1
|
Talarico M, Barbato S, Cattabriga A, Sacchetti I, Manzato E, Restuccia R, Masci S, Bigi F, Puppi M, Iezza M, Rizzello I, Mancuso K, Pantani L, Tacchetti P, Nanni C, Cavo M, Zamagni E. Diagnostic Innovations: Advances in imaging techniques for diagnosis and follow-up of multiple myeloma. J Bone Oncol 2025; 51:100669. [PMID: 40124904 PMCID: PMC11930372 DOI: 10.1016/j.jbo.2025.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction The International Myeloma Working Group (IMWG) defines myeloma related bone disease (MBD) as a diagnostic criterion for symptomatic multiple myeloma (MM) as the presence of osteolytic lesions ≥ 5 mm or more than one focal lesion (FL) ≥ 5 mm by magnetic resonance imaging (MRI). Whole-body low-dose CT (WBLDCT) is recommended as the first-choice imaging technique for the diagnosis of MBD with 18F-fluorodeoxyglucose-positron emission tomography/CT (18F-FDG-PET/CT) being considered a possible alternative at staging, whereas use of MRI studies is recommended in cases without myeloma-defining events (MDEs) in order to exclude the presence of FLs. Furthermore, use of 18F-FDG-PET/CT is recommended in response assessment, to be integrated with hematologic response and bone marrow minimal residual disease (MRD). Areas covered In this paper, we review novel functional imaging techniques in MM, particularly focusing on their advantages, limits, applications and comparisons with 18F-FDG-PET/CT or other standardized imaging techniques. Conclusions Combining both morphological and functional imaging, 18F-FDG-PET/CT is currently considered a standard imaging technique in MM for staging (despite false positive or negative results) and response assessment. The introduction of novel functional imaging techniques, as whole-body diffusion-weighted magnetic resonance imaging (WB-DWI-MRI), or novel PET tracers might be useful in overcoming these limits. Future studies will give more information on the complementarity of these imaging techniques or whether one of them might become a new gold standard in MM.
Collapse
Affiliation(s)
- M. Talarico
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - S. Barbato
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - A. Cattabriga
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna 40138 Bologna, Italy
| | - I. Sacchetti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - E. Manzato
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - R. Restuccia
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - S. Masci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - F. Bigi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - M. Puppi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - M. Iezza
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - I. Rizzello
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - K. Mancuso
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - L. Pantani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - P. Tacchetti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - C. Nanni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - M. Cavo
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - E. Zamagni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Khan MS, Azeem B, Kanwal A, Ahmed IE, Zehra A, Kabir A, Ahmed W, Nasir H, Khan M, Manzoor A, Hasanain M, Moeen W, Khan M, Ahmed G. Unveiling WHIM syndrome: Mavorixafor's emerging role in immune restoration and therapy. Clin Exp Immunol 2025; 219:uxaf014. [PMID: 40065526 PMCID: PMC12001236 DOI: 10.1093/cei/uxaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/28/2024] [Accepted: 03/06/2025] [Indexed: 04/17/2025] Open
Abstract
WHIM syndrome is a rare autosomal dominant immunodeficiency disorder and is an abbreviation formed from the initial letters of its main clinical presentations: Warts, Hypogammaglobulinemia, Infections, and Myelokathexis. It stems mainly from mutations where there is a gain of function in the chemokine receptor CXCR4, which is extensively located on leukocytes and significantly affects the balance of the immune system. Many therapeutic strategies have been widely explored for several years for this immunodeficiency disorder. Mavorixafor, a CXCR4 antagonist, is a recently approved drug by the Food and Drug Administration (FDA) that is being studied for its longer half-life and oral drug route against WHIM syndrome. This review aims to investigate briefly the underlying mechanisms and pathogenesis of WHIM syndrome, and the current effective treatment approaches, for example CXCR4 antagonists or Hematopoietic Stem Cell Transplantation (HSCT), against it. The review also aims to thoroughly assess the efficacy and safety of Mavorixafor in managing WHIM syndrome, exploring its pharmacokinetics, pharmacodynamics, dosing regimens, and safety. Finally, we also investigate important additional therapeutic uses of Mavorixafor.
Collapse
Affiliation(s)
- Muhammad Sohaib Khan
- Department of Internal Medicine, DOW University of Health Sciences, Karachi, Pakistan
| | - Bismah Azeem
- Department of Internal Medicine, Avicenna Medical College, Lahore, Pakistan
| | - Ashir Kanwal
- Department of Internal Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Ifra Eeman Ahmed
- Department of Internal Medicine, Federal Medical and Dental College, Islamabad, Pakistan
| | - Anum Zehra
- Department of Internal Medicine, Ziauddin University, Karachi, Pakistan
| | - Aqsa Kabir
- Department of Internal Medicine, DOW University of Health Sciences, Karachi, Pakistan
| | | | - Hania Nasir
- Department of Internal Medicine, Sindh Medical College JSMU, Karachi, Pakistan
| | - Momina Khan
- Department of Internal Medicine, Ruth Pfau Medical College, Karachi, Pakistan
| | - Aatika Manzoor
- Department of Internal Medicine, Sindh Medical College JSMU, Karachi, Pakistan
| | - Muhammad Hasanain
- Department of Internal Medicine, DOW University of Health Sciences, Karachi, Pakistan
| | - Wania Moeen
- Department of Internal Medicine, DOW University of Health Sciences, Karachi, Pakistan
| | - Muzamil Khan
- Department of Internal Medicine, The George Washington University School of Medicine and Health Sciences, Washington D.C, USA
| | - Gulrayz Ahmed
- Department of Medicine, Hematology Oncology Division, Hematology/Oncology Fellow, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
3
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
4
|
Chavoshi M, Mirshahvalad SA, Kohan A, Ortega C, Metser U, Farag A, Kridel R, Hodgson D, Bhella S, Kukreti V, Veit-Haibach P. CXCR4-Targeted PET Imaging in Hematologic Malignancies: A Systematic Review and Meta-analysis. Clin Nucl Med 2025; 50:e7-e16. [PMID: 39259697 DOI: 10.1097/rlu.0000000000005426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
PURPOSE The aims of this study were to perform a comprehensive review and meta-analyses and to report pooled diagnostic results on CXCR4-targeted PET, particularly considering detection, visualization, and prognostication. PATIENTS AND METHODS This study followed PRISMA-DTA. A systematic search was conducted on major medical literature databases up to March 1, 2024. The search strategy was designed to include CXCR4 PET studies in hematologic malignancies. A random-effects model combined sensitivity values derived from 2-by-2 contingency tables. Pooled means for SUV max were computed. Analyses were performed by R software. RESULTS The initial search resulted in a total of 1428 studies. Ultimately, 18 were eligible for systematic review and meta-analytic calculations. Twelve studies (320 patients) included B-cell lymphoma. The pooled detection rate of CXCR4 PET was 99.4% (95% confidence interval [CI]: 88.3%-100%). Marginal zone lymphoma was investigated in 5 studies (209 patients), with a pooled sensitivity of 97.6% (95% CI: 79.7%-99.8%). In studies on central nervous system lymphoma, CXCR4 PET demonstrated 100% accuracy at both patient and lesion levels. Also, it demonstrated a significantly higher tumor-to-background ratio than 18 F-FDG PET. For multiple myeloma, 5 studies (116 patients) showed a patient-level pooled sensitivity of 77.8% (95% CI: 64.4%-87.2%), whereas 18 F-FDG PET had 65.0% (95% CI: 55.2%-73.7%). The pooled SUV max for CXCR4 PET was 13.6 (95% CI: 9.3-17.8) versus 9.0 (95% CI: 6.3-11.7) for 18 F-FDG PET. Additionally, CXCR4 PET-derived parameters were significant predictors of survival in multiple myeloma. CONCLUSIONS CXCR4 PET can be a helpful imaging tool for evaluating hematologic malignancies, particularly in B-cell lymphoma and multiple myeloma patients. In specific clinical scenarios, it appears to be superior compared with the current standard-of-care imaging.
Collapse
Affiliation(s)
- Mohammadreza Chavoshi
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital & Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Seyed Ali Mirshahvalad
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital & Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Andres Kohan
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital & Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Claudia Ortega
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital & Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Ur Metser
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital & Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Adam Farag
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital & Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Robert Kridel
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David Hodgson
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sita Bhella
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Vishal Kukreti
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Patrick Veit-Haibach
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital & Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Svozilova H, Vojtova L, Matulova J, Bruknerova J, Polakova V, Radova L, Doubek M, Plevova K, Pospisilova S. In vitro culture of leukemic cells in collagen scaffolds and carboxymethyl cellulose-polyethylene glycol gel. PeerJ 2024; 12:e18637. [PMID: 39655330 PMCID: PMC11627079 DOI: 10.7717/peerj.18637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Background Chronic lymphocytic leukemia (CLL) is a common adult leukemia characterized by the accumulation of neoplastic mature B cells in blood, bone marrow, lymph nodes, and spleen. The disease biology remains unresolved in many aspects, including the processes underlying the disease progression and relapses. However, studying CLL in vitro poses a considerable challenge due to its complexity and dependency on the microenvironment. Several approaches are utilized to overcome this issue, such as co-culture of CLL cells with other cell types, supplementing culture media with growth factors, or setting up a three-dimensional (3D) culture. Previous studies have shown that 3D cultures, compared to conventional ones, can lead to enhanced cell survival and altered gene expression. 3D cultures can also give valuable information while testing treatment response in vitro since they mimic the cell spatial organization more accurately than conventional culture. Methods In our study, we investigated the behavior of CLL cells in two types of material: (i) solid porous collagen scaffolds and (ii) gel composed of carboxymethyl cellulose and polyethylene glycol (CMC-PEG). We studied CLL cells' distribution, morphology, and viability in these materials by a transmitted-light and confocal microscopy. We also measured the metabolic activity of cultured cells. Additionally, the expression levels of MYC, VCAM1, MCL1, CXCR4, and CCL4 genes in CLL cells were studied by qPCR to observe whether our novel culture approaches lead to increased adhesion, lower apoptotic rates, or activation of cell signaling in relation to the enhanced contact with co-cultured cells. Results Both materials were biocompatible, translucent, and permeable, as assessed by metabolic assays, cell staining, and microscopy. While collagen scaffolds featured easy manipulation, washability, transferability, and biodegradability, CMC-PEG was advantageous for its easy preparation process and low variability in the number of accommodated cells. Both materials promoted cell-to-cell and cell-to-matrix interactions due to the scaffold structure and generation of cell aggregates. The metabolic activity of CLL cells cultured in CMC-PEG gel was similar to or higher than in conventional culture. Compared to the conventional culture, there was (i) a lower expression of VCAM1 in both materials, (ii) a higher expression of CCL4 in collagen scaffolds, and (iii) a lower expression of CXCR4 and MCL1 (transcript variant 2) in collagen scaffolds, while it was higher in a CMC-PEG gel. Hence, culture in the material can suppress the expression of a pro-apoptotic gene (MCL1 in collagen scaffolds) or replicate certain gene expression patterns attributed to CLL cells in lymphoid organs (low CXCR4, high CCL4 in collagen scaffolds) or blood (high CXCR4 in CMC-PEG).
Collapse
Affiliation(s)
- Hana Svozilova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lucy Vojtova
- Advanced Biomaterials, Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jana Matulova
- Advanced Biomaterials, Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jana Bruknerova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Veronika Polakova
- Advanced Biomaterials, Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Lenka Radova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michael Doubek
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karla Plevova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Pospisilova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
Nanni C, Deroose CM, Balogova S, Lapa C, Withofs N, Subesinghe M, Jamet B, Zamagni E, Ippolito D, Delforge M, Kraeber-Bodéré F. EANM guidelines on the use of [ 18F]FDG PET/CT in diagnosis, staging, prognostication, therapy assessment, and restaging of plasma cell disorders. Eur J Nucl Med Mol Imaging 2024; 52:171-192. [PMID: 39207486 PMCID: PMC11599630 DOI: 10.1007/s00259-024-06858-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024]
Abstract
We provide updated guidance and standards for the indication, acquisition, and interpretation of [18F]FDG PET/CT for plasma cell disorders. Procedures and characteristics are reported and different scenarios for the clinical use of [18F]FDG PET/CT are discussed. This document provides clinicians and technicians with the best available evidence to support the implementation of [18F]FDG PET/CT imaging in routine practice and future research.
Collapse
Affiliation(s)
- Cristina Nanni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Christophe M Deroose
- Nuclear Medicine, University Hospitals (UZ) Leuven, 3000, Leuven, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Sona Balogova
- Nuclear Medicine, Comenius University, Bratislava, Slovakia
- Médecine Nucléaire, Hôpital Tenon, GH AP.SU, Paris, France
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Nadia Withofs
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, CHU of Liege, Liege, Belgium
- GIGA-CRC in Vivo Imaging, University of Liege, Liege, Belgium
| | - Manil Subesinghe
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Bastien Jamet
- Médecine Nucléaire, CHU Nantes, F-44000, Nantes, France
| | - Elena Zamagni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy.
