1
|
Wang Y, Xue H, Zhu X, Lin D, Chen Z, Dong X, Chen J, Shi M, Ni Y, Cao J, Wu R, Kang C, Pang X, Crea F, Lin YY, Collins CC, Gleave ME, Parolia A, Chinnaiyan A, Ong CJ, Wang Y. Deciphering the Transcription Factor Landscape in Prostate Cancer Progression: A Novel Approach to Understand NE Transdifferentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2404938. [PMID: 40091506 DOI: 10.1002/advs.202404938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Prostate cancer (PCa) stands as a leading cause of cancer-related mortality among men, with treatment-induced neuroendocrine prostate cancer (NEPC) posing a challenge as an ARPI-resistant subtype. The role of transcription factors (TFs) in PCa progression and NEPC transdifferentiation remains inadequately understood, underscoring a critical gap in current research. In this study, an internal Z score-based approach is developed to identify lineage-specific TF profiles in prostatic adenocarcinoma and NEPC for a nuanced understanding of TF expression dynamics. Distinct TF profiles for adenocarcinoma and NEPC are unveiled, identifying 126 shared TFs, 46 adenocarcinoma-TFs, and 56 NEPC-TFs, validated across multiple cohorts. Gene Ontology is employed to validate their biological and functional roles in PCa progression. Implications are revealed in cell development, differentiation, and lineage determination. Knockdown experiments suggest that lineage-TFs are functionally important in maintaining lineage-specific cell proliferation. Additionally, a longitudinal study on NE transdifferentiation highlights dynamic TF expression shifts, proposing a three-phases hypothesis for PCa progression mechanisms. This study introduces a groundbreaking approach for deciphering the TF landscape in PCa, providing a molecular basis for adenocarcinoma to NEPC progression, and paving the way for innovative treatment strategies with potential impact on patient outcomes.
Collapse
Affiliation(s)
- Yu Wang
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Hui Xue
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Xiaohui Zhu
- The First Affiliated Hospital of Jinan University, First Clinical Medical College, Jinan University, Guangzhou, 510632, P. R. China
| | - Dong Lin
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Zheng Chen
- The First Affiliated Hospital of Jinan University, First Clinical Medical College, Jinan University, Guangzhou, 510632, P. R. China
| | - Xin Dong
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Junru Chen
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Mingchen Shi
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Yuchao Ni
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Jonathan Cao
- Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 3G5, Canada
| | - Rebecca Wu
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Connie Kang
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Xinyao Pang
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Francesco Crea
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Yen-Yi Lin
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
| | - Colin C Collins
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
| | - Martin E Gleave
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, Department of Urology, University of Michigan Medical School, Rogel Cancer Center, University of Michigan Hospital, Ann Arbor, 48109, USA
| | - Arul Chinnaiyan
- Michigan Center for Translational Pathology, Department of Urology, University of Michigan Medical School, Rogel Cancer Center, University of Michigan Hospital, Ann Arbor, 48109, USA
| | - Christopher J Ong
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| |
Collapse
|
2
|
Tan Z, Guo N, Cao Z, Liu S, Zhang J, Ma D, Zhang J, Lv W, Jiang N, Zang L, Wang L, Zhai X. Discovery of first-in-class DOT1L inhibitors against the R231Q gain-of-function mutation in the catalytic domain with therapeutic potential of lung cancer. Acta Pharm Sin B 2024; 14:3605-3623. [PMID: 39220866 PMCID: PMC11365375 DOI: 10.1016/j.apsb.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/18/2024] [Accepted: 03/01/2024] [Indexed: 09/04/2024] Open
Abstract
Recent research certified that DOT1L and its mutations represented by R231Q were potential targets for the treatment of lung cancer. Herein, a series of adenosine-containing derivatives were identified with DOT1LR231Q inhibition through antiproliferation assay and Western blot analysis in the H460R231Q cell. The most promising compound 37 significantly reduced DOT1LR231Q mediated H3K79 methylation and effectively inhibited the proliferation, self-renewal, migration, and invasion of lung cancer cell lines at low micromolar concentrations. The cell permeability and cellular target engagement of 37 were verified by both CETSA and DARTS assays. In the H460R231Q OE cell-derived xenograft (CDX) model, 37 displayed pronounced tumor growth inhibition after intraperitoneal administration at 20 mg/kg dose for 3 weeks (TGI = 54.38%), without obvious toxicities. A pharmacokinetic study revealed that 37 possessed tolerable properties (t 1/2 = 1.93 ± 0.91 h, F = 97.2%) after intraperitoneal administration in rats. Mechanism study confirmed that 37 suppressed malignant phenotypes of lung cancer carrying R231Q gain-of-function mutation via the MAPK/ERK signaling pathway. Moreover, analysis of the binding modes between molecules and DOT1LWT/R231Q proteins put forward the "Induced-fit" allosteric model in favor to the discovery of potent DOT1L candidates.
