1
|
Nguyen HTT, Chau V, Nguyen PHL, Du HD, Nguyen LNP, Le TQN, Huynh PT, Nguyen TNT, Tran TND, Voong VP, Ha TT, Nguyen PNQ, Baker S, Thwaites G, Rabaa M, Pham DT. Changing epidemiology and antimicrobial susceptibility of bloodstream infections at a Vietnamese infectious diseases hospital (2010-2020). NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:32. [PMID: 39431121 PMCID: PMC11485239 DOI: 10.1038/s44259-024-00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/23/2024] [Indexed: 10/22/2024]
Abstract
Bloodstream infection (BSI) poses a global health problem, with diverse organisms and rising antimicrobial resistance (AMR). Here, we characterized trends in BSI prevalence, AMR, and antibiotic use at a Vietnamese infectious diseases hospital from 2010 to 2020. Among 108,303 cultured blood samples, 8.8% were positive, yielding 7995 pathogens. Of 7553 BSI cases, 86.4% were community-acquired. BSI prevalence varied from 17 to 35 cases/1000 admissions/year, highest in HIV/hepatitis wards and patients >60. The in-hospital mortality or hospice discharge outcome was 21.3%. The top three pathogens, E. coli (24%), K. pneumoniae (8.7%) and S. aureus (8.5%) exhibited increasing prevalence and multidrug resistance. Pathogens like Cryptococcus neoformans (8.4%), Talaromyces marneffei (6.7%), and Salmonella enterica (6.5%) declined. E. coli and K. pneumoniae were prevalent in older adults with community-acquired BSIs. Antibiotic use reached 842.6 DOT/1000 PD and significantly reduced after an antibiotic control policy. Enhanced surveillance and antimicrobial stewardship are crucial for managing BSIs in Vietnam.
Collapse
Affiliation(s)
| | - Vinh Chau
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Hong Duc Du
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | | | | | | | - Vinh Phat Voong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Thanh Tuyen Ha
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID) Department of Medicine, University of Cambridge, Cambridge, UK
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Maia Rabaa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Duy Thanh Pham
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Le DQ, Nguyen TA, Nguyen SH, Nguyen TT, Nguyen CH, Phung HT, Ho TH, Vo NS, Nguyen T, Nguyen HA, Cao MD. Efficient inference of large prokaryotic pangenomes with PanTA. Genome Biol 2024; 25:209. [PMID: 39107817 PMCID: PMC11304767 DOI: 10.1186/s13059-024-03362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Pangenome inference is an indispensable step in bacterial genomics, yet its scalability poses a challenge due to the rapid growth of genomic collections. This paper presents PanTA, a software package designed for constructing pangenomes of large bacterial datasets, showing unprecedented efficiency levels multiple times higher than existing tools. PanTA introduces a novel mechanism to construct the pangenome progressively without rebuilding the accumulated collection from scratch. The progressive mode is shown to consume orders of magnitude less computational resources than existing solutions in managing growing datasets. The software is open source and is publicly available at https://github.com/amromics/panta and at 10.6084/m9.figshare.23724705 .
Collapse
Affiliation(s)
- Duc Quang Le
- AMROMICS JSC, Nghe An, Vietnam
- Faculty of IT, Hanoi University of Civil Engineering, Hanoi, Vietnam
| | - Tien Anh Nguyen
- AMROMICS JSC, Nghe An, Vietnam
- Faculty of Biotechnology, Hanoi University of Pharmacy, Hanoi, Vietnam
| | | | - Tam Thi Nguyen
- Oxford University Clinical Research Unit, Hanoi, Vietnam
| | - Canh Hao Nguyen
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Huong Thanh Phung
- Faculty of Biotechnology, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Tho Huu Ho
- Department of Medical Microbiology, The 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
- Department of Genomics & Cytogenetics, Institute of Biomedicine & Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nam S Vo
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi, Vietnam
| | | | | | | |
Collapse
|
3
|
Le DQ, Nguyen TT, Nguyen CH, Ho TH, Vo NS, Nguyen T, Nguyen HA, Vinh LS, Dang TH, Cao MD, Nguyen SH. AMRomics: a scalable workflow to analyze large microbial genome collections. BMC Genomics 2024; 25:709. [PMID: 39039439 PMCID: PMC11264974 DOI: 10.1186/s12864-024-10620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
Whole genome analysis for microbial genomics is critical to studying and monitoring antimicrobial resistance strains. The exponential growth of microbial sequencing data necessitates a fast and scalable computational pipeline to generate the desired outputs in a timely and cost-effective manner. Recent methods have been implemented to integrate individual genomes into large collections of specific bacterial populations and are widely employed for systematic genomic surveillance. However, they do not scale well when the population expands and turnaround time remains the main issue for this type of analysis. Here, we introduce AMRomics, an optimized microbial genomics pipeline that can work efficiently with big datasets. We use different bacterial data collections to compare AMRomics against competitive tools and show that our pipeline can generate similar results of interest but with better performance. The software is open source and is publicly available at https://github.com/amromics/amromics under an MIT license.
Collapse
Affiliation(s)
- Duc Quang Le
- AMROMICS JSC, Nghe An, Vietnam.
- Faculty of Information Technology, VNU University of Engineering and Technology, Hanoi, Vietnam.
- Faculty of IT, Hanoi University of Civil Engineering, Hanoi, Vietnam.
| | - Tam Thi Nguyen
- Oxford University Clinical Research Unit, Hanoi, Vietnam
| | - Canh Hao Nguyen
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Tho Huu Ho
- Department of Medical Microbiology, The 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
- Department of Genomics & Cytogenetics, Institute of Biomedicine & Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nam S Vo
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi, Vietnam
| | | | | | - Le Sy Vinh
- Faculty of Information Technology, VNU University of Engineering and Technology, Hanoi, Vietnam
| | - Thanh Hai Dang
- Faculty of Information Technology, VNU University of Engineering and Technology, Hanoi, Vietnam
| | | | | |
Collapse
|
4
|
Le DQ, Nguyen SH, Nguyen TT, Nguyen CH, Ho TH, Vo NS, Nguyen T, Nguyen HA, Cao MD. AMRViz enables seamless genomics analysis and visualization of antimicrobial resistance. BMC Bioinformatics 2024; 25:193. [PMID: 38755527 PMCID: PMC11100100 DOI: 10.1186/s12859-024-05792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
We have developed AMRViz, a toolkit for analyzing, visualizing, and managing bacterial genomics samples. The toolkit is bundled with the current best practice analysis pipeline allowing researchers to perform comprehensive analysis of a collection of samples directly from raw sequencing data with a single command line. The analysis results in a report showing the genome structure, genome annotations, antibiotic resistance and virulence profile for each sample. The pan-genome of all samples of the collection is analyzed to identify core- and accessory-genes. Phylogenies of the whole genome as well as all gene clusters are also generated. The toolkit provides a web-based visualization dashboard allowing researchers to interactively examine various aspects of the analysis results. Availability: AMRViz is implemented in Python and NodeJS, and is publicly available under open source MIT license at https://github.com/amromics/amrviz .
Collapse
Affiliation(s)
- Duc Quang Le
- AMROMICS JSC, Nghe An, Vietnam.
- Faculty of IT, Hanoi University of Civil Engineering, Hanoi, Vietnam.
| | | | - Tam Thi Nguyen
- Oxford University Clinical Research Unit, Hanoi, Vietnam
| | - Canh Hao Nguyen
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Tho Huu Ho
- Department of Medical Microbiology, The 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
- Department of Genomics and Cytogenetics, Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nam S Vo
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi, Vietnam
| | | | | | | |
Collapse
|
5
|
Heinz E, Pearse O, Zuza A, Bilima S, Msefula C, Musicha P, Siyabu P, Tewesa E, Graf FE, Lester R, Lissauer S, Cornick J, Lewis JM, Kawaza K, Thomson NR, Feasey NA. Longitudinal analysis within one hospital in sub-Saharan Africa over 20 years reveals repeated replacements of dominant clones of Klebsiella pneumoniae and stresses the importance to include temporal patterns for vaccine design considerations. Genome Med 2024; 16:67. [PMID: 38711148 PMCID: PMC11073982 DOI: 10.1186/s13073-024-01342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/30/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Infections caused by multidrug-resistant gram-negative bacteria present a severe threat to global public health. The WHO defines drug-resistant Klebsiella pneumoniae as a priority pathogen for which alternative treatments are needed given the limited treatment options and the rapid acquisition of novel resistance mechanisms by this species. Longitudinal descriptions of genomic epidemiology of Klebsiella pneumoniae can inform management strategies but data from sub-Saharan Africa are lacking. METHODS We present a longitudinal analysis of all invasive K. pneumoniae isolates from a single hospital in Blantyre, Malawi, southern Africa, from 1998 to 2020, combining clinical data with genome sequence analysis of the isolates. RESULTS We show that after a dramatic increase in the number of infections from 2016 K. pneumoniae becomes hyperendemic, driven by an increase in neonatal infections. Genomic data show repeated waves of clonal expansion of different, often ward-restricted, lineages, suggestive of hospital-associated transmission. We describe temporal trends in resistance and surface antigens, of relevance for vaccine development. CONCLUSIONS Our data highlight a clear need for new interventions to prevent rather than treat K. pneumoniae infections in our setting. Whilst one option may be a vaccine, the majority of cases could be avoided by an increased focus on and investment in infection prevention and control measures, which would reduce all healthcare-associated infections and not just one.
Collapse
Affiliation(s)
- Eva Heinz
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK.
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK.
| | - Oliver Pearse
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Allan Zuza
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Sithembile Bilima
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Patrick Musicha
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Edith Tewesa
- Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Fabrice E Graf
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK
| | - Rebecca Lester
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Division of Infection & Immunity, University College London, London, UK
| | - Samantha Lissauer
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Jennifer Cornick
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Joseph M Lewis
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Kondwani Kawaza
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Nicholas R Thomson
- Parasites and Microbes Program, Wellcome Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Nicholas A Feasey
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK.
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi.
- School of Medicine, St Andrews University, St Andrews, UK.
| |
Collapse
|
6
|
Shrestha RK, Shrestha D, Kunwar AJ, Thapa S, Shrestha N, Dhoubhadel BG, Parry CM. The overlap of accessory virulence factors and multidrug resistance among clinical and surveillance Klebsiella pneumoniae isolates from a neonatal intensive care unit in Nepal: a single-centre experience in a resource-limited setting. Trop Med Health 2024; 52:30. [PMID: 38589977 PMCID: PMC11000294 DOI: 10.1186/s41182-024-00595-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND There is a lack of data on the characteristics of overlap between acquired antimicrobial resistance and virulence factors in Klebsiella pneumoniae in high-risk settings, especially with the inclusion of surveillance isolates along with the clinical. We investigated K. pneumoniae isolates, from a neonatal intensive care unit (NICU) in Nepal, for the presence of both accessory virulence factors and acquired antimicrobial resistance. METHODS Thirty-eight clinical and nineteen surveillance K. pneumoniae isolates obtained between January 2017 and August 2022 in the NICU of Siddhi Memorial Hospital, Bhaktapur, Nepal were investigated with antimicrobial susceptibility testing, PCR-based detection of β-lactamases and virulence factors, and genetic similarity by ERIC-PCR. RESULTS K. pneumoniae was found positive in 37/85 (43.5%) blood culture-positive neonatal bloodstream infections, 34/954 (3.6%) patient surveillance cultures, and 15/451 (3.3%) environmental surveillance samples. Among 57 isolates analyzed in this study, we detected multidrug resistance in 37/57 (64.9%), which was combined with at least one accessory virulence factor in 21/37 (56.8%). This overlap was mostly among β-lactamase producing isolates with accessory mechanisms of iron acquisition. These isolates displayed heterogenous ERIC-PCR patterns suggesting genetic diversity. CONCLUSIONS The clinical significance of this overlap between acquired antimicrobial resistance and accessory virulence genes in K. pneumoniae needs further investigation. Better resource allocation is necessary to strengthen infection prevention and control interventions in resource-limited settings.
Collapse
Affiliation(s)
| | | | - Ajaya Jang Kunwar
- Kathmandu Center for Genomics and Research Laboratory, Lalitpur, Nepal
| | - Sandeep Thapa
- Kathmandu Center for Genomics and Research Laboratory, Lalitpur, Nepal
| | - Nipun Shrestha
- Siddhi Memorial Hospital, Bhimsensthan-7, Bhaktapur, Nepal
| | - Bhim Gopal Dhoubhadel
- School of Tropical Medicine and Global Health (TMGH), Nagasaki University, Nagasaki, 852-8523, Japan.
- Department of Respiratory Infections, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | - Christopher M Parry
- School of Tropical Medicine and Global Health (TMGH), Nagasaki University, Nagasaki, 852-8523, Japan
- Clinical Sciences and Education, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
7
|
Permana B, Harris PNA, Roberts LW, Cuddihy T, Paterson DL, Beatson SA, Forde BM. HAIviz: an interactive dashboard for visualising and integrating healthcare-associated genomic epidemiological data. Microb Genom 2024; 10:001200. [PMID: 38358326 PMCID: PMC10926687 DOI: 10.1099/mgen.0.001200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Existing tools for phylogeographic and epidemiological visualisation primarily provide a macro-geographic view of epidemic and pandemic transmission events but offer little support for detailed investigation of outbreaks in healthcare settings. Here, we present HAIviz, an interactive web-based application designed for integrating and visualising genomic epidemiological information to improve the tracking of healthcare-associated infections (HAIs). HAIviz displays and links the outbreak timeline, building map, phylogenetic tree, patient bed movements, and transmission network on a single interactive dashboard. HAIviz has been developed for bacterial outbreak investigations but can be utilised for general epidemiological investigations focused on built environments for which visualisation to customised maps is required. This paper describes and demonstrates the application of HAIviz for HAI outbreak investigations.
Collapse
Affiliation(s)
- Budi Permana
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
- Herston Infectious Diseases Institute, Metro North Health, Queensland, Australia
| | - Patrick N. A. Harris
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
- Pathology Queensland, Central Laboratory, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | - Leah W. Roberts
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Thom Cuddihy
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | - David L. Paterson
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Scott A. Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Brian M. Forde
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
- Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
8
|
Shahid M, Saeed NK, Ahmad N, Shadab M, Joji RM, Al-Mahmeed A, Bindayna KM, Tabbara KS, Ismaeel AY, Dar FK. Molecular Screening of Carbapenem-Resistant K. pneumoniae (CRKP) Clinical Isolates for Concomitant Occurrence of Beta-Lactam Genes (CTX-M, TEM, and SHV) in the Kingdom of Bahrain. J Clin Med 2023; 12:7522. [PMID: 38137591 PMCID: PMC10744081 DOI: 10.3390/jcm12247522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023] Open
Abstract
The emergence of extended-spectrum β-lactamase-producing Klebsiella pneumoniae, including CRKP infections, has resulted in significant morbidity and mortality worldwide. We aimed to explore the presence of bla genes (CTX-M, TEM, and SHV) in CRKP isolates. A total of 24 CRKP isolates were randomly selected from the Salmaniya Medical Complex Microbiology Laboratory. These isolates, which were positive for carbapenemases, were further explored for CTX-M, TEM, and SHV genes using PCR. All the CTX-M PCR amplicons were sent for sequencing. To determine genetic relatedness, molecular typing by ERIC-PCR was performed. The bla gene testing demonstrated that a significant proportion of these isolates harbored SHV, CTX-M, and TEM genes (100%, 91.6%, and 45.8%), respectively. Bioinformatic analyses confirmed CTX-M-15 in these isolates. ERIC-PCR analysis showed three clusters demonstrating genetic relatedness. The study findings reveal the concomitant carriage of the SHV and CTX-M-15 and a comparatively lower carriage of TEM genes in CRKP isolates. Our findings highlight the significance of routinely reporting the presence of antibiotic resistance genes along with regular antibiotic sensitivity reports, as this will aid clinicians in prescribing appropriate antibiotics.