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy.
| | - Davide Ippolito
- Department of Diagnostic Radiology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900, Monza, Italy
- University of Milano-Bicocca, School of Medicine, Via Cadore 33, 20090, Monza, Italy
| | | | | |
Collapse
|
7
|
Yang Q, Zhang F, Hao Z, Zhuang J, Huo L. Chemokine Receptor 4-Targeted PET/CT with [ 68Ga]pentixather in Newly Diagnosed Multiple Myeloma: a Comparative Study with [ 68Ga]pentixafor PET/CT. Mol Imaging Biol 2024; 26:986-994. [PMID: 39304574 DOI: 10.1007/s11307-024-01953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE This study aimed to compare the detection rate of [68Ga]pentixather PET/CT and [68Ga]pentixafor PET/CT in newly diagnosed multiple myeloma (NDMM) patients, and to explore the value of [68Ga]pentixather PET/CT for tumor load assessment. METHODS Nineteen NDMM Patients were prospectively recruited and underwent both [68Ga]pentixather PET/CT and [68Ga]pentixafor PET/CT. A positive PET scan was defined as the presence of PET-positive focal bone lesions, paraskeletal disease, extramedullary plasmacytoma, or diffuse bone marrow uptake. Lesion numbers, SUVmax and PET-related tumor burden values were compared. The correlations between PET-related tumor burden and clinical risk stratification were analyzed. RESULTS [68Ga]pentixather PET/CT showed a tendency of higher positive rate compared with [68Ga]pentixafor PET/CT [94.7% (18/19) vs. 78.9% (15/19), p > 0.05]. Among 14 patients with 151 matched focal bone lesions, [68Ga]pentixather PET detected more or equal number of lesions in 13 patients, and demonstrated higher uptake value than 68 Ga-pentixafor PET [SUVmax, 16.8 (9.0, 23.8) vs. 13.4 (6.5, 20.4), p < 0.001]. For PET related-tumor burden, positive correlations of total bone marrow uptake (TBmU) (r = 0.9540, p < 0.0001) and SUVmean of total bone marrow (r = 0.9632, p < 0.0001) in two PET scans were observed. Higher TBmU [7864.9 (5549.2, 11,616.2) vs. 5383.4(4102.7, 11,041.8), p < 0.001], SUVmean of total bone marrow [1.4 (1.1, 2.2) vs. 1.1 (0.7, 2.1), p < 0.001] were demonstrated on [68Ga]pentixather PET than [68Ga]pentixafor PET. And the level of TBmU in [68Ga]pentixather PET and [68Ga]pentixafor PET were both elevated in Durie-Salmon Staging (DSS) III than DSS I (p < 0.01). CONCLUSIONS [68Ga]pentixather PET/CT performed a non-inferior capability for tumor detection compared to [68Ga]pentixafor PET/CT in NDMM patients. [68Ga]pentixather PET/CT can assess tumor load in MM patients and depict a significantly higher PET-related total tumor burden than [68Ga]pentixafor PET/CT.
Collapse
Affiliation(s)
- Qiao Yang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Fujing Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Zhixin Hao
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Junling Zhuang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Li Huo
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
8
|
Filippi L, Ferrari C, Rubini G. Theranostic strategies in sarcoma: preliminary clinical evidence. Expert Opin Investig Drugs 2024; 33:1119-1127. [PMID: 39367699 DOI: 10.1080/13543784.2024.2414119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
INTRODUCTION Sarcomas encompass a highly diverse range of malignancies, characterized by varied morphological and molecular profiles. Treatment options in case of therapy-refractory or advanced disease are limited. In this context, theranostics emerges as an innovative platform seamlessly integrating diagnosis and therapy, offering promising prospects. AREAS COVERED This special report delves into the initial clinical applications of theranostic-based approaches in sarcomas. Specifically, it examines various strategies targeting biomarkers associated with sarcomas, including fibroblast activation protein (FAP), prostate-specific membrane antigen (PSMA), C-X-C chemokine receptor type 4 (CXCR4) and somatostatin receptor 2 (SSTR2). EXPERT OPINION The heterogeneous uptake of the CXCR4-targeted radioligand in lesions, along with its poor correlation with immunohistochemistry data, diminishes the attractiveness of this theranostic approach in the sarcoma oncological setting. SSTR2-targeted approaches in sarcoma, although potentially effective, are limited to a single case. Early experiences with FAP inhibitors in sarcoma patients have shown particularly promising outcomes, indicating effective disease control with minimal toxicity. While PSMA presents an enticing target for theranostic approaches in sarcomas, its utilization remains anecdotal and requires further investigation. Prospective and well-designed clinical trials are imperative to delineate the potential impact of FAPI- and PSMA-based approaches on sarcoma therapeutic landscapes, offering innovative and personalized treatment options.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Cristina Ferrari
- Nuclear Medicine Unit, Interdisciplinary Department of Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| | - Giuseppe Rubini
- Nuclear Medicine Unit, Interdisciplinary Department of Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
9
|
Cheng K, Wang S, Liu T, Pei J, Wang S, Liu J, Zhao K, Luo Y, Xu S, Yu J, Liu J. PET imaging of CXCR4 expression using [ 18F]AlF-NOTA-QHY-04 for hematologic malignancy and solid tumors. Theranostics 2024; 14:6337-6349. [PMID: 39431004 PMCID: PMC11488100 DOI: 10.7150/thno.99025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024] Open
Abstract
C-X-C motif chemokine receptor 4 (CXCR4) is an attractive target for the diagnosis and treatment of cancers. Here, we aimed to develop a new CXCR4-targeted PET tracer, and to investigate the translational potential for noninvasive imaging of CXCR4 expression in various cancer entities through preclinical and pilot clinical studies. Methods [18F]AlF-NOTA-QHY-04 was synthesized and evaluated by cellular uptake, blocking and biolayer interferometry studies in vitro. The pharmacokinetics, biodistribution, and imaging specificity were researched in tumor-bearing mice. [18F]AlF-NOTA-QHY-04 PET/CT imaging was performed on 55 patients with different types of cancers. Correlations between ex vivo CXCR4 expression and PET parameters, and CXCR4 expression characteristics in different tumors were analyzed by histopathological staining in patients. Results [18F]AlF-NOTA-QHY-04 was prepared with high radiolabeling yield and radiochemical purity, exhibiting good stability, high binding affinity and specificity for CXCR4. NCI-H69 (small cell lung cancer, SCLC) tumor-bearing mice showed the highest tumor uptake (4.98 ± 0.98%ID/mL, P < 0.0001) on PET imaging except for Daudi lymphoma xenograft model, which was consistent with the results of cellular and histological analyses. Patients with diffuse large B-cell lymphoma showed the highest tumor uptake (SUVmax, 11.10 ± 4.79) followed by SCLC patients (SUVmax, 7.51 ± 3.01), which were both significantly higher than other solid tumors (P < 0.05). The radiotracer uptake of high-grade gliomas is significantly higher than that of low-grade gliomas (3.13 ± 0.58 vs. 1.18 ± 0.51, P = 0.005). Significant higher tumor-to-normal brain ratio of [18F]AlF-NOTA-QHY-04 than [18F]FDG was found in primary brain tumors (62.55 ± 43.24 vs 1.70 ± 0.25, P = 0.027). Positive correlations between ex vivo CXCR4 expression and [18F]AlF-NOTA-QHY-04 uptake (all P < 0.01) were recorded. Multicolor immunofluorescence staining indicated the high tracer uptake in certain patients was mainly due to the high expression of CXCR4 in tumor cells, followed by macrophages. Conclusion The CXCR4-targeted radiotracer [18F]AlF-NOTA-QHY-04 was successfully prepared with favorable yield, high specificity and binding affinity to CXCR4. Preclinical and pilot clinical studies demonstrated its feasibility and potential application in precise diagnosis for not only lymphoma but also SCLC and glioma. [18F]AlF-NOTA-QHY-04 PET/CT can also provide a complementary mapping for brain tumors to [18F]FDG PET/CT.
Collapse
Affiliation(s)
- Kai Cheng
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shijie Wang
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Tianxin Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jinli Pei
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shasha Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jingru Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kunlong Zhao
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuxi Luo
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shengnan Xu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
10
|
Buckle T, Rietbergen DDD, de Wit-van der Veen L, Schottelius M. Lessons learned in application driven imaging agent design for image-guided surgery. Eur J Nucl Med Mol Imaging 2024; 51:3040-3054. [PMID: 38900308 PMCID: PMC11300579 DOI: 10.1007/s00259-024-06791-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
To meet the growing demand for intraoperative molecular imaging, the development of compatible imaging agents plays a crucial role. Given the unique requirements of surgical applications compared to diagnostics and therapy, maximizing translational potential necessitates distinctive imaging agent designs. For effective surgical guidance, exogenous signatures are essential and are achievable through a diverse range of imaging labels such as (radio)isotopes, fluorescent dyes, or combinations thereof. To achieve optimal in vivo utility a balanced molecular design of the tracer as a whole is required, which ensures a harmonious effect of the imaging label with the affinity and specificity (e.g., pharmacokinetics) of a pharmacophore/targeting moiety. This review outlines common design strategies and the effects of refinements in the molecular imaging agent design on the agent's pharmacological profile. This includes the optimization of affinity, pharmacokinetics (including serum binding and target mediated background), biological clearance route, the achievable signal intensity, and the effect of dosing hereon.
Collapse
Affiliation(s)
- Tessa Buckle
- Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - Daphne D D Rietbergen
- Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands
- Section Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda de Wit-van der Veen
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Margret Schottelius
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Rue du Bugnon 25A, Agora, Lausanne, CH-1011, Switzerland.
- Agora, pôle de recherche sur le cancer, Lausanne, Switzerland.
| |
Collapse
|
11
|
Zamanian M, Albano D, Treglia G, Rizzo A, Abedi I. The Clinical Role of CXCR4-Targeted PET on Lymphoproliferative Disorders: A Systematic Review. J Clin Med 2024; 13:2945. [PMID: 38792485 PMCID: PMC11122120 DOI: 10.3390/jcm13102945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Background/Objectives: We conducted a comprehensive investigation to explore the pathological expression of the CXCR4 receptor in lymphoproliferative disorders (LPDs) using [68Ga]Ga-Pentixafor PET/CT or PET/MRI technology. The PICO question was as follows: What is the diagnostic role (outcome) of [68Ga]Ga-Pentixafor PET (intervention) in patients with LPDs (problem/population)? Methods: The study was written based on the reporting items for systematic reviews and meta-analyses (PRISMA) 2020 guidelines, and it was registered on the prospective register of systematic reviews (PROSPERO) website (CRD42024506866). A comprehensive computer literature search of Scopus, MEDLINE, Scholar, and Embase databases was conducted, including articles indexed up to February 2024. To the methodological evaluation of the studies used the quality assessment of diagnosis accuracy studies-2 (QUADAS-2) tool. Results: Of the 8380 records discovered, 23 were suitable for systematic review. Fifteen studies (on 571 LPD patients) focused on diagnosis and staging, and eight trials (194 LPD patients) assessed treatment response. Conclusions: The main conclusions that can be inferred from the published studies are as follows: (a) [68Ga]Ga-Pentixafor PET may have excellent diagnostic performance in the study of several LPDs; (b) [68Ga]Ga-Pentixafor PET may be superior to [18F]FDG or complementary in some LPDs variants and settings; (c) multiple myeloma seems to have a high uptake of [68Ga]Ga-Pentixafor. Overall, this technique is probably suitable for imaging, staging, and follow-up on patients with LPD. Due to limited data, further studies are warranted to confirm the promising role of [68Ga]Ga-Pantixafor in this context.
Collapse
Affiliation(s)
- Maryam Zamanian
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran; (M.Z.); (I.A.)
| | - Domenico Albano
- Nuclear Medicine, ASST Spedali Civili Brescia, 25128 Brescia, Italy;
- Nuclear Medicine Department, University of Brescia, 25121 Brescia, Italy
| | - Giorgio Treglia
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Alessio Rizzo
- Department of Nuclear Medicine, Candiolo Cancer Institute, FPO-IRCCS, 10060 Turin, Italy;
| | - Iraj Abedi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran; (M.Z.); (I.A.)
| |
Collapse
|
12
|
Padilla-Valverde D, Bodoque-Villar R, García-Santos E, Sanchez S, Manzanares-Campillo C, Rodriguez M, González L, Ambrós A, Cano JM, Padilla-Marcote M, Redondo-Calvo J, Martin J, Serrano-Oviedo L. Safety and Effectiveness of Perioperative Hyperthermic Intraperitoneal Chemotherapy with Gemcitabine in Patients with Resected Pancreatic Ductal Adenocarcinoma: Clinical Trial EudraCT 2016-004298-41. Cancers (Basel) 2024; 16:1718. [PMID: 38730669 PMCID: PMC11083892 DOI: 10.3390/cancers16091718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Despite the improvement in therapies, pancreatic cancer represents one of the most cancer-related deaths. In our hypothesis, we propose that Hyperthermic Intraperitoneal Chemotherapy with gemcitabine after pancreatic cytoreductive surgery could reduce tumor progression by reducing residual neoplastic volume and residual pancreatic cancer stem cells. MATERIALS AND METHODS A randomized trial involving 42 patients. All patients were diagnosed with pancreatic ductal adenocarcinoma. Group I: R0 resection. Group II. R0 resection and HIPEC with gemcitabine (120 mg/m2 for 30 min). Effectiveness was measured with analysis of overall survival, disease-free survival, distant recurrence, locoregional recurrence, and measuring of pancreatic cancer stem cells (EpCAM+CXCR4+CD133+). RESULTS From 2017 to 2023, 63 patients were recruited for our clinical trial; 21 patients were included in each group, and 21 were excluded. Locoregional recurrence, p-value: 0.022, was lower in the experimental group. There were no significant differences between the two groups in hospital mortality, perioperative complications, or hospital costs. We found a significant decrease in pancreatic cancer stem cells in patients in the experimental group after treatment, p -value of 0.018. CONCLUSIONS The use of HIPEC with gemcitabine after surgery in patients with resectable pancreatic ductal adenocarcinoma reduces locoregional recurrence and may be associated with a significant decrease in pancreatic cancer stem cells.
