1
|
Simkin D, Ambrosi C, Marshall KA, Williams LA, Eisenberg J, Gharib M, Dempsey GT, George AL, McManus OB, Kiskinis E. 'Channeling' therapeutic discovery for epileptic encephalopathy through iPSC technologies. Trends Pharmacol Sci 2022; 43:392-405. [PMID: 35427475 PMCID: PMC9119009 DOI: 10.1016/j.tips.2022.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 12/16/2022]
Abstract
Induced pluripotent stem cell (iPSC) and gene editing technologies have revolutionized the field of in vitro disease modeling, granting us access to disease-pertinent human cells of the central nervous system. These technologies are particularly well suited for the study of diseases with strong monogenic etiologies. Epilepsy is one of the most common neurological disorders in children, with approximately half of all genetic cases caused by mutations in ion channel genes. These channelopathy-associated epilepsies are clinically diverse, mechanistically complex, and hard to treat. Here, we review the genetic links to epilepsy, the opportunities and challenges of iPSC-based approaches for developing in vitro models of channelopathy-associated disorders, the available tools for effective phenotyping of iPSC-derived neurons, and discuss the potential therapeutic approaches for these devastating diseases.
Collapse
Affiliation(s)
- Dina Simkin
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Kelly A Marshall
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Jordyn Eisenberg
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mennat Gharib
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Alfred L George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
2
|
Abstract
Induced pluripotent stem cell (iPSC) technology holds promise for modeling neurodegenerative diseases. Traditional approaches for disease modeling using animal and cellular models require knowledge of disease mutations. However, many patients with neurodegenerative diseases do not have a known genetic cause. iPSCs offer a way to generate patient-specific models and study pathways of dysfunction in an in vitro setting in order to understand the causes and subtypes of neurodegeneration. Furthermore, iPSC-based models can be used to search for candidate therapeutics using high-throughput screening. Here we review how iPSC-based models are currently being used to further our understanding of neurodegenerative diseases, as well as discuss their challenges and future directions.
Collapse
Affiliation(s)
- Jonathan Li
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Ernest Fraenkel
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
3
|
Pasteuning-Vuhman S, de Jongh R, Timmers A, Pasterkamp RJ. Towards Advanced iPSC-based Drug Development for Neurodegenerative Disease. Trends Mol Med 2020; 27:263-279. [PMID: 33121873 DOI: 10.1016/j.molmed.2020.09.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases (NDDs) are a heterogeneous group of diseases that are characterized by the progressive loss of neurons leading to motor, sensory, and/or cognitive defects. Currently, NDDs are not curable and treatment focuses on alleviating symptoms and halting disease progression. Phenotypic heterogeneity between individual NDD patients, lack of robust biomarkers, the limited translational potential of experimental models, and other factors have hampered drug development for the treatment of NDDs. This review summarizes and discusses the use of induced pluripotent stem cell (iPSC) approaches for improving drug discovery and testing. It highlights challenges associated with iPSC modeling and also discusses innovative approaches such as brain organoids and microfluidic-based technology which will improve drug development for NDDs.
Collapse
Affiliation(s)
- Svetlana Pasteuning-Vuhman
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Rianne de Jongh
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Annabel Timmers
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Mehrjardi NZ, Molcanyi M, Hatay FF, Timmer M, Shahbazi E, Ackermann JP, Herms S, Heilmann-Heimbach S, Wunderlich TF, Prochnow N, Haghikia A, Lampert A, Hescheler J, Neugebauer EAM, Baharvand H, Šarić T. Acquisition of chromosome 1q duplication in parental and genome-edited human-induced pluripotent stem cell-derived neural stem cells results in their higher proliferation rate in vitro and in vivo. Cell Prolif 2020; 53:e12892. [PMID: 32918782 PMCID: PMC7574866 DOI: 10.1111/cpr.12892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023] Open
Abstract
Objectives Genetic engineering of human‐induced pluripotent stem cell‐derived neural stem cells (hiPSC‐NSC) may increase the risk of genomic aberrations. Therefore, we asked whether genetic modification of hiPSC‐NSCs exacerbates chromosomal abnormalities that may occur during passaging and whether they may cause any functional perturbations in NSCs in vitro and in vivo. Materials and Methods The transgenic cassette was inserted into the AAVS1 locus, and the genetic integrity of zinc‐finger nuclease (ZFN)‐modified hiPSC‐NSCs was assessed by the SNP‐based karyotyping. The hiPSC‐NSC proliferation was assessed in vitro by the EdU incorporation assay and in vivo by staining of brain slices with Ki‐67 antibody at 2 and 8 weeks after transplantation of ZFN‐NSCs with and without chromosomal aberration into the striatum of immunodeficient rats. Results During early passages, no chromosomal abnormalities were detected in unmodified or ZFN‐modified hiPSC‐NSCs. However, at higher passages both cell populations acquired duplication of the entire long arm of chromosome 1, dup(1)q. ZNF‐NSCs carrying dup(1)q exhibited higher proliferation rate than karyotypically intact cells, which was partly mediated by increased expression of AKT3 located on Chr1q. Compared to karyotypically normal ZNF‐NSCs, cells with dup(1)q also exhibited increased proliferation in vivo 2 weeks, but not 2 months, after transplantation. Conclusions These results demonstrate that, independently of ZFN‐editing, hiPSC‐NSCs have a propensity for acquiring dup(1)q and this aberration results in increased proliferation which might compromise downstream hiPSC‐NSC applications.