Collapse
Affiliation(s)
- Zehui Tan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ning Guo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhi Cao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuyu Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiayu Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Deyi Ma
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiahao Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wencai Lv
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Nan Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linghe Zang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
3
|
Alexandrova E, Salvati A, Pecoraro G, Lamberti J, Melone V, Sellitto A, Rizzo F, Giurato G, Tarallo R, Nassa G, Weisz A. Histone Methyltransferase DOT1L as a Promising Epigenetic Target for Treatment of Solid Tumors. Front Genet 2022; 13:864612. [PMID: 35495127 PMCID: PMC9043692 DOI: 10.3389/fgene.2022.864612] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
The histone lysine methyltransferase DOT1L (DOT1-like histone lysine methyltransferase) is responsible for the epigenetic regulation of gene expression through specific methylation of lysine79 residue of histone H3 (H3K79) in actively transcribed genes. Its normal activity is crucial for embryonic development and adult tissues functions, whereas its aberrant functioning is known to contribute to leukemogenesis. DOT1L is the only lysine methyltransferase that does not contain a SET domain, which is a feature that allowed the development of selective DOT1L inhibitors that are currently investigated in Phase I clinical trials for cancer treatment. Recently, abnormal expression of this enzyme has been associated with poor survival and increased aggressiveness of several solid tumors. In this review evidences of aberrant DOT1L expression and activity in breast, ovarian, prostate, colon, and other solid tumors, and its relationships with biological and clinical behavior of the disease and response to therapies, are summarized. Current knowledge of the structural basis of DOT1L ability to regulate cell proliferation, invasion, plasticity and stemness, cell cycle progression, cell-to-cell signaling, epithelial-to-mesenchymal transition, and chemoresistance, through cooperation with several molecular partners including noncoding RNAs, is also reviewed. Finally, available options for the treatment of therapeutically challenging solid tumors by targeting DOT1L are discussed.
Collapse
Affiliation(s)
- Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Medical Genomics Program and Division of Oncology, AOU “S. Giovanni di Dio e Ruggi d’Aragona”, University of Salerno, Salerno, Italy
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Jessica Lamberti
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Viola Melone
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Assunta Sellitto
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Genome Research Center for Health—CRGS, Campus of Medicine of the University of Salerno, Baronissi, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Genome Research Center for Health—CRGS, Campus of Medicine of the University of Salerno, Baronissi, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Genome Research Center for Health—CRGS, Campus of Medicine of the University of Salerno, Baronissi, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Genome Research Center for Health—CRGS, Campus of Medicine of the University of Salerno, Baronissi, Italy
- *Correspondence: Giovanni Nassa, ; Alessandro Weisz,
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Medical Genomics Program and Division of Oncology, AOU “S. Giovanni di Dio e Ruggi d’Aragona”, University of Salerno, Salerno, Italy
- Genome Research Center for Health—CRGS, Campus of Medicine of the University of Salerno, Baronissi, Italy
- *Correspondence: Giovanni Nassa, ; Alessandro Weisz,
| |
Collapse
|
4
|
Sarno F, Nebbioso A, Altucci L. DOT1L: a key target in normal chromatin remodelling and in mixed-lineage leukaemia treatment. Epigenetics 2019; 15:439-453. [PMID: 31790636 PMCID: PMC7188393 DOI: 10.1080/15592294.2019.1699991] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Methylation of histone 3 at lysine 79 (H3K79) is one of the principal mechanisms involved in gene expression. The histone methyltransferase DOT1L, which mono-, di- and trimethylates H3K79 using S-adenosyl-L-methionine as a co-factor, is involved in cell development, cell cycle progression, and DNA damage repair. However, changes in normal expression levels of this enzyme are found in prostate, breast, and ovarian cancer. High levels of H3K79me are also detected in acute myeloid leukaemia patients bearing MLL rearrangements (MLL-r). MLL translocations are found in approximately 80% of paediatric patients, leading to poor prognosis. DOT1L is recruited on DNA and induces hyperexpression of HOXA9 and MEIS1. Based on these findings, selective drugs have been developed to induce apoptosis in MLL-r leukaemia cells by specifically inhibiting DOT1L. The most potent DOT1L inhibitor pinometostat has been investigated in Phase I clinical trials for treatment of paediatric and adult patients with MLL-driven leukaemia, showing promising results.
