding that small EVs (exosomes) contain α-synuclein and β-amyloid, among other pathogenic proteins, is an example of this notion, underscoring their potential role in the brains of patients with Parkinson's and Alzheimer's diseases. Given that they are membranous vesicles, we speculate that EVs also have an intrinsic capacity to incorporate sphingolipids. In conditions under which these lipids are elevated to toxic levels, such as in Krabbe's disease and metachromatic leukodystrophy, EVs may contribute to spread disease from sick to healthy cells. In this essay, we discuss a working hypothesis that brain cells in sphingolipidoses clear some of the accumulated lipid material to attempt restoring cell homeostasis via EV secretion. We hypothesize that secreted sphingolipid-loaded EVs shuttle pathogenic lipids to cells that are not intrinsically affected, contributing to establishing non-cell-autonomous defects. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Giuseppe Scesa
- Department of Anatomy and Cell Biology, College of Medicine. University of Illinois at Chicago, Chicago, Illinois
| | - Ana Lis Moyano
- Department of Anatomy and Cell Biology, College of Medicine. University of Illinois at Chicago, Chicago, Illinois
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine. University of Illinois at Chicago, Chicago, Illinois
| | - Maria I Givogri
- Department of Anatomy and Cell Biology, College of Medicine. University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
32
|
Okamoto CT. Regulation of Transporters and Channels by Membrane-Trafficking Complexes in Epithelial Cells. Cold Spring Harb Perspect Biol 2017; 9:a027839. [PMID: 28246186 PMCID: PMC5666629 DOI: 10.1101/cshperspect.a027839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The vectorial secretion and absorption of fluid and solutes by epithelial cells is dependent on the polarized expression of membrane solute transporters and channels at the apical and basolateral membranes. The establishment and maintenance of this polarized expression of transporters and channels are affected by divers protein-trafficking complexes. Moreover, regulation of the magnitude of transport is often under control of physiological stimuli, again through the interaction of transporters and channels with protein-trafficking complexes. This review highlights the value in utilizing transporters and channels as cargo to characterize core trafficking machinery by which epithelial cells establish and maintain their polarized expression, and how this machinery regulates fluid and solute transport in response to physiological stimuli.
Collapse
Affiliation(s)
- Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089-9121
| |
Collapse
|
33
|
Erkhembaatar M, Gu DR, Lee SH, Yang YM, Park S, Muallem S, Shin DM, Kim MS. Lysosomal Ca 2+ Signaling is Essential for Osteoclastogenesis and Bone Remodeling. J Bone Miner Res 2017; 32:385-396. [PMID: 27589205 PMCID: PMC9850942 DOI: 10.1002/jbmr.2986] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 01/21/2023]
Abstract
Lysosomal Ca2+ emerges as a critical component of receptor-evoked Ca2+ signaling and plays a crucial role in many lysosomal and physiological functions. Lysosomal Ca2+ release is mediated by the transient receptor potential (TRP) family member TRPML1, mutations that cause the lysosomal storage disease mucolipidosis type 4. Lysosomes play a key role in osteoclast function. However, nothing is known about the role of lysosomal Ca2+ signaling in osteoclastogenesis and bone metabolism. In this study, we addressed this knowledge gap by studying the role of lysosomal Ca2+ signaling in osteoclastogenesis, osteoclast and osteoblast functions, and bone homeostasis in vivo. We manipulated lysosomal Ca2+ signaling by acute knockdown of TRPML1, deletion of TRPML1 in mice, pharmacological inhibition of lysosomal Ca2+ influx, and depletion of lysosomal Ca2+ storage using the TRPML agonist ML-SA1. We found that knockdown and deletion of TRPML1, although it did not have an apparent effect on osteoblast differentiation and bone formation, markedly attenuated osteoclast function, RANKL-induced cytosolic Ca2+ oscillations, inhibited activation of NFATc1 and osteoclastogenesis-controlling genes, suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs), and markedly reduced the differentiation of bone marrow-derived macrophages into osteoclasts. Moreover, deletion of TRPML1 resulted in enlarged lysosomes, inhibition of lysosomal secretion, and attenuated the resorptive activity of mature osteoclasts. Notably, depletion of lysosomal Ca2+ with ML-SA1 similarly abrogated RANKL-induced Ca2+ oscillations and MNC formation. Deletion of TRPML1 in mice reduced the TRAP-positive bone surfaces and impaired bone remodeling, resulting in prominent osteopetrosis. These findings demonstrate the essential role of lysosomal Ca2+ signaling in osteoclast differentiation and mature osteoclast function, which play key roles in bone homeostasis. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Munkhsoyol Erkhembaatar
- Department of Oral Physiology, and Institute of Biomaterial-Implant, College of Dentistry, Wonkwang University, Iksan, Republic of Korea.,Department of Physiology, School of Pharmacy and Bio-Medicine, Mongolian National University of Medical Science, Ulaanbaatar, Mongolia
| | - Dong Ryun Gu
- Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Republic of Korea.,Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Seoung Hoon Lee
- Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Republic of Korea.,Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Yu-Mi Yang
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Soonhong Park
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Dong Min Shin
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Min Seuk Kim
- Department of Oral Physiology, and Institute of Biomaterial-Implant, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
34
|
Kilpatrick BS, Yates E, Grimm C, Schapira AH, Patel S. Endo-lysosomal TRP mucolipin-1 channels trigger global ER Ca2+ release and Ca2+ influx. J Cell Sci 2016; 129:3859-3867. [PMID: 27577094 PMCID: PMC5087663 DOI: 10.1242/jcs.190322] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022] Open
Abstract
Transient receptor potential (TRP) mucolipins (TRPMLs), encoded by the MCOLN genes, are patho-physiologically relevant endo-lysosomal ion channels crucial for membrane trafficking. Several lines of evidence suggest that TRPMLs mediate localised Ca2+ release but their role in Ca2+ signalling is not clear. Here, we show that activation of endogenous and recombinant TRPMLs with synthetic agonists evoked global Ca2+ signals in human cells. These signals were blocked by a dominant-negative TRPML1 construct and a TRPML antagonist. We further show that, despite a predominant lysosomal localisation, TRPML1 supports both Ca2+ release and Ca2+ entry. Ca2+ release required lysosomal and ER Ca2+ stores suggesting that TRPMLs, like other endo-lysosomal Ca2+ channels, are capable of ‘chatter’ with ER Ca2+ channels. Our data identify new modalities for TRPML1 action. Summary: The endolysosomal ion channel TRP mucolipin 1 was thought to mediate local Ca2+ signals. However, as reported here, it can also mediate global elevations in Ca2+.