Collapse
Affiliation(s)
- Narges Zare Mehrjardi
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marek Molcanyi
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Firuze Fulya Hatay
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Marco Timmer
- Department of Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Ebrahim Shahbazi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Justus P Ackermann
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Stefan Herms
- Department of Genomics, Life & Brain Center, Institute for Human Genetics, University of Bonn, Bonn, Germany.,Department of Biomedicine, Medical Genetics, Research Group Genomics, University Hospital Basel, Basel, Switzerland
| | - Stefanie Heilmann-Heimbach
- Department of Genomics, Life & Brain Center, Institute for Human Genetics, University of Bonn, Bonn, Germany
| | - Thomas F Wunderlich
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Max Planck Institute for Metabolism Research and Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Nora Prochnow
- Clinic for Neurology, St. Josef-Hospital, Clinic of the Ruhr-University Bochum, Bochum, Germany
| | - Aiden Haghikia
- Clinic for Neurology, St. Josef-Hospital, Clinic of the Ruhr-University Bochum, Bochum, Germany
| | - Angelika Lampert
- Institute of Physiology, Uniklinik, RWTH Aachen University, Aachen, Germany
| | - Jürgen Hescheler
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Edmund A M Neugebauer
- Medizinische Hochschule Brandenburg Theodor Fontane, Campus Neuruppin, Neuruppin, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Tomo Šarić
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Hildebrandt MR, Reuter MS, Wei W, Tayebi N, Liu J, Sharmin S, Mulder J, Lesperance LS, Brauer PM, Mok RSF, Kinnear C, Piekna A, Romm A, Howe J, Pasceri P, Meng G, Rozycki M, Rodrigues DC, Martinez EC, Szego MJ, Zúñiga-Pflücker JC, Anderson MK, Prescott SA, Rosenblum ND, Kamath BM, Mital S, Scherer SW, Ellis J. Precision Health Resource of Control iPSC Lines for Versatile Multilineage Differentiation. Stem Cell Reports 2020; 13:1126-1141. [PMID: 31813827 PMCID: PMC6915802 DOI: 10.1016/j.stemcr.2019.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 01/15/2023] Open
Abstract
Induced pluripotent stem cells (iPSC) derived from healthy individuals are important controls for disease-modeling studies. Here we apply precision health to create a high-quality resource of control iPSCs. Footprint-free lines were reprogrammed from four volunteers of the Personal Genome Project Canada (PGPC). Multilineage-directed differentiation efficiently produced functional cortical neurons, cardiomyocytes and hepatocytes. Pilot users demonstrated versatility by generating kidney organoids, T lymphocytes, and sensory neurons. A frameshift knockout was introduced into MYBPC3 and these cardiomyocytes exhibited the expected hypertrophic phenotype. Whole-genome sequencing-based annotation of PGPC lines revealed on average 20 coding variants. Importantly, nearly all annotated PGPC and HipSci lines harbored at least one pre-existing or acquired variant with cardiac, neurological, or other disease associations. Overall, PGPC lines were efficiently differentiated by multiple users into cells from six tissues for disease modeling, and variant-preferred healthy control lines were identified for specific disease settings.