Collapse
Affiliation(s)
- Federica Sarno
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli, Napoli, Italy
| | - Angela Nebbioso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli, Napoli, Italy
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli, Napoli, Italy
| |
Collapse
|
5
|
Liu L, Zou J, Guan Y, Zhang Y, Zhang W, Zhou X, Xiong C, Tolbert E, Zhao TC, Bayliss G, Zhuang S. Blocking the histone lysine 79 methyltransferase DOT1L alleviates renal fibrosis through inhibition of renal fibroblast activation and epithelial-mesenchymal transition. FASEB J 2019; 33:11941-11958. [PMID: 31373855 DOI: 10.1096/fj.201801861r] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Disruptor of telomeric silencing-1 like (DOT1L) protein specifically catalyzes the methylation of histone H3 on Lys79 (H3K79) and is implicated in tumors. But its role in tissue fibrosis remains unclear. Here we demonstrated that injury to the kidney increased DOT1L expression and H3K79 dimethylation in renal tubular epithelial cells and myofibroblasts in a murine model of unilateral ureteral obstruction. Administration of EPZ5676, a highly selective inhibitor of DOT1L, attenuated renal fibrosis. Treatment with EPZ5676 or DOT1L small interfering RNA also inhibited TGF-β1 and serum-induced activation of renal interstitial fibroblasts and epithelial-mesenchymal transition (EMT) in vitro. Moreover, blocking DOT1L abrogated injury-induced epithelial G2/M arrest; reduced expression of Snail, Twist, and Notch1; and inactivated several profibrotic signaling molecules in the injured kidney, including Smad3, epidermal growth factor receptor, platelet-derived growth factor receptor, signal transducer and activator of transcription 3, protein kinase B, and NF-κB. Conversely, DOT1L inhibition increased expression of phosphatase and tensin homolog, a protein associated with dephosphorylation of tyrosine kinase receptors, and prevented decline in levels of Klotho and Smad7, 2 renoprotective factors. Thus, our data indicate that targeting DOT1L attenuates renal fibrosis through inhibition of renal fibroblasts and EMT by suppressing activation of multiple profibrotic signaling pathways while retaining expression of renoprotective factors.-Liu, L., Zou, J., Guan, Y., Zhang, Y., Zhang, W., Zhou, X., Xiong, C., Tolbert, E., Zhao, T. C., Bayliss, G., Zhuang, S. Blocking the histone lysine 79 methyltransferase DOT1L alleviates renal fibrosis through inhibition of renal fibroblast activation and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Lirong Liu
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA.,Department of Clinical Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jianan Zou
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Yingjie Guan
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Yunhe Zhang
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Wei Zhang
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Xiaoxu Zhou
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Chongxiang Xiong
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Evelyn Tolbert
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Ting C Zhao
- Department of Surgery, Roger Williams Medical Center-Boston University Medical School, Providence, Rhode Island, USA
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA.,Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Wang CI, Kao HK, Chen TW, Huang Y, Cheng HW, Yi JS, Hung SY, Wu CS, Lee YS, Chang KP. Characterization of Copy Number Variations in Oral Cavity Squamous Cell Carcinoma Reveals a Novel Role for MLLT3 in Cell Invasiveness. Oncologist 2019; 24:e1388-e1400. [PMID: 31273053 DOI: 10.1634/theoncologist.2019-0063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/25/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND DNA copy number variations (CNVs) are a hallmark of cancer, and the current study aimed to demonstrate the profile of the CNVs for oral cavity squamous cell carcinoma (OSCC) and elucidate the clinicopathological associations and molecular mechanisms of a potential marker derived from CNVs, mixed-lineage leukemia translocated to chromosome 3 protein (MLLT3), in OSCC carcinogenesis. MATERIALS AND METHODS CNVs in 37 OSCC tissue specimens were analyzed using a high-resolution microarray, the OncoScan array. Gene expression was analyzed by real-time polymerase chain reaction in 127 OSCC and normal tissue samples. Cell function assays included cell cycle, migration, invasion and chromatin immunoprecipitation assays. RESULTS We found a novel copy number amplified region, chromosome 9p, encompassing MLLT3 via the comparison of our data set with six other OSCC genome-wide CNV data sets. MLLT3 overexpression was associated with poorer overall survival in patients with OSCC (p = .048). MLLT3 knockdown