Collapse
Affiliation(s)
- David Padilla-Valverde
- Head of the Hepatobiliary Surgery Unit and Carcinomatosis Programme, Department of Surgery, General University Hospital, Faculty of Medicine, UCLM, C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain; (E.G.-S.); (S.S.); (C.M.-C.); (M.P.-M.); (J.M.)
| | - Raquel Bodoque-Villar
- Traslational Investigation Unit, University General Hospital of Ciudad Real, SESCAM, Research Institute of Castilla-La Mancha (IDISCAM), C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain; (R.B.-V.); (J.R.-C.)
| | - Esther García-Santos
- Head of the Hepatobiliary Surgery Unit and Carcinomatosis Programme, Department of Surgery, General University Hospital, Faculty of Medicine, UCLM, C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain; (E.G.-S.); (S.S.); (C.M.-C.); (M.P.-M.); (J.M.)
| | - Susana Sanchez
- Head of the Hepatobiliary Surgery Unit and Carcinomatosis Programme, Department of Surgery, General University Hospital, Faculty of Medicine, UCLM, C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain; (E.G.-S.); (S.S.); (C.M.-C.); (M.P.-M.); (J.M.)
| | - Carmen Manzanares-Campillo
- Head of the Hepatobiliary Surgery Unit and Carcinomatosis Programme, Department of Surgery, General University Hospital, Faculty of Medicine, UCLM, C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain; (E.G.-S.); (S.S.); (C.M.-C.); (M.P.-M.); (J.M.)
| | - Marta Rodriguez
- Department of Pharmacy, General University Hospital, Ciudad Real, Faculty of Medicine, UCLM, C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain;
| | - Lucia González
- Department of Pathology, General University Hospital, Ciudad Real, Faculty of Medicine, UCLM C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain;
| | - Alfonso Ambrós
- Intensive Care Unit, General University Hospital, Ciudad Real, Faculty of Medicine, UCLM, C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain;
| | - Juana M. Cano
- Oncology Department, University General Hospital, Ciudad Real, Faculty of Medicine, UCLM, C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain;
| | - Maria Padilla-Marcote
- Head of the Hepatobiliary Surgery Unit and Carcinomatosis Programme, Department of Surgery, General University Hospital, Faculty of Medicine, UCLM, C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain; (E.G.-S.); (S.S.); (C.M.-C.); (M.P.-M.); (J.M.)
| | - Javier Redondo-Calvo
- Traslational Investigation Unit, University General Hospital of Ciudad Real, SESCAM, Research Institute of Castilla-La Mancha (IDISCAM), C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain; (R.B.-V.); (J.R.-C.)
| | - Jesus Martin
- Head of the Hepatobiliary Surgery Unit and Carcinomatosis Programme, Department of Surgery, General University Hospital, Faculty of Medicine, UCLM, C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain; (E.G.-S.); (S.S.); (C.M.-C.); (M.P.-M.); (J.M.)
| | - Leticia Serrano-Oviedo
- Traslational Investigation Unit, University General Hospital of Ciudad Real, SESCAM, Research Institute of Castilla-La Mancha (IDISCAM), C/Obispo Rafael Torija s/n, 13005 Ciudad Real, Spain; (R.B.-V.); (J.R.-C.)
| |
Collapse
|
13
|
Sun S, Yang Q, Jiang D, Zhang Y. Nanobiotechnology augmented cancer stem cell guided management of cancer: liquid-biopsy, imaging, and treatment. J Nanobiotechnology 2024; 22:176. [PMID: 38609981 PMCID: PMC11015566 DOI: 10.1186/s12951-024-02432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer stem cells (CSCs) represent both a key driving force and therapeutic target of tumoral carcinogenesis, tumor evolution, progression, and recurrence. CSC-guided tumor diagnosis, treatment, and surveillance are strategically significant in improving cancer patients' overall survival. Due to the heterogeneity and plasticity of CSCs, high sensitivity, specificity, and outstanding targeting are demanded for CSC detection and targeting. Nanobiotechnologies, including biosensors, nano-probes, contrast enhancers, and drug delivery systems, share identical features required. Implementing these techniques may facilitate the overall performance of CSC detection and targeting. In this review, we focus on some of the most recent advances in how nanobiotechnologies leverage the characteristics of CSC to optimize cancer diagnosis and treatment in liquid biopsy, clinical imaging, and CSC-guided nano-treatment. Specifically, how nanobiotechnologies leverage the attributes of CSC to maximize the detection of circulating tumor DNA, circulating tumor cells, and exosomes, to improve positron emission computed tomography and magnetic resonance imaging, and to enhance the therapeutic effects of cytotoxic therapy, photodynamic therapy, immunotherapy therapy, and radioimmunotherapy are reviewed.
Collapse
Affiliation(s)
- Si Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiang Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China.
| | - Yuan Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
14
|
Dreher N, Hahner S, Fuß CT, Schlötelburg W, Hartrampf PE, Serfling SE, Schirbel A, Samnick S, Higuchi T, Weich A, Lapa C, Rosenwald A, Buck AK, Kircher S, Werner RA. CXCR4-directed PET/CT with [ 68 Ga]Ga-pentixafor in solid tumors-a comprehensive analysis of imaging findings and comparison with histopathology. Eur J Nucl Med Mol Imaging 2024; 51:1383-1394. [PMID: 38082196 PMCID: PMC10957681 DOI: 10.1007/s00259-023-06547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/26/2023] [Indexed: 03/22/2024]
Abstract
BACKGROUND C-X-C motif chemokine receptor 4 (CXCR4) is overexpressed in various solid cancers and can be targeted by CXCR4-directed molecular imaging. We aimed to characterize the in-vivo CXCR4 expression in patients affected with solid tumors, along with a comparison to ex-vivo findings. METHODS A total 142 patients with 23 different histologically proven solid tumors were imaged with CXCR4-directed PET/CT using [68 Ga]Ga-pentixafor (total number of scans, 152). A semi-quantitative analysis of the CXCR4-positive tumor burden including maximum standardized uptake values (SUVmax) and target-to-background ratios (TBR) using blood pool was conducted. In addition, we performed histopathological staining to determine the immuno-reactive score (IRS) from patients' tumor tissue and investigated possible correlations with SUVmax (by providing Spearman's rho ρ). Based on imaging, we also assessed the eligibility for CXCR4-targeted radioligand therapy or non-radioactive CXCR4 inhibitory treatment (defined as more than five CXCR4-avid target lesions [TL] with SUVmax above 10). RESULTS One hundred three of 152 (67.8%) scans showed discernible uptake above blood pool (TBR > 1) in 462 lesions (52 primary tumors and 410 metastases). Median TBR was 4.4 (1.05-24.98), thereby indicating high image contrast. The highest SUVmax was observed in ovarian cancer, followed by small cell lung cancer, desmoplastic small round cell tumor, and adrenocortical carcinoma. When comparing radiotracer accumulation between primary tumors and metastases for the entire cohort, comparable SUVmax was recorded (P > 0.999), except for pulmonal findings (P = 0.013), indicative for uniform CXCR4 expression among TL. For higher IRS, a weak, but statistically significant correlation with increased SUVmax was observed (ρ = 0.328; P = 0.018). In 42/103 (40.8%) scans, more than five TL were recorded, with 12/42 (28.6%) exhibiting SUVmax above 10, suggesting eligibility for CXCR4-targeted treatment in this subcohort. CONCLUSIONS In a whole-body tumor read-out, a substantial portion of prevalent solid tumors demonstrated increased and uniform [68 Ga]Ga-pentixafor uptake, along with high image contrast. We also observed a respective link between in- and ex-vivo CXCR4 expression, suggesting high specificity of the PET agent. Last, a fraction of patients with [68 Ga]Ga-pentixafor-positive tumor burden were rendered potentially suitable for CXCR4-directed therapy.
Collapse
Affiliation(s)
- Niklas Dreher
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| | - Stefanie Hahner
- Department of Internal Medicine I, Endocrinology, University Hospital Würzburg, Würzburg, Germany
| | - Carmina T Fuß
- Department of Internal Medicine I, Endocrinology, University Hospital Würzburg, Würzburg, Germany
| | - Wiebke Schlötelburg
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Philipp E Hartrampf
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Sebastian E Serfling
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Alexander Weich
- Department of Internal Medicine II, Gastroenterology, University Hospital Würzburg, Würzburg, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | | | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Stefan Kircher
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Division of Nuclear Medicine, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| |
Collapse
|
15
|
Wadhwa A, Wang S, Patiño-Escobar B, Bidkar AP, Bobba KN, Chan E, Meher N, Bidlingmaier S, Su Y, Dhrona S, Geng H, Sarin V, VanBrocklin HF, Wilson DM, He J, Zhang L, Steri V, Wong SW, Martin TG, Seo Y, Liu B, Wiita AP, Flavell RR. CD46-Targeted Theranostics for PET and 225Ac-Radiopharmaceutical Therapy of Multiple Myeloma. Clin Cancer Res 2024; 30:1009-1021. [PMID: 38109209 PMCID: PMC10905524 DOI: 10.1158/1078-0432.ccr-23-2130] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/26/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
PURPOSE Multiple myeloma is a plasma cell malignancy with an unmet clinical need for improved imaging methods and therapeutics. Recently, we identified CD46 as an overexpressed therapeutic target in multiple myeloma and developed the antibody YS5, which targets a cancer-specific epitope on this protein. We further developed the CD46-targeting PET probe [89Zr]Zr-DFO-YS5 for imaging and [225Ac]Ac-DOTA-YS5 for radiopharmaceutical therapy of prostate cancer. These prior studies suggested the feasibility of the CD46 antigen as a theranostic target in multiple myeloma. Herein, we validate [89Zr]Zr-DFO-YS5 for immunoPET imaging and [225Ac]Ac-DOTA-YS5 for radiopharmaceutical therapy of multiple myeloma in murine models. EXPERIMENTAL DESIGN In vitro saturation binding was performed using the CD46 expressing MM.1S multiple myeloma cell line. ImmunoPET imaging using [89Zr]Zr-DFO-YS5 was performed in immunodeficient (NSG) mice bearing subcutaneous and systemic multiple myeloma xenografts. For radioligand therapy, [225Ac]Ac-DOTA-YS5 was prepared, and both dose escalation and fractionated dose treatment studies were performed in mice bearing MM1.S-Luc systemic xenografts. Tumor burden was analyzed using BLI, and body weight and overall survival were recorded to assess antitumor effect and toxicity. RESULTS [89Zr]Zr-DFO-YS5 demonstrated high affinity for CD46 expressing MM.1S multiple myeloma cells (Kd = 16.3 nmol/L). In vitro assays in multiple myeloma cell lines demonstrated high binding, and bioinformatics analysis of human multiple myeloma samples revealed high CD46 expression. [89Zr]Zr-DFO-YS5 PET/CT specifically detected multiple myeloma lesions in a variety of models, with low uptake in controls, including CD46 knockout (KO) mice or multiple myeloma mice using a nontargeted antibody. In the MM.1S systemic model, localization of uptake on PET imaging correlated well with the luciferase expression from tumor cells. A treatment study using [225Ac]Ac-DOTA-YS5 in the MM.1S systemic model demonstrated a clear tumor volume and survival benefit in the treated groups. CONCLUSIONS Our study showed that the CD46-targeted probe [89Zr]Zr-DFO-YS5 can successfully image CD46-expressing multiple myeloma xenografts in murine models, and [225Ac]Ac-DOTA-YS5 can effectively inhibit the growth of multiple myeloma. These results demonstrate that CD46 is a promising theranostic target for multiple myeloma, with the potential for clinical translation.