Collapse
Affiliation(s)
- Mohammad Shahid
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama 329, Bahrain; (N.A.); (M.S.); (R.M.J.); (A.A.-M.); (K.M.B.); (K.S.T.); (A.Y.I.); (F.K.D.)
| | - Nermin Kamal Saeed
- Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Manama 435, Bahrain;
| | - Nayeem Ahmad
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama 329, Bahrain; (N.A.); (M.S.); (R.M.J.); (A.A.-M.); (K.M.B.); (K.S.T.); (A.Y.I.); (F.K.D.)
| | - Mohd Shadab
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama 329, Bahrain; (N.A.); (M.S.); (R.M.J.); (A.A.-M.); (K.M.B.); (K.S.T.); (A.Y.I.); (F.K.D.)
| | - Ronni Mol Joji
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama 329, Bahrain; (N.A.); (M.S.); (R.M.J.); (A.A.-M.); (K.M.B.); (K.S.T.); (A.Y.I.); (F.K.D.)
| | - Ali Al-Mahmeed
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama 329, Bahrain; (N.A.); (M.S.); (R.M.J.); (A.A.-M.); (K.M.B.); (K.S.T.); (A.Y.I.); (F.K.D.)
| | - Khalid M. Bindayna
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama 329, Bahrain; (N.A.); (M.S.); (R.M.J.); (A.A.-M.); (K.M.B.); (K.S.T.); (A.Y.I.); (F.K.D.)
| | - Khaled Saeed Tabbara
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama 329, Bahrain; (N.A.); (M.S.); (R.M.J.); (A.A.-M.); (K.M.B.); (K.S.T.); (A.Y.I.); (F.K.D.)
| | - Abdulrahman Y. Ismaeel
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama 329, Bahrain; (N.A.); (M.S.); (R.M.J.); (A.A.-M.); (K.M.B.); (K.S.T.); (A.Y.I.); (F.K.D.)
| | - Fazal K. Dar
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama 329, Bahrain; (N.A.); (M.S.); (R.M.J.); (A.A.-M.); (K.M.B.); (K.S.T.); (A.Y.I.); (F.K.D.)
| |
Collapse
|
9
|
Jauneikaite E, Baker KS, Nunn JG, Midega JT, Hsu LY, Singh SR, Halpin AL, Hopkins KL, Price JR, Srikantiah P, Egyir B, Okeke IN, Holt KE, Peacock SJ, Feasey NA. Genomics for antimicrobial resistance surveillance to support infection prevention and control in health-care facilities. THE LANCET. MICROBE 2023; 4:e1040-e1046. [PMID: 37977161 DOI: 10.1016/s2666-5247(23)00282-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 11/19/2023]
Abstract
Integration of genomic technologies into routine antimicrobial resistance (AMR) surveillance in health-care facilities has the potential to generate rapid, actionable information for patient management and inform infection prevention and control measures in near real time. However, substantial challenges limit the implementation of genomics for AMR surveillance in clinical settings. Through a workshop series and online consultation, international experts from across the AMR and pathogen genomics fields convened to review the evidence base underpinning the use of genomics for AMR surveillance in a range of settings. Here, we summarise the identified challenges and potential benefits of genomic AMR surveillance in health-care settings, and outline the recommendations of the working group to realise this potential. These recommendations include the definition of viable and cost-effective use cases for genomic AMR surveillance, strengthening training competencies (particularly in bioinformatics), and building capacity at local, national, and regional levels using hub and spoke models.
Collapse
Affiliation(s)
- Elita Jauneikaite
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Hospital, London, UK
| | - Kate S Baker
- Department of Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, UK; Department of Genetics, University of Cambridge, Cambridge, UK.
| | - Jamie G Nunn
- Infectious Disease Challenge Area, Wellcome Trust, London, UK
| | | | - Li Yang Hsu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shweta R Singh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Alison L Halpin
- Division of Healthcare Quality Promotion, US Centers for Disease Control And Prevention, Atlanta, GA, USA
| | - Katie L Hopkins
- HCAI, Fungal, AMR, AMU, and Sepsis Division and Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, UK Health Security Agency, London, UK
| | - James R Price
- Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Padmini Srikantiah
- Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Kathryn E Holt
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK; Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | - Nicholas A Feasey
- Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK; Malawi Liverpool Wellcome Research Programme, Chichiri, Blantyre, Malawi
| |
Collapse
|
10
|
Rose R, Feehan A, Lain BN, Ashcraft D, Nolan DJ, Velez-Climent L, Huston C, LaFleur T, Rosenthal S, Fogel GB, Miele L, Pankey G, Garcia-Diaz J, Lamers SL. Whole-genome sequencing of carbapenem-resistant Enterobacterales isolates in southeast Louisiana reveals persistent genetic clusters spanning multiple locations. J Infect Public Health 2023; 16:1911-1917. [PMID: 37866269 DOI: 10.1016/j.jiph.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND We investigated 51 g-negative carbapenem-resistant Enterobacterales (CRE) isolates collected from 22 patients over a five-year period from six health care institutions in the Ochsner Health network in southeast Louisiana. METHODS Short genomic reads were generated using Illumina sequencing and assembled for each isolate. Isolates were classified as Enterobacter spp. (n = 20), Klebsiella spp. (n = 30), and Escherichia coli (n = 1) and grouped into 19 different multi-locus sequence types (MLST). Species and patient-specific core genomes were constructed representing ∼50% of the chromosomal genome. RESULTS We identified two sets of patients with genetically related infections; in both cases, the related isolates were collected > 6 months apart, and in one case, the isolates were collected in different locations. On the other hand, we identified four sets of patients with isolates of the same species collected within 21 days from the same location; however, none had genetically related infections. Genes associated with resistance to carbapenem drugs (blaKPC and/or blaCTX-M-15) were found in 76% of the isolates. We found three blaKPC variants (blaKPC-2, blaKPC-3, and blaKPC-4) associated with four different Enterobacter MLST variants, and two blaKPC variants (blaKPC-2, blaKPC-3) associated with seven different Klebsiella MLST variants. CONCLUSIONS Molecular surveillance is increasingly becoming a powerful tool to understand bacterial spread in both community and clinical settings. This study provides evidence that genetically related infections in clinical settings do not necessarily reflect temporal associations, and vice versa. Our results also highlight the regional genomic and resistance diversity within related bacterial lineages.
Collapse
Affiliation(s)
- Rebecca Rose
- BioInfoExperts, LLC, Thibodaux, LA, USA; FoxSeq, LLC, Thibodaux, LA, USA.
| | - Amy Feehan
- Infectious Disease Clinical Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | | | - Deborah Ashcraft
- Infectious Disease Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | | | | | | | | | | | | | - Lucio Miele
- Translational Science and Genetics at LSU Health Science Center, New Orleans, LA, USA
| | - George Pankey
- Infectious Disease Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Julia Garcia-Diaz
- Infectious Disease Clinical Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Susanna L Lamers
- BioInfoExperts, LLC, Thibodaux, LA, USA; FoxSeq, LLC, Thibodaux, LA, USA
| |
Collapse
|
11
|
Rose R, Nolan DJ, Ashcraft D, Feehan AK, Velez-Climent L, Huston C, Lain B, Rosenthal S, Miele L, Fogel GB, Pankey G, Garcia-Diaz J, Lamers SL. Comparing antimicrobial resistant genes and phenotypes across multiple sequencing platforms and assays for Enterobacterales clinical isolates. BMC Microbiol 2023; 23:225. [PMID: 37596530 PMCID: PMC10436404 DOI: 10.1186/s12866-023-02975-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
INTRODUCTION Whole genome sequencing (WGS) of bacterial isolates can be used to identify antimicrobial resistance (AMR) genes. Previous studies have shown that genotype-based AMR has variable accuracy for predicting carbapenem resistance in carbapenem-resistant Enterobacterales (CRE); however, the majority of these studies used short-read platforms (e.g. Illumina) to generate sequence data. In this study, our objective was to determine whether Oxford Nanopore Technologies (ONT) long-read WGS would improve detection of carbapenem AMR genes with respect to short-read only WGS for nine clinical CRE samples. We measured the minimum inhibitory breakpoint (MIC) using two phenotype assays (MicroScan and ETEST) for six antibiotics, including two carbapenems (meropenem and ertapenem) and four non-carbapenems (gentamicin, ciprofloxacin, cefepime, and trimethoprim/sulfamethoxazole). We generated short-read data using the Illumina NextSeq and long-read data using the ONT MinION. Four assembly methods were compared: ONT-only assembly; ONT-only assembly plus short-read polish; ONT + short-read hybrid assembly plus short-read polish; short-read only assembly. RESULTS Consistent with previous studies, our results suggest that the hybrid assembly produced the highest quality results as measured by gene completeness and contig circularization. However, ONT-only methods had minimal impact on the detection of AMR genes and plasmids compared to short-read methods, although, notably, differences in gene copy number differed between methods. All four assembly methods showed identical presence/absence of the blaKPC-2 carbapenemase gene for all samples. The two phenotype assays showed 100% concordant results for the non-carbapenems, but only 65% concordance for the two carbapenems. The presence/absence of AMR genes was 100% concordant with AMR phenotypes for all four non-carbapenem drugs, although only 22%-50% sensitivity for the carbapenems. CONCLUSIONS Overall, these findings suggest that the lack of complete correspondence between CRE AMR genotype and phenotype for carbapenems, while concerning, is independent of sequencing platform/assembly method.
Collapse
Affiliation(s)
- Rebecca Rose
- BioInfoExperts LLC, 718 Bayou Lane, Thibodaux, LA, 70301, USA.
- FoxSeq, LLC, Thibodaux, LA, USA.
| | - David J Nolan
- BioInfoExperts LLC, 718 Bayou Lane, Thibodaux, LA, 70301, USA
| | - Deborah Ashcraft
- Infectious Disease Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Amy K Feehan
- Infectious Disease Clinical Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | | | | | - Benjamin Lain
- BioInfoExperts LLC, 718 Bayou Lane, Thibodaux, LA, 70301, USA
| | - Simon Rosenthal
- BioInfoExperts LLC, 718 Bayou Lane, Thibodaux, LA, 70301, USA
| | - Lucio Miele
- Translational Science and Genetics at Louisiana State University Health Science Center, New Orleans, LA, USA
| | | | - George Pankey
- Infectious Disease Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Julia Garcia-Diaz
- Infectious Disease Clinical Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Susanna L Lamers
- BioInfoExperts LLC, 718 Bayou Lane, Thibodaux, LA, 70301, USA
- FoxSeq, LLC, Thibodaux, LA, USA
| |
Collapse
|
12
|
Hussain A, Mazumder R, Ahmed A, Saima U, Phelan JE, Campino S, Ahmed D, Asadulghani M, Clark TG, Mondal D. Genome dynamics of high-risk resistant and hypervirulent Klebsiella pneumoniae clones in Dhaka, Bangladesh. Front Microbiol 2023; 14:1184196. [PMID: 37303793 PMCID: PMC10248448 DOI: 10.3389/fmicb.2023.1184196] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/05/2023] [Indexed: 06/13/2023] Open
Abstract
Klebsiella pneumoniae is recognized as an urgent public health threat because of the emergence of difficult-to-treat (DTR) strains and hypervirulent clones, resulting in infections with high morbidity and mortality rates. Despite its prominence, little is known about the genomic epidemiology of K. pneumoniae in resource-limited settings like Bangladesh. We sequenced genomes of 32 K. pneumoniae strains isolated from patient samples at the International Center for Diarrhoeal Disease Research, Bangladesh (icddr,b). Genome sequences were examined for their diversity, population structure, resistome, virulome, MLST, O and K antigens and plasmids. Our results revealed the presence of two K. pneumoniae phylogroups, namely KpI (K. pneumoniae) (97%) and KpII (K. quasipneumoniae) (3%). The genomic characterization revealed that 25% (8/32) of isolates were associated with high-risk multidrug-resistant clones, including ST11, ST14, ST15, ST307, ST231 and ST147. The virulome analysis confirmed the presence of six (19%) hypervirulent K. pneumoniae (hvKp) and 26 (81%) classical K. pneumoniae (cKp) strains. The most common ESBL gene identified was blaCTX-M-15 (50%). Around 9% (3/32) isolates exhibited a difficult-to-treat phenotype, harboring carbapenem resistance genes (2 strains harbored blaNDM-5 plus blaOXA-232, one isolate blaOXA-181). The most prevalent O antigen was O1 (56%). The capsular polysaccharides K2, K20, K16 and K62 were enriched in the K. pneumoniae population. This study suggests the circulation of the major international high-risk multidrug-resistant and hypervirulent (hvKp) K. pneumoniae clones in Dhaka, Bangladesh. These findings warrant immediate appropriate interventions, which would otherwise lead to a high burden of untreatable life-threatening infections locally.
Collapse
Affiliation(s)
- Arif Hussain
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Razib Mazumder
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Abdullah Ahmed
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Umme Saima
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Jody E. Phelan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Susana Campino
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dilruba Ahmed
- Clinical Microbiology and Immunology Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md Asadulghani
- Biosafety and BSL3 Laboratory, Biosafety Office, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Taane G. Clark
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dinesh Mondal
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
13
|
Liu X, Wang K, Chen J, Lyu J, Li J, Chen Q, Lin Y, Tian B, Song H, Li P, Gu B. Clonal Spread of Carbapenem-Resistant Klebsiella pneumoniae Sequence Type 11 in Chinese Pediatric Patients. Microbiol Spectr 2022; 10:e0191922. [PMID: 36453896 PMCID: PMC9769831 DOI: 10.1128/spectrum.01919-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022] Open
Abstract
Klebsiella pneumoniae often causes life-threatening infections in patients globally. Despite its notability, little is known about potential nosocomial outbreak and spread of K. pneumoniae among pediatric patients in low- and middle-income countries. Ninety-eight K. pneumoniae strains isolated from pediatric patients in a large general hospital in China between February 2018 and May 2019 were subjected to nanopore and Illumina sequencing and genomic analysis to elucidate transmission and genetic diversity. The temporal distribution patterns of K. pneumoniae revealed a cluster of sequence type 11 (ST11) strains comprising two clades. Most inferred transmissions were of clade 1, which could be traced to a common ancestor dating to mid-2017. An infant in the coronary care unit played a central role, potentially seeding transmission clusters in other wards. Major genomic changes during the outbreak included chromosomal mutations associated with virulence and gains and losses of plasmids encoding resistance. In summary, we report a nosocomial outbreak among pediatric patients caused by clonal dissemination of KPC-2-producing ST11 K. pneumoniae. Our findings highlight the value of whole-genome sequencing during outbreak investigations and illustrate that transmission chains can be identified during hospital stays. IMPORTANCE We report a nosocomial outbreak among pediatric patients caused by clonal dissemination of blaKPC-2-carrying ST11 K. pneumoniae. Strains of various sequence types coexist in the complex hospital environment; the quick emergence and spread of ST11 strains were mainly due to the plasmid-mediated acquisition of resistance genes. The spread of hospital infection was highly associated with several specific wards, suggesting the importance of genomic surveillance on wards at high risk of infection.