reduced cell migration and invasion. The reduced invasion ability in MLLT3-knockdown cells was rescued with double knockdown of MLLT3 and CBP/p300-interacting transactivator with ED rich carboxy-terminal domain 4 (CITED4; 21.0% vs. 61.5%). Knockdown of MLLT3 impaired disruptor of telomeric silencing-1-like (Dot1L)-associated hypermethylation in the promoter of the tumor suppressor, CITED4 (p < .001), and hence dysregulated HIF-1α-mediated genes (TWIST, MMP1, MMP2, VIM, and CDH1) in OSCC cells. CONCLUSION We identified unique CNVs in tumors of Taiwanese patients with OSCC. Notably, MLLT3 overexpression is related to the poorer prognosis of patients with OSCC and is required for Dot1L-mediated transcriptional repression of CITED4, leading to dysregulation of HIF-1α-mediated genes. IMPLICATIONS FOR PRACTICE This article reports unique copy number variations in oral cavity squamous cell carcinoma (OSCC) tumors of Taiwanese patients. Notably, MLLT3 overexpression is related to the poorer prognosis of patients with OSCC and is required for Dot1L-mediated transcriptional repression of CITED4, leading to dysregulation of HIF-1α-mediated genes.
Collapse
Affiliation(s)
- Chun-I Wang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Huang-Kai Kao
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Chiao Tung University, Hsinchu, Taiwan
| | - Yenlin Huang
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsing-Wen Cheng
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jui-Shan Yi
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Shao-Yu Hung
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chi-Sheng Wu
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yun-Shien Lee
- Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan
| | - Kai-Ping Chang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
7
|
Natesan R, Aras S, Effron SS, Asangani IA. Epigenetic Regulation of Chromatin in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:379-407. [PMID: 31900918 DOI: 10.1007/978-3-030-32656-2_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epigenetics refers to mitotically/meiotically heritable mechanisms that regulate gene transcription without a need for changes in the DNA code. Covalent modifications of DNA, in the form of methylation, and histone post-translational modifications, in the form of acetylation and methylation, constitute the epigenetic code of a cell. Both DNA and histone modifications are highly dynamic and often work in unison to define the epigenetic state of a cell. Most epigenetic mechanisms regulate gene transcription by affecting localized/genome-wide transitions between heterochromatin and euchromatin states, thereby altering the accessibility of the transcriptional machinery and in turn, reduce/increase transcriptional output. Altered chromatin structure is associated with cancer progression, and epigenetic plasticity primarily governs the resistance of cancer cells to therapeutic agents. In this chapter, we specifically focus on regulators of histone methylation and acetylation, the two well-studied chromatin post-translational modifications, in the context of prostate cancer.
Collapse
Affiliation(s)
- Ramakrishnan Natesan
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shweta Aras
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel Sander Effron
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Irfan A Asangani
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Hosseini A, Minucci S. Alterations of Histone Modifications in Cancer. EPIGENETICS IN HUMAN DISEASE 2018:141-217. [DOI: 10.1016/b978-0-12-812215-0.00006-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Hosseini A, Minucci S. A comprehensive review of lysine-specific demethylase 1 and its roles in cancer. Epigenomics 2017; 9:1123-1142. [PMID: 28699367 DOI: 10.2217/epi-2017-0022] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Histone methylation plays a key role in the regulation of chromatin structure, and its dynamics regulates important cellular processes. The investigation of the role of alterations in histone methylation in cancer has led to the identification of histone methyltransferases and demethylases as promising novel targets for therapy. Lysine-specific demethylase 1(LSD1, also known as KDM1A) is the first discovered histone lysine demethylase, with the ability to demethylase H3K4me1/2 and H3K9me1/2 at target loci in a context-dependent manner. LSD1 regulates the balance between self-renewal and differentiation of stem cells, and is highly expressed in various cancers, playing an important role in differentiation and self-renewal of tumor cells. In this review, we summarize recent studies about the LSD1, its role in normal and tumor cells, and the potential use of small molecule LSD1 inhibitors in therapy.