Collapse
Affiliation(s)
- Matthew R Hildebrandt
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Miriam S Reuter
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Wei Wei
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Naeimeh Tayebi
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jiajie Liu
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sazia Sharmin
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jaap Mulder
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - L Stephen Lesperance
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Patrick M Brauer
- Department of Immunology, University of Toronto, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Rebecca S F Mok
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Caroline Kinnear
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Alina Piekna
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Asli Romm
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jennifer Howe
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Peter Pasceri
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Guoliang Meng
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Matthew Rozycki
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Deivid C Rodrigues
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Elisa C Martinez
- Department of Immunology, University of Toronto, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Michael J Szego
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada; Department of Family and Community Medicine, University of Toronto, Toronto, ON M5C 2T2, Canada; The Joint Centre for Bioethics, University of Toronto, Toronto, ON, Canada; Unity Health Toronto, Toronto, ON M5T 3M6, Canada
| | - Juan C Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Michele K Anderson
- Department of Immunology, University of Toronto, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Norman D Rosenblum
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Pediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Binita M Kamath
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Pediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Seema Mital
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Pediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Stephen W Scherer
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; McLaughlin Centre, University of Toronto, Toronto, ON M5G 0A4, Canada.
| | - James Ellis
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
6
|
Volpato V, Webber C. Addressing variability in iPSC-derived models of human disease: guidelines to promote reproducibility. Dis Model Mech 2020; 13:dmm042317. [PMID: 31953356 PMCID: PMC6994963 DOI: 10.1242/dmm.042317] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) technologies have provided in vitro models of inaccessible human cell types, yielding new insights into disease mechanisms especially for neurological disorders. However, without due consideration, the thousands of new human iPSC lines generated in the past decade will inevitably affect the reproducibility of iPSC-based experiments. Differences between donor individuals, genetic stability and experimental variability contribute to iPSC model variation by impacting differentiation potency, cellular heterogeneity, morphology, and transcript and protein abundance. Such effects will confound reproducible disease modelling in the absence of appropriate strategies. In this Review, we explore the causes and effects of iPSC heterogeneity, and propose approaches to detect and account for experimental variation between studies, or even exploit it for deeper biological insight.
Collapse
Affiliation(s)
- Viola Volpato
- UK Dementia Research Institute at Cardiff University, Division of Psychological Medicine and Clinical Neuroscience, Haydn Ellis Building, Maindy Rd, Cardiff CF24 4HQ, UK
| | - Caleb Webber
- UK Dementia Research Institute at Cardiff University, Division of Psychological Medicine and Clinical Neuroscience, Haydn Ellis Building, Maindy Rd, Cardiff CF24 4HQ, UK
| |
Collapse
|
7
|
Deploying human pluripotent stem cells to treat central nervous system disorders: facts, challenges and realising the potential. Stem Cell Res 2019; 41:101581. [DOI: 10.1016/j.scr.2019.101581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/13/2019] [Indexed: 12/30/2022] Open
|
8
|
Convergence of human cellular models and genetics to study neural stem cell signaling to enhance central nervous system regeneration and repair. Semin Cell Dev Biol 2019; 95:84-92. [PMID: 31310810 DOI: 10.1016/j.semcdb.2019.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 05/24/2019] [Accepted: 07/05/2019] [Indexed: 01/19/2023]
Abstract
Human central nervous system (CNS) regeneration is considered the holy grail of neuroscience research, and is one of the most pressing and difficult questions in biology and science. Despite more than 20 years of work in the field of neural stem cells (NSCs), the area remains in its infancy as our understanding of the fundamental mechanisms that can be leveraged to improve CNS regeneration in neurological diseases is still growing. Here, we focus on the recent lessons from lower organism CNS regeneration genetics and how such findings are starting to illuminate our understanding of NSC signaling pathways in humans. These findings will allow us to improve upon our knowledge of endogenous NSC function, the utility of exogenous NSCs, and the limitations of NSCs as therapeutic vehicles for providing relief from devastating human neurological diseases. We also discuss the limitations of activating NSC signaling for CNS repair in humans, especially the potential for tumor formation. Finally, we will review the recent advances in new culture techniques, including patient-derived cells and cerebral organoids to model the genetic regulation of signaling pathways controlling the function of NSCs during injury and disease states.