Collapse
Affiliation(s)
- Anju Wadhwa
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Sinan Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Bonell Patiño-Escobar
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
- Department of Laboratory Medicine, University of California, San Francisco, California
| | - Anil P. Bidkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Kondapa Naidu Bobba
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Emily Chan
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
- Department of Laboratory Medicine, University of California, San Francisco, California
| | - Niranjan Meher
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Scott Bidlingmaier
- Department of Anesthesia, University of California, San Francisco, California
| | - Yang Su
- Department of Anesthesia, University of California, San Francisco, California
| | - Suchi Dhrona
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, California
| | - Vishesh Sarin
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
- Department of Laboratory Medicine, University of California, San Francisco, California
| | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - David M. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Li Zhang
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
- Department of Medicine, Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Veronica Steri
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Sandy W. Wong
- Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, California
| | - Thomas G. Martin
- Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, California
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Bin Liu
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
- Department of Anesthesia, University of California, San Francisco, California
| | - Arun P. Wiita
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
- Department of Laboratory Medicine, University of California, San Francisco, California
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
- Chan Zuckerberg Biohub, San Francisco, California
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California
| |
Collapse
|
16
|
Yin X, Ai K, Luo J, Liu W, Ma X, Zhou L, Xiang X, Su X, Wang Y, Li Y. A comparison of the performance of 68Ga-Pentixafor PET/CT versus adrenal vein sampling for subtype diagnosis in primary aldosteronism. Front Endocrinol (Lausanne) 2024; 15:1291775. [PMID: 38419957 PMCID: PMC10899670 DOI: 10.3389/fendo.2024.1291775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Objective To investigate the diagnostic efficiency and prognostic value of 68Ga-Pentixafor PET/CT in comparison with adrenal vein sampling (AVS) for functional lateralization in primary aldosteronism (PA). Histology and long-term clinical follow-up normally serve as the gold standard for such diagnosis. Methods We prospectively recruited 26 patients diagnosed with PA. All patients underwent 68Ga-Pentixafor PET/CT and AVS. Postsurgical biochemical and clinical outcomes of patients with unilateral primary aldosteronism (UPA), as diagnosed by PET/CT or AVS, were assessed by applying standardized Primary Aldosteronism Surgical Outcome (PASO) criteria. Immunohistochemistry (IHC) was performed to detect the expression of aldosterone synthase (CYP11B2) and CXCR4. Results On total, 19 patients were diagnosed with UPA; of these, 13 patients were lateralized by both PET/CT and AVS, four patients were lateralized by PET-only, and two by AVS-only. Seven subjects with no lateralization on AVS and PET received medical therapy. All patients achieved complete biochemical success except one with nodular hyperplasia lateralized by AVS alone. The consistency between PET/CT and AVS outcomes was 77% (20/26). Moreover, CYP11B2-positive nodules were all CXCR4-positive and showed positive findings on PET. Patients who achieved complete biochemical and clinical success had a higher uptake on PET as well as stronger expression levels of CXCR4 and CYP11B2. Conclusion Our analysis showed that 68Ga-Pentixafor PET/CT could enable non-invasive diagnosis in most patients with PA and identify additional cases of unilateral and surgically curable PA which could not be classified by AVS. 68Ga-Pentixafor PET/CT should be considered as a first-line test for the future classification of PA.
Collapse
Affiliation(s)
- Xuan Yin
- Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kai Ai
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianguang Luo
- Department of Diagnostic and Interventional Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Department of Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaowei Ma
- Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianbo Zhou
- Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Xiang
- Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Su
- Department of Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunhua Wang
- Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
17
|
Zirakchian Zadeh M. The role of conventional and novel PET radiotracers in assessment of myeloma bone disease. Bone 2024; 179:116957. [PMID: 37972747 DOI: 10.1016/j.bone.2023.116957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Over 80 % of patients with multiple myeloma (MM) experience osteolytic bone lesions, primarily due to an imbalanced interaction between osteoclasts and osteoblasts. This imbalance can lead to several adverse outcomes such as pain, fractures, limited mobility, and neurological impairments. Myeloma bone disease (MBD) raises the expense of management in addition to being a major source of disability and morbidity in myeloma patients. Whole-body x-ray radiography was the gold standard imaging modality for detecting lytic lesions. Osteolytic lesions are difficult to identify at an earlier stage on X-ray since the lesions do not manifest themselves on conventional radiographs until at least 30 % to 50 % of the bone mass has been destroyed. Hence, early diagnosis of osteolytic lesions necessitates the utilization of more complex and advanced imaging modalities, such as PET. One of the PET radiotracers that has been frequently investigated in MM is 18F-FDG, which has demonstrated a high level of sensitivity and specificity in detecting myeloma lesions. However, 18F-FDG PET/CT has several restrictions, and therefore the novel PET tracers that can overcome the limitations of 18F-FDG PET/CT should be further examined in assessment of MBD. The objective of this review article is to thoroughly examine the significance of both conventional and novel PET radiotracers in the assessment of MBD. The intention is to present the information in a manner that would be easily understood by healthcare professionals from diverse backgrounds, while minimizing the use of complex nuclear medicine terminology.
Collapse
Affiliation(s)
- Mahdi Zirakchian Zadeh
- Molecular Imaging and Therapy and Interventional Radiology Services, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
18
|
Lindenberg L, Ahlman M, Lin F, Mena E, Choyke P. Advances in PET Imaging of the CXCR4 Receptor: [ 68Ga]Ga-PentixaFor. Semin Nucl Med 2024; 54:163-170. [PMID: 37923671 PMCID: PMC10792730 DOI: 10.1053/j.semnuclmed.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
[68Ga]Ga-PentixaFor, a PET agent targeting CXCR4 is emerging as a versatile radiotracer with promising applications in oncology, cardiology and inflammatory disease. Preclinical work in various cancer cell lines have demonstrated high specificity and selectivity. In human investigations of several tumors, the most promising applications may be in multiple myeloma, certain lymphomas and myeloproliferative neoplasms. In the nononcologic setting, [68Ga]Ga-PentixaFor could greatly improve detection for primary aldosteronism and other endocrine abnormalities. Similarly, atherosclerotic disease and other inflammatory conditions could also benefit from enhanced identification by CXCR4 targeting. Rapidly cleared from the body with a favorable imaging and radiation dosimetry profile that has been already studied in over 1000 patients, [68Ga]Ga-PentixaFor is a worthy agent for further clinical exploration with potential for theranostic applications in hematologic malignancies.
Collapse
Affiliation(s)
- Liza Lindenberg
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Uniformed Services University of the Health Sciences, Bethesda, MD.
| | - Mark Ahlman
- Department of Radiology and Imaging, Medical College of Georgia, Augusta, GA
| | - Frank Lin
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Esther Mena
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Peter Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
19
|
Konrad M, Rinscheid A, Wienand G, Nittbaur B, Wester HJ, Janzen T, Lapa C, Pfob CH, Schottelius M. [ 99mTc]Tc-PentixaTec: development, extensive pre-clinical evaluation, and first human experience. Eur J Nucl Med Mol Imaging 2023; 50:3937-3948. [PMID: 37597009 PMCID: PMC10611619 DOI: 10.1007/s00259-023-06395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023]
Abstract
PURPOSE The clinical success non-invasive imaging of CXCR4 expression using [68 Ga]Ga-PentixaFor-PET warrants an expansion of the targeting concept towards conventional scintigraphy/SPECT with their lower cost and general availability. To this aim, we developed and comparatively evaluated a series of 99mTc-labeled cyclic pentapeptides based on the PentixaFor scaffold. METHODS Six mas3-conjugated CPCR4 analogs with different 4-aminobenzoic acid (Abz)-D-Ala-D-Arg-aa3 linkers (L1-L6) as well as the corresponding HYNIC- and N4-analogs of L6-CPCR4 were synthesized via standard SPPS. Competitive binding studies (IC50 and IC50inv) were carried out using Jurkat T cell lymphoma cells and [125I]FC-131 as radioligand. Internalization kinetics were investigated using hCXCR4-overexpressing Chem-1 cells. Biodistribution studies and small animal SPECT/CT imaging (1 h p.i.) were carried out using Jurkat xenograft bearing CB17/SCID mice. Based on the preclinical results, [99mTc]Tc-N4-L6-CPCR4 ([99mTc]Tc-PentixaTec) was selected for an early translation to the human setting. Five patients with hematologic malignancies underwent [99mTc]Tc-N4-L6-CPCR4 SPECT/planar imaging with individual dosimetry. RESULTS Of the six mas3-conjugated peptides, mas3-L6-CPCR4 (mas3-dap-r-a-Abz-CPCR4) showed the highest CXCR4 affinity (IC50 = 5.0 ± 1.3 nM). Conjugation with N4 (N4-L6-CPCR4) further improved hCXCR4 affinity to 0.6 ± 0.1 nM. [99mTc]Tc-N4-L6-CPCR4 also showed the most efficient internalization (97% of total cellular activity at 2 h) and the highest tumor accumulation (8.6 ± 1.3% iD/g, 1 h p.i.) of the compounds investigated. Therefore, [99mTc]Tc-N4-L6-CPCR4 (termed [99mTc]Tc-PentixaTec) was selected for first-in-human application. [99mTc]Tc-PentixaTec was well tolerated, exhibits a favorable biodistribution and dosimetry profile (2.1-3.4 mSv per 500 MBq) and excellent tumor/background ratios in SPECT and planar imaging. CONCLUSION The successive optimization of the amino acid composition of the linker structure and the N-terminal 99mTc-labeling strategies (mas3 vs HYNIC vs N4) has provided [99mTc]Tc-PentixaTec as a novel, highly promising CXCR4-targeted SPECT agent for clinical application. With its excellent CXCR4 affinity, efficient internalization, high uptake in CXCR4-expressing tissues, suitable clearance/biodistribution characteristics, and favorable human dosimetry, it holds great potential for further clinical use.
Collapse
Affiliation(s)
- Matthias Konrad
- Chair for Pharmaceutical Radiochemistry, Faculties of Chemistry and Medicine, Technische Universität München, 85748, Garching, Germany
| | - Andreas Rinscheid
- Medical Physics and Radiation Protection, University Hospital Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Georgine Wienand
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Bernd Nittbaur
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Hans-Jürgen Wester
- Chair for Pharmaceutical Radiochemistry, Faculties of Chemistry and Medicine, Technische Universität München, 85748, Garching, Germany
| | - Tilman Janzen
- Medical Physics and Radiation Protection, University Hospital Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Christian Helmut Pfob
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany.
| | - Margret Schottelius
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Rue du Bugnon 25A, Agora, CH-1011, Lausanne, Switzerland.
- AGORA, Pôle de Recherche Sur Le Cancer, 1011, Lausanne, Switzerland.
- SCCL Swiss Cancer Center Leman, 1011, Lausanne, Switzerland.
| |
Collapse
|
20
|
Wang Y, Gao F. Research Progress of CXCR4-Targeting Radioligands for Oncologic Imaging. Korean J Radiol 2023; 24:871-889. [PMID: 37634642 PMCID: PMC10462898 DOI: 10.3348/kjr.2023.0091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/29/2023] Open
Abstract
C-X-C motif chemokine receptor 4 (CXCR4) plays a key role in various physiological functions, such as immune processes and disease development, and can influence angiogenesis, proliferation, and distant metastasis in tumors. Recently, several radioligands, including peptides, small molecules, and nanoclusters, have been developed to target CXCR4 for diagnostic purposes, thereby providing new diagnostic strategies based on CXCR4. Herein, we focus on the recent research progress of CXCR4-targeting radioligands for tumor diagnosis. We discuss their application in the diagnosis of hematological tumors, such as lymphomas, multiple myelomas, chronic lymphocytic leukemias, and myeloproliferative tumors, as well as nonhematological tumors, including tumors of the esophagus, breast, and central nervous system. Additionally, we explored the theranostic applications of CXCR4-targeting radioligands in tumors. Targeting CXCR4 using nuclear medicine shows promise as a method for tumor diagnosis, and further research is warranted to enhance its clinical applicability.
Collapse
Affiliation(s)
- Yanzhi Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
21
|
Mayerhoefer ME, Raderer M, Weber M, Lamm W, Kiesewetter B, Hacker M, Nics L, Schmitl S, Leithner D, Wester HJ, Haug A. 68Ga-Pentixafor PET/MRI for Treatment Response Assessment in Mantle Cell Lymphoma: Comparison Between Changes in Lesion CXCR4 Expression on PET and Lesion Size and Diffusivity on MRI. Clin Nucl Med 2023; 48:557-562. [PMID: 37272977 PMCID: PMC10247159 DOI: 10.1097/rlu.0000000000004638] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
PURPOSE The aim of this study was to compare CXCR4 imaging with 68Ga-pentixafor PET to MRI for treatment response assessment in patients with mantle cell lymphoma (MCL). PATIENTS AND METHODS Twenty-two posttreatment 68Ga-pentixafor PET/MRI scans of 16 patients (7 women and 9 men; mean age, 69.9 ± 7.9) with a total of 67 target lesions on baseline PET/MRI were analyzed. Rates of complete remission per lesion and per scan, according to MRI (based on lesion size) and 68Ga-pentixafor PET (based on SUV decrease to lower than liver and blood pool uptake), were compared using McNemar tests. The t tests and Pearson correlation coefficients (r) were used to compare rates of change in lesion diameter products (DPs) on MRI, and standardized uptake values (SUVmax, SUVmean) on PET, relative to baseline. RESULTS At interim PET/MRI, 18/32 (56.3%) target lesions met CR criteria on 68Ga-pentixafor PET, and 16/32 (50.0%) lesions met size-based MRI criteria for CR (P = 0.63). At end-of-treatment PET/MRI, 40/57 (70.2%) target lesions met 68Ga-pentixafor PET criteria for CR, and 27/57 (47.4%) lesions met size-based MRI criteria for CR (P = 0.021). Complete remission after treatment was observed more frequently on 68Ga-pentixafor PET (11/22 scans, 54.5%) than on MRI (6/22 scans, 27.3%) (P = 0.031). Rates of change did not differ significantly between lesion DP (-69.20% ± 34.62%) and SUVmax (-64.59% ± 50.78%, P = 0.22), or DP and SUVmean (-60.15 ± 64.58, P = 0.064). Correlations were strong between DP and SUVmax (r = 0.71, P < 0.001) and DP and SUVmean (r = 0.73, P < 0.001). CONCLUSIONS In MCL patients, 68Ga-pentixafor PET may be superior for assessment of complete remission status than anatomic MRI using lesion size criteria, especially at the end of treatment.