Collapse
Affiliation(s)
- Amir Hosseini
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.,Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Zhang X, Liu D, Li M, Cao C, Wan D, Xi B, Li W, Tan J, Wang J, Wu Z, Ma D, Gao Q. Prognostic and therapeutic value of disruptor of telomeric silencing-1-like (DOT1L) expression in patients with ovarian cancer. J Hematol Oncol 2017; 10:29. [PMID: 28114995 PMCID: PMC5259947 DOI: 10.1186/s13045-017-0400-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/13/2017] [Indexed: 01/07/2023] Open
Abstract
Background Epigenetics has been known to play a critical role in regulating the malignant phenotype. This study was designed to examine the expression of DOT1L (histone 3 lysine 79 methyltransferase) and H3K79 methylation in normal ovarian tissues and ovarian tumors and to explore the function of DOT1L and its underline mechanisms in ovarian cancer. Methods The expression of DOT1L and H3K79 methylation in 250 ovarian tumor samples and 24 normal ovarian samples was assessed by immunohistochemistry. The effects of DOT1L on cell proliferation in vitro were evaluated using CCK8, colony formation and flow cytometry. The DOT1L-targeted genes were determined using chromatin immune-precipitation coupled with high-throughput sequencing (ChIP-seq) and ChIP-PCR. Gene expression levels were measured by real-time PCR and immunoblotting. The effects of DOT1L on tumor growth in vivo were evaluated using an orthotopic ovarian tumor model. Results DOT1L expression and H3K79 methylation was significantly increased in malignant ovarian tumors. High DOT1L expression was associated with International Federation of Gynecology and Obstetrics (FIGO) stage, histologic grade, and lymphatic metastasis. DOT1L was an independent prognostic factor for the overall survival (OS) and progression-free survival (PFS) of ovarian cancer, and higher DOT1L expression was associated with poorer OS and PFS. Furthermore, DOT1L regulates the transcription of G1 phase genes CDK6 and CCND3 through H3K79 dimethylation; therefore, blocking DOT1L could result in G1 arrest and thereby impede the cell proliferation in vitro and tumor growth in vivo. Conclusions Our findings first demonstrate that DOT1L over-expression has important clinical significance in ovarian cancer and also clarify that it drives cell cycle progression through transcriptional regulation of CDK6 and CCND3 through H3K79 methylation, suggesting that DOT1L might be potential target for prognostic assessment and therapeutic intervention in ovarian cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0400-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Dan Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Mengchen Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Canhui Cao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Dongyi Wan
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Bixin Xi
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wenqian Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jiahong Tan
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ji Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhongcai Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ding Ma
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
11
|
Latonen L, Leinonen KA, Grönlund T, Vessella RL, Tammela TLJ, Saramäki OR, Visakorpi T. Amplification of the 9p13.3 chromosomal region in prostate cancer. Genes Chromosomes Cancer 2016; 55:617-25. [PMID: 27074291 DOI: 10.1002/gcc.22364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 11/11/2022] Open
Abstract
Amplification of the 9p13.3 chromosomal region occurs in a subset of prostate cancers (PCs); however, the target gene or genes of this amplification have remained unidentified. The aim of this study was to investigate the 9p13.3 amplification in more detail to identify genes that are potentially advantageous for cancer cells. We narrowed down the minimally amplified area and assessed the frequency of the 9p13.3 amplification. Of the clinical samples from untreated PCs that were examined (n = 134), 9.7% showed high-level amplification, and 32.1% showed low-level amplification. Additionally, in clinical samples from castration-resistant PCs (n = 70), high- and low-level amplification was seen in 14.3% and 44.3% of the samples, respectively. We next analyzed the protein-coding genes in this chromosomal region for both their expression in clinical PC samples as well as their potential as growth regulators in PC cells. We found that the 9p13.3 amplification harbors several genes that are able to affect the growth of PC cells when downregulated using siRNA. Of these, UBAP2 was the most prominently upregulated gene in the clinical prostate tumor samples. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leena Latonen
- Institute of Biosciences and Medical Technology - BioMediTech, University of Tampere, Finland.,Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Katri A Leinonen