Collapse
Affiliation(s)
- Xiong Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Kaiying Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jiali Chen
- China Medical University, Shenyang, China
| | - Jingwen Lyu
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jinhui Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Qichao Chen
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yanfeng Lin
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Benshun Tian
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongbin Song
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Peng Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
14
|
Ling H, Lou X, Luo Q, He Z, Sun M, Sun J. Recent advances in bacteriophage-based therapeutics: Insight into the post-antibiotic era. Acta Pharm Sin B 2022; 12:4348-4364. [PMID: 36561998 PMCID: PMC9764073 DOI: 10.1016/j.apsb.2022.05.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance is one of the biggest threats to global health, as it can make the treatment of bacterial infections in humans difficult owing to their high incidence rate, mortality, and treatment costs. Bacteriophage, which constitutes a type of virus that can kill bacteria, is a promising alternative strategy against antibiotic-resistant bacterial infections. Although bacteriophage therapy was first used nearly a century ago, its development came to a standstill after introducing the antibiotics. Nowadays, with the rise in antibiotic resistance, bacteriophage therapy is in the spotlight again. As bacteriophage therapy is safe and has significant anti-bacterial activity, some specific types of bacteriophages (such as bacteriophage phiX174 and Pyo bacteriophage complex liquid) entered into phase III clinical trials. Herein, we review the key points of the antibiotic resistance crisis and illustrate the factors that support the renewal of bacteriophage applications. By summarizing recent state-of-the-art studies and clinical data on bacteriophage treatment, we introduced (i) the pharmacological mechanisms and advantages of antibacterial bacteriophages, (ii) bacteriophage preparations with clinical potential and bacteriophage-derived anti-bacterial treatment strategies, and (iii) bacteriophage therapeutics aimed at multiple infection types and infection-induced cancer treatments. Finally, we highlighted the challenges and critical perspectives of bacteriophage therapy for future clinical development.
Collapse
Affiliation(s)
- Hao Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinyu Lou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiuhua Luo
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengchi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China,Corresponding authors.
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China,Corresponding authors.
| |
Collapse
|
15
|
Alshahrani AM, Ibrahim ME, Aldossary AK, Alghamdi MA, Ahmed OB, Bin Abdulhak AA. Molecular Epidemiology of Carbapenem-Resistant K. pneumoniae Clinical Isolates from the Adult Patients with Comorbidities in a Tertiary Hospital, Southern Saudi Arabia. Antibiotics (Basel) 2022; 11:antibiotics11121697. [PMID: 36551354 PMCID: PMC9774885 DOI: 10.3390/antibiotics11121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Hospitalized patients are likely to have chronic illnesses and are at an increased risk of mortality due to infection caused by MDR bacteria. We aimed to identify carbapenem-resistant genes carrying Klebsiella pneumoniae (K. pneumoniae) isolates and their risk factors recovered from adult patients with comorbidities. A cross-sectional study was carried out between April 2021 and December 2021 at King Abdullah Hospital (KAH) in Bisha province, Saudi Arabia. Seventy-one multi-drug resistant K. pneumoniae recovered from clinical samples and screened for carbapenemase genes of blaOXA-48-like, blaNDM-1, blaKPC, blaVIM, and blaIMP. Of 71 MDR K. pneumoniae examined, 47 (66.2%) isolates harbored various carbapenemase genes. The most prevalent single resistance gene was blaOXA-48-like (62.5%; n = 25), and 33.3% of them were recovered from sputum isolates. The blaNDM-1 gene was detected in 12 (30.0%) isolates, and eight of them were recovered from urine (n = 4) and blood (n = 4). Two (5.0%) single blaKPC genes were recovered from the sputum (n = 1) and blood (n = 1) isolates. In contrast, no blaIMP- and blaVIM-carrying isolates were detected. The co-existence of two resistance genes between blaOXA-48-like and blaNDM-1 was found in six strains, whereas only one strain was found to be produced in the three genes of blaNDM-1, blaKPC, and blaOXA-48-like. There were statistically significant associations between the presence of carbapenem-gene-carrying K. pneumoniae and patients' gender (χ2(1) = 5.94, p = 0.015), intensive care unit admission (χ2(1) = 7.649, p = 0.002), and chronic obstructive pulmonary disease (χ2(1) = 4.851, p = 0.028). The study highlighted the existence of carbapenemase-producing K. pneumoniae, particularly blaOXA-48-like and blaNDM-1, in patients with comorbidities. Our findings emphasize the importance of the molecular characterization of resistance-determinant-carrying bacterial pathogens as a part of infection control and prevention in hospital settings.
Collapse
Affiliation(s)
- Abdullah M. Alshahrani
- Department of Family Medicine, College of Medicine, University of Bisha, Bisha 67614, Saudi Arabia
| | - Mutasim E. Ibrahim
- Department of Basic Medical Sciences (Microbiology Unit), College of Medicine, University of Bisha, Bisha 67614, Saudi Arabia
- Correspondence: or ; Tel.: +966-502656995
| | - Ahmed K. Aldossary
- Department of Family Medicine, College of Medicine, University of Bisha, Bisha 67614, Saudi Arabia
| | - Mushabab A. Alghamdi
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 67614, Saudi Arabia
| | - Omar B. Ahmed
- Department of Environmental and Health Research, The Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Aref A. Bin Abdulhak
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| |
Collapse
|
16
|
Moglad E, Alanazi N, Altayb HN. Genomic Study of Chromosomally and Plasmid-Mediated Multidrug Resistance and Virulence Determinants in Klebsiella Pneumoniae Isolates Obtained from a Tertiary Hospital in Al-Kharj, KSA. Antibiotics (Basel) 2022; 11:1564. [PMID: 36358219 PMCID: PMC9686629 DOI: 10.3390/antibiotics11111564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 07/21/2023] Open
Abstract
Klebsiella pneumoniae is an emergent pathogen causing respiratory tract, bloodstream, and urinary tract infections in humans. This study defines the genomic sequence data, genotypic and phenotypic characterization of K. pneumoniae clinically isolated from Al-Kharj, KSA. Whole-genome analysis of four K. pneumoniae strains was performed, including de novo assembly, functional annotation, whole-genome-phylogenetic analysis, antibiotic-resistant gene identification, prophage regions, virulent factor, and pan-genome analysis. The results showed that K6 and K7 strains were MDR and ESBL producers, K16 was an ESBL producer, and K8 was sensitive to all tested drugs except ampicillin. K6 and K7 were identified with sequence type (ST) 23, while K16 and K8 were identified with STs 353 and 592, respectively. K6 and K7 were identified with the K1 (wzi1 genotype) capsule and O1 serotype, while K8 was identified with the K57 (wzi206 genotype) capsule and O3b. K6 isolates harbored 10 antimicrobial resistance genes (ARGs) associated with four different plasmids; the chloramphenicol acetyltransferase (catB3), blaOXA-1 and aac(6')-Ib-cr genes were detected in plasmid pB-8922_OXA-48. K6 and K7 also carried a similar gene cassette in plasmid pC1K6P0122-2; the gene cassettes were the trimethoprim-resistant gene (dfrA14), integron integrase (IntI1), insertion sequence (IS1), transposase protein, and replication initiation protein (RepE). Two hypervirulent plasmids were reported in isolates K6 and K7 that carried synthesis genes (iucA, iucB, iucC, iucD, and iutA) and iron siderophore genes (iroB, iroC, iroD, and iroN). The presence of these plasmids in high-risk clones suggests their dissemination in our region, which represents a serious health problem.
Collapse
Affiliation(s)
- Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, P.O. Box 173, Alkharj 11942, Saudi Arabia
| | - Nuor Alanazi
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, P.O. Box 173, Alkharj 11942, Saudi Arabia
| | - Hisham N. Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
17
|
Genomic characterisation of multidrug-resistant Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii in two intensive care units in Hanoi, Viet Nam: a prospective observational cohort study. THE LANCET. MICROBE 2022; 3:e857-e866. [PMID: 36206776 DOI: 10.1016/s2666-5247(22)00181-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Viet Nam has high rates of antimicrobial resistance (AMR) but little capacity for genomic surveillance. This study used whole genome sequencing to examine the prevalence and transmission of three key AMR pathogens in two intensive care units (ICUs) in Hanoi, Viet Nam. METHODS A prospective surveillance study of all adults admitted to ICUs at the National Hospital for Tropical Diseases and Bach Mai Hospital was done between June 19, 2017, and Jan 16, 2018. Clinical and environmental samples were cultured on selective media, characterised with MALDI TOF mass spectrometry, and sequenced with Illumina. Phylogenies based on the de-novo assemblies (SPAdes) were constructed with MAFFT (PARsnp), Gubbins, and RAxML. Resistance genes were detected with Abricate against the US National Center for Biotechnology Information database. FINDINGS 3153 Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii isolates from 369 patients were analysed. Phylogenetic analysis revealed predominant lineages within A baumannii (global clone 2, sequence types ST2 and ST571) and K pneumoniae (ST15, ST16, ST656, ST11, and ST147) isolates. Isolation from stool was most common with E coli (87·0%) followed by K pneumoniae (62·5%). Of the E coli, 85·0% carried a blaCTX-M variant, while 81·8% of K pneumoniae isolates carried blaNDM (54·4%), or blaKPC (45·1%), or both. Transmission analysis with single nucleotide polymorphisms identified 167 clusters involving 251 (68%) of 369 patients, in some cases involving patients from both ICUs. There were no clear differences between the lineages or AMR genes recovered between the two ICUs. INTERPRETATION This study represents the largest prospective surveillance study of key AMR pathogens in Vietnamese ICUs. Clusters of closely related isolates in patients across both ICUs suggests recent transmission before ICU admission in other health-care settings or in the community. FUNDING UK Medical Research Council Newton Fund, Viet Nam Ministry of Science and Technology, Wellcome Trust, Academy of Medical Sciences, Health Foundation, and UK National Institute for Health and Care Research Cambridge Biomedical Research Centre.
Collapse
|
18
|
Han YL, Wen XH, Zhao W, Cao XS, Wen JX, Wang JR, Hu ZD, Zheng WQ. Epidemiological characteristics and molecular evolution mechanisms of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Front Microbiol 2022; 13:1003783. [PMID: 36188002 PMCID: PMC9524375 DOI: 10.3389/fmicb.2022.1003783] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 12/01/2022] Open
Abstract
Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP), a type of Klebsiella pneumoniae (KP) that exhibits hypervirulence and carbapenem resistance phenotypes, can cause severe infections, both hospital- and community-acquired infections. CR-hvKP has brought great challenges to global public health and is associated with significant morbidity and mortality. There are many mechanisms responsible for the evolution of the hypervirulence and carbapenem resistance phenotypes, such as the horizontal transfer of the plasmid carrying the carbapenem resistance gene to hypervirulent Klebsiella pneumoniae (hvKP) or carbapenemase-producing Klebsiella pneumoniae (CRKP) acquiring a hypervirulence plasmid carrying a virulence-encoding gene. Notably, KP can evolve into CR-hvKP by acquiring a hybrid plasmid carrying both the carbapenem resistance and hypervirulence genes. In this review, we summarize the evolutionary mechanisms of resistance and plasmid-borne virulence as well as the prevalence of CR-hvKP.
Collapse
Affiliation(s)
- Yu-Ling Han
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Parasitology, The Basic Medical College of Inner Mongolia Medical University, Hohhot, China
| | - Xu-Hui Wen
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Parasitology, The Basic Medical College of Inner Mongolia Medical University, Hohhot, China
| | - Wen Zhao
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xi-Shan Cao
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jian-Xun Wen
- Department of Medical Experiment Center, The Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Jun-Rui Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wen-Qi Zheng
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Parasitology, The Basic Medical College of Inner Mongolia Medical University, Hohhot, China
- *Correspondence: Wen-Qi Zheng,
| |
Collapse
|
19
|
Luo TL, Corey BW, Snesrud E, Iovleva A, McElheny CL, Preston LN, Kwak YI, Bennett JW, Doi Y, McGann PT, Lebreton F. IS 26-mediated plasmid reshuffling results in convergence of toxin-antitoxin systems but loss of resistance genes in XDR Klebsiella pneumoniae from a chronic infection. Microb Genom 2022; 8. [PMID: 36169644 DOI: 10.1099/mgen.0.000892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbapenem-resistant Enterobacterales pose an urgent threat to human health worldwide. Klebsiella pneumoniae sequence type (ST) 14, initially identified in the Middle East and South-Asia and co-harbouring the carbapenemase genes bla OXA-232 and bla NDM-1, is now emerging globally. One such strain was detected in the USA in 2013 from a patient initially treated in India that also carried armA, a 16S rRNA methyltransferase that confers resistance to all clinically relevant aminoglycosides. Genetic and phenotypic changes were observed in 14 serial isolates collected from this chronically infected patient. The index isolate carried five plasmids, including an IncFIB-IncHI1B (harbouring armA and bla NDM-1), an IncFIA (bla CTX-M-15) and a ColE-like (bla OXA-232), and was extensively resistant to antibiotics. Four years later, a subsequent isolate had accumulated 34 variants, including a loss-of-function mutation in romA, resulting in tigecycline non-susceptibility. Importantly, this isolate now only carried two plasmids, including a large mosaic molecule made of fragments, all harbouring distinct toxin-antitoxin systems, from three of the canonical plasmids. Of the original acquired antibiotic resistance genes, this isolate only retained bla CTX-M-15, and as a result susceptibility to the carbapenems and amikacin was restored. Long-read sequencing of a subset of five representative isolates, collected between 2013 and 2017, allowed for the elucidation of the complex plasmid patterns and revealed the role of IS26-mediated plasmid reshuffling in the evolution of this clone. Such investigations of the mechanisms underlying plasmid stability, together with global and local surveillance programmes, are key to a better understanding of plasmid host range and dissemination.