Collapse
Affiliation(s)
- Marius E. Mayerhoefer
- Dept. of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Austria
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
- Weill Cornell Medical College, Cornell University, New York, USA
| | - Markus Raderer
- Dept. of Medicine I, Division of Oncology, Medical University of Vienna, Austria
| | - Michael Weber
- Dept. of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Austria
| | - Wolfgang Lamm
- Dept. of Medicine I, Division of Oncology, Medical University of Vienna, Austria
| | - Barbara Kiesewetter
- Dept. of Medicine I, Division of Oncology, Medical University of Vienna, Austria
| | - Marcus Hacker
- Dept. of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Lukas Nics
- Dept. of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Stefan Schmitl
- Dept. of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Doris Leithner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Hans-Juergen Wester
- Pharmaceutical Radiochemistry, Technical University of Munich, Garching, Germany
| | - Alexander Haug
- Dept. of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| |
Collapse
|
22
|
Yu J, Zhou X, Shen L. CXCR4-Targeted Radiopharmaceuticals for the Imaging and Therapy of Malignant Tumors. Molecules 2023; 28:4707. [PMID: 37375261 DOI: 10.3390/molecules28124707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or CD184, is a 7-transmembrane helix G-protein-coupled receptor that is encoded by the CXCR4 gene. Involved in various physiological processes, CXCR4 could form an interaction with its endogenous partner, chemokine ligand 12 (CXCL12), which is also named SDF-1. In the past several decades, the CXCR4/CXCL12 couple has attracted a large amount of research interest due to its critical functions in the occurrence and development of refractory diseases, such as HIV infection, inflammatory diseases, and metastatic cancer, including breast cancer, gastric cancer, and non-small cell lung cancer. Furthermore, overexpression of CXCR4 in tumor tissues was shown to have a high correlation with tumor aggressiveness and elevated risks of metastasis and recurrence. The pivotal roles of CXCR4 have encouraged an effort around the world to investigate CXCR4-targeted imaging and therapeutics. In this review, we would like to summarize the implementation of CXCR4-targeted radiopharmaceuticals in the field of various kinds of carcinomas. The nomenclature, structure, properties, and functions of chemokines and chemokine receptors are briefly introduced. Radiopharmaceuticals that could target CXCR4 will be described in detail according to their structure, such as pentapeptide-based structures, heptapeptide-based structures, nonapeptide-based structures, etc. To make this review a comprehensive and informative article, we would also like to provide the predictive prospects for the CXCR4-targeted species in future clinical development.
Collapse
Affiliation(s)
- Jingjing Yu
- HTA Co., Ltd., Beijing 102413, China
- Department of Nuclear Technology Application, China Institute of Atomic Energy, Beijing 102413, China
| | - Xu Zhou
- HTA Co., Ltd., Beijing 102413, China
| | - Langtao Shen
- HTA Co., Ltd., Beijing 102413, China
- National Isotope Center of Engineering and Technology, China Institute of Atomic Energy, Beijing 102413, China
| |
Collapse
|
23
|
Kosmala A, Seifert S, Schneid S, Dreher N, Higuchi T, Weich A, Serfling SE, Hartrampf PE, Einsele H, Buck AK, Topp MS, Duell J, Werner RA. Lymphoma-Sink Effect in Marginal Zone Lymphoma Based on CXCR4-Targeted Molecular Imaging. Mol Imaging Biol 2023:10.1007/s11307-023-01830-9. [PMID: 37286923 DOI: 10.1007/s11307-023-01830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE Recent studies investigating a tumor-sink effect in solid tumors reported on decreasing uptake in normal organs in patients with higher tumor burden. This phenomenon, however, has not been evaluated yet for theranostic radiotracers applied to hematological neoplasms. As such, we aimed to determine a potential "lymphoma-sink effect" in patients with marginal zone lymphoma (MZL) imaged with C-X-C motif chemokine receptor (CXCR) 4-directed PET/CTs. PROCEDURES We retrospectively analyzed 73 patients with MZL who underwent CXCR4-directed [68Ga]Ga-PentixaFor PET/CT. Normal unaffected organ uptake (heart, liver, spleen, bone marrow, kidneys) was quantified using volumes of interests (VOIs) and mean standardized uptake values (SUVmean) were derived. MZL manifestations were also segmented to determine the maximum and peak standardized uptake values SUV (SUVmax/peak) and volumetric parameters, including lymphoma volume (LV), and fractional lymphoma activity (FLA, defined as LV*SUVmean of lymphoma burden). This approach resulted in 666 VOIs to capture the entire MZL manifestation load. We used Spearman's rank correlations to determine associations between organ uptake and CXCR4-expressing lymphoma lesions. RESULTS We recorded the following median SUVmean in normal organs: heart, 1.82 (range, 0.78-4.11); liver, 1.35 (range, 0.72-2.99); bone marrow, 2.36 (range, 1.12-4.83); kidneys, 3.04 (range, 2.01-6.37); spleen, 5.79 (range, 2.07-10.5). No relevant associations between organ radiotracer uptake and MZL manifestation were observed, neither for SUVmax (ρ ≤ 0.21, P ≥ 0.07), SUVpeak (ρ ≤ 0.20, P ≥ 0.09), LV (ρ ≤ 0.13, P ≥ 0.27), nor FLA (ρ ≤ 0.15, P ≥ 0.33). CONCLUSIONS Investigating a lymphoma-sink effect in patients with hematological neoplasms, we observed no relevant associations between lymphoma burden and uptake in normal organs. Those observations may have therapeutic implications, e.g., for "cold" SDF1-pathway disrupting or "hot," CXCR4-directed radiolabeled drugs, as with higher lymphoma load, normal organ uptake seems to remain stable.
Collapse
Affiliation(s)
- Aleksander Kosmala
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Simone Seifert
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Simone Schneid
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Niklas Dreher
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Alexander Weich
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Sebastian E Serfling
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Philipp E Hartrampf
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Max S Topp
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Duell
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany.
- Johns Hopkins School of Medicine, The Russell H Morgan Department of Radiology and Radiological Sciences, Baltimore, MD, USA.
| |
Collapse
|
24
|
Renard I, Domarkas J, Poty S, Burke BP, Roberts DP, Goze C, Denat F, Cawthorne CJ, Archibald SJ. In vivo validation of 68Ga-labeled AMD3100 conjugates for PET imaging of CXCR4. Nucl Med Biol 2023; 120-121:108335. [PMID: 37068392 DOI: 10.1016/j.nucmedbio.2023.108335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/19/2023]
Abstract
INTRODUCTION The chemokine receptor CXCR4 has been shown to be over-expressed in multiple types of cancer and is usually associated with aggressive phenotypes and poor prognosis. Successfully targeting and imaging the expression level of this receptor in tumours could inform treatment selection and facilitate patient stratification. METHODS Known conjugates of AMD3100 that are specific to CXCR4 have been radiolabelled with gallium-68 and evaluated in naïve and tumour-bearing mice. Tumour uptake of the radiotracers was compared to the known CXCR4-specific PET imaging agent, [68Ga]Pentixafor. RESULTS Ex vivo biodistribution in naïve animals showed CXCR4-mediated uptake in the liver with both radiotracers, confirmed by blocking experiments with the high affinity CXCR4 antagonist Cu2CB-Bicyclam (IC50 = 3 nM). PET/CT imaging studies revealed one tracer to have a higher accumulation in the tumour (SUVMean of 0.89 ± 0.14 vs 0.32 ± 0.11). CXCR4-specificity of the best performing tracer was confirmed by administration of a blocking dose of Cu2CB-Bicyclam, showing a 3- and 6-fold decrease in tumour and liver uptake, respectively. CONCLUSION AND ADVANCES IN KNOWLEDGE This initial study offers some interesting insights on the impact of some structural features on the pharmacokinetics and metabolic stability of the radiotracer. Additionally, as Pentixafor only binds to human CXCR4, the development of CXCR4-targeted imaging agents that bind to the receptor across different species could significantly help with preclinical evaluation of new CXCR4-specific therapeutics.
Collapse
Affiliation(s)
- Isaline Renard
- Centre for Biomedicine and PET Research Centre, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Juozas Domarkas
- Centre for Biomedicine and PET Research Centre, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Sophie Poty
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Benjamin P Burke
- Centre for Biomedicine and PET Research Centre, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - David P Roberts
- Centre for Biomedicine and PET Research Centre, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Christine Goze
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, Dijon, France.
| | - Franck Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, Dijon, France.
| | - Christopher J Cawthorne
- Centre for Biomedicine and PET Research Centre, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; Nuclear Medicine & Molecular Imaging, Department of Imaging & Pathology, KU Leuven, 3000 Leuven, Belgium.
| | - Stephen J Archibald
- Centre for Biomedicine and PET Research Centre, Hull York Medical School, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
25
|
Watts A, Singh B, Singh H, Bal A, Kaur H, Dhanota N, Arora SK, Mittal BR, Behera D. [ 68Ga]Ga-Pentixafor PET/CT imaging for in vivo CXCR4 receptor mapping in different lung cancer histologic sub-types: correlation with quantitative receptors' density by immunochemistry techniques. Eur J Nucl Med Mol Imaging 2023; 50:1216-1227. [PMID: 36482077 DOI: 10.1007/s00259-022-06059-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE In vivo CXCR4 receptor quantification in different lung cancer (LC) sub-types using [68Ga]Ga-Pentixafor PET/CT and to study correlation with quantitative CXCR4 receptors' tissue density by immunochemistry analyses. METHODS [68Ga]Ga-Pentixafor PET/CT imaging was performed prospectively in 94 (77 M: 17F, mean age 60.1 ± 10.1 years) LC patients. CXCR4 receptors' expression on lung mass in all the patients was estimated by immunohistochemistry (IHC) and fluorescence-activated cell sorting (FACS) analyses. SUVmax on PET, intensity score on IHC, and mean fluorescence index (MFI) on FACS analyses were measured. RESULTS A total of 75/94 (79.8%) cases had non-small cell lung cancer (NSCLC), 14 (14.9%) had small cell lung cancer (SCLC), and 5 (5.3%) had lung neuroendocrine neoplasm (NEN). All LC types showed increased CXCR4 expression on PET (SUVmax) and FACS (MFI). However, both these parameters (mean SUVmax = 10.3 ± 5.0; mean MFI = 349.0 ± 99.0) were significantly (p = 0.005) higher in SCLC as compared to those in NSCLC and lung NEN. The mean SUVmax in adenocarcinoma (n = 16) was 8.0 ± 1.9 which was significantly (p = 0.003) higher than in squamous cell carcinoma (n = 54; 6.2 ± 2.1) and in not-otherwise specified (NOS) sub-types (n = 5; 5.8 ± 1.5) of NSCLC. A significant correlation (r = 0.697; p = 001) was seen between SUVmax and MFI values in squamous cell NSCLC as well as in NSCLC adenocarcinoma (r = 0.538, p = 0.031) which supports the specific in vivo uptake of [68Ga]Ga-Pentixafor by CXCR4 receptors. However, this correlation was not significant in SCLC (r = 0.435, p = 0.121) and NEN (r = 0.747, p = 0.147) which may be due to the small sample size. [68Ga]Ga-Pentixafor PET/CT provided good sensitivity (85.7%) and specificity (78.1%) for differentiating SCLC from NSCLC (ROC cutoff SUVmax = 7.2). This technique presented similar sensitivity (87.5%) and specificity (71.4%) (ROC cutoff SUVmax = 6.7) for differentiating adenocarcinoma and squamous cell variants of NSCLC. CONCLUSION The high sensitivity and specificity of [68Ga]Ga-Pentixafor PET/CT for in vivo targeting of CXCR4 receptors in lung cancer can thus be used effectively for the response assessment and development of CXCR4-based radioligand therapies in LC.
Collapse
Affiliation(s)
- Ankit Watts
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Baljinder Singh
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India.
| | - Harmandeep Singh
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Harneet Kaur
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Ninjit Dhanota
- Department of Immunopathology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Sunil K Arora
- Department of Immunopathology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Bhagwant R Mittal
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Digambar Behera
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
26
|
Pan Q, Luo Y, Cao X, Li J, Li F. 68Ga-Pentixafor PET/CT May Fail to Detect Recurrent Multiple Myeloma with Extramedullary Disease. Diagnostics (Basel) 2023; 13:diagnostics13050871. [PMID: 36900014 PMCID: PMC10001095 DOI: 10.3390/diagnostics13050871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Two patients with a history of multiple myeloma experienced a recurrence of the disease.18F-FDG PET/CT revealed prominent extramedullary disease as well as multi-foci in the bone marrow, both with increased FDG uptake. However, on 68Ga-Pentixafor PET/CT, all the myeloma lesions showed significantly lower tracer uptake in comparison with 18F-FDG PET. This false-negative result of recurrent multiple myeloma with extramedullary disease may be a potential limitation of 68Ga-Pentixafor in assessing multiple myeloma.
Collapse
Affiliation(s)
- Qingqing Pan
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing 100730, China
| | - Yaping Luo
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing 100730, China
- Correspondence: ; Tel.: +86-10-69155513
| | - Xinxin Cao
- Department of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
| | - Jian Li
- Department of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
| | - Fang Li
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing 100730, China
| |
Collapse
|
27
|
Sun J, Huangfu Z, Yang J, Wang G, Hu K, Gao M, Zhong Z. Imaging-guided targeted radionuclide tumor therapy: From concept to clinical translation. Adv Drug Deliv Rev 2022; 190:114538. [PMID: 36162696 DOI: 10.1016/j.addr.2022.114538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 09/03/2022] [Accepted: 09/11/2022] [Indexed: 01/24/2023]
Abstract
Since the first introduction of sodium iodide I-131 for use with thyroid patients almost 80 years ago, more than 50 radiopharmaceuticals have reached the markets for a wide range of diseases, especially cancers. The nuclear medicine paradigm also shifts from solely molecular imaging or radionuclide therapy to imaging-guided radionuclide therapy, which is deemed a vital component of precision cancer therapy and an emerging medical modality for personalized medicine. The imaging-guided radionuclide therapy highlights the systematic integration of targeted nuclear diagnostics and radionuclide therapeutics. Regarding this, nuclear imaging serves to "visualize" the lesions and guide the therapeutic strategy, followed by administration of a precise patient specific dose of radiotherapeutics for treatment according to the absorbed dose to different organs and tumors calculated by dosimetry tools, and finally repeated imaging to predict the prognosis. This strategy leads to significantly enhanced therapeutic efficacy, improved patient outcomes, and manageable adverse events. In this review, we provide an overview of imaging-guided targeted radionuclide therapy for different tumors such as advanced prostate cancer and neuroendocrine tumors, with a focus on development of new radioligands and their preclinical and clinical results, and further discuss about challenges and future perspectives.