Collapse
|
9
|
Imitola J. Regenerative neuroimmunology: The impact of immune and neural stem cell interactions for translation in neurodegeneration and repair. J Neuroimmunol 2019; 331:1-3. [PMID: 31023492 DOI: 10.1016/j.jneuroim.2019.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
|
11
|
Kaindl J, Winner B. Disease Modeling of Neuropsychiatric Brain Disorders Using Human Stem Cell-Based Neural Models. Curr Top Behav Neurosci 2019; 42:159-183. [PMID: 31407242 DOI: 10.1007/7854_2019_111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human pluripotent stem (PS) cells are a relevant platform to model human-specific neurological disorders. In this chapter, we focus on human stem cell models for neuropsychiatric disorders including induced pluripotent stem (iPS) cell-derived neural precursor cells (NPCs), neurons and cerebral organoids. We discuss crucial steps for planning human disease modeling experiments. We introduce the different strategies of human disease modeling including transdifferentiation, human embryonic stem (ES) cell-based models, iPS cell-based models and genome editing options. Analysis of disease-relevant phenotypes is discussed. In more detail, we provide exemplary insight into modeling of the neurodevelopmental defects in autism spectrum disorder (ASD) and the process of neurodegeneration in Alzheimer's disease (AD). Besides monogenic diseases, iPS cell-derived models also generated data from idiopathic and sporadic cases.
Collapse
Affiliation(s)
- Johanna Kaindl
- Department of Stem Cell Biology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
12
|
Popp B, Krumbiegel M, Grosch J, Sommer A, Uebe S, Kohl Z, Plötz S, Farrell M, Trautmann U, Kraus C, Ekici AB, Asadollahi R, Regensburger M, Günther K, Rauch A, Edenhofer F, Winkler J, Winner B, Reis A. Need for high-resolution Genetic Analysis in iPSC: Results and Lessons from the ForIPS Consortium. Sci Rep 2018; 8:17201. [PMID: 30464253 PMCID: PMC6249203 DOI: 10.1038/s41598-018-35506-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022] Open
Abstract
Genetic integrity of induced pluripotent stem cells (iPSCs) is essential for their validity as disease models and for potential therapeutic use. We describe the comprehensive analysis in the ForIPS consortium: an iPSC collection from donors with neurological diseases and healthy controls. Characterization included pluripotency confirmation, fingerprinting, conventional and molecular karyotyping in all lines. In the majority, somatic copy number variants (CNVs) were identified. A subset with available matched donor DNA was selected for comparative exome sequencing. We identified single nucleotide variants (SNVs) at different allelic frequencies in each clone with high variability in mutational load. Low frequencies of variants in parental fibroblasts highlight the importance of germline samples. Somatic variant number was independent from reprogramming, cell type and passage. Comparison with disease genes and prediction scores suggest biological relevance for some variants. We show that high-throughput sequencing has value beyond SNV detection and the requirement to individually evaluate each clone.
Collapse
Affiliation(s)
- Bernt Popp
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Mandy Krumbiegel
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Janina Grosch
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, Erlangen, Germany
| | - Annika Sommer
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glückstrasse 6, Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Zacharias Kohl
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, Erlangen, Germany
| | - Sonja Plötz
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, Erlangen, Germany
| | - Michaela Farrell
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glückstrasse 6, Erlangen, Germany
| | - Udo Trautmann
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Martin Regensburger
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glückstrasse 6, Erlangen, Germany
| | - Katharina Günther
- Stem Cell Biology and Regenerative Medicine Group, Institute of Anatomy and Cell Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Frank Edenhofer
- Stem Cell Biology and Regenerative Medicine Group, Institute of Anatomy and Cell Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glückstrasse 6, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany.