Collapse
Affiliation(s)
- Ting L Luo
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Brendan W Corey
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Erik Snesrud
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Alina Iovleva
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christi L McElheny
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lan N Preston
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Yoon I Kwak
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Jason W Bennett
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Patrick T McGann
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Francois Lebreton
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
20
|
Zhou X, Chu Q, Li S, Yang M, Bao Y, Zhang Y, Fu S, Gong H. A new and effective genes-based method for phylogenetic analysis of Klebsiella pneumoniae. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 100:105275. [PMID: 35339697 DOI: 10.1016/j.meegid.2022.105275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
The exponential increase in the number of genomes deposited in public databases can help us gain a more holistic understanding of the phylogeny and epidemiology of Klebsiella pneumoniae. However, inferring the evolutionary relationships of K. pneumoniae based on big genomic data is challenging for existing methods. In this study, core genes of K. pneumoniae were determined and analysed in terms of differences in GC content, mutation rate, size, and potential functions. We then developed a stable genes-based method for big data analysis and compared it with existing methods. Our new method achieved a higher resolution phylogenetic analysis of K. pneumoniae. Using this genes-based method, we explored global phylogenetic relationships based on a public database of nearly 953 genomes. The results provide useful information to facilitate the phylogenetic and epidemiological analysis of K. pneumoniae, and the findings are relevant for security applications.
Collapse
Affiliation(s)
- Xiaoqin Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Qiyu Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, PR China
| | - Shengming Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Menglei Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yangyang Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Shuilin Fu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Heng Gong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
21
|
Manandhar S, Nguyen Q, Pham DT, Amatya P, Rabaa M, Dongol S, Basnyat B, Dixit SM, Baker S, Karkey A. A fatal outbreak of neonatal sepsis caused by mcr-10 carrying Enterobacter kobei in a tertiary care hospital in Nepal. J Hosp Infect 2022; 125:60-66. [PMID: 35460799 DOI: 10.1016/j.jhin.2022.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/03/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Enterobacter kobei is an emerging cause of outbreak of nosocomial infections in neonatal intensive care units (NICUs). Between July and September of 2016, an NICU in a tertiary care hospital of Nepal observed an abrupt increase in the number of neonatal sepsis cases caused by Enterobacter spp. infecting 11 of 23 admitted neonates, 5 of whom died of an exacerbated sepsis. AIM Main aims of this study were to confirm the suspected outbreak, identify environmental source of infection, and characterize genetic determinants of antimicrobial resistance (AMR) and virulence of the pathogen. METHODS We performed whole genome sequencing of all Enterobacter spp. isolated from blood cultures of septic neonates admitted to NICU between May 2016 and December 2017. Also, an environmental sampling was intensified from fortnightly to weekly during the outbreak. FINDINGS The genomic analysis revealed that 10 of 11 non-duplicated E. kobei isolated from neonatal blood cultures between July and September 2016 were clonal, confirming the outbreak. The isolates carried AMR genes including blaAmpC and mcr-10 conferring reduced susceptibility to carbapenem and colistin respectively. The environmental sampling however failed to isolate any Enterobacter spp. Reinforcement of aseptic protocols in invasive procedures, hand hygiene, environmental decontamination, fumigation, and secluded care of culture positive cases successfully terminated the outbreak. CONCLUSION Our study underscored the need to implement stringent infection control measures to prevent infection outbreaks. Further, for the first time, we report the emergence of carbapenem and colistin non-susceptible E. kobei carrying mcr-10 gene as an important cause of nosocomial neonatal sepsis in an NICU.
Collapse
Affiliation(s)
- Sulochana Manandhar
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal; Centre for Tropical Medicine and Global Health, Medical sciences division, Nuffield Department of Medicine, University of Oxford, Linacre College, Oxford, UK
| | - Quynh Nguyen
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Duy Thanh Pham
- Centre for Tropical Medicine and Global Health, Medical sciences division, Nuffield Department of Medicine, University of Oxford, Linacre College, Oxford, UK; Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Puja Amatya
- Department of Pediatrics, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Maia Rabaa
- Centre for Tropical Medicine and Global Health, Medical sciences division, Nuffield Department of Medicine, University of Oxford, Linacre College, Oxford, UK; Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Sabina Dongol
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Buddha Basnyat
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal; Centre for Tropical Medicine and Global Health, Medical sciences division, Nuffield Department of Medicine, University of Oxford, Linacre College, Oxford, UK
| | | | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID) Department of Medicine, University of Cambridge, Cambridge, UK
| | - Abhilasha Karkey
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal; Centre for Tropical Medicine and Global Health, Medical sciences division, Nuffield Department of Medicine, University of Oxford, Linacre College, Oxford, UK.
| |
Collapse
|
22
|
Rodrigues YC, Lobato ARF, Quaresma AJPG, Guerra LMGD, Brasiliense DM. The Spread of NDM-1 and NDM-7-Producing Klebsiella pneumoniae Is Driven by Multiclonal Expansion of High-Risk Clones in Healthcare Institutions in the State of Pará, Brazilian Amazon Region. Antibiotics (Basel) 2021; 10:1527. [PMID: 34943739 PMCID: PMC8698286 DOI: 10.3390/antibiotics10121527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Carbapenem resistance among Klebsiella pneumoniae isolates is often related to carbapenemase genes, located in genetic transmissible elements, particularly the blaKPC gene, which variants are spread in several countries. Recently, reports of K. pneumoniae isolates harboring the blaNDM gene have increased dramatically along with the dissemination of epidemic high-risk clones (HRCs). In the present study, we report the multiclonal spread of New Delhi metallo-beta-lactamase (NDM)-producing K. pneumoniae in different healthcare institutions in the state of Pará, Northern Brazil. A total of 23 NDM-producing isolates were tested regarding antimicrobial susceptibility testing features, screening of carbapenemase genes, and genotyping by multilocus sequencing typing (MLST). All K. pneumoniae isolates were determined as multidrug-resistant (MDR), being mainly resistant to carbapenems, cephalosporins, and fluoroquinolones. The blaNDM-7 (60.9%-14/23) and blaNDM-1 (34.8%-8/23) variants were detected. MLST genotyping revealed the predomination of HRCs, including ST11/CC258, ST340/CC258, ST15/CC15, ST392/CC147, among others. To conclude, the present study reveals the contribution of HRCs and non-HRCs in the spread of NDM-1 and NDM-7-producing K. pneumoniae isolates in Northern (Amazon region) Brazil, along with the first detection of NDM-7 variant in Latin America and Brazil, highlighting the need for surveillance and control of strains that may negatively impact healthcare and antimicrobial resistance.
Collapse
Affiliation(s)
| | | | | | | | - Danielle Murici Brasiliense
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ananindeua 67030-000, PA, Brazil; (Y.C.R.); (A.R.F.L.); (A.J.P.G.Q.); (L.M.G.D.G.)
| |
Collapse
|
23
|
Genomic Epidemiology of Carbapenemase-Producing Enterobacterales at a Hospital System in Toronto, Ontario, Canada, 2007 to 2018. Antimicrob Agents Chemother 2021; 65:e0036021. [PMID: 34060902 DOI: 10.1128/aac.00360-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
At a hospital system (H1) in Ontario, Canada, we investigated whether whole-genome sequencing (WGS) altered initial epidemiological interpretation of carbapenemase-producing Enterobacterales (CPE) transmission. We included patients with CPE colonization/infection identified by population-based surveillance from October 2007 to August 2018 who received health care at H1 in the year before/after CPE detection. H1 reported epidemiological transmission clusters. We combined single nucleotide variant (SNV) analysis, plasmid characterization, and epidemiological data. Eighty-five patients were included. H1 identified 7 epidemiological transmission clusters, namely, A to G, involving 24/85 (28%) patients. SNV analysis confirmed transmission clusters C, D, and G and identified two additional cases belonging to cluster A. One was a travel-related case that was the likely index case (0 to 6 SNVs from other isolates); this case stayed on the same unit as the initially presumed index case 4 months prior to detection of the initially presumed index case on another unit. The second additional case occupied a room previously occupied by 5 cluster A cases. Plasmid sequence analysis excluded a case from cluster A and identified clusters E and F as possibly two parts of a single cluster. SNV analysis also identified a case without direct epidemiologic links that was 18 to 21 SNVs away from cluster B, suggesting possible undetected interhospital transmission. SNV and plasmid sequence analysis identified cases belonging to transmission clusters that conventional epidemiology missed and excluded other cases. Implementation of routine WGS to complement epidemiological transmission investigations has the potential to improve prevention and control of CPE in hospitals.
Collapse
|
24
|
Manandhar S, Amatya P, Ansari I, Joshi N, Maharjan N, Dongol S, Basnyat B, Dixit SM, Baker S, Karkey A. Risk factors for the development of neonatal sepsis in a neonatal intensive care unit of a tertiary care hospital of Nepal. BMC Infect Dis 2021; 21:546. [PMID: 34107906 PMCID: PMC8191200 DOI: 10.1186/s12879-021-06261-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/17/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Sepsis is an overwhelming and life-threatening response to bacteria in bloodstream and a major cause of neonatal morbidity and mortality. Understanding the etiology and potential risk factors for neonatal sepsis is urgently required, particularly in low-income countries where burden of infection is high and its epidemiology is poorly understood. METHODS A prospective observational cohort study was conducted between April 2016 and October 2017 in a level three NICU at a tertiary care hospital in Nepal to determine the bacterial etiology and potential risk factors for neonatal sepsis. RESULTS Among 142 NICU admitted neonates, 15% (21/142) and 32% (46/142) developed blood culture-positive and -negative neonatal sepsis respectively. Klebsiella pneumoniae (34%, 15/44) and Enterobacter spp. (25%, 11/44) were the most common isolates. The antimicrobial resistance of isolates to ampicillin (100%, 43/43), cefotaxime (74%, 31/42) and ampicillin-sulbactam (55%, 21/38) were the highest. BlaTEM (53%, 18/34) and blaKPC (46%, 13/28) were the commonest ESBL and carbapenemase genes respectively. In univariate logistic regression, the odds of sepsis increased with each additional day of use of invasive procedures such as mechanical ventilation (OR 1.086, 95% CI 1.008-1.170), umbilical artery catheter (OR 1.375, 95% CI 1.049-1.803), intravenous cannula (OR 1.140, 95% CI 1.062-1.225); blood transfusion events (OR 3.084, 95% CI 1.407-6.760); NICU stay (OR 1.109, 95% CI 1.040-1.182) and failure to breast feed (OR 1.130, 95% CI 1.060-1.205). Sepsis odds also increased with leukopenia (OR 1.790, 95% CI 1.04-3.082), increase in C-reactive protein (OR 1.028, 95% CI 1.016-1.040) and decrease in platelets count (OR 0.992, 95% CI 0.989-0.994). In multivariate analysis, increase in IV cannula insertion days (OR 1.147, 95% CI 1.039-1.267) and CRP level (OR 1.028, 95% CI 1.008-1.049) increased the odds of sepsis. CONCLUSIONS Our study indicated various nosocomial risk factors and underscored the need to improve local infection control measures so as to reduce the existing burden of sepsis. We have highlighted certain sepsis associated laboratory parameters along with identification of antimicrobial resistance genes, which can guide for early and better therapeutic management of sepsis. These findings could be extrapolated to other low-income settings within the region.
Collapse
Affiliation(s)
- Sulochana Manandhar
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
- Centre for Tropical Medicine and Global Health, Medical Sciences Division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Puja Amatya
- Department of Pediatrics, Patan Academy of Health Sciences, Patan Hospital, Kathmandu, Nepal
| | - Imran Ansari
- Department of Pediatrics, Patan Academy of Health Sciences, Patan Hospital, Kathmandu, Nepal
| | - Niva Joshi
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Nhukesh Maharjan
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Sabina Dongol
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Buddha Basnyat
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
- Centre for Tropical Medicine and Global Health, Medical Sciences Division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID) Department of Medicine, University of Cambridge, Cambridge, UK
| | - Abhilasha Karkey
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal.
- Centre for Tropical Medicine and Global Health, Medical Sciences Division, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Han Y, Huang L, Liu C, Huang X, Zheng R, Lu Y, Xia W, Ni F, Mei Y, Liu G. Characterization of Carbapenem-Resistant Klebsiella pneumoniae ST15 Clone Coproducing KPC-2, CTX-M-15 and SHV-28 Spread in an Intensive Care Unit of a Tertiary Hospital. Infect Drug Resist 2021; 14:767-773. [PMID: 33688212 PMCID: PMC7937386 DOI: 10.2147/idr.s298515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Objective Nosocomial infection caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) is a great threat to severely ill patients. Here we report an outbreak of K. pneumoniae ST15 isolates co-producing KPC-2, CTX-M-15, and SHV-28 in the cardiac surgery intensive care unit (CSICU) of a tertiary hospital. Materials and Methods From November 2019 to August 2020, all non-duplicated CRKP isolates were collected from the CSICU. The VITEK-2 compact system was used for bacterial identification and antimicrobial susceptibility testing. Clinical data were retrieved from electronic case records. All strains were also subjected to antibiotic resistance genes detection. Clonal relationships were analyzed by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Results A total of 28 non-duplicated CRKP isolates were collected, including 23 strains belonging to ST15 and 5 strains belonging to ST11. All ST15 isolates were susceptible to amikacin, tigecycline, polymyxin B and ceftazidime/avibactam, but resistant to carbapenems, cephalosporins, quinolones, tobramycin and gentamicin. The detection of resistant determinants showed that 21 strains of ST15 CRKP co-harboured blaKPC-2, blaCTX-M-15, blaSHV-28, blaTEM-1, blaOXA-1 and aac(6')-Ib-cr. All the 28 CRKP isolates were classified into five PFGE patterns (A, B, C, D and E), of which type A and B belonged to ST15 and type C, D and E belonged to ST11. PFGE type A was the predominant clonotype of this nosocomial infection and belonged to ST15. Conclusion K. pneumoniae ST15 co-producing KPC-2, CTX-M-15, SHV-28, TEM-1, OXA-1 and aac(6')-Ib-cr is the predominant clone spread in the CSICU. Surveillance and comprehensive infection control measures should be strengthened in clinical practice.