Collapse
Affiliation(s)
- Juan Sun
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhenyuan Huangfu
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Jiangtao Yang
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China.
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.
| | - Mingyuan Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhiyuan Zhong
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
28
|
Stokke C, Nørgaard JN, Feiring Phillips H, Sherwani A, Nuruddin S, Connelly J, Schjesvold F, Revheim ME. Comparison of [ 18F]fluciclovine and [ 18F]FDG PET/CT in Newly Diagnosed Multiple Myeloma Patients. Mol Imaging Biol 2022; 24:842-851. [PMID: 35501622 PMCID: PMC9581841 DOI: 10.1007/s11307-022-01734-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 10/27/2022]
Abstract
PURPOSE [18F]FDG PET/CT in multiple myeloma (MM) is currently the best technology to demonstrate patchy and extramedullary disease. However, [18F]FDG PET has some limitations, and imaging with alternative tracers should be explored. In this study, we aimed to evaluate the performance of [18F]fluciclovine PET compared to [18F]FDG PET in newly diagnosed MM patients. PROCEDURES Thirteen newly diagnosed transplant eligible MM patients were imaged both with [18F]FDG PET/CT and [18F]fluciclovine PET/CT within 1 week in a prospective study. The subjects were visually assessed positive or negative for disease. The number of lesions and the SUVmax of selected lesions were measured for both tracers. Furthermore, tracer uptake ratios were obtained by dividing lesion SUVmax by blood or bone marrow SUVmax. Between-group differences and correlations were assessed with paired t-tests and Pearson tests. Bone marrow SUVs were compared to bone marrow plasma cell percentage in biopsy samples. RESULTS Nine subjects were assessed positively by [18F]FDG PET (69%) and 12 positives by [18F]fluciclovine PET (92%). All positive subjects had [18F]fluciclovine scans that were qualitatively scored as easier to interpret visually than the [18F]FDG scans. The number of lesions was also higher; seven of nine subjects with distinct hot spots on [18F]fluciclovine PET had fewer or no visible lesions on [18F]FDG PET. The mean lesion SUVmax values were 8.2 and 3.8 for [18F]fluciclovine and [18F]FDG, respectively. The mean tumour to blood values were 6.4 and 2.0 for [18F]fluciclovine and [18F]FDG, and the mean ratios between tumour and bone marrow were 2.1 and 1.5 for [18F]fluciclovine and [18F]FDG. The lesion SUVmax and ratios were significantly higher for [18F]fluciclovine (all p < 0.01). Local [18F]fluciclovine SUVmax or SUVmean values in os ilium and the percentage of plasma cells in bone marrow biopsies were linearly correlated (p = 0.048). There were no significant correlations between [18F]FDG SUVs and plasma cells (p = 0.82). CONCLUSIONS Based on this pilot study, [18F]fluciclovine is a promising tracer for MM. The visual and semi-quantitative evaluations indicate that [18F]fluciclovine PET/CT can out-perform [18F]FDG PET/CT at diagnosis.
Collapse
Affiliation(s)
- Caroline Stokke
- Division for Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.
- Dep. of Physics, University of Oslo, Oslo, Norway.
| | - Jakob Nordberg Nørgaard
- Oslo Myeloma Center, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Alexander Sherwani
- Division for Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | | | - James Connelly
- Division for Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Fredrik Schjesvold
- Oslo Myeloma Center, Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for B Cell Malignancies, University of Oslo, Oslo, Norway
| | - Mona-Elisabeth Revheim
- Division for Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Zhang S, Shang J, Ye W, Zhao T, Xu H, Zeng H, Wang L. Recent developments on the application of molecular probes in multiple myeloma: Beyond [18F]FDG. Front Bioeng Biotechnol 2022; 10:920882. [PMID: 36091426 PMCID: PMC9459033 DOI: 10.3389/fbioe.2022.920882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is a neoplastic plasma cell proliferative disorder characterized by various osteolytic bone destruction as a radiological morphological marker. Functional imaging, particularly nuclear medicine imaging, is a promising method to visualize disease processes before the appearance of structural changes by targeting specific biomarkers related to metabolism ability, tumor microenvironment as well as neoplastic receptors. In addition, by targeting particular antigens with therapeutic antibodies, immuno-PET imaging can support the development of personalized theranostics. At present, various imaging agents have been prepared and evaluated in MM at preclinical and clinical levels. A summary overview of molecular functional imaging in MM is provided, and commonly used radiotracers are characterized.
Collapse
Affiliation(s)
- Shaojuan Zhang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jingjie Shang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Weijian Ye
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tianming Zhao
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Hui Zeng, ; Lu Wang,
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Hui Zeng, ; Lu Wang,
| |
Collapse
|
30
|
Shekhawat AS, Singh B, Malhotra P, Watts A, Basher R, Kaur H, Hooda M, Radotra BD. Imaging CXCR4 receptors expression for staging multiple myeloma by using 68Ga-Pentixafor PET/CT: comparison with 18F-FDG PET/CT. Br J Radiol 2022; 95:20211272. [PMID: 35731811 PMCID: PMC10162067 DOI: 10.1259/bjr.20211272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES 68Ga-Pentixafor positron emission tomography (PET) imaging targets CXCR4 expression which is overexpressed in multiple myeloma (MM). In this study, we evaluated the diagnostic utility of 68Ga-Pentixafor PET/CT for imaging CXCR4 expression in MM and compared results with 18F-fluorodeoxyglucose (18F-FDG) PET/CT. METHODS 34 (21M; 13F; median age = 57.5 years) treatment naive multiple myeloma patients were recruited. All the patients underwent 18F-FDG PET/CT and 68Ga-Pentixafor PET/CT imaging. Freshly prepared 68Ga-Pentixafor (148-185 MBq) was injected intravenously and whole-body PET/CT (low-dose CT) was acquired at 1 h post-injection. The pattern of uptake (diffuse, focal or mixed) and the mean SUVmax value of all the lesions (when lesions were ≤5) or of the five most tracer avid lesions (when lesions was >5) were evaluated. Tumor to background ratio (TBRmax) was calculated for both the tracers. Durie Salmon plus staging (DSPS) was used for disease staging on PET and the results were compared with International staging system (ISS). RESULTS 68Ga-Pentixafor PET/CT showed higher disease extent than seen on 18F-FDG PET/CT in 23/34 patients (68.0%), lesser disease extent in 2/34 (6%) and similar disease extent in 9/34 (26%) patients. Significantly (p < 0.001) higher TBRmax values (5.7; IQR 8.8) were observed on 68Ga-Pentixafor PET/CT as compared to 18F-FDG PET/CT values (2.9; IQR = 4.0). Both the techniques detected extramedullary lesions in six patients. On the other hand, 68Ga-Pentixafor detected medullary lesions in five, whereas, 18F-FDG PET in three patients. Further, only 68Ga-Pentixafor TBRmax correlated significantly (ρ = 0.421; 0.013) with bone marrow plasma cell percentage. 68Ga-Pentixafor PET upstaged more number (9/29) of patients as compared to (4/29) 18F-FDG PET imaging. On the other hand, 18F-FDG PET down-staged 9/29, whereas 68Ga-Pentixafor PET downstaged only 3/29 patients. CONCLUSION 68Ga-Pentixafor PET/CT evaluated the whole-body disease burden of CXCR4 receptors non-invasively which is not possible by tissue sampling methods. This novel PET tracer has also implication for disease staging. Dual 68Ga-Pentixafor/18F-FDG PET/CT imaging may help in determining the tumor heterogeneity in MM. ADVANCES IN KNOWLEDGE This CXCR4 targeting PET tracer has a promising role in the development of CXCR4 targeting theranostics and also for response assessment to these therapies including the conventional treatment.
Collapse
Affiliation(s)
- Amit Singh Shekhawat
- Departments of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Baljinder Singh
- Departments of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Malhotra
- Department of Clinical Haematology & Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankit Watts
- Departments of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajender Basher
- Departments of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Harneet Kaur
- Departments of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Monika Hooda
- Departments of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bishan D Radotra
- Histopathology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| |
Collapse
|
31
|
Bögelein A, Stolzenburg A, Eiring P, Lückerath K, Munawar U, Werner R, Schirbel A, Samnick S, Kortüm KM, Sauer M, Lapa C, Buck AK. CXCR4 expression of multiple myeloma as a dynamic process: influence of therapeutic agents. Leuk Lymphoma 2022; 63:2393-2402. [DOI: 10.1080/10428194.2022.2074986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Anna Bögelein
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Antje Stolzenburg
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Patrick Eiring
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Katharina Lückerath
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- Department of Molecular and Medical Pharmacology, Ahmanson Translational Theranostic Division, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Umair Munawar
- Department of Hematology and Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Rudolf Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Klaus Martin Kortüm
- Department of Hematology and Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- Department of Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
32
|
van der Heide CD, Dalm SU. Radionuclide imaging and therapy directed towards the tumor microenvironment: a multi-cancer approach for personalized medicine. Eur J Nucl Med Mol Imaging 2022; 49:4616-4641. [PMID: 35788730 PMCID: PMC9606105 DOI: 10.1007/s00259-022-05870-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022]
Abstract
Targeted radionuclide theranostics is becoming more and more prominent in clinical oncology. Currently, most nuclear medicine compounds researched for cancer theranostics are directed towards targets expressed in only a small subset of cancer types, limiting clinical applicability. The identification of cancer-specific targets that are (more) universally expressed will allow more cancer patients to benefit from these personalized nuclear medicine–based interventions. A tumor is not merely a collection of cancer cells, it also comprises supporting stromal cells embedded in an altered extracellular matrix (ECM), together forming the tumor microenvironment (TME). Since the TME is less genetically unstable than cancer cells, and TME phenotypes can be shared between cancer types, it offers targets that are more universally expressed. The TME is characterized by the presence of altered processes such as hypoxia, acidity, and increased metabolism. Next to the ECM, the TME consists of cancer-associated fibroblasts (CAFs), macrophages, endothelial cells forming the neo-vasculature, immune cells, and cancer-associated adipocytes (CAAs). Radioligands directed at the altered processes, the ECM, and the cellular components of the TME have been developed and evaluated in preclinical and clinical studies for targeted radionuclide imaging and/or therapy. In this review, we provide an overview of the TME targets and their corresponding radioligands. In addition, we discuss what developments are needed to further explore the TME as a target for radionuclide theranostics, with the hopes of stimulating the development of novel TME radioligands with multi-cancer, or in some cases even pan-cancer, application.
Collapse
Affiliation(s)
| | - Simone U Dalm
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
33
|
Raderer M, Kiesewetter B, Mayerhoefer ME. Positron emission tomography/magnetic resonance imaging (PET/MRI) vs. gastroscopy: Can it improve detection of extranodal marginal zone lymphomas of the stomach following H. pylori treatment? Expert Rev Hematol 2022; 15:565-571. [PMID: 35695746 DOI: 10.1080/17474086.2022.2089110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The stomach is the most common site of origin for extranodal marginal zone B-cell lymphoma of the mucosa-associated lymphoid tissue (MALT lymphoma). Antibiotic eradication of Helicobacter pylori (H. pylori) is the standard first-line treatment, with response assessment being performed by histological evaluation of multiple gastric biopsies. AREAS COVERED The objective of this review is to provide an update on results obtained using noninvasive methods, including magnetic resonance imaging (MRI), positron emission tomography combined with computed tomography (PET/CT), and most recently, PET/MRI for the assessment of disease extent and response to treatment in patients with gastric MALT lymphoma. EXPERT OPINION While CT is the officially recommended imaging technique, few studies in small cohorts have suggested that diffusion-weighted MRI shows higher sensitivity, also relative to 18 F-FDG PET/CT, for both gastric and nongastric MALT lymphomas. A recent prospective study using PET/MRI with the novel CXCR4-targeting radiotracer 68 Ga-Pentixafor suggested that, for patients with gastric MALT lymphoma after H. pylori eradication, this imaging technique may provide excellent accuracy (97%) for assessment of residual or recurrent disease. Although recent studies on CXCR4-targeting PET and to some extent also diffusion-weighted MRI are promising, there is insufficient evidence to suggest a change in clinical practice.