| |
Collapse
|
13
|
Engle SJ, Blaha L, Kleiman RJ. Best Practices for Translational Disease Modeling Using Human iPSC-Derived Neurons. Neuron 2018; 100:783-797. [DOI: 10.1016/j.neuron.2018.10.033] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/07/2018] [Accepted: 10/19/2018] [Indexed: 01/26/2023]
|
14
|
Somatic mosaicism and neurodevelopmental disease. Nat Neurosci 2018; 21:1504-1514. [PMID: 30349109 DOI: 10.1038/s41593-018-0257-3] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 09/21/2018] [Indexed: 12/19/2022]
Abstract
Traditionally, we have considered genetic mutations that cause neurodevelopmental diseases to be inherited or de novo germline mutations. Recently, we have come to appreciate the importance of de novo somatic mutations, which occur postzygotically and are thus present in only a subset of the cells of an affected individual. The advent of next-generation sequencing and single-cell sequencing technologies has shown that somatic mutations contribute to normal and abnormal human brain development. Somatic mutations are one important cause of neuronal migration and brain overgrowth disorders, as suggested by visible focal lesions. In addition, somatic mutations contribute to neurodevelopmental diseases without visible lesions, including epileptic encephalopathies, intellectual disability, and autism spectrum disorder, and may contribute to a broad range of neuropsychiatric diseases. Studying somatic mutations provides insight into the mechanisms underlying human brain development and neurodevelopmental diseases and has important implications for diagnosis and treatment.
Collapse
|
15
|
Mullane K, Williams M. Alzheimer's disease (AD) therapeutics - 2: Beyond amyloid - Re-defining AD and its causality to discover effective therapeutics. Biochem Pharmacol 2018; 158:376-401. [PMID: 30273552 DOI: 10.1016/j.bcp.2018.09.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/25/2022]
Abstract
Compounds targeted for the treatment of Alzheimer's Disease (AD) have consistently failed in clinical trials despite evidence for target engagement and pharmacodynamic activity. This questions the relevance of compounds acting at current AD drug targets - the majority of which reflect the seminal amyloid and, to a far lesser extent, tau hypotheses - and limitations in understanding AD causality as distinct from general dementia. The preeminence of amyloid and tau led to many alternative approaches to AD therapeutics being ignored or underfunded to the extent that their causal versus contributory role in AD remains unknown. These include: neuronal network dysfunction; cerebrovascular disease; chronic, local or systemic inflammation involving the innate immune system; infectious agents including herpes virus and prion proteins; neurotoxic protein accumulation associated with sleep deprivation, circadian rhythm and glymphatic/meningeal lymphatic system and blood-brain-barrier dysfunction; metabolic related diseases including diabetes, obesity hypertension and hypocholesterolemia; mitochondrial dysfunction and environmental factors. As AD has become increasingly recognized as a multifactorial syndrome, a single treatment paradigm is unlikely to work in all patients. However, the biomarkers required to diagnose patients and parse them into mechanism/disease-based sub-groups remain rudimentary and unvalidated as do non-amyloid, non-tau translational animal models. The social and economic impact of AD is also discussed in the context of new FDA regulatory draft guidance and a proposed biomarker-based Framework (re)-defining AD and its stages as part of the larger landscape of treating dementia via the 2013 G8 initiative to identify a disease-modifying therapy for dementia/AD by 2025.
Collapse
Affiliation(s)
- Kevin Mullane
- Gladstone Institutes, San Francisco, CA, United States
| | - Michael Williams
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, OH, United States.
| |
Collapse
|
16
|
Tofaris GK, Buckley NJ. Convergent molecular defects underpin diverse neurodegenerative diseases. J Neurol Neurosurg Psychiatry 2018; 89:962-969. [PMID: 29459380 DOI: 10.1136/jnnp-2017-316988] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022]
Abstract
In our ageing population, neurodegenerative disorders carry an enormous personal, societal and economic burden. Although neurodegenerative diseases are often thought of as clinicopathological entities, increasing evidence suggests a considerable overlap in the molecular underpinnings of their pathogenesis. Such overlapping biological processes include the handling of misfolded proteins, defective organelle trafficking, RNA processing, synaptic health and neuroinflammation. Collectively but in different proportions, these biological processes in neurons or non-neuronal cells lead to regionally distinct patterns of neuronal vulnerability and progression of pathology that could explain the disease symptomology. With the advent of patient-derived cellular models and novel genetic manipulation tools, we are now able to interrogate this commonality despite the cellular complexity of the brain in order to develop novel therapeutic strategies to prevent or arrest neurodegeneration. Here, we describe broadly these concepts and their relevance across neurodegenerative diseases.
Collapse
Affiliation(s)
- George K Tofaris
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Noel J Buckley
- Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Karch CM, Hernández D, Wang JC, Marsh J, Hewitt AW, Hsu S, Norton J, Levitch D, Donahue T, Sigurdson W, Ghetti B, Farlow M, Chhatwal J, Berman