Collapse
Affiliation(s)
- Yaping Han
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Lei Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Chengcheng Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Xu Huang
- Department of Laboratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Ruiying Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Yanfei Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Wenying Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Fang Ni
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Yaning Mei
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Genyan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| |
Collapse
|
26
|
Nguyen TNT, Nguyen PLN, Le NTQ, Nguyen LPH, Duong TB, Ho NDT, Nguyen QPN, Pham TD, Tran AT, The HC, Nguyen HH, Nguyen CVV, Thwaites GE, Rabaa MA, Pham DT. Emerging carbapenem-resistant Klebsiella pneumoniae sequence type 16 causing multiple outbreaks in a tertiary hospital in southern Vietnam. Microb Genom 2021; 7:mgen000519. [PMID: 33565955 PMCID: PMC8190610 DOI: 10.1099/mgen.0.000519] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
The emergence of carbapenem resistance in Klebsiella pneumoniae represents a major global public health concern. Nosocomial outbreaks caused by multidrug-resistant K. pneumoniae are commonly reported to result in high morbidity and mortality due to limited treatment options. Between October 2019 and January 2020, two concurrent high-mortality nosocomial outbreaks occurred in a referral hospital in Ho Chi Minh City, Vietnam. We performed genome sequencing and phylogenetic analysis of eight K. pneumoniae isolates from infected patients and two environmental isolates for outbreak investigation. We identified two outbreaks caused by two distinct lineages of the international sequence type (ST) 16 clone, which displayed extensive drug resistance, including resistance to carbapenem and colistin. Carbapenem-resistant ST16 outbreak strains clustered tightly with previously described ST16 K. pneumoniae from other hospitals in Vietnam, suggesting local persistence and transmission of this particular clone in this setting. We found environmental isolates from a hospital bed and blood pressure cuff that were genetically linked to an outbreak case cluster, confirming the potential of high-touch surfaces as sources for nosocomial spread of K. pneumoniae. Further, we found colistin resistance caused by disruption of the mgrB gene by an ISL3-like element, and carbapenem resistance mediated by a transferable IncF/blaOXA-181 plasmid carrying the ISL3-like element. Our study highlights the importance of coordinated efforts between clinical and molecular microbiologists and infection control teams to rapidly identify, investigate and contain nosocomial outbreaks. Routine surveillance with advanced sequencing technology should be implemented to strengthen hospital infection control and prevention measures.
Collapse
Affiliation(s)
| | | | | | | | | | - Nghia Dang Trung Ho
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | | | - Trung Duc Pham
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Anh Tuan Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Hao Chung The
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | - Guy E. Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Maia A. Rabaa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Duy Thanh Pham
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Wang X, Li Q, Kang J, Zhang Z, Song Y, Yin D, Guo Q, Song J, Li X, Wang S, Duan J. Co-Production of NDM-1, CTX-M-9 Family and mcr-1 in a Klebsiella pneumoniae ST4564 Strain in China. Infect Drug Resist 2021; 14:449-457. [PMID: 33574684 PMCID: PMC7872938 DOI: 10.2147/idr.s292820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/09/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose To identify novel sequence types 4564 (ST4564) carbapenem-resistant Klebsiella pneumoniae (CRKP). Characterizing the feature of the clinic, resistance, and virulence of a co-producing NDM-1 and CTX-M-9 family and mcr-1 ST4564 strain. Methods A novel ST4564 CRKP was collected from June 2018 to July 2018. We investigated its antimicrobial susceptibility by the microdilution method. Using the modified carbapenem inactivation method (mCIM) to screen phenotype of carbapenemases. Resistance mechanisms, virulence-associated genes, multilocus sequence typing (MLST), and capsular serotypes were characterized by polymerase chain reaction (PCR) and DNA sequencing. Next-generation sequencing (NGS) was carried out to determine the genetic features of carbapenem resistance and virulence. Results ST4564, co-carrying NDM-1, CTX-M-9 and mcr-1, was resistant to carbapenems, cephamycin, third- or fourth-generation cephalosporins, β-lactam combination agents, quinolones and tigecycline but remained susceptible to amikacin (AMK) and colistin (COL). Through the NGS analysis with the G+C content of 56.65%, multiple resistance and virulence genomes were detected. The genes encoding the β-lactams, aminoglycosides, quinolones, macrolides, sulfonamide, polysaccharide capsule, type-I fimbriae cluster, siderophore genes, transporter and pumps, T6SS and pullulanase secretion protein. goeBURST analysis showed that ST4564 belonged to the CC1571 and it was not related to the prevalent high-risk clones. Conclusion We first identified the novel ST4564 CRKP. Our finding suggested that the urgent need for infection control of the new clone to prevent it from becoming a high-risk clone of CRKP.
Collapse
Affiliation(s)
- Xinchun Wang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Qi Li
- Department of Pharmacy, School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jianbang Kang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Zheng Zhang
- Department of Pharmacy, School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Yan Song
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Donghong Yin
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Qian Guo
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Junli Song
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Xiaoxia Li
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Shuyun Wang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jinju Duan
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
28
|
Comparative genomics with a multidrug-resistant Klebsiella pneumoniae isolate reveals the panorama of unexplored diversity in Northeast Brazil. Gene 2020; 772:145386. [PMID: 33373662 DOI: 10.1016/j.gene.2020.145386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
The emergence of community acquired infections increases the public health concern on K. pneumoniae and closely related bacteria among which antimicrobial resistance spreads. We report a multidrug-resistant K. pneumoniae isolate, B31, of a patient infected in the community and admitted to an intensive care unit in Northeast Brazil. Antimicrobial susceptibility and genome information were thoroughly investigated to characterize B31 in front of 172 sequenced strains of different countries. Assigned to the Sequence Type 15, which is globally spread, B31 presented extended spectrum beta-lactamase, tigecycline and ciprofloxacin resistance. Genome sequencing revealed most resistance genes being carried by plasmids with high dissemination potential. The absence of main virulence factors, like yersiniabactin and colibactin, apparently suggests a mild pathogenic strain which, on the contrary, persisted and caused severe infection in a previously healthy patient. The present study contributes to unveil the unclear genomic scenario of virulent and multidrug-resistant K. pneumoniae in Brazil.
Collapse
|
29
|
El-Domany RA, Awadalla OA, Shabana SA, El-Dardir MA, Emara M. Analysis of the Correlation Between Antibiotic Resistance Patterns and Virulence Determinants in Pathogenic Klebsiella pneumoniae Isolates from Egypt. Microb Drug Resist 2020; 27:727-739. [PMID: 33103956 DOI: 10.1089/mdr.2020.0236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Klebsiella pneumoniae is responsible for a plethora of infections involving multiple body systems. This study investigated K. pneumoniae clinical isolates for virulence-associated characters and antibiotic resistance. First, antibiotic sensitivity was determined for 40 K. pneumoniae clinical isolates. Some virulence and resistance-associated factors were studied phenotypically and genotypically. Multiple resistance profiles were observed (multidrug resistant [MDR; 42.5%], extensive drug resistant [XDR; 35%], and pandrug resistant [PDR; 5%]). Moreover, CTX-M-1, TEM, qnrS, and qnrA genes were detected in 70%, 30%, 60%, and 30% of selected isolates, respectively, and 40% of tested isolates were extended-spectrum β-lactamases (ESBLs) producers. Interestingly, all ESBLs producers harbored class 1 integrase gene (IntI1), while 60% of ESBLs producers harbored both CTX-M-1 and TEM. All tested isolates were capsulated while 87.5% were biofilm producers. Fimbriae were detected in 90% of tested isolates (all were biofilm producers and type 3 fimbriae adhesion gene [mrkD] positive). Sequence analysis of OXA-48, qnrS, and IntI1 revealed 100% identity with published sequences, while sequencing of qnrA, OmpK-35, and iron regulatory protein gene (irp2) showed minor variations in the form of one or few single-nucleotide polymorphism. Altogether, the current study revealed that all MDR, XDR, and PDR K. pneumoniae isolates were multivirulent and all harbored 3-5 virulence genes and 2-9 antimicrobial resistance genes and exhibited 8 and 10 different virulence and antimicrobial resistance profiles, respectively. In this study, we also report a positive correlation between some virulence genes and antimicrobial resistance genes among K. pneumoniae tested isolates.
Collapse
Affiliation(s)
- Ramadan A El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafr El sheikh University, Kafr El Sheikh, Egypt
| | - Omayma A Awadalla
- Department of Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Samya A Shabana
- Department of Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mona A El-Dardir
- Department of Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed Emara
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
30
|
Clinical and Molecular Description of a High-Copy IncQ1 KPC-2 Plasmid Harbored by the International ST15 Klebsiella pneumoniae Clone. mSphere 2020; 5:5/5/e00756-20. [PMID: 33028683 PMCID: PMC7568653 DOI: 10.1128/msphere.00756-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In many parts of the world, carbapenem resistance is a serious public health concern. In Brazil, carbapenem resistance in Enterobacterales is mostly driven by the dissemination of KPC-2-producing K. pneumoniae clones. Despite being endemic in this country, only a few reports providing both clinical and genomic data are available in Brazil, which limit the understanding of the real clinical impact caused by the dissemination of different clones carrying blaKPC-2 in Brazilian hospitals. Although several of these KPC-2-producer K. pneumoniae isolates belong to the clonal complex 258 and carry Tn4401 transposons located on large plasmids, a concomitant emergence and silent dissemination of small high-copy-number blaKPC-2 plasmids are of importance, as described in this study. Our data identify a small high-copy-number IncQ1 KPC plasmid, its clinical relevance, and the potential for conjugative transfer into several K. pneumoniae isolates, belonging to different international lineages, such as ST258, ST101, and ST15. This study provides the genomic characterization and clinical description of bloodstream infections (BSI) cases due to ST15 KPC-2 producer Klebsiella pneumoniae. Six KPC-K. pneumoniae isolates were recovered in 2015 in a tertiary Brazilian hospital and were analyzed by whole-genome sequencing (WGS) (Illumina MiSeq short reads). Of these, two isolates were further analyzed by Nanopore MinION sequencing, allowing complete chromosome and plasmid circularization (hybrid assembly), using Unicycler software. The clinical analysis showed that the 30-day overall mortality for these BSI cases was high (83%). The isolates exhibited meropenem resistance (MICs, 32 to 128 mg/liter), with 3/6 isolates resistant to polymyxin B. The conjugative properties of the blaKPC-2 plasmid and its copy number were assessed by standard conjugation experiments and sequence copy number analysis. We identified in all six isolates a small (8.3-kb), high-copy-number (20 copies/cell) non-self-conjugative IncQ plasmid harboring blaKPC-2 in a non-Tn4401 transposon. This plasmid backbone was previously reported to harbor blaKPC-2 only in Brazil, and it could be comobilized at a high frequency (10−4) into Escherichia coli J53 and into several high-risk K. pneumoniae clones (ST258, ST15, and ST101) by a common IncL/M helper plasmid, suggesting the potential of international spread. This study thus identified the international K. pneumoniae ST15 clone as a carrier of blaKPC-2 in a high-copy-number IncQ1 plasmid that is easily transmissible among other common Klebsiella strains. This finding is of concern since IncQ1 plasmids are efficient antimicrobial resistance determinant carriers across Gram-negative species. The spread of such carbapenemase-encoding IncQ1 plasmids should therefore be closely monitored. IMPORTANCE In many parts of the world, carbapenem resistance is a serious public health concern. In Brazil, carbapenem resistance in Enterobacterales is mostly driven by the dissemination of KPC-2-producing K. pneumoniae clones. Despite being endemic in this country, only a few reports providing both clinical and genomic data are available in Brazil, which limit the understanding of the real clinical impact caused by the dissemination of different clones carrying blaKPC-2 in Brazilian hospitals. Although several of these KPC-2-producer K. pneumoniae isolates belong to the clonal complex 258 and carry Tn4401 transposons located on large plasmids, a concomitant emergence and silent dissemination of small high-copy-number blaKPC-2 plasmids are of importance, as described in this study. Our data identify a small high-copy-number IncQ1 KPC plasmid, its clinical relevance, and the potential for conjugative transfer into several K. pneumoniae isolates, belonging to different international lineages, such as ST258, ST101, and ST15.
Collapse
|
31
|
Flores C, Bianco K, de Filippis I, Clementino MM, Romão CMC. Genetic Relatedness of NDM-Producing Klebsiella pneumoniae Co-Occurring VIM, KPC, and OXA-48 Enzymes from Surveillance Cultures from an Intensive Care Unit. Microb Drug Resist 2020; 26:1219-1226. [DOI: 10.1089/mdr.2019.0483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Claudia Flores
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde, Rio de Janeiro, Brazil
| | - Kayo Bianco
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde, Rio de Janeiro, Brazil
| | - Ivano de Filippis
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde, Rio de Janeiro, Brazil
| | | | - Célia Maria C.P.A. Romão
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Li Q, Zhu J, Kang J, Song Y, Yin D, Guo Q, Song J, Zhang Y, Wang S, Duan J. Emergence of NDM-5-Producing Carbapenem-Resistant Klebsiella pneumoniae and SIM-Producing Hypervirulent Klebsiella pneumoniae Isolated from Aseptic Body Fluid in a Large Tertiary Hospital, 2017-2018: Genetic Traits of blaNDM-Like and blaSIM-Like Genes as Determined by NGS. Infect Drug Resist 2020; 13:3075-3089. [PMID: 32943891 PMCID: PMC7481300 DOI: 10.2147/idr.s261117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/28/2020] [Indexed: 01/10/2023] Open
Abstract
Purpose To characterize the clinical, resistance, and virulence features of carbapenem-resistant Klebsiella pneumonaie (CRKP) and hypervirulent Klebsiella pneumoniae (hvKP) and also provide an effective selection of drug in CRKP and hvKP treatment. Materials and Methods Twelve strains were collected and investigated these isolates for their antimicrobial susceptibility and molecular features. Resistance mechanisms, virulence-associated genes, multilocus sequence typing (MLST), and serotypes were detected by PCR and sequencing. Next general sequencing (NGS) was carried out to determine the features of carbapenem resistance and virulence. The synergistic activity of tigecycline–imipenem (TGC+IPM), tigecycline–meropenem (TGC+MEM), and tigecycline–aztreonam (TGC+ATM) combinations were performed by microdilution checkerboard method. Results Eleven CRKP and one hvKP strains were collected. All strains showed highly sensitive rates to tigecycline (TGC) and amikacin (AMK). NDM (33.3%, 4/12) was the main resistance mechanism and MLST assigned 3 of them to ST11. CTX-M-producing (n = 1) and KPC-2-producing (n = 1) isolates belonged to ST147 and ST11, respectively. The MICs of ATM and quinolones in NDM-1 CRKP and NDM-5 CRKP strains were different. The serotype of the majority strains was KL22KL137 (58.3%, 7/12), hvKP stain belonged to K64. CRKP strains harbored plasmid-mediated quinolone resistance genes (oqxA, oqxB, qnrS, qnrB), β-lactams (blaCTX-M-3), aminoglycosides, type I and type III fimbriae genes, siderophore genes, and transporter and pumps. SIM-producing ST1764 K64 showed typical features of hvKP, showing hypermucoviscosity phenotype. The virulence genes, including rmpA2, alls and aerobactin genes, linked to hvKP, were found in ST1764 hvKP. hvKP was sensitive to quinolone; also, oqxA gene was detected. All TGC combinations showed highly synergistic effects and TGC+IPM was more effective treatment. Conclusion We first identified the NDM-5-producing ST690 CRKP and SIM-producing ST1764 hvKP strains in Shanxi province. Tigecycline-carbapenem combinations were available treatments for CRKP.