Collapse
Affiliation(s)
- Markus Raderer
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesewetter
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Marius E Mayerhoefer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Therapy, Division of General and Pediatric, Radiology, Medical University of Vienna, Department of Biomedical Imaging and Image-guided, Vienna, Austria
| |
Collapse
|
34
|
Abstract
A growing body of literature reports on the upregulation of C-X-C motif chemokine receptor 4 (CXCR4) in a variety of cancer entities, rendering this receptor as suitable target for molecular imaging and endoradiotherapy in a theranostic setting. For instance, the CXCR4-targeting positron emission tomography (PET) agent [68 Ga]PentixaFor has been proven useful for a comprehensive assessment of the current status quo of solid tumors, including adrenocortical carcinoma or small-cell lung cancer. In addition, [68 Ga]PentixaFor has also provided an excellent readout for hematological malignancies, such as multiple myeloma, marginal zone lymphoma, or mantle cell lymphoma. PET-based quantification of the CXCR4 capacities in vivo allows for selecting candidates that would be suitable for treatment using the theranostic equivalent [177Lu]/[90Y]PentixaTher. This CXCR4-directed theranostic concept has been used as a conditioning regimen prior to hematopoietic stem cell transplantation and to achieve sufficient anti-lymphoma/-tumor activity in particular for malignant tissues that are highly sensitive to radiation, such as the hematological system. Increasing the safety margin, pretherapeutic dosimetry is routinely performed to determine the optimal activity to enhance therapeutic efficacy and to reduce off-target adverse events. The present review will provide an overview of current applications for CXCR4-directed molecular imaging and will introduce the CXCR4-targeted theranostic concept for advanced hematological malignancies.
Collapse
|
35
|
Pan Q, Luo Y, Cao X, Li J. 68Ga-Pentixafor PET/CT Improves the Detection of Recurrent Myeloma in the Temporal Bone Masked by the Physiological 18F-FDG Uptake of the Brain and Extraocular Muscles. Clin Nucl Med 2022; 47:e348-e350. [PMID: 35020649 DOI: 10.1097/rlu.0000000000003979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT A 71-year-old woman was recently diagnosed with multiple myeloma. Baseline 18F-FDG and 68Ga-pentixafor PET/CT showed diffusely increased uptake in bone marrow, consistent with infiltrated myeloma. She had very good partial response after 9 cycles of chemotherapy. However, during the maintenance with ixazomib, she experienced progressed disease. In the follow-up PET/CT, except for diffusely infiltrated disease in bone marrow, 68Ga-pentixafor PET/CT additionally detected a new emerging lesion in the right temporal bone with lytic bone destruction, which was initially missed in 18F-FDG PET/CT due to the intense physiological uptake of the brain and extraocular muscles.
Collapse
Affiliation(s)
| | | | - Xinxin Cao
- Department of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Jian Li
- Department of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
36
|
Serfling SE, Lapa C, Dreher N, Hartrampf PE, Rowe SP, Higuchi T, Schirbel A, Weich A, Hahner S, Fassnacht M, Buck AK, Werner RA. Impact of Tumor Burden on Normal Organ Distribution in Patients Imaged with CXCR4-Targeted [68Ga]Ga-PentixaFor PET/CT. Mol Imaging Biol 2022; 24:659-665. [PMID: 35312939 PMCID: PMC9296404 DOI: 10.1007/s11307-022-01717-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/16/2022]
Abstract
Abstract
Background
CXCR4-directed positron emission tomography/computed tomography (PET/CT) has been used as a diagnostic tool in patients with solid tumors. We aimed to determine a potential correlation between tumor burden and radiotracer accumulation in normal organs.
Methods
Ninety patients with histologically proven solid cancers underwent CXCR4-targeted [68Ga]Ga-PentixaFor PET/CT. Volumes of interest (VOIs) were placed in normal organs (heart, liver, spleen, bone marrow, and kidneys) and tumor lesions. Mean standardized uptake values (SUVmean) for normal organs were determined. For CXCR4-positive tumor burden, maximum SUV (SUVmax), tumor volume (TV), and fractional tumor activity (FTA, defined as SUVmean x TV), were calculated. We used a Spearman's rank correlation coefficient (ρ) to derive correlative indices between normal organ uptake and tumor burden.
Results
Median SUVmean in unaffected organs was 5.2 for the spleen (range, 2.44 – 10.55), 3.27 for the kidneys (range, 1.52 – 17.4), followed by bone marrow (1.76, range, 0.84 – 3.98), heart (1.66, range, 0.88 – 2.89), and liver (1.28, range, 0.73 – 2.45). No significant correlation between SUVmax in tumor lesions (ρ ≤ 0.189, P ≥ 0.07), TV (ρ ≥ -0.204, P ≥ 0.06) or FTA (ρ ≥ -0.142, P ≥ 0.18) with the investigated organs was found.
Conclusions
In patients with solid tumors imaged with [68Ga]Ga-PentixaFor PET/CT, no relevant tumor sink effect was noted. This observation may be of relevance for therapies with radioactive and non-radioactive CXCR4-directed drugs, as with increasing tumor burden, the dose to normal organs may remain unchanged.
Collapse
|
37
|
von Hinten J, Kircher M, Dierks A, Pfob CH, Higuchi T, Pomper MG, Rowe SP, Buck AK, Samnick S, Werner RA, Lapa C. Molecular Imaging in Multiple Myeloma-Novel PET Radiotracers Improve Patient Management and Guide Therapy. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:801792. [PMID: 39354963 PMCID: PMC11440847 DOI: 10.3389/fnume.2022.801792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/01/2022] [Indexed: 10/03/2024]
Abstract
Due to its proven value in imaging of multiple myeloma (MM), including staging, prognostication, and assessment of therapy response, 2-deoxy-2-[18F]fluoro-D-glucose (FDG) positron emission tomography (PET) is utilized extensively in the clinic. However, its accuracy is hampered by imperfect sensitivity (e.g., so-called FDG-negative MM) as well as specificity (e.g., inflammatory processes), with common pitfalls including fractures and degenerative changes. Novel approaches providing a read-out of increased protein or lipid membrane syntheses, such as [11C]methionine and [11C]choline or the C-X-C motif chemokine receptor 4-targeting radiotracer [68Ga]Pentixafor, have already been shown to be suitable adjuncts or alternatives to FDG. In the present focused review, those imaging agents along with their theranostic potential in the context of MM are highlighted.
Collapse
Affiliation(s)
- Johannes von Hinten
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Malte Kircher
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Alexander Dierks
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Christian H. Pfob
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Steven P. Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Rudolf A. Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
38
|
Mena E, Turkbey EB, Lindenberg L. Modern radiographic imaging in multiple myeloma, what is the minimum requirement? Semin Oncol 2022; 49:86-93. [PMID: 35190200 PMCID: PMC9149049 DOI: 10.1053/j.seminoncol.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/09/2022] [Indexed: 02/03/2023]
Abstract
Imaging innovations offer useful techniques applicable to many oncology specialties. Treatment advances in the field of multiple myeloma (MM) have increased the need for accurate diagnosis, particularly in the bone marrow, which is an essential component in myeloma-defining criteria. Modern imaging identifies osteolytic lesions, distinguishes solitary plasmacytoma from MM, and evaluates the presence of extramedullary disease. Furthermore, imaging is increasingly valuable in post-treatment response assessment. Detection of minimal residual disease after therapy carries prognostic implications and influences subsequent treatment planning. Whole-body low-dose Computed Tomography is now recommended over the conventional skeletal survey, and more sophisticated functional imaging methods, such as 18F-Fluorodeoxyglucose Positron Emission Tomography , and diffusion-weighted Magnetic Resonance Imaging are proving effective in the assessment and monitoring of MM disease. This review focuses on understanding indications and advantages of these imaging modalities for diagnosing and managing myeloma.
Collapse
Affiliation(s)
- Esther Mena
- Molecular Imaging Branch. National Cancer Institute, NIH, Bethesda, MD, USA
| | - Evrim B. Turkbey
- Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Liza Lindenberg
- Molecular Imaging Branch. National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
39
|
Nuclear Molecular Imaging of Cardiac Remodeling after Myocardial Infarction. Pharmaceuticals (Basel) 2022; 15:ph15020183. [PMID: 35215296 PMCID: PMC8875369 DOI: 10.3390/ph15020183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/03/2022] Open
Abstract
The role of molecular imaging technologies in detecting, evaluating, and monitoring cardiovascular disease and their treatment is expanding rapidly. Gradually replacing the conventional anatomical or physiological approaches, molecular imaging strategies using biologically targeted markers provide unique insight into pathobiological processes at molecular and cellular levels and allow for cardiovascular disease evaluation and individualized therapy. This review paper will discuss currently available and developing molecular-based single-photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging strategies to evaluate post-infarction cardiac remodeling. These approaches include potential targeted methods of evaluating critical biological processes, such as inflammation, angiogenesis, and scar formation.
Collapse
|
40
|
Machine Learning and Deep Learning Applications in Multiple Myeloma Diagnosis, Prognosis, and Treatment Selection. Cancers (Basel) 2022; 14:cancers14030606. [PMID: 35158874 PMCID: PMC8833500 DOI: 10.3390/cancers14030606] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Multiple myeloma is a malignant neoplasm of plasma cells with complex pathogenesis. With major progresses in multiple myeloma research, it is essential that we reconsider our methods for diagnosing and monitoring multiple myeloma disease. This fact needs the integration of serology, histology, radiology, and genetic data; therefore, multiple myeloma study has generated massive quantities of granular high-dimensional data exceeding human understanding. With improved computational techniques, artificial intelligence tools for data processing and analysis are becoming more and more relevant. Artificial intelligence represents a wide set of algorithms for which machine learning and deep learning are presently among the most impactful. This review focuses on artificial intelligence applications in multiple myeloma research, first illustrating machine learning and deep learning procedures and workflow, followed by how these algorithms are used for multiple myeloma diagnosis, prognosis, bone lesions identification, and evaluation of response to the treatment. Abstract Artificial intelligence has recently modified the panorama of oncology investigation thanks to the use of machine learning algorithms and deep learning strategies. Machine learning is a branch of artificial intelligence that involves algorithms that analyse information, learn from that information, and then employ their discoveries to make abreast choice, while deep learning is a field of machine learning basically represented by algorithms inspired by the organization and function of the brain, named artificial neural networks. In this review, we examine the possibility of the artificial intelligence applications in multiple myeloma evaluation, and we report the most significant experimentations with respect to the machine and deep learning procedures in the relevant field. Multiple myeloma is one of the most common haematological malignancies in the world, and among them, it is one of the most difficult ones to cure due to the high occurrence of relapse and chemoresistance. Machine learning- and deep learning-based studies are expected to be among the future strategies to challenge this negative-prognosis tumour via the detection of new markers for their prompt discovery and therapy selection and by a better evaluation of its relapse and survival.
Collapse
|
41
|
Minamimoto R. Amino Acid and Proliferation PET/CT for the Diagnosis of Multiple Myeloma. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 1:796357. [PMID: 39355641 PMCID: PMC11440849 DOI: 10.3389/fnume.2021.796357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 10/03/2024]
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by infiltration of monoclonal plasma cells in the bone marrow (BM). The standard examination performed for the assessment of bone lesions has progressed from radiographic skeletal survey to the more advanced imaging modalities of computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography/computed tomography (PET/CT). The Durie-Salmon PLUS staging system (upgraded from the Durie-Salmon staging system) applies 2-[18F]-fluoro-2-deoxy-glucose (18F-FDG) PET/CT, and MRI findings to the staging of MM, and 18F-FDG PET/CT has been incorporated into the International Myeloma Working Group (IMWG) guidelines for the diagnosis and staging of MM. However, 18F-FDG PET/CT has significant limitations in the assessment of diffuse BM infiltration and in the differentiation of MM lesions from inflammatory or infectious lesions. The potential of several new PET tracers that exploit the underlying disease mechanism of MM has been evaluated in terms of improving the diagnosis. L-type amino acid transporter 1 (LAT1), a membrane protein that transports neutral amino acids, is associated with cell proliferation and has strong ability to represent the status of MM. This review evaluates the potential of amino acid and proliferation PET tracers for diagnosis and compares the characteristics and accuracy of non-FDG tracers in the management of patients with MM.
Collapse
Affiliation(s)
- Ryogo Minamimoto
- Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Furtado FS, Johnson MK, Catalano OA. PET imaging of hematological neoplasia. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
43
|
Dun Y, Huang G, Liu J, Wei W. ImmunoPET imaging of hematological malignancies: From preclinical promise to clinical reality. Drug Discov Today 2021; 27:1196-1203. [PMID: 34838729 DOI: 10.1016/j.drudis.2021.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/22/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022]
Abstract
Immuno-positron emission tomography (immunoPET) imaging is a paradigm-shifting imaging technique for whole-body and all-lesion tumor detection, based on the combined specificity of tumor-targeting vectors [e.g., monoclonal antibodies (mAbs), nanobodies, and bispecific antibodies] and the sensitivity of PET imaging. By noninvasively, comprehensively, and serially revealing heterogeneous tumor antigen expression, immunoPET imaging is gradually improving the theranostic prospects for hematological malignancies. In this review, we summarize the available literature regarding immunoPET in imaging hematological malignancies. We also highlight the pros and cons of current conjugation strategies, and modular chemistry that can be leveraged to develop novel immunoPET probes for hematological malignancies. Lastly, we discuss the use of immunoPET imaging in guiding antibody drug development.
