1
|
Arce A, Altman R, Badolian A, Low J, Cuaresma AB, Keshet U, Fiehn O, Stahelin RV, Nikolaidis N. Heat Shock-Induced PI(4)P Increase Drives HSPA1A Translocation to the Plasma Membrane in Cancer and Stressed Cells through PI4KIII Alpha Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.16.638537. [PMID: 40027828 PMCID: PMC11870583 DOI: 10.1101/2025.02.16.638537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
HSPA1A, a major heat shock protein, is known to translocate to the plasma membrane (PM) in response to cellular stress and cancer, where it plays protective roles in membrane integrity and stress resistance. Although phosphatidylinositol 4-phosphate [PI(4)P] is essential in this translocation, the signals that trigger and facilitate HSPA1A's movement remain undefined.Given that membrane lipid composition dynamically shifts during stress, we hypothesized that heat shock-induced PI(4)P changes are crucial for HSPA1A's PM localization. To test this hypothesis, we investigated the mechanisms driving PI(4)P changes and HSPA1A PM localization under heat shock. Lipidomic analysis, enzyme-linked immunosorbent assay (ELISA), and confocal imaging revealed a rapid PI(4)P increase at the PM post-heat shock, with levels peaking at 0 hours and declining by 8 hours. RNA sequencing and protein quantification indicated no transcriptional increase in PI4KIII alpha, the kinase responsible for PI(4)P synthesis, suggesting an alternative regulatory mechanism. Hypothesizing that heat shock enhances PI4KIII alpha activity, we performed ELISA coupled with immunoprecipitation, confirming a significant rise in PI4KIII alpha activity following heat shock. Functional analyses further demonstrated that RNAi-mediated PI4KIII alpha depletion or pharmacological PI(4)P reduction, using GSK-A1, impairs HSPA1A's localization to the PM, confirming that HSPA1A translocation is PI(4)P-dependent. Our findings identify PI4KIII alpha activity as a key regulator of PI(4)P accumulation and subsequent HSPA1A recruitment to the PM in stressed and cancer cells. This lipid-mediated response offers new insights into stress adaptation and potentially modifiable pathways for therapeutic interventions to control HSPA1A function in cancer.
Collapse
Affiliation(s)
- Alberto Arce
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Rachel Altman
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Allen Badolian
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Jensen Low
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Azalea Blythe Cuaresma
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Uri Keshet
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
| | - Robert V. Stahelin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and The Purdue Institute for Cancer Research, Purdue University, 47907, West Lafayette, IN, USA
| | - Nikolas Nikolaidis
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| |
Collapse
|
2
|
Low J, Altman R, Badolian A, Cuaresma AB, Briseño C, Keshet U, Fiehn O, Stahelin RV, Nikolaidis N. Heat-Induced Phosphatidylserine Changes Drive HSPA1A's Plasma Membrane Localization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626454. [PMID: 39713339 PMCID: PMC11661080 DOI: 10.1101/2024.12.02.626454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Heat shock protein A1A (HSPA1A) is a molecular chaperone crucial in cell survival. In addition to its cytosolic functions, HSPA1A translocates to heat-shocked and cancer cells' plasma membrane (PM). In cancer, PM-localized HSPA1A (mHSPA1A) is associated with increased tumor aggressiveness and therapeutic resistance, suggesting that preventing its membrane localization could have therapeutic value. This translocation depends on HSPA1A's interaction with PM phospholipids, including phosphatidylserine (PS). Although PS binding regulates HSPA1A's membrane localization, the exact trigger for this movement remains unclear. Given that lipid modifications are a cancer hallmark, we hypothesized that PS is a crucial lipid driving HSPA1A translocation and that heat-induced changes in PS levels trigger HSPA1A's PM localization in response to heat stress. We tested this hypothesis using pharmacological inhibition and RNA interference (RNAi) targeting PS synthesis, combined with confocal microscopy, lipidomics, and western blotting. Lipidomic analysis and PS-specific biosensors confirmed a heat shock-induced PS increase, peaking immediately post-stress. Inhibition of PS synthesis with fendiline and RNAi significantly reduced HSPA1A's PM localization, while depletion of cholesterol or fatty acids had minimal effects, confirming specificity for PS. Further experiments showed that PS saturation and elongation changes did not significantly impact HSPA1A's PM localization, indicating that the total PS increase, rather than specific PS species, is the critical factor. These findings reshape current models of HSPA1A trafficking, demonstrating that PS is a crucial regulator of HSPA1A's membrane translocation during the heat shock response. This work offers new insights into lipid-regulated protein trafficking and highlights the importance of PS in controlling cellular responses to stress.