Collapse
Affiliation(s)
- Qi Li
- Department of Pharmacy, School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jiaying Zhu
- Department of Pharmacy, School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jianbang Kang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Yan Song
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Donghong Yin
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Qian Guo
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Junli Song
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Yan Zhang
- Department of Chief Executive, Willingmed Technology (Beijing) Co., Ltd, Beijing, Beijing, People's Republic of China
| | - Shuyun Wang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jinju Duan
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
33
|
Horesh G, Fino C, Harms A, Dorman MJ, Parts L, Gerdes K, Heinz E, Thomson NR. Type II and type IV toxin-antitoxin systems show different evolutionary patterns in the global Klebsiella pneumoniae population. Nucleic Acids Res 2020; 48:4357-4370. [PMID: 32232417 PMCID: PMC7192599 DOI: 10.1093/nar/gkaa198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/21/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
The Klebsiella pneumoniae species complex includes important opportunistic pathogens which have become public health priorities linked to major hospital outbreaks and the recent emergence of multidrug-resistant hypervirulent strains. Bacterial virulence and the spread of multidrug resistance have previously been linked to toxin-antitoxin (TA) systems. TA systems encode a toxin that disrupts essential cellular processes, and a cognate antitoxin which counteracts this activity. Whilst associated with the maintenance of plasmids, they also act in bacterial immunity and antibiotic tolerance. However, the evolutionary dynamics and distribution of TA systems in clinical pathogens are not well understood. Here, we present a comprehensive survey and description of the diversity of TA systems in 259 clinically relevant genomes of K. pneumoniae. We show that TA systems are highly prevalent with a median of 20 loci per strain. Importantly, these toxins differ substantially in their distribution patterns and in their range of cognate antitoxins. Classification along these properties suggests different roles of TA systems and highlights the association and co-evolution of toxins and antitoxins.
Collapse
Affiliation(s)
- Gal Horesh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1RQ, UK
| | - Cinzia Fino
- Centre of Excellence for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Alexander Harms
- Centre of Excellence for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Matthew J Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1RQ, UK
| | - Leopold Parts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1RQ, UK
- Department of Computer Science, University of Tartu, Tartu, 50090, Estonia
| | - Kenn Gerdes
- Centre of Excellence for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Eva Heinz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1RQ, UK
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Nicholas R Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1RQ, UK
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|
34
|
Benulič K, Pirš M, Couto N, Chlebowicz M, Rossen JWA, Zorec TM, Seme K, Poljak M, Lejko Zupanc T, Ružić-Sabljić E, Cerar T. Whole genome sequencing characterization of Slovenian carbapenem-resistant Klebsiella pneumoniae, including OXA-48 and NDM-1 producing outbreak isolates. PLoS One 2020; 15:e0231503. [PMID: 32282829 PMCID: PMC7153892 DOI: 10.1371/journal.pone.0231503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/24/2020] [Indexed: 11/21/2022] Open
Abstract
Objectives The first hospital outbreak of carbapenemase-producing Enterobacteriaceae in Slovenia occurred in 2014–2016. Whole genome sequencing was used to analyse the population of carbapenem-resistant Klebsiella pneumoniae collected in Slovenia in 2014–2017, including OXA-48 and/or NDM-1 producing strains from the outbreak. Methods A total of 32 K. pneumoniae isolates were analysed using short-read sequencing. Multi-locus sequence typing and core genome multi-locus sequence typing were used to infer genetic relatedness. Antimicrobial resistance markers, virulence factors, plasmid content and wzi types were determined. Long-read sequencing was used for six isolates for detailed analysis of plasmids and their possible transmission. Results Overall, we detected 10 different sequence types (STs), the most common being ST437 (40.6%). Isolates from the initial outbreak belonged to ST437 (12/16) and ST147 (4/16). A second outbreak of four ST15 isolates was discovered. A new ST (ST3390) and two new wzi types (wzi-556, wzi-559) were identified. blaOXA-48 was found in 17 (53.1%) isolates, blaNDM-1 in five (15.6%), and a combination of blaOXA-48/NDM-1 in seven (21.9%) isolates. Identical plasmids carrying blaOXA-48 were found in outbreak isolates sequenced with long-read sequencing technology. Conclusions Whole genome sequencing of Slovenian carbapenem-resistant K. pneumoniae isolates revealed multiple clusters of STs, two of which were involved in the first hospital outbreak of carbapenem producing K. pneumoniae in Slovenia. Transmission of the plasmid carrying blaOXA-48 between two STs was likely to have occurred. A previously unidentified second outbreak was also discovered, highlighting the importance of whole genome sequencing in detection and/or characterization of hospital outbreaks and surveillance of drug-resistant bacterial clones.
Collapse
Affiliation(s)
- Katarina Benulič
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| | - Mateja Pirš
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Natacha Couto
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Monika Chlebowicz
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - John W. A. Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tomaž Mark Zorec
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Seme
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Mario Poljak
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Lejko Zupanc
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Eva Ružić-Sabljić
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Tjaša Cerar
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
35
|
Abstract
Klebsiella pneumoniae is a common cause of antimicrobial-resistant opportunistic infections in hospitalized patients. The species is naturally resistant to penicillins, and members of the population often carry acquired resistance to multiple antimicrobials. However, knowledge of K. pneumoniae ecology, population structure or pathogenicity is relatively limited. Over the past decade, K. pneumoniae has emerged as a major clinical and public health threat owing to increasing prevalence of healthcare-associated infections caused by multidrug-resistant strains producing extended-spectrum β-lactamases and/or carbapenemases. A parallel phenomenon of severe community-acquired infections caused by 'hypervirulent' K. pneumoniae has also emerged, associated with strains expressing acquired virulence factors. These distinct clinical concerns have stimulated renewed interest in K. pneumoniae research and particularly the application of genomics. In this Review, we discuss how genomics approaches have advanced our understanding of K. pneumoniae taxonomy, ecology and evolution as well as the diversity and distribution of clinically relevant determinants of pathogenicity and antimicrobial resistance. A deeper understanding of K. pneumoniae population structure and diversity will be important for the proper design and interpretation of experimental studies, for interpreting clinical and public health surveillance data and for the design and implementation of novel control strategies against this important pathogen.
Collapse
|
36
|
Wyres KL, Nguyen TNT, Lam MMC, Judd LM, van Vinh Chau N, Dance DAB, Ip M, Karkey A, Ling CL, Miliya T, Newton PN, Lan NPH, Sengduangphachanh A, Turner P, Veeraraghavan B, Vinh PV, Vongsouvath M, Thomson NR, Baker S, Holt KE. Genomic surveillance for hypervirulence and multi-drug resistance in invasive Klebsiella pneumoniae from South and Southeast Asia. Genome Med 2020; 12:11. [PMID: 31948471 DOI: 10.1101/557785v1.full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/12/2019] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae is a leading cause of bloodstream infection (BSI). Strains producing extended-spectrum beta-lactamases (ESBLs) or carbapenemases are considered global priority pathogens for which new treatment and prevention strategies are urgently required, due to severely limited therapeutic options. South and Southeast Asia are major hubs for antimicrobial-resistant (AMR) K. pneumoniae and also for the characteristically antimicrobial-sensitive, community-acquired "hypervirulent" strains. The emergence of hypervirulent AMR strains and lack of data on exopolysaccharide diversity pose a challenge for K. pneumoniae BSI control strategies worldwide. METHODS We conducted a retrospective genomic epidemiology study of 365 BSI K. pneumoniae from seven major healthcare facilities across South and Southeast Asia, extracting clinically relevant information (AMR, virulence, K and O antigen loci) using Kleborate, a K. pneumoniae-specific genomic typing tool. RESULTS K. pneumoniae BSI isolates were highly diverse, comprising 120 multi-locus sequence types (STs) and 63 K-loci. ESBL and carbapenemase gene frequencies were 47% and 17%, respectively. The aerobactin synthesis locus (iuc), associated with hypervirulence, was detected in 28% of isolates. Importantly, 7% of isolates harboured iuc plus ESBL and/or carbapenemase genes. The latter represent genotypic AMR-virulence convergence, which is generally considered a rare phenomenon but was particularly common among South Asian BSI (17%). Of greatest concern, we identified seven novel plasmids carrying both iuc and AMR genes, raising the prospect of co-transfer of these phenotypes among K. pneumoniae. CONCLUSIONS K. pneumoniae BSI in South and Southeast Asia are caused by different STs from those predominating in other regions, and with higher frequency of acquired virulence determinants. K. pneumoniae carrying both iuc and AMR genes were also detected at higher rates than have been reported elsewhere. The study demonstrates how genomics-based surveillance-reporting full molecular profiles including STs, AMR, virulence and serotype locus information-can help standardise comparisons between sites and identify regional differences in pathogen populations.
Collapse
Affiliation(s)
- Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - To N T Nguyen
- Hospital of Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Margaret M C Lam
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | | | - David A B Dance
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Abhilasha Karkey
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Patan Academy of Health Sciences, Oxford University Clinical Research Unit, Kathmandu, Nepal
| | - Clare L Ling
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Thyl Miliya
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Amphone Sengduangphachanh
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Paul Turner
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Phat Voong Vinh
- Hospital of Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Nicholas R Thomson
- London School of Hygiene and Tropical Medicine, London, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID) Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
37
|
Wyres KL, Nguyen TNT, Lam MMC, Judd LM, van Vinh Chau N, Dance DAB, Ip M, Karkey A, Ling CL, Miliya T, Newton PN, Lan NPH, Sengduangphachanh A, Turner P, Veeraraghavan B, Vinh PV, Vongsouvath M, Thomson NR, Baker S, Holt KE. Genomic surveillance for hypervirulence and multi-drug resistance in invasive Klebsiella pneumoniae from South and Southeast Asia. Genome Med 2020; 12:11. [PMID: 31948471 PMCID: PMC6966826 DOI: 10.1186/s13073-019-0706-y] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Klebsiella pneumoniae is a leading cause of bloodstream infection (BSI). Strains producing extended-spectrum beta-lactamases (ESBLs) or carbapenemases are considered global priority pathogens for which new treatment and prevention strategies are urgently required, due to severely limited therapeutic options. South and Southeast Asia are major hubs for antimicrobial-resistant (AMR) K. pneumoniae and also for the characteristically antimicrobial-sensitive, community-acquired "hypervirulent" strains. The emergence of hypervirulent AMR strains and lack of data on exopolysaccharide diversity pose a challenge for K. pneumoniae BSI control strategies worldwide. METHODS We conducted a retrospective genomic epidemiology study of 365 BSI K. pneumoniae from seven major healthcare facilities across South and Southeast Asia, extracting clinically relevant information (AMR, virulence, K and O antigen loci) using Kleborate, a K. pneumoniae-specific genomic typing tool. RESULTS K. pneumoniae BSI isolates were highly diverse, comprising 120 multi-locus sequence types (STs) and 63 K-loci. ESBL and carbapenemase gene frequencies were 47% and 17%, respectively. The aerobactin synthesis locus (iuc), associated with hypervirulence, was detected in 28% of isolates. Importantly, 7% of isolates harboured iuc plus ESBL and/or carbapenemase genes. The latter represent genotypic AMR-virulence convergence, which is generally considered a rare phenomenon but was particularly common among South Asian BSI (17%). Of greatest concern, we identified seven novel plasmids carrying both iuc and AMR genes, raising the prospect of co-transfer of these phenotypes among K. pneumoniae. CONCLUSIONS K. pneumoniae BSI in South and Southeast Asia are caused by different STs from those predominating in other regions, and with higher frequency of acquired virulence determinants. K. pneumoniae carrying both iuc and AMR genes were also detected at higher rates than have been reported elsewhere. The study demonstrates how genomics-based surveillance-reporting full molecular profiles including STs, AMR, virulence and serotype locus information-can help standardise comparisons between sites and identify regional differences in pathogen populations.
Collapse
Affiliation(s)
- Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - To N T Nguyen
- Hospital of Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Margaret M C Lam
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | | | - David A B Dance
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Abhilasha Karkey
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Patan Academy of Health Sciences, Oxford University Clinical Research Unit, Kathmandu, Nepal
| | - Clare L Ling
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Thyl Miliya
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Amphone Sengduangphachanh
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Paul Turner
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Phat Voong Vinh
- Hospital of Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Nicholas R Thomson
- London School of Hygiene and Tropical Medicine, London, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID) Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
38
|
Yam ELY, Hsu LY, Yap EPH, Yeo TW, Lee V, Schlundt J, Lwin MO, Limmathurotsakul D, Jit M, Dedon P, Turner P, Wilder-Smith A. Antimicrobial Resistance in the Asia Pacific region: a meeting report. Antimicrob Resist Infect Control 2019; 8:202. [PMID: 31890158 PMCID: PMC6921568 DOI: 10.1186/s13756-019-0654-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/14/2019] [Indexed: 01/01/2023] Open
Abstract
The Asia Pacific region, home to two-thirds of the world's population and ten of the least developed countries, is considered a regional hot-spot for the emergence and spread of antimicrobial resistance (AMR). Despite this, there is a dearth of high-quality regional data on the extent of AMR. Recognising the urgency to close this gap, Singapore organised a meeting to discuss the problems in the region and frame a call for action. Representatives from across the region and beyond attended the meeting on the "Antimicrobial Resistance in the Asia Pacific & its impact on Singapore" held in November 2018. This meeting report is a summary of the discussions on the challenges and progress in surveillance, drivers and levers of AMR emergence, and the promising innovations and technologies that could be used to combat the increasing threat of AMR in the region. Enhanced surveillance and research to provide improved evidence-based strategies and policies are needed. The major themes that emerged for an action plan are working towards a tailored solution for the region by harnessing the One Health approach, enhancing inter-country collaborations, and collaboratively leverage upon new emerging technologies. A regionally coordinated effort that is target-driven, sustainable and builds on a framework facilitating communication and governance will strengthen the fight against AMR in the Asia Pacific region.
Collapse
Affiliation(s)
- Esabelle Lo Yan Yam
- 1Centre for Global Health, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232 Singapore
| | - Li Yang Hsu
- 2Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Eric Peng-Huat Yap
- 1Centre for Global Health, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232 Singapore
| | - Tsin Wen Yeo
- 1Centre for Global Health, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232 Singapore
| | - Vernon Lee
- 2Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,3Public Health Group, Ministry of Health, Singapore, Singapore
| | - Joergen Schlundt
- 4Nanyang Technological University Food Technology Centre and School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - May O Lwin
- 5Wee Kim Wee School of Communication and Information and Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Direk Limmathurotsakul
- 6Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,7Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mark Jit
- 8Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK.,9Modelling and Economics Unit, Public Health England, London, UK.,10School of Public Health, University of Hong Kong, Hong Kong, SAR China
| | - Peter Dedon
- 11Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,12Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Paul Turner
- 13Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia.,14Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Annelies Wilder-Smith
- 1Centre for Global Health, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232 Singapore.,15Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.,16Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
39
|
Berglund B, Hoang NTB, Tärnberg M, Le NK, Nilsson M, Khu DTK, Svartström O, Welander J, Nilsson LE, Olson L, Dien TM, Le HT, Larsson M, Hanberger H. Molecular and phenotypic characterization of clinical isolates belonging to a KPC-2-producing strain of ST15 Klebsiella pneumoniae from a Vietnamese pediatric hospital. Antimicrob Resist Infect Control 2019; 8:156. [PMID: 31636899 PMCID: PMC6796427 DOI: 10.1186/s13756-019-0613-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/24/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Carbapenem-resistant Klebsiella pneumoniae are becoming increasingly common in hospital settings worldwide and are a source of increased morbidity, mortality and health care costs. The global epidemiology of carbapenem-resistant K. pneumoniae is characterized by different strains distributed geographically, with the strain ST258 being predominant in Europe and USA, and ST11 being most common in East Asia. ST15 is a less frequently occurring strain but has nevertheless been reported worldwide as a source of hospital outbreaks of carbapenem-resistant K. pneumoniae. METHODS In this study, whole-genome sequencing and antimicrobial susceptibility testing was used to characterize 57 clinical isolates of carbapenem-resistant K. pneumoniae belonging to a strain of ST15, which were collected at a Vietnamese pediatric hospital from February throughout September 2015. RESULTS Aside from the carbapenem resistance gene blaKPC-2, which was carried by all isolates, prevalence of resistance genes to other antibiotics including aminoglycosides, macrolides, quinolones, fosfomycin and trimethoprim, was also high. All isolates were multidrug-resistant. Susceptibility was highest to ceftazidime/avibactam (96%), gentamicin (91%) and tigecycline (82%). Notably, the colistin resistance rate was very high (42%). Single-nucleotide polymorphism analysis indicated that most isolates belonged to a single clone. CONCLUSIONS The diverse variety of antibiotic resistance genes and the high antibiotic resistance rates to last-resort antibiotics such as carbapenems and colistin, is indicative of a highly adaptable strain. This emphasizes the importance of implementation of infection controls measures, continued monitoring of antibiotic resistance and prudent use of antibiotics to prevent further selection of resistant strains and the emergence of pan-resistant clones.