Collapse
Affiliation(s)
- Yiting Dun
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China.
| |
Collapse
|
44
|
Kuyumcu S, Isik EG, Tiryaki TO, Has-Simsek D, Sanli Y, Buyukkaya F, Özkan ZG, Kalayoglu-Besisik S, Unal SN. Prognostic significance of 68Ga-Pentixafor PET/CT in multiple myeloma recurrence: a comparison to 18F-FDG PET/CT and laboratory results. Ann Nucl Med 2021; 35:1147-1156. [PMID: 34185263 DOI: 10.1007/s12149-021-01652-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE This study investigates the prognostic value of 68Ga-Pentixafor PET/CT using PET-derived quantitative in multiple myeloma (MM) patients with suspected recurrence in comparison to 18F-FDG PET/CT and clinical data. METHODS Twenty-four MM patients with suspicion for relapse who underwent 68Ga-Pentixafor and 18F-FDG PET/CT were retrospectively evaluated. Total bone marrow glycolysis for 18F-FDG (TBMFDG) and total bone marrow uptake for 68Ga-Pentixafor PET/CT (TBMCXCR4) were calculated using whole-body metabolic tumor burden obtained by dedicated software (MIM 7.0.6). The patients were followed for 19-24 months, and the association of PET-derived quantitative data with overall survival (OS) was analyzed. RESULTS 68Ga-Pentixafor PET/CT was positive in 17 patients, of which 13 were also positive on 18F-FDG PET/CT, whereas 7 patients were negative on both scans. The positive rate of 68Ga-Pentixafor and 18F-FDG PET/CT on a patient-based approach was 70.8% and 54.1%, respectively. 68Ga-Pentixafor positivity was significantly associated with OS (p = 0.009), and 18F-FDG positivity was at the margin of statistical significance (p = 0.056). TBMCXCR4 and TBMFDG were negatively correlated with OS (r = -0.457, p = 0.025 and r = -0.617, p = 0.001, respectively). The OS was negatively correlated with beta-2-microglobulin levels (r = -0.511, p = 0.01) and CRAB score (r = -0.592, p = 0.002) as an indicator of the end-organ disease, which confirmed these results. Serum beta-2-microglobulin levels and CRAB score were also correlated with TBMCXCR4 (r = 0.442, p = 0.039 and r = 0.573, p = 0.003, respectively) and TBMFDG (r = 0.543, p = 0.009 and r = -0.424, p = 0.003, respectively). CONCLUSION 68Ga-Pentixafor PET/CT positivity is a negative prognostic factor in the survival outcome of MM patients. Complementary 68Ga-Pentixafor PET/CT has the potential to overcome 18F-FDG PET/CT limitations and helps a more precise risk stratification.
Collapse
Affiliation(s)
- Serkan Kuyumcu
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul, Turkey.
| | - Emine Goknur Isik
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul, Turkey
| | - Tarik Onur Tiryaki
- Istanbul Medical Faculty, Department of Internal Medicine, Division of Hematology, Istanbul, Turkey
| | - Duygu Has-Simsek
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul, Turkey
| | - Yasemin Sanli
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul, Turkey
| | - Fikret Buyukkaya
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul, Turkey
| | - Zeynep Gözde Özkan
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul, Turkey
| | - Sevgi Kalayoglu-Besisik
- Istanbul Medical Faculty, Department of Internal Medicine, Division of Hematology, Istanbul, Turkey
| | - Seher Nilgun Unal
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul, Turkey
| |
Collapse
|
45
|
Duell J, Krummenast F, Schirbel A, Klassen P, Samnick S, Rauert-Wunderlich H, Rasche L, Buck AK, Wester HJ, Rosenwald A, Einsele H, Topp MS, Lapa C, Kircher M. Improved Primary Staging of Marginal-Zone Lymphoma by Addition of CXCR4-Directed PET/CT. J Nucl Med 2021; 62:1415-1421. [PMID: 33579803 DOI: 10.2967/jnumed.120.257279] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
PET/CT with 18F-FDG is an integral component in the primary staging of most lymphomas. However, its utility is limited in marginal-zone lymphoma (MZL) because of inconsistent 18F-FDG avidity. One diagnostic alternative could be the targeting of C-X-C motif chemokine receptor 4 (CXCR4), shown to be expressed by MZL cells. This study investigated the value of adding CXCR4-directed 68Ga-pentixafor PET/CT to conventional staging. Methods: Twenty-two newly diagnosed MZL patients were staged conventionally and with CXCR4 PET/CT. Lesions identified exclusively by CXCR4 PET/CT were biopsied as the standard of reference and compared with imaging results. The impact of CXCR4-directed imaging on staging results and treatment protocol was assessed. Results: CXCR4 PET/CT correctly identified all patients with viable MZL and was superior to conventional staging (P < 0.001). CXCR4-directed imaging results were validated by confirmation of MZL in 16 of 18 PET-guided biopsy samples. Inclusion of CXCR4 PET/CT in primary staging significantly impacted staging results in almost half of patients and treatment protocols in a third (upstaging, n = 7; downstaging, n = 3; treatment change, n = 8; P < 0.03). Conclusion: CXCR4 PET/CT is a suitable tool in primary staging of MZL and holds the potential to improve existing diagnostic algorithms.
Collapse
Affiliation(s)
- Johannes Duell
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Franziska Krummenast
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Andreas Schirbel
- Comprehensive Cancer Center Mainfranken, Würzburg, Germany
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Philipp Klassen
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Samuel Samnick
- Comprehensive Cancer Center Mainfranken, Würzburg, Germany
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Hilka Rauert-Wunderlich
- Comprehensive Cancer Center Mainfranken, Würzburg, Germany
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Andreas K Buck
- Comprehensive Cancer Center Mainfranken, Würzburg, Germany
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technische Universität München, München, Germany; and
| | - Andreas Rosenwald
- Comprehensive Cancer Center Mainfranken, Würzburg, Germany
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Herrmann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Max S Topp
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Constantin Lapa
- Comprehensive Cancer Center Mainfranken, Würzburg, Germany;
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Malte Kircher
- Comprehensive Cancer Center Mainfranken, Würzburg, Germany
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
46
|
CXCR4 PET/MRI for follow-up of gastric mucosa-associated lymphoid tissue lymphoma after first-line H. pylori eradication. Blood 2021; 139:240-244. [PMID: 34525196 PMCID: PMC8759531 DOI: 10.1182/blood.2021013239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/28/2021] [Indexed: 11/20/2022] Open
Abstract
[68Ga]Pentixafor is a novel PET tracer that targets the chemokine receptor CXCR4, which is overexpressed in MALT lymphoma. In gastric MALT lymphoma after H pylori eradication, [68Ga]Pentixafor–PET shows high accuracy for detection of residual disease.
Posttreatment evaluation of gastric mucosa-associated lymphoid tissue (MALT) lymphoma currently relies on esophagogastroduodenoscopy with histological assessment of biopsies. Overexpression of the G protein–coupled C-X-C chemokine receptor type 4 (CXCR4) has been previously observed in MALT lymphoma. The aim of this prospective study was to evaluate positron emission tomography (PET) with the novel CXCR4 tracer [68Ga]Pentixafor as a potential alternative to follow up biopsies for assessment of residual disease (noncomplete remission [CR]) after first-line Helicobacter pylori eradication. Forty-six post–H pylori eradication [68Ga]Pentixafor–PET/magnetic resonance imaging (MRI) examinations of 26 gastric MALT lymphoma patients, and 20 [68Ga]Pentixafor–PET/MRI examinations of 20 control group patients without lymphoma, were analyzed. In the MALT lymphoma group, time-matched gastric biopsies were used as reference standard and showed CR in 6 cases. Pooled examination-based accuracy, sensitivity, specificity, and positive and negative predictive values of [68Ga]Pentixafor–PET for detection of residual gastric MALT lymphoma at follow-up were 97.0%, 95.0%, 100.0%, 100.0%, and 92.9%, respectively. Maximum and mean PET standardized uptake values showed moderate correlation with immunohistochemistry-based CXCR4+ cell counts, with correlation coefficients of r = 0.51 and r = 0.52 (P = .008 and P = .006). In summary, CXCR4 imaging with [68Ga]Pentixafor–PET may represent a promising test for assessment of residual gastric MALT lymphomas after H pylori eradication.
Collapse
|
47
|
Archibald SJ, Allott L. The aluminium-[ 18F]fluoride revolution: simple radiochemistry with a big impact for radiolabelled biomolecules. EJNMMI Radiopharm Chem 2021; 6:30. [PMID: 34436693 PMCID: PMC8390636 DOI: 10.1186/s41181-021-00141-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
The aluminium-[18F]fluoride ([18F]AlF) radiolabelling method combines the favourable decay characteristics of fluorine-18 with the convenience and familiarity of metal-based radiochemistry and has been used to parallel gallium-68 radiopharmaceutical developments. As such, the [18F]AlF method is popular and widely implemented in the development of radiopharmaceuticals for the clinic. In this review, we capture the current status of [18F]AlF-based technology and reflect upon its impact on nuclear medicine, as well as offering our perspective on what the future holds for this unique radiolabelling method.
Collapse
Affiliation(s)
- Stephen J Archibald
- Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK.,Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, Castle Road, Cottingham, HU16 5JQ, UK
| | - Louis Allott
- Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK. .,Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK. .,Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, Castle Road, Cottingham, HU16 5JQ, UK.
| |
Collapse
|
48
|
Lewis R, Habringer S, Kircher M, Hefter M, Peuker CA, Werner R, Ademaj-Kospiri V, Gäble A, Weber W, Wester HJ, Buck A, Herhaus P, Lapa C, Keller U. Investigation of spleen CXCR4 expression by [ 68Ga]Pentixafor PET in a cohort of 145 solid cancer patients. EJNMMI Res 2021; 11:77. [PMID: 34417915 PMCID: PMC8380222 DOI: 10.1186/s13550-021-00822-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/07/2021] [Indexed: 02/08/2023] Open
Abstract
Background The chemokine receptor CXCR4 is frequently overexpressed and associated with adverse prognosis in most hematopoietic malignancies and solid cancers. Recently, CXCR4 molecular imaging using the CXCR4-specific positron emission tomography (PET) tracer Pentixafor ([68Ga]Pentixafor) has become a well-established method to non-invasively measure CXCR4 expression in vivo. In previous Pentixafor imaging studies, highly variable CXCR4 tracer uptake to the spleen was observed.
Results We investigated the hypothesis that enhanced spleen [68Ga]Pentixafor uptake and thus CXCR4 expression in patients with solid tumors would indicate an activated spleen state and/or an association with clinical and prognostic features and survival parameters. In this retrospective study, [68Ga]Pentixafor-PET images and patient records of 145 solid tumor patients representing 27 cancer entities were investigated for an association of spleen [68Ga]Pentixafor uptake and clinical characteristics and outcome. Based on this assessment, we did not observe differences in clinical outcomes, measured by progression-free survival, overall survival and remission status neither within the entire cohort nor within subgroups of adrenal cancer, desmoplastic small round cell tumor, neuroendocrine tumors, non-small cell lung cancer, small cell lung cancer and pancreatic adenocarcinoma patients. No tumor entity showed especially high levels of spleen [68Ga]Pentixafor uptake compared to others or a control cohort. However, when investigating laboratory parameters, there was a positive correlation of high spleen [68Ga]Pentixafor uptake with leukocyte and/or platelet counts in neuroendocrine tumors, non-small cell lung cancer and small cell lung cancer. Conclusion Spleen [68Ga]Pentixafor uptake was not associated with stage of disease and clinical outcomes in solid tumor patients. We identified positively associated platelet and/or leukocyte counts with spleen [68Ga]Pentixafor uptake in neuroendocrine tumors, non-small cell lung cancer and small cell lung cancer, suggesting that splenic CXCR4 expression could possibly play a role in systemic immunity/inflammation in some types of solid tumors or a subgroup of patients within solid tumor entities. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00822-6.
Collapse
Affiliation(s)
- Richard Lewis
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Stefan Habringer
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Malte Kircher
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Maike Hefter
- Clinic and Policlinic for Internal Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
| | - Caroline Anna Peuker
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Rudolf Werner
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - Valëza Ademaj-Kospiri
- Clinic for Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alexander Gäble
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Wolfgang Weber
- Clinic for Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hans-Jürgen Wester
- Chair of Pharmaceutical Chemistry, Technical University of Munich, Garching, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - Peter Herhaus
- Clinic and Policlinic for Internal Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
| | - Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany. .,German Cancer Consortium (DKTK), Partner Site Berlin; and German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
49
|
Katal S, Maldonado A, Carrascoso J, Assadi M, Gholamrezanezhad A. Theranostic Agents in Musculoskeletal Disorders. PET Clin 2021; 16:441-448. [PMID: 34053587 DOI: 10.1016/j.cpet.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Theranostic-based strategies, combining therapeutic and diagnostic properties of a single agent, have gained enormous attention in the past few years. Today, various multifunctional theranostic modalities have been examined, using different bioactive targeting, for the detection, quantifying, and monitoring of therapy response in different pathologies. Herein we review the newly emerging approaches in theranostic nanomedicine for the detection and therapy for musculoskeletal disorders to provide valuable insights for developing more efficient agents for clinical use. Some potential preclinical applications of radionuclide nanotheranostic agents are described in rheumatoid arthritis, osteoarthrosis, multiple myeloma, and neoplastic diseases.
Collapse
Affiliation(s)
- Sanaz Katal
- Department of Nuclear Medicine, Kowsar Hospital, Shiraz, Iran
| | - Antonio Maldonado
- Department of Nuclear Medicine, Quironsalud Madrid University Hospital, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Javier Carrascoso
- Department of Radiology, Quironsalud Madrid University Hospital, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Majid Assadi
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), The Persian Gulf Nuclear Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Gholamrezanezhad
- Department of Diagnostic Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, USA.
| |
Collapse
|
50
|
|