- Institute of Biosciences and Medical Technology - BioMediTech, University of Tampere, Finland.,Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Teemu Grönlund
- Institute of Biosciences and Medical Technology - BioMediTech, University of Tampere, Finland.,Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | | | - Teuvo L J Tammela
- Department of Urology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Outi R Saramäki
- Institute of Biosciences and Medical Technology - BioMediTech, University of Tampere, Finland.,Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Tapio Visakorpi
- Institute of Biosciences and Medical Technology - BioMediTech, University of Tampere, Finland.,Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
12
|
Recurrent SKIL-activating rearrangements in ETS-negative prostate cancer. Oncotarget 2016; 6:6235-50. [PMID: 25749039 PMCID: PMC4467434 DOI: 10.18632/oncotarget.3359] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/15/2015] [Indexed: 11/26/2022] Open
Abstract
Prostate cancer is the third most common cause of male cancer death in developed countries, and one of the most comprehensively characterized human cancers. Roughly 60% of prostate cancers harbor gene fusions that juxtapose ETS-family transcription factors with androgen regulated promoters. A second subtype, characterized by SPINK1 overexpression, accounts for 15% of prostate cancers. Here we report the discovery of a new prostate cancer subtype characterized by rearrangements juxtaposing the SMAD inhibitor SKIL with androgen regulated promoters, leading to increased SKIL expression. SKIL fusions were found in 6 of 540 (1.1%) prostate cancers and 1 of 27 (3.7%) cell lines and xenografts. 6 of 7 SKIL-positive cancers were negative for ETS overexpression, suggesting mutual exclusivity with ETS fusions. SKIL knockdown led to growth arrest in PC-3 and LNCaP cell line models of prostate cancer, and its overexpression led to increased invasiveness in RWPE-1 cells. The role of SKIL as a prostate cancer oncogene lends support to recent studies on the role of TGF-β signaling as a rate-limiting step in prostate cancer progression. Our findings highlight SKIL as an oncogene and potential therapeutic target in 1-2% of prostate cancers, amounting to an estimated 10,000 cancer diagnoses per year worldwide.
Collapse
|
13
|
Massie CE, Spiteri I, Ross-Adams H, Luxton H, Kay J, Whitaker HC, Dunning MJ, Lamb AD, Ramos-Montoya A, Brewer DS, Cooper CS, Eeles R, Warren AY, Tavaré S, Neal DE, Lynch AG. HES5 silencing is an early and recurrent change in prostate tumourigenesis. Endocr Relat Cancer 2015; 22:131-44. [PMID: 25560400 PMCID: PMC4335379 DOI: 10.1530/erc-14-0454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 12/18/2014] [Accepted: 01/05/2015] [Indexed: 02/06/2023]
Abstract
Prostate cancer is the most common cancer in men, resulting in over 10 000 deaths/year in the UK. Sequencing and copy number analysis of primary tumours has revealed heterogeneity within tumours and an absence of recurrent founder mutations, consistent with non-genetic disease initiating events. Using methylation profiling in a series of multi-focal prostate tumours, we identify promoter methylation of the transcription factor HES5 as an early event in prostate tumourigenesis. We confirm that this epigenetic alteration occurs in 86-97% of cases in two independent prostate cancer cohorts (n=49 and n=39 tumour-normal pairs). Treatment of prostate cancer cells with the demethylating agent 5-aza-2'-deoxycytidine increased HES5 expression and downregulated its transcriptional target HES6, consistent with functional silencing of the HES5 gene in prostate cancer. Finally, we identify and test a transcriptional module involving the AR, ERG, HES1 and HES6 and propose a model for the impact of HES5 silencing on tumourigenesis as a starting point for future functional studies.
Collapse
Affiliation(s)
- Charles E Massie
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Inmaculada Spiteri
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Helen Ross-Adams
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Hayley Luxton
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Jonathan Kay
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Hayley C Whitaker
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Mark J Dunning
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Alastair D Lamb
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Antonio Ramos-Montoya
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Daniel S Brewer
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Colin S Cooper
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Rosalind Eeles
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Anne Y Warren
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Simon Tavaré
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - David E Neal
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Andy G Lynch
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| |
Collapse
|