Collapse
Affiliation(s)
- Björn Berglund
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | - Maria Tärnberg
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ngai Kien Le
- Vietnam National Children’s Hospital, Hanoi, Vietnam
| | - Maud Nilsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Dung Thi Khanh Khu
- Vietnam National Children’s Hospital, Hanoi, Vietnam
- Training and Research Academic Collaboration (TRAC)– Sweden – Vietnam, Hanoi, Vietnam
| | - Olov Svartström
- Department of Clinical Microbiology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jenny Welander
- Department of Clinical Microbiology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Lennart E. Nilsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Linus Olson
- Training and Research Academic Collaboration (TRAC)– Sweden – Vietnam, Hanoi, Vietnam
- Karolinska Institutet, Stockholm, Sweden
| | | | - Hai Thanh Le
- Vietnam National Children’s Hospital, Hanoi, Vietnam
- Training and Research Academic Collaboration (TRAC)– Sweden – Vietnam, Hanoi, Vietnam
| | - Mattias Larsson
- Training and Research Academic Collaboration (TRAC)– Sweden – Vietnam, Hanoi, Vietnam
- Karolinska Institutet, Stockholm, Sweden
| | - Håkan Hanberger
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Training and Research Academic Collaboration (TRAC)– Sweden – Vietnam, Hanoi, Vietnam
| |
Collapse
|
40
|
Thi Quynh Nhi L, de Alwis R, Khanh Lam P, Nhon Hoa N, Minh Nhan N, Thi Tu Oanh L, Thanh Nam D, Nguyen Ngoc Han B, Thi Thuy Huyen H, Thi Tuyen D, Thuy Duong V, Lan Vi L, Thi Thuy Tien B, Thi Diem Tuyet H, Hoang Nha L, Thwaites GE, Van Dung D, Baker S. Quantifying antimicrobial access and usage for paediatric diarrhoeal disease in an urban community setting in Asia. J Antimicrob Chemother 2019; 73:2546-2554. [PMID: 29982636 PMCID: PMC6105870 DOI: 10.1093/jac/dky231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/21/2018] [Indexed: 11/12/2022] Open
Abstract
Objectives Antimicrobial-resistant infections are a major global health issue. Ease of antimicrobial access in developing countries is proposed to be a key driver of the antimicrobial resistance (AMR) epidemic despite a lack of community antimicrobial usage data. Methods Using a mixed-methods approach (geospatial mapping, simulated clients, healthcare utilization, longitudinal cohort) we assessed antimicrobial access in the community and quantified antimicrobial usage for childhood diarrhoea in an urban Vietnamese setting. Results The study area had a pharmacy density of 15.7 pharmacies/km2 (a pharmacy for every 1316 people). Using a simulated client method at pharmacies within the area, we found that 8% (3/37) and 22% (8/37) of outlets sold antimicrobials for paediatric watery and mucoid diarrhoea, respectively. However, despite ease of pharmacy access, the majority of caregivers would choose to take their child to a healthcare facility, with 81% (319/396) and 88% (347/396) of responders selecting a specialized hospital as one of their top three preferences when seeking treatment for watery and mucoid diarrhoea, respectively. We calculated that at least 19% (2688/14427) of diarrhoea episodes in those aged 1 to <5 years would receive an antimicrobial annually; however, antimicrobial usage was almost 10 times greater in hospitals than in the community. Conclusions Our data question the impact of community antimicrobial usage on AMR and highlight the need for better education and guidelines for all professionals with the authority to prescribe antimicrobials.
Collapse
Affiliation(s)
- Le Thi Quynh Nhi
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,University of Medicine and Pharmacy in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Ruklanthi de Alwis
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| | - Phung Khanh Lam
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nguyen Nhon Hoa
- University of Medicine and Pharmacy in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nguyen Minh Nhan
- University of Medicine and Pharmacy in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Le Thi Tu Oanh
- University of Medicine and Pharmacy in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Dang Thanh Nam
- University of Medicine and Pharmacy in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Bui Nguyen Ngoc Han
- University of Medicine and Pharmacy in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hoang Thi Thuy Huyen
- University of Medicine and Pharmacy in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Dinh Thi Tuyen
- University of Medicine and Pharmacy in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Vu Thuy Duong
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Children Hospital 1, Ho Chi Minh City, Vietnam
| | - Lu Lan Vi
- The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | | | | | - Le Hoang Nha
- Ho Chi Minh City Department of Health, Ho Chi Minh City, Vietnam
| | - Guy E Thwaites
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| | - Do Van Dung
- University of Medicine and Pharmacy in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK.,The Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
41
|
Bulabula ANH, Dramowski A, Mehtar S. Transmission of multidrug-resistant Gram-negative bacteria from colonized mothers to their infants: a systematic review and meta-analysis. J Hosp Infect 2019; 104:57-67. [PMID: 31604126 DOI: 10.1016/j.jhin.2019.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/22/2019] [Accepted: 10/01/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Neonatal sepsis remains a leading cause of neonatal mortality. Maternal bacterial colonization plays a major role in transmission to the infant, with potential for subsequent development of neonatal sepsis with maternally derived strains. AIM To review the molecular evidence supporting transmission of multidrug-resistant Gram-negative bacteria (MDR-GNB) from colonized mothers to their infants and the risk factors for MDR-GNB transmission. METHODS PubMed and Scopus were searched for studies investigating the mechanisms, risk factors for and/or scale of transmission of MDR-GNB from colonized mothers to their infants. Random effects meta-analyses were performed to determine pooled proportions of MDR-GNB transmission and the neonatal outcomes of transmission. FINDINGS Eight studies were included in the narrative description and six in the meta-analysis. Five studies used pulsed-field gel electrophoresis to assess relatedness of isolates from colonized mothers and their infants. Pooled proportion of MDR-GNB transmission from colonized mothers to their infants was 27% (95% confidence interval (CI): 8-47%). Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae were the most frequently studied MDR-GNB pathogens transmitted between mother-infant pairs. Following mother-to-infant transmission of an MDR-GNB pathogen, the pooled proportion for the outcome of neonatal colonization was 19% (95% CI: 3-35%). CONCLUSION This systematic review strongly supports MDR and/or ESBL Enterobacteriaceae transmission from colonized mothers to their infants, with subsequent infant colonization. The risk factors contributing to transmission of MDR-GNB between colonized mothers and their infants warrants further research.
Collapse
Affiliation(s)
- A N H Bulabula
- Division of Health Systems and Public Health, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Infection Control Africa Network, Cape Town, South Africa.
| | - A Dramowski
- Infection Control Africa Network, Cape Town, South Africa; Paediatric Infectious Diseases, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - S Mehtar
- Division of Health Systems and Public Health, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Infection Control Africa Network, Cape Town, South Africa
| |
Collapse
|
42
|
Ellington MJ, Heinz E, Wailan AM, Dorman MJ, de Goffau M, Cain AK, Henson SP, Gleadall N, Boinett CJ, Dougan G, Brown NM, Woodford N, Parkhill J, Török ME, Peacock SJ, Thomson NR. Contrasting patterns of longitudinal population dynamics and antimicrobial resistance mechanisms in two priority bacterial pathogens over 7 years in a single center. Genome Biol 2019; 20:184. [PMID: 31477167 PMCID: PMC6717969 DOI: 10.1186/s13059-019-1785-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/05/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Two of the most important pathogens contributing to the global rise in antimicrobial resistance (AMR) are Klebsiella pneumoniae and Enterobacter cloacae. Despite this, most of our knowledge about the changing patterns of disease caused by these two pathogens is based on studies with limited timeframes that provide few insights into their population dynamics or the dynamics in AMR elements that they can carry. RESULTS We investigate the population dynamics of two priority AMR pathogens over 7 years between 2007 and 2012 in a major UK hospital, spanning changes made to UK national antimicrobial prescribing policy in 2007. Between 2006 and 2012, K. pneumoniae showed epidemiological cycles of multi-drug-resistant (MDR) lineages being replaced approximately every 2 years. This contrasted E. cloacae where there was no temporally changing pattern, but a continuous presence of the mixed population. CONCLUSIONS The differing patterns of clonal replacement and acquisition of mobile elements shows that the flux in the K. pneumoniae population was linked to the introduction of globally recognized MDR clones carrying drug resistance markers on mobile elements. However, E. cloacae carries a chromosomally encoded ampC conferring resistance to front-line treatments and shows that MDR plasmid acquisition in E. cloacae was not indicative of success in the hospital. This led to markedly different dynamics in the AMR populations of these two pathogens and shows that the mechanism of the resistance and its location in the genome or mobile elements is crucial to predict population dynamics of opportunistic pathogens in clinical settings.
Collapse
Affiliation(s)
- Matthew J Ellington
- Public Health England, National Infection Service, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK.
- Present address: National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK.
| | - Eva Heinz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Alexander M Wailan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Matthew J Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Marcus de Goffau
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Amy K Cain
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Molecular Sciences, Macquarie University, Sydney, 2109, Australia
| | - Sonal P Henson
- KEMRI-Wellcome Trust Research Programme, CGMRC, Kilifi, Kenya
| | - Nicholas Gleadall
- Public Health England, National Infection Service, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK
| | - Christine J Boinett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Gordon Dougan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK
| | - Nicholas M Brown
- Public Health England, National Infection Service, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK
- Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - M Estée Török
- Public Health England, National Infection Service, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK
- Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Sharon J Peacock
- Public Health England, National Infection Service, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Nicholas R Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
43
|
Pan Y, Lin T, Chen Y, Lai P, Tsai Y, Hsu C, Hsieh P, Lin Y, Wang J. Identification of three podoviruses infecting Klebsiella encoding capsule depolymerases that digest specific capsular types. Microb Biotechnol 2019; 12:472-486. [PMID: 30706654 PMCID: PMC6465236 DOI: 10.1111/1751-7915.13370] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
Klebsiella pneumoniae is an important human pathogen causing opportunistic nosocomial and community-acquired infections. A major public health concern regarding K. pneumoniae is the increasing incidence of multidrug-resistant strains. Here, we isolated three novel Klebsiella bacteriophages, KN1-1, KN3-1 and KN4-1, which infect KN1, KN3 and K56, and KN4 types respectively. We determined their genome sequences and conducted a comparative analysis that revealed a variable region containing capsule depolymerase-encoding genes. Recombinant depolymerase proteins were produced, and their enzymatic activity and specificity were evaluated. We identified four capsule depolymerases in these phages that could only digest the capsule types of their respective hosts. Our results demonstrate that the activities of these capsule depolymerases were correlated with the host range of each phage; thus, the capsule depolymerases are host specificity determinants. By generating a capsule mutant, we demonstrate that capsule was essential for phage adsorption and infection. Further, capsule depolymerases can enhance bacterial susceptibility to serum killing. The discovery of these phages and depolymerases lays the foundation for the typing of KN1, KN3, KN4 and K56 Klebsiella and could be useful alternative therapeutics for the treatment of K. pneumoniae infections.
Collapse
Affiliation(s)
- Yi‐Jiun Pan
- Department of Microbiology and ImmunologySchool of MedicineChina Medical UniversityTaichungTaiwan
| | - Tzu‐Lung Lin
- Department of Medical Biotechnology and Laboratory scienceCollege of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Yi‐Yin Chen
- Department of PediatricsCollege of MedicineChang Gung Children's HospitalChang Gung Memorial HospitalChang Gung UniversityTaoyuanTaiwan
| | - Peng‐Hsuan Lai
- Department of Microbiology and ImmunologySchool of MedicineChina Medical UniversityTaichungTaiwan
| | - Yun‐Ting Tsai
- Department of Microbiology and ImmunologySchool of MedicineChina Medical UniversityTaichungTaiwan
| | - Chun‐Ru Hsu
- Department of Medical ResearchE‐Da HospitalKaohsiungTaiwan
| | - Pei‐Fang Hsieh
- Department of MicrobiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Yi‐Tsung Lin
- Division of Infectious DiseasesDepartment of MedicineTaipei Veterans General HospitalTaipeiTaiwan
| | - Jin‐Town Wang
- Department of MicrobiologyNational Taiwan University College of MedicineTaipeiTaiwan
- Department of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
44
|
Musicha P, Msefula CL, Mather AE, Chaguza C, Cain AK, Peno C, Kallonen T, Khonga M, Denis B, Gray KJ, Heyderman RS, Thomson NR, Everett DB, Feasey NA. Genomic analysis of Klebsiella pneumoniae isolates from Malawi reveals acquisition of multiple ESBL determinants across diverse lineages. J Antimicrob Chemother 2019; 74:1223-1232. [PMID: 30778540 PMCID: PMC6477993 DOI: 10.1093/jac/dkz032] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/27/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES ESBL-producing Klebsiella pneumoniae (KPN) pose a major threat to human health globally. We carried out a WGS study to understand the genetic background of ESBL-producing KPN in Malawi and place them in the context of other global isolates. METHODS We sequenced genomes of 72 invasive and carriage KPN isolates collected from patients admitted to Queen Elizabeth Central Hospital, Blantyre, Malawi. We performed phylogenetic and population structure analyses on these and previously published genomes from Kenya (n = 66) and from outside sub-Saharan Africa (n = 67). We screened for presence of antimicrobial resistance (AMR) genetic determinants and carried out association analyses by genomic sequence cluster, AMR phenotype and time. RESULTS Malawian isolates fit within the global population structure of KPN, clustering into the major lineages of KpI, KpII and KpIII. KpI isolates from Malawi were more related to those from Kenya, with both collections exhibiting more clonality than isolates from the rest of the world. We identified multiple ESBL genes, including blaCTX-M-15, several blaSHV, blaTEM-63 and blaOXA-10, and other AMR genes, across diverse lineages of the KPN isolates from Malawi. No carbapenem resistance genes were detected; however, we detected IncFII and IncFIB plasmids that were similar to the carbapenem resistance-associated plasmid pNDM-mar. CONCLUSIONS There are multiple ESBL genes across diverse KPN lineages in Malawi and plasmids in circulation that are capable of carrying carbapenem resistance. Unless appropriate interventions are rapidly put in place, these may lead to a high burden of locally untreatable infection in vulnerable populations.