Collapse
Affiliation(s)
- Jensen Low
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Rachel Altman
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Allen Badolian
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Azalea Blythe Cuaresma
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Carolina Briseño
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Uri Keshet
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
| | - Robert V. Stahelin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, 47907, West Lafayette, IN, USA
| | - Nikolas Nikolaidis
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA, USA
| |
Collapse
|
3
|
Dutta M, Dolan KA, Amiar S, Bass EJ, Sultana R, Voth GA, Brohawn SG, Stahelin RV. Direct lipid interactions control SARS-CoV-2 M protein conformational dynamics and virus assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.620124. [PMID: 39574576 PMCID: PMC11580925 DOI: 10.1101/2024.11.04.620124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
M is the most abundant structural membrane protein in coronaviruses and is essential for the formation of infectious virus particles. SARS-CoV-2 M adopts two conformations, Mshort and Mlong, and regulated transition between states is hypothesized to coordinate viral assembly and budding. However, the factors that regulate M conformation and roles for each state are unknown. Here, we discover a direct M-sphingolipid interaction that controls M conformational dynamics and virus assembly. We show M binds Golgi-enriched anionic lipids including ceramide-1-phosphate (C1P). Molecular dynamics simulations show C1P interaction promotes a long to short transition and energetically stabilizes Mshort. Cryo-EM structures show C1P specifically binds Mshort at a conserved site bridging transmembrane and cytoplasmic regions. Disrupting Mshort-C1P interaction alters M subcellular localization, reduces interaction with Spike and E, and impairs subsequent virus-like particle cell entry. Together, these results show endogenous signaling lipids regulate M structure and support a model in which Mshort is stabilized in the early endomembrane system to organize other structural proteins prior to viral budding.
Collapse
Affiliation(s)
- Mandira Dutta
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Kimberly A. Dolan
- Department of Molecular & Cell Biology, Department of Neuroscience, California Institute for Quantitative Biology (QB3), Biophysics Graduate Program, University of California Berkeley, Berkeley, California 94720, USA
| | - Souad Amiar
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907
| | - Elijah J. Bass
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907
| | - Rokaia Sultana
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907
| | - Gregory A. Voth
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
- Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637
| | - Stephen G. Brohawn
- Department of Molecular & Cell Biology, Department of Neuroscience, California Institute for Quantitative Biology (QB3), Biophysics Graduate Program, University of California Berkeley, Berkeley, California 94720, USA
| | - Robert V. Stahelin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
4
|
Amiar S, Johnson KA, Husby ML, Marzi A, Stahelin RV. A fatty acid-ordered plasma membrane environment is critical for Ebola virus matrix protein assembly and budding. J Lipid Res 2024; 65:100663. [PMID: 39369791 PMCID: PMC11565396 DOI: 10.1016/j.jlr.2024.100663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
Plasma membrane (PM) domains and order phases have been shown to play a key role in the assembly, release, and entry of several lipid-enveloped viruses. In the present study, we provide a mechanistic understanding of the Ebola virus (EBOV) matrix protein VP40 interaction with PM lipids and their effect on VP40 oligomerization, a crucial step for viral assembly and budding. VP40 matrix formation is sufficient to induce changes in the PM fluidity. We demonstrate that the distance between the lipid headgroups, the fatty acid tail saturation, and the PM order are important factors for the stability of VP40 binding and oligomerization at the PM. The use of FDA-approved drugs to fluidize the PM destabilizes the viral matrix assembly leading to a reduction in budding efficiency. Overall, these findings support an EBOV assembly mechanism that reaches beyond lipid headgroup specificity by using ordered PM lipid regions independent of cholesterol.
Collapse
Affiliation(s)
- Souad Amiar
- Borch Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN; Purdue Institute of Inflammation, Immunology, and Infectious Disease (PI4D), Purdue University, West Lafayette, IN
| | - Kristen A Johnson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
| | - Monica L Husby
- Borch Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| | - Robert V Stahelin
- Borch Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN; Purdue Institute of Inflammation, Immunology, and Infectious Disease (PI4D), Purdue University, West Lafayette, IN.
| |
Collapse
|
5
|
Veretenenko II, Trofimov YA, Krylov NA, Efremov RG. Nanoscale lipid domains determine the dynamic molecular portraits of mixed DOPC/DOPS bilayers in a fluid phase: A computational insight. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184376. [PMID: 39111381 DOI: 10.1016/j.bbamem.2024.184376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Lateral heterogeneity, or mosaicity, is a fundamental property inherent to cell membranes that is crucial for their functioning. While microscopic inhomogeneities (e.g. rafts) are easily detected experimentally, lipid domains with nanoscale dimensions (nanoclusters of nanodomains, NDs) resist reliable characterization by instrumental methods. In such a case, important insight can be gained via computer modeling. Here, NDs composed of lipid's head groups in the mixed zwitterionic dioleoylphosphatidylcholine (DOPC) and negatively charged dioleoylphosphatidylserine (DOPS) bilayers were studied by molecular dynamics. A new algorithm has been developed to identify NDs. Unlike most similar methods, it implicitly considers the heterogeneous distribution of lipid head atomic density and does not require subjectively chosen parameters. In DOPS-rich membranes, lipids form more compact and stable NDs due to strong interlipid interactions. In DOPC-rich systems, NDs arise due to the "packing" effect of weakly bound lipid heads. The clustering picture is related to the physical properties of the bilayer surface: DOPS-rich systems show more pronounced surface heterogeneity of hydrophilic/hydrophobic regions compared to DOPC-rich ones. The results obtained are important for the effective quantitative characterization of the "dynamic molecular portrait" of a membrane surface - its "fingerprint" characterizing dynamical distribution of its physicochemical properties.
Collapse
Affiliation(s)
- Irina I Veretenenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow region 141701, Russia.
| | - Yury A Trofimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow region 141701, Russia; National Research University Higher School of Economics, Moscow 101000, Russia.
| |
Collapse
|
6
|
Bodmer BS, Hoenen T, Wendt L. Molecular insights into the Ebola virus life cycle. Nat Microbiol 2024; 9:1417-1426. [PMID: 38783022 DOI: 10.1038/s41564-024-01703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Ebola virus and other orthoebolaviruses cause severe haemorrhagic fevers in humans, with very high case fatality rates. Their non-segmented single-stranded RNA genome encodes only seven structural proteins and a small number of non-structural proteins to facilitate the virus life cycle. The basics of this life cycle are well established, but recent advances have substantially increased our understanding of its molecular details, including the viral and host factors involved. Here we provide a comprehensive overview of our current knowledge of the molecular details of the orthoebolavirus life cycle, with a special focus on proviral host factors. We discuss the multistep entry process, viral RNA synthesis in specialized phase-separated intracellular compartments called inclusion bodies, the expression of viral proteins and ultimately the assembly of new virus particles and their release at the cell surface. In doing so, we integrate recent studies into the increasingly detailed model that has developed for these fundamental aspects of orthoebolavirus biology.
Collapse
Affiliation(s)
- Bianca S Bodmer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Lisa Wendt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
7
|
Liu X, Stahelin RV, Pienaar E. Impact of Ebola virus nucleoprotein on VP40 virus-like particle production: a computational approach. Commun Biol 2024; 7:634. [PMID: 38796621 PMCID: PMC11128010 DOI: 10.1038/s42003-024-06300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/07/2024] [Indexed: 05/28/2024] Open
Abstract
Ebola virus (EBOV) matrix protein VP40 can assemble and bud as virus-like particles (VLPs) when expressed alone in mammalian cells. Nucleoprotein (NP) could be recruited to VLPs as inclusion body (IB) when co-expressed, and increase VLP production. However, the mechanism behind it remains unclear. Here, we use a computational approach to study NP-VP40 interactions. Our simulations indicate that NP may enhance VLP production through stabilizing VP40 filaments and accelerating the VLP budding step. Further, both the relative timing and amount of NP expression compared to VP40 are important for the effective production of IB-containing VLPs. We predict that relative NP/VP40 expression ratio and time are important for efficient production of IB-containing VLPs. We conclude that disrupting the expression timing and amount of NP and VP40 could provide new avenues to treat EBOV infection. This work provides quantitative insights into EBOV proteins interactions and how virion generation and drug efficacy could be influenced.
Collapse
Affiliation(s)
- Xiao Liu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
8
|
Motsa BB, Sharma T, Cioffi MD, Chapagain PP, Stahelin RV. Minor electrostatic changes robustly increase VP40 membrane binding, assembly, and budding of Ebola virus matrix protein derived virus-like particles. J Biol Chem 2024; 300:107213. [PMID: 38522519 PMCID: PMC11061732 DOI: 10.1016/j.jbc.2024.107213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024] Open
Abstract
Ebola virus (EBOV) is a filamentous negative-sense RNA virus, which causes severe hemorrhagic fever. There are limited vaccines or therapeutics for prevention and treatment of EBOV, so it is important to get a detailed understanding of the virus lifecycle to illuminate new drug targets. EBOV encodes for the matrix protein, VP40, which regulates assembly and budding of new virions from the inner leaflet of the host cell plasma membrane (PM). In this work, we determine the effects of VP40 mutations altering electrostatics on PM interactions and subsequent budding. VP40 mutations that modify surface electrostatics affect viral assembly and budding by altering VP40 membrane-binding capabilities. Mutations that increase VP40 net positive charge by one (e.g., Gly to Arg or Asp to Ala) increase VP40 affinity for phosphatidylserine and phosphatidylinositol 4,5-bisphosphate in the host cell PM. This increased affinity enhances PM association and budding efficiency leading to more effective formation of virus-like particles. In contrast, mutations that decrease net positive charge by one (e.g., Gly to Asp) lead to a decrease in assembly and budding because of decreased interactions with the anionic PM. Taken together, our results highlight the sensitivity of slight electrostatic changes on the VP40 surface for assembly and budding. Understanding the effects of single amino acid substitutions on viral budding and assembly will be useful for explaining changes in the infectivity and virulence of different EBOV strains, VP40 variants that occur in nature, and for long-term drug discovery endeavors aimed at EBOV assembly and budding.
Collapse
Affiliation(s)
- Balindile B Motsa
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Tej Sharma
- Department of Physics, Florida International University, Miami, Florida, USA
| | - Michael D Cioffi
- Department of Physics, Florida International University, Miami, Florida, USA
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, Florida, USA; Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
| | - Robert V Stahelin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
9
|
Sun B, Zhang Y, Chen K, Sun L. Metabolomics captures the differential metabolites in the replication pathway of snakehead vesiculovirus regulated by glutamine. DISEASES OF AQUATIC ORGANISMS 2024; 158:101-114. [PMID: 38661141 DOI: 10.3354/dao03786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Snakehead vesiculovirus (SHVV) is a negative-sense single-stranded RNA virus that infects snakehead fish. This virus leads to illness and mortality, causing significant economic losses in the snakehead aquaculture industry. The replication and spread of SHVV in cells, which requires glutamine as a nitrogen source, is accompanied by alterations in intracellular metabolites. However, the metabolic mechanisms underlying the inhibition of viral replication by glutamine deficiency are poorly understood. This study utilized liquid chromatography-mass spectrometry to measure the differential metabolites between the channel catfish Parasilurus asotus ovary cell line infected with SHVV under glutamine-containing and glutamine-deprived conditions. Results showed that the absence of glutamine regulated 4 distinct metabolic pathways and influenced 9 differential metabolites. The differential metabolites PS(16:0/16:0), 5,10-methylene-THF, and PS(18:0/18:1(9Z)) were involved in amino acid metabolism. In the nuclear metabolism functional pathway, differential metabolites of guanosine were observed. In the carbohydrate metabolism pathway, differential metabolites of UDP-d-galacturonate were detected. In the signal transduction pathway, differential metabolites of SM(d18:1/20:0), SM(d18:1/22:1(13Z)), SM(d18:1/24:1(15 Z)), and sphinganine were found. Among them, PS(18:0/18:1(9Z)), PS(16:0/16:0), and UDP-d-galacturonate were involved in the synthesis of phosphatidylserine and glycoprotein. The compound 5,10-methylene-THF provided raw materials for virus replication, and guanosine and sphingosine are related to virus virulence. The differential metabolites may collectively participate in the replication, packaging, and proliferation of SHVV under glutamine deficiency. This study provides new insights and potential metabolic targets for combating SHVV infection in aquaculture through metabolomics approaches.
Collapse
Affiliation(s)
- Binbin Sun
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, PR China
| | - Yulei Zhang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, PR China
| | - Lindan Sun
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
10
|
Liu X, Husby M, Stahelin RV, Pienaar E. Evaluation of fendiline treatment in VP40 system with nucleation-elongation process: a computational model of Ebola virus matrix protein assembly. Microbiol Spectr 2024; 12:e0309823. [PMID: 38407984 PMCID: PMC10986538 DOI: 10.1128/spectrum.03098-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Ebola virus (EBOV) infection is threatening human health, especially in Central and West Africa. Limited clinical trials and the requirement of biosafety level-4 laboratories hinder experimental work to advance our understanding of EBOV and the evaluation of treatment. In this work, we use a computational model to study the assembly and budding process of EBOV and evaluate the effect of fendiline on these processes in the context of fluctuating host membrane lipid levels. Our results demonstrate for the first time that the assembly of VP40 filaments may follow the nucleation-elongation theory, as this mechanism is critical to maintaining a pool of VP40 dimers for the maturation and production of virus-like particles (VLPs). We further find that this nucleation-elongation process is likely influenced by fluctuating phosphatidylserine (PS), which can complicate the efficacy of lipid-targeted therapies like fendiline, a drug that lowers cellular PS levels. Our results indicate that fendiline-induced PS reduction may actually increase VLP production at earlier time points (24 h) and under low fendiline concentrations (≤2 µM). However, this effect is transient and does not change the conclusion that fendiline generally decreases VLP production. In the context of fluctuating PS levels, we also conclude that fendiline can be more efficient at the late stage of VLP budding relative to earlier phases. Combination therapy with a VLP budding step-targeted drug may therefore further increase the treatment efficiency of fendiline. Finally, we also show that fendiline-induced PS reduction more effectively lowers VLP production when VP40 expression is high. Taken together, our results provide critical quantitative information on how fluctuating lipid levels (PS) affect EBOV assembly and egress and how this mechanism can be disrupted by lipid-targeting molecules like fendiline. IMPORTANCE Ebola virus (EBOV) infection can cause deadly hemorrhagic fever, which has a mortality rate of ~50%-90% without treatment. The recent outbreaks in Uganda and the Democratic Republic of the Congo illustrate its threat to human health. Though two antibody-based treatments were approved, mortality rates in the last outbreak were still higher than 30%. This can partly be due to the requirement of advanced medical facilities for current treatments. As a result, it is very important to develop and evaluate new therapies for EBOV infection, especially those that can be easily applied in the developing world. The significance of our research is that we evaluate the potential of lipid-targeted treatments in reducing EBOV assembly and egress. We achieved this goal using the VP40 system combined with a computational approach, which both saves time and lowers cost compared to traditional experimental studies and provides innovative new tools to study viral protein dynamics.
Collapse
Affiliation(s)
- Xiao Liu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Monica Husby
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Robert V. Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
11
|
Johnson KA, Budicini MR, Bhattarai N, Sharma T, Urata S, Gerstman BS, Chapagain PP, Li S, Stahelin RV. PI(4,5)P 2 binding sites in the Ebola virus matrix protein VP40 modulate assembly and budding. J Lipid Res 2024; 65:100512. [PMID: 38295986 PMCID: PMC10909612 DOI: 10.1016/j.jlr.2024.100512] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Ebola virus (EBOV) causes severe hemorrhagic fever in humans and is lethal in a large percentage of those infected. The EBOV matrix protein viral protein 40 kDa (VP40) is a peripheral binding protein that forms a shell beneath the lipid bilayer in virions and virus-like particles (VLPs). VP40 is required for virus assembly and budding from the host cell plasma membrane. VP40 is a dimer that can rearrange into oligomers at the plasma membrane interface, but it is unclear how these structures form and how they are stabilized. We therefore investigated the ability of VP40 to form stable oligomers using in vitro and cellular assays. We characterized two lysine-rich regions in the VP40 C-terminal domain (CTD) that bind phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) and play distinct roles in lipid binding and the assembly of the EBOV matrix layer. The extensive analysis of VP40 with and without lipids by hydrogen deuterium exchange mass spectrometry revealed that VP40 oligomers become extremely stable when VP40 binds PI(4,5)P2. The PI(4,5)P2-induced stability of VP40 dimers and oligomers is a critical factor in VP40 oligomerization and release of VLPs from the plasma membrane. The two lysine-rich regions of the VP40 CTD have different roles with respect to interactions with plasma membrane phosphatidylserine (PS) and PI(4,5)P2. CTD region 1 (Lys221, Lys224, and Lys225) interacts with PI(4,5)P2 more favorably than PS and is important for VP40 extent of oligomerization. In contrast, region 2 (Lys270, Lys274, Lys275, and Lys279) mediates VP40 oligomer stability via lipid interactions and has a more prominent role in release of VLPs.
Collapse
Affiliation(s)
- Kristen A Johnson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Melissa R Budicini
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Nisha Bhattarai
- Department of Physics, Florida International University, Miami, FL, USA
| | - Tej Sharma
- Department of Physics, Florida International University, Miami, FL, USA
| | - Sarah Urata
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Bernard S Gerstman
- Department of Physics, Florida International University, Miami, FL, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, FL, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Sheng Li
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
12
|
Motsa BB, Sharma T, Chapagain PP, Stahelin RV. Minor changes in electrostatics robustly increase VP40 membrane binding, assembly, and budding of Ebola virus matrix protein derived virus-like particles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578092. [PMID: 38352396 PMCID: PMC10862912 DOI: 10.1101/2024.01.30.578092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Ebola virus (EBOV) is a filamentous negative-sense RNA virus which causes severe hemorrhagic fever. There are limited vaccines or therapeutics for prevention and treatment of EBOV, so it is important to get a detailed understanding of the virus lifecycle to illuminate new drug targets. EBOV encodes for the matrix protein, VP40, which regulates assembly and budding of new virions from the inner leaflet of the host cell plasma membrane (PM). In this work we determine the effects of VP40 mutations altering electrostatics on PM interactions and subsequent budding. VP40 mutations that modify surface electrostatics affect viral assembly and budding by altering VP40 membrane binding capabilities. Mutations that increase VP40 net positive charge by one (e.g., Gly to Arg or Asp to Ala) increase VP40 affinity for phosphatidylserine (PS) and PI(4,5)P2 in the host cell PM. This increased affinity enhances PM association and budding efficiency leading to more effective formation of virus-like particles (VLPs). In contrast, mutations that decrease net positive charge by one (e.g., Gly to Asp) lead to a decrease in assembly and budding because of decreased interactions with the anionic PM. Taken together our results highlight the sensitivity of slight electrostatic changes on the VP40 surface for assembly and budding. Understanding the effects of single amino acid substitutions on viral budding and assembly will be useful for explaining changes in the infectivity and virulence of different EBOV strains, VP40 variants that occur in nature, and for long-term drug discovery endeavors aimed at EBOV assembly and budding.
Collapse
Affiliation(s)
- Balindile B. Motsa
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Tej Sharma
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Prem P. Chapagain
- Department of Physics, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Robert V. Stahelin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
13
|
Almeida-Pinto F, Pinto R, Rocha J. Navigating the Complex Landscape of Ebola Infection Treatment: A Review of Emerging Pharmacological Approaches. Infect Dis Ther 2024; 13:21-55. [PMID: 38240994 PMCID: PMC10828234 DOI: 10.1007/s40121-023-00913-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
In 1976 Ebola revealed itself to the world, marking the beginning of a series of localized outbreaks. However, it was the Ebola outbreak that began in 2013 that incited fear and anxiety around the globe. Since then, our comprehension of the virus has been steadily expanding. Ebola virus (EBOV), belonging to the Orthoebolavirus genus of the Filoviridae family, possesses a non-segmented, negative single-stranded RNA genome comprising seven genes that encode multiple proteins. These proteins collectively orchestrate the intricate process of infecting host cells. It is not possible to view each protein as monofunctional. Instead, they synergistically contribute to the pathogenicity of the virus. Understanding this multifaceted replication cycle is crucial for the development of effective antiviral strategies. Currently, two antibody-based therapeutics have received approval for treating Ebola virus disease (EVD). In 2022, the first evidence-based clinical practice guideline dedicated to specific therapies for EVD was published. Although notable progress has been made in recent years, deaths still occur. Consequently, there is an urgent need to enhance the therapeutic options available to improve the outcomes of the disease. Emerging therapeutics can target viral proteins as direct-acting antivirals or host factors as host-directed antivirals. They both have advantages and disadvantages. One way to bypass some disadvantages is to repurpose already approved drugs for non-EVD indications to treat EVD. This review offers detailed insight into the role of each viral protein in the replication cycle of the virus, as understanding how the virus interacts with host cells is critical to understanding how emerging therapeutics exert their activity. Using this knowledge, this review delves into the intricate mechanisms of action of current and emerging therapeutics.
Collapse
Affiliation(s)
| | - Rui Pinto
- Faculdade de Farmácia, Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines (iMED.ULisboa), 1649-003, Lisbon, Portugal
- Dr. Joaquim Chaves, Medicine Laboratory, Joaquim Chaves Saúde (JCS), Carnaxide, Portugal
| | - João Rocha
- Faculdade de Farmácia, Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines (iMED.ULisboa), 1649-003, Lisbon, Portugal
| |
Collapse
|
14
|
Doktorova M, Levental I, Heberle FA. Seeing the Membrane from Both Sides Now: Lipid Asymmetry and Its Strange Consequences. Cold Spring Harb Perspect Biol 2023; 15:a041393. [PMID: 37604588 PMCID: PMC10691478 DOI: 10.1101/cshperspect.a041393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Almost all biomembranes are constructed as lipid bilayers and, in almost all of these, the two opposing monolayers (leaflets) have distinct lipid compositions. This lipid asymmetry arises through the concerted action of a suite of energy-dependent enzymes that maintain living bilayers in a far-from-equilibrium steady-state. Recent discoveries reveal that lipid compositional asymmetry imparts biophysical asymmetries and that this dualistic organization may have major consequences for cellular physiology. Importantly, while transbilayer asymmetry appears to be an essential, near-ubiquitous characteristic of biological membranes, it has been challenging to reproduce in reconstituted or synthetic systems. Although recent methodological developments have overcome some critical challenges, it remains difficult to extrapolate results from available models to biological systems. Concurrently, there are few experimental approaches for targeted, controlled manipulation of lipid asymmetry in living cells. Thus, the biophysical and functional consequences of membrane asymmetry remain almost wholly unexplored. This perspective summarizes the current state of knowledge and highlights emerging themes that are beginning to make inroads into the fundamental question of why life tends toward asymmetry in its bilayers.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Molecular Physiology and Pharmacology, University of Virginia, Center for Membrane and Cell Physiology, Charlottesville, Virginia 22908, USA
| | - Ilya Levental
- Department of Molecular Physiology and Pharmacology, University of Virginia, Center for Membrane and Cell Physiology, Charlottesville, Virginia 22908, USA
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, Tennessee 37996, USA
| |
Collapse
|
15
|
Gao P, Zhou L, Wu J, Weng W, Wang H, Ye M, Qu Y, Hao Y, Zhang Y, Ge X, Guo X, Han J, Yang H. Riding apoptotic bodies for cell-cell transmission by African swine fever virus. Proc Natl Acad Sci U S A 2023; 120:e2309506120. [PMID: 37983498 PMCID: PMC10691326 DOI: 10.1073/pnas.2309506120] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
African swine fever virus (ASFV), a devastating pathogen to the worldwide swine industry, mainly targets macrophage/monocyte lineage, but how the virus enters host cells has remained unclear. Here, we report that ASFV utilizes apoptotic bodies (ApoBDs) for infection and cell-cell transmission. We show that ASFV induces cell apoptosis of primary porcine alveolar macrophages (PAMs) at the late stage of infection to productively shed ApoBDs that are subsequently swallowed by neighboring PAMs to initiate a secondary infection as evidenced by electron microscopy and live-cell imaging. Interestingly, the virions loaded within ApoBDs are exclusively single-enveloped particles that are devoid of the outer layer of membrane and represent a predominant form produced during late infection. The in vitro purified ApoBD vesicles are capable of mediating virus infection of naive PAMs, but the transmission can be significantly inhibited by blocking the "eat-me" signal phosphatidyserine on the surface of ApoBDs via Annexin V or the efferocytosis receptor TIM4 on the recipient PAMs via anti-TIM4 antibody, whereas overexpression of TIM4 enhances virus infection. The same treatment however did not affect the infection by intracellular viruses. Importantly, the swine sera to ASFV exert no effect on the ApoBD-mediated transmission but can partially act on the virions lacking the outer layer of membrane. Thus, ASFV has evolved to hijack a normal cellular pathway for cell-cell spread to evade host responses.
Collapse
Affiliation(s)
- Peng Gao
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, People’s Republic of China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, People’s Republic of China
| | - Jiajun Wu
- China Animal Disease Control Center, Beijing100125, People’s Republic of China
| | - Wenlian Weng
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, People’s Republic of China
| | - Hua Wang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, People’s Republic of China
| | - Miaomiao Ye
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, People’s Republic of China
| | - Yajin Qu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, People’s Republic of China
| | - Yuxin Hao
- China Animal Disease Control Center, Beijing100125, People’s Republic of China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, People’s Republic of China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, People’s Republic of China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, People’s Republic of China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, People’s Republic of China
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing100193, People’s Republic of China
| |
Collapse
|
16
|
Jain H, Karathanou K, Bondar AN. Graph-Based Analyses of Dynamic Water-Mediated Hydrogen-Bond Networks in Phosphatidylserine: Cholesterol Membranes. Biomolecules 2023; 13:1238. [PMID: 37627303 PMCID: PMC10452392 DOI: 10.3390/biom13081238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Phosphatidylserine lipids are anionic molecules present in eukaryotic plasma membranes, where they have essential physiological roles. The altered distribution of phosphatidylserine in cells such as apoptotic cancer cells, which, unlike healthy cells, expose phosphatidylserine, is of direct interest for the development of biomarkers. We present here applications of a recently implemented Depth-First-Search graph algorithm to dissect the dynamics of transient water-mediated lipid clusters at the interface of a model bilayer composed of 1-palmytoyl-2-oleoyl-sn-glycero-2-phosphatidylserine (POPS) and cholesterol. Relative to a reference POPS bilayer without cholesterol, in the POPS:cholesterol bilayer there is a somewhat less frequent sampling of relatively complex and extended water-mediated hydrogen-bond networks of POPS headgroups. The analysis protocol used here is more generally applicable to other lipid:cholesterol bilayers.
Collapse
Affiliation(s)
- Honey Jain
- Faculty of Physics, University of Bucharest, Atomiștilor 405, 077125 Măgurele, Romania
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | | | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Atomiștilor 405, 077125 Măgurele, Romania
- IAS-5/INM-9, Forschungszentrum Jülich, Institute of Computational Biomedicine, Wilhelm-Johnen Straße, 52428 Jülich, Germany
| |
Collapse
|
17
|
Liu X, Husby M, Stahelin RV, Pienaar E. Evaluation of Fendiline Treatment in VP40 System with Nucleation-Elongation Process: A Computational Model of Ebola Virus Matrix Protein Assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551833. [PMID: 37577722 PMCID: PMC10418208 DOI: 10.1101/2023.08.03.551833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Ebola virus (EBOV) infection is threatening human health, especially in Central and West Africa. Limited clinical trials and the requirement of biosafety level-4 (BSL-4) laboratories hinders experimental work to advance our understanding of EBOV and evaluation of treatment. In this work, we use a computational model to study the assembly and budding process of EBOV and evaluate the effect of fendiline on these processes. Our results indicate that the assembly of VP40 filaments may follow the nucleation-elongation theory, as it is critical to maintain a pool of VP40 dimer for the maturation and production of virus-like particles (VLPs). We further find that the nucleation-elongation process can also be influenced by phosphatidylserine (PS), which can complicate the efficacy of fendiline, a drug that lowers cellular PS levels. We observe that fendiline may increase VLP production at earlier time points (24 h) and under low concentrations (≤ 2 μM). But this effect is transient and does not change the conclusion that fendiline generally decreases VLP production. We also conclude that fendiline can be more efficient at the stage of VLP budding relative to earlier phases. Combination therapy with a VLP budding step-targeted drug may further increase the treatment efficiency of fendiline. Finally, we also show that fendiline has higher efficacy when VP40 expression is high. While these are single-cell level results based on the VP40 system, it points out a potential way of fendiline application affecting EBOV assembly, which can be further tested in experimental studies with multiple EBOV proteins or live virus.
Collapse
Affiliation(s)
- Xiao Liu
- Weldon School of Biomedical Engineering, Purdue University
| | - Monica Husby
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University
| | - Robert V. Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University
| | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University
- Regenstrief Center for Healthcare Engineering, Purdue University
| |
Collapse
|
18
|
Čopič A, Dieudonné T, Lenoir G. Phosphatidylserine transport in cell life and death. Curr Opin Cell Biol 2023; 83:102192. [PMID: 37413778 DOI: 10.1016/j.ceb.2023.102192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023]
Abstract
Phosphatidylserine (PS) is a negatively charged glycerophospholipid found mainly in the plasma membrane (PM) and in the late secretory/endocytic compartments, where it regulates cellular activity and can mediate apoptosis. Export of PS from the endoplasmic reticulum, its site of synthesis, to other compartments, and its transbilayer asymmetry must therefore be precisely regulated. We review recent findings on nonvesicular transport of PS by lipid transfer proteins (LTPs) at membrane contact sites, on PS flip-flop between membrane leaflets by flippases and scramblases, and on PS nanoclustering at the PM. We also discuss emerging data on cooperation between scramblases and LTPs, how perturbation of PS distribution can lead to disease, and the specific role of PS in viral infection.
Collapse
Affiliation(s)
- Alenka Čopič
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293, Montpellier CEDEX 05, France.
| | - Thibaud Dieudonné
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette 91198, France
| | - Guillaume Lenoir
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette 91198, France
| |
Collapse
|
19
|
Narkhede YB, Bhardwaj A, Motsa BB, Saxena R, Sharma T, Chapagain PP, Stahelin RV, Wiest O. Elucidating Residue-Level Determinants Affecting Dimerization of Ebola Virus Matrix Protein Using High-Throughput Site Saturation Mutagenesis and Biophysical Approaches. J Phys Chem B 2023; 127:6449-6461. [PMID: 37458567 DOI: 10.1021/acs.jpcb.3c01759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The Ebola virus (EBOV) is a filamentous virus that acquires its lipid envelope from the plasma membrane of the host cell it infects. EBOV assembly and budding from the host cell plasma membrane are mediated by a peripheral protein, known as the matrix protein VP40. VP40 is a 326 amino acid protein with two domains that are loosely linked. The VP40 N-terminal domain (NTD) contains a hydrophobic α-helix, which mediates VP40 dimerization. The VP40 C-terminal domain has a cationic patch, which mediates interactions with anionic lipids and a hydrophobic region that mediates VP40 dimer-dimer interactions. The VP40 dimer is necessary for trafficking to the plasma membrane inner leaflet and interactions with anionic lipids to mediate the VP40 assembly and oligomerization. Despite significant structural information available on the VP40 dimer structure, little is known on how the VP40 dimer is stabilized and how residues outside the NTD hydrophobic portion of the α-helical dimer interface contribute to dimer stability. To better understand how VP40 dimer stability is maintained, we performed computational studies using per-residue energy decomposition and site saturation mutagenesis. These studies revealed a number of novel keystone residues for VP40 dimer stability just adjacent to the α-helical dimer interface as well as distant residues in the VP40 CTD that can stabilize the VP40 dimer form. Experimental studies with representative VP40 mutants in vitro and in cells were performed to test computational predictions that reveal residues that alter VP40 dimer stability. Taken together, these studies provide important biophysical insights into VP40 dimerization and may be useful in strategies to weaken or alter the VP40 dimer structure as a means of inhibiting the EBOV assembly.
Collapse
Affiliation(s)
- Yogesh B Narkhede
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Atul Bhardwaj
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Balindile B Motsa
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Roopashi Saxena
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | | | | | - Robert V Stahelin
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|