Collapse
Affiliation(s)
- Bethan S Kilpatrick
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Elizabeth Yates
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Christian Grimm
- Center for Integrated Protein Science CIPSM and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, München 81377, Germany
| | - Anthony H Schapira
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London NW3 2PF, UK
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
35
|
Feng X, Yang J. Lysosomal Calcium in Neurodegeneration. MESSENGER (LOS ANGELES, CALIF. : PRINT) 2016; 5:56-66. [PMID: 29082116 PMCID: PMC5659362 DOI: 10.1166/msr.2016.1055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lysosomes are the central organelles responsible for macromolecule recycling in the cell. Lysosomal dysfunction is the primary cause of lysosomal storage diseases (LSDs), and contributes significantly to the pathogenesis of common neurodegenerative diseases. The lysosomes are also intracellular stores for calcium ions, one of the most common second messenger in the cell. Lysosomal Ca2+ is required for diverse cellular processes including signal transduction, vesicular trafficking, autophagy, nutrient sensing, exocytosis, and membrane repair. In this review, we first summarize some recent progresses in the studies of lysosome Ca2+ regulation, with a focus on the newly discovered lysosomal Ca2+ channels and the mechanisms of lysosomal Ca2+ store refilling. We then discuss how defects in lysosomal Ca2+ release and store maintenance cause lysosomal dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Xinghua Feng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junsheng Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
- The Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| |
Collapse
|
36
|
Affiliation(s)
- Malini Ahuja
- a Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health , Bethesda , MD , USA
| | - Soonhong Park
- b Department of Oral Biology , BK 21 PLUS Project, Yonsei University College of Dentistry , Seoul , Korea
| | - Dong Min Shin
- b Department of Oral Biology , BK 21 PLUS Project, Yonsei University College of Dentistry , Seoul , Korea
| | - Shmuel Muallem
- a Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
37
|
Park S, Ahuja M, Kim MS, Brailoiu GC, Jha A, Zeng M, Baydyuk M, Wu LG, Wassif CA, Porter FD, Zerfas PM, Eckhaus MA, Brailoiu E, Shin DM, Muallem S. Fusion of lysosomes with secretory organelles leads to uncontrolled exocytosis in the lysosomal storage disease mucolipidosis type IV. EMBO Rep 2015; 17:266-78. [PMID: 26682800 DOI: 10.15252/embr.201541542] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/04/2015] [Indexed: 01/29/2023] Open
Abstract
Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells' functions that mediate regulated exocytosis. Here, we analyzed several forms of regulated exocytosis in a mouse model of MLIV and, opposite to expectations, we found enhanced exocytosis in secretory glands due to enlargement of secretory granules in part due to fusion with lysosomes. Preliminary exploration of synaptic vesicle size, spontaneous mEPSCs, and glutamate secretion in neurons provided further evidence for enhanced exocytosis that was rescued by re-expression of TRPML1 in neurons. These features were not observed in Niemann-Pick type C1. These findings suggest that TRPML1 may guard against pathological fusion of lysosomes with secretory organelles and suggest a new approach toward developing treatment for MLIV.
Collapse
Affiliation(s)
- Soonhong Park
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Malini Ahuja
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - Min Seuk Kim
- Department of Oral Physiology, School of Dentistry, Wonkwang University, Iksan City, Korea
| | - G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University, Philadelphia, PA, USA
| | - Archana Jha
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - Mei Zeng
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - Maryna Baydyuk
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Christopher A Wassif
- Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Forbes D Porter
- Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Patricia M Zerfas
- Diagnostic and Research Services Branch, Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Eckhaus
- Diagnostic and Research Services Branch, Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, USA
| | - Eugen Brailoiu
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Dong Min Shin
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| |
Collapse
|