Collapse
Affiliation(s)
- Patrick Musicha
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Chisomo L Msefula
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- College of Medicine, University of Malawi, Blantyre, Malawi
| | | | - Chrispin Chaguza
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Amy K Cain
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Chikondi Peno
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | | | - Brigitte Denis
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Katherine J Gray
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Robert S Heyderman
- Division of Infection and Immunity, University College London, London, UK
| | - Nicholas R Thomson
- Quadram Institute Bioscience, Norwich, UK
- London School of Tropical Medicine, London, UK
| | - Dean B Everett
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- University of Edinburgh, Edinburgh, UK
| | - Nicholas A Feasey
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
45
|
Heinz E, Brindle R, Morgan-McCalla A, Peters K, Thomson NR. Caribbean multi-centre study of Klebsiella pneumoniae: whole-genome sequencing, antimicrobial resistance and virulence factors. Microb Genom 2019; 5:e000266. [PMID: 31038449 PMCID: PMC6562249 DOI: 10.1099/mgen.0.000266] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/21/2019] [Indexed: 12/14/2022] Open
Abstract
The surveillance of antimicrobial-resistant isolates has proven to be one of the most valuable tools to understand the global rise of multidrug-resistant bacterial pathogens. We report the first insights into the current situation in the Caribbean, where a pilot project to monitor antimicrobial resistance (AMR) through phenotypic resistance measurements combined with whole-genome sequencing was set up in collaboration with the Caribbean Public Health Agency (CARPHA). Our first study focused on Klebsiella pneumoniae, a highly relevant organism amongst the Gram-negative opportunistic pathogens worldwide causing hospital- and community-acquired infections. Our results show that not only carbapenem resistance, but also hypervirulent strains, are circulating in patients in the Caribbean. Our current data does not allow us to infer their prevalence in the population. We argue for the urgent need to further support AMR surveillance and stewardship in this almost uncharted territory, which can make a significant impact on the reduction of antimicrobial usage. This article contains data hosted by Microreact (https://microreact.org).
Collapse
Affiliation(s)
- Eva Heinz
- Wellcome Trust Sanger Institute, Hinxton, UK
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Richard Brindle
- Caribbean Public Health Agency, Port of Spain, Trinidad and Tobago
- University of Bristol, Bristol, UK
| | - Andrina Morgan-McCalla
- Caribbean Public Health Agency, Port of Spain, Trinidad and Tobago
- University of the West Indies, Mona, Jamaica
| | - Keisha Peters
- Caribbean Public Health Agency, Port of Spain, Trinidad and Tobago
| | - Nicholas R. Thomson
- Wellcome Trust Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
46
|
Wyres KL, Wick RR, Judd LM, Froumine R, Tokolyi A, Gorrie CL, Lam MMC, Duchêne S, Jenney A, Holt KE. Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae. PLoS Genet 2019; 15:e1008114. [PMID: 30986243 PMCID: PMC6483277 DOI: 10.1371/journal.pgen.1008114] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/25/2019] [Accepted: 03/29/2019] [Indexed: 11/19/2022] Open
Abstract
Klebsiella pneumoniae has emerged as an important cause of two distinct public health threats: multi-drug resistant (MDR) healthcare-associated infections and drug susceptible community-acquired invasive infections. These pathotypes are generally associated with two distinct subsets of K. pneumoniae lineages or 'clones' that are distinguished by the presence of acquired resistance genes and several key virulence loci. Genomic evolutionary analyses of the most notorious MDR and invasive community-associated ('hypervirulent') clones indicate differences in terms of chromosomal recombination dynamics and capsule polysaccharide diversity, but it remains unclear if these differences represent generalised trends. Here we leverage a collection of >2200 K. pneumoniae genomes to identify 28 common clones (n ≥ 10 genomes each), and perform the first genomic evolutionary comparison. Eight MDR and 6 hypervirulent clones were identified on the basis of acquired resistance and virulence gene prevalence. Chromosomal recombination, surface polysaccharide locus diversity, pan-genome, plasmid and phage dynamics were characterised and compared. The data showed that MDR clones were highly diverse, with frequent chromosomal recombination generating extensive surface polysaccharide locus diversity. Additional pan-genome diversity was driven by frequent acquisition/loss of both plasmids and phage. In contrast, chromosomal recombination was rare in the hypervirulent clones, which also showed a significant reduction in pan-genome diversity, largely driven by a reduction in plasmid diversity. Hence the data indicate that hypervirulent clones may be subject to some sort of constraint for horizontal gene transfer that does not apply to the MDR clones. Our findings are relevant for understanding the risk of emergence of individual K. pneumoniae strains carrying both virulence and acquired resistance genes, which have been increasingly reported and cause highly virulent infections that are extremely difficult to treat. Specifically, our data indicate that MDR clones pose the greatest risk, because they are more likely to acquire virulence genes than hypervirulent clones are to acquire resistance genes.
Collapse
Affiliation(s)
- Kelly L. Wyres
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - Ryan R. Wick
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - Louise M. Judd
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - Roni Froumine
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - Alex Tokolyi
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Claire L. Gorrie
- Department of Infectious Diseases and Microbiology Unit, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Margaret M. C. Lam
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - Sebastián Duchêne
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Adam Jenney
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kathryn E. Holt
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
47
|
Heinz E, Ejaz H, Bartholdson Scott J, Wang N, Gujaran S, Pickard D, Wilksch J, Cao H, Haq IU, Dougan G, Strugnell RA. Resistance mechanisms and population structure of highly drug resistant Klebsiella in Pakistan during the introduction of the carbapenemase NDM-1. Sci Rep 2019; 9:2392. [PMID: 30787414 PMCID: PMC6382945 DOI: 10.1038/s41598-019-38943-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/11/2019] [Indexed: 11/25/2022] Open
Abstract
Klebsiella pneumoniae is a major threat to public health with the emergence of isolates resistant to most, if not all, useful antibiotics. We present an in-depth analysis of 178 extended-spectrum beta-lactamase (ESBL)-producing K. pneumoniae collected from patients resident in a region of Pakistan, during the period 2010-2012, when the now globally-distributed carbapenemase bla-NDM-1 was being acquired by Klebsiella. We observed two dominant lineages, but neither the overall resistance profile nor virulence-associated factors, explain their evolutionary success. Phenotypic analysis of resistance shows few differences between the acquisition of resistance genes and the phenotypic resistance profile, including beta-lactam antibiotics that were used to treat ESBL-positive strains. Resistance against these drugs could be explained by inhibitor-resistant beta-lactamase enzymes, carbapenemases or ampC type beta-lactamases, at least one of which was detected in most, but not all relevant strains analysed. Complete genomes for six selected strains are reported, these provide detailed insights into the mobile elements present in these isolates during the initial spread of NDM-1. The unexplained success of some lineages within this pool of highly resistant strains, and the discontinuity between phenotypic resistance and genotype at the macro level, indicate that intrinsic mechanisms contribute to competitive advantage and/or resistance.
Collapse
Affiliation(s)
- Eva Heinz
- Parasites and Microbes, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, CAMS, Jouf University, Al-Jouf, Saudi Arabia
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Microbiology, The Children's Hospital & The Institute of Child Health, Lahore, Pakistan
| | | | - Nancy Wang
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Shruti Gujaran
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Derek Pickard
- Parasites and Microbes, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Jonathan Wilksch
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hanwei Cao
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ikram-Ul Haq
- Institute of Industrial Biotechnology, GC University, Lahore, Pakistan
| | - Gordon Dougan
- Parasites and Microbes, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Richard A Strugnell
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
48
|
Chi X, Berglund B, Zou H, Zheng B, Börjesson S, Ji X, Ottoson J, Lundborg CS, Li X, Nilsson LE. Characterization of Clinically Relevant Strains of Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae Occurring in Environmental Sources in a Rural Area of China by Using Whole-Genome Sequencing. Front Microbiol 2019; 10:211. [PMID: 30809212 PMCID: PMC6379450 DOI: 10.3389/fmicb.2019.00211] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/24/2019] [Indexed: 11/13/2022] Open
Abstract
Klebsiella pneumoniae is a gram-negative, opportunistic pathogen, and a common cause of healthcare-associated infections such as pneumonia, septicemia, and urinary tract infection. The purpose of this study was to survey the occurrence of and characterize K. pneumoniae in different environmental sources in a rural area of Shandong province, China. Two hundred and thirty-one samples from different environmental sources in 12 villages were screened for extended-spectrum β-lactamase-(ESBL)-producing K. pneumoniae, and 14 (6%) samples were positive. All isolates were multidrug-resistant and a few of them belonged to clinically relevant strains which are known to cause hospital outbreaks worldwide. Serotypes, virulence genes, serum survival, and phagocytosis survival were analyzed and the results showed the presence of virulence factors associated with highly virulent clones and a high degree of phagocytosis survivability, indicating the potential virulence of these isolates. These results emphasize the need for further studies designed to elucidate the role of the environment in transmission and dissemination of ESBL-producing K. pneumoniae and the potential risk posed to human and environmental health.
Collapse
Affiliation(s)
- Xiaohui Chi
- Department of Environment and Health, School of Public Health, Shandong University, Jinan, China
| | - Björn Berglund
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huiyun Zou
- Department of Environment and Health, School of Public Health, Shandong University, Jinan, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Stefan Börjesson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, Uppsala, Sweden
| | - Xiang Ji
- Department of Environment and Health, School of Public Health, Shandong University, Jinan, China
| | - Jakob Ottoson
- Department of Risk and Benefit Assessment, National Food Agency, Uppsala, Sweden
| | - Cecilia Stålsby Lundborg
- Department of Public Health Sciences, Global Health-Health Systems and Policy, Medicines, Focusing Antibiotics, Karolinska Institutet, Stockholm, Sweden
| | - Xuewen Li
- Department of Environment and Health, School of Public Health, Shandong University, Jinan, China
| | - Lennart E Nilsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
49
|
NDM Metallo-β-Lactamases and Their Bacterial Producers in Health Care Settings. Clin Microbiol Rev 2019; 32:32/2/e00115-18. [PMID: 30700432 DOI: 10.1128/cmr.00115-18] [Citation(s) in RCA: 439] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
New Delhi metallo-β-lactamase (NDM) is a metallo-β-lactamase able to hydrolyze almost all β-lactams. Twenty-four NDM variants have been identified in >60 species of 11 bacterial families, and several variants have enhanced carbapenemase activity. Klebsiella pneumoniae and Escherichia coli are the predominant carriers of bla NDM, with certain sequence types (STs) (for K. pneumoniae, ST11, ST14, ST15, or ST147; for E. coli, ST167, ST410, or ST617) being the most prevalent. NDM-positive strains have been identified worldwide, with the highest prevalence in the Indian subcontinent, the Middle East, and the Balkans. Most bla NDM-carrying plasmids belong to limited replicon types (IncX3, IncFII, or IncC). Commonly used phenotypic tests cannot specifically identify NDM. Lateral flow immunoassays specifically detect NDM, and molecular approaches remain the reference methods for detecting bla NDM Polymyxins combined with other agents remain the mainstream options of antimicrobial treatment. Compounds able to inhibit NDM have been found, but none have been approved for clinical use. Outbreaks caused by NDM-positive strains have been reported worldwide, attributable to sources such as contaminated devices. Evidence-based guidelines on prevention and control of carbapenem-resistant Gram-negative bacteria are available, although none are specific for NDM-positive strains. NDM will remain a severe challenge in health care settings, and more studies on appropriate countermeasures are required.
Collapse
|
50
|
Cori A, Nouvellet P, Garske T, Bourhy H, Nakouné E, Jombart T. A graph-based evidence synthesis approach to detecting outbreak clusters: An application to dog rabies. PLoS Comput Biol 2018; 14:e1006554. [PMID: 30557340 PMCID: PMC6312344 DOI: 10.1371/journal.pcbi.1006554] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/31/2018] [Accepted: 10/09/2018] [Indexed: 11/23/2022] Open
Abstract
Early assessment of infectious disease outbreaks is key to implementing timely and effective control measures. In particular, rapidly recognising whether infected individuals stem from a single outbreak sustained by local transmission, or from repeated introductions, is crucial to adopt effective interventions. In this study, we introduce a new framework for combining several data streams, e.g. temporal, spatial and genetic data, to identify clusters of related cases of an infectious disease. Our method explicitly accounts for underreporting, and allows incorporating preexisting information about the disease, such as its serial interval, spatial kernel, and mutation rate. We define, for each data stream, a graph connecting all cases, with edges weighted by the corresponding pairwise distance between cases. Each graph is then pruned by removing distances greater than a given cutoff, defined based on preexisting information on the disease and assumptions on the reporting rate. The pruned graphs corresponding to different data streams are then merged by intersection to combine all data types; connected components define clusters of cases related for all types of data. Estimates of the reproduction number (the average number of secondary cases infected by an infectious individual in a large population), and the rate of importation of the disease into the population, are also derived. We test our approach on simulated data and illustrate it using data on dog rabies in Central African Republic. We show that the outbreak clusters identified using our method are consistent with structures previously identified by more complex, computationally intensive approaches. Early assessment of infectious disease outbreaks is key to implementing timely and effective control measures. In particular, rapidly recognising whether infected individuals stem from a single outbreak sustained by local transmission, or from repeated introductions, is crucial to adopt effective interventions. In this study, we introduce a new approach which combines different types of data to identify clusters of related cases of an infectious disease. This approach relies on representing each type of data (e.g. temporal, spatial, or genetic) as a graph where nodes are cases, and two nodes are connected if the corresponding cases are closely related for this data. Our method then identifies clusters of cases which likely stem from the same introduction. Furthermore, we can use the size of these clusters to infer transmissibility of the disease and the number of importations of the pathogen into the population. We apply this approach to analyse dog rabies epidemics in Central African Republic. We show that outbreak clusters identified using our method are consistent with structures previously identified by more complex and computationally intensive approaches. Using simulated rabies epidemics, we show that our method has excellent potential for optimally detecting outbreak clusters. We also identify promising areas of research for transforming our method into a routine analysis tool for processing disease surveillance data.
Collapse
Affiliation(s)
- Anne Cori
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- * E-mail: (AC); (TJ)
| | - Pierre Nouvellet
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Tini Garske
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Hervé Bourhy
- Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Paris, France
| | - Emmanuel Nakouné
- Département fièvres hémorragiques virales, Institut Pasteur de Bangui, Bangui, République Centrafricaine
| | - Thibaut Jombart
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- * E-mail: (AC); (TJ)
| |
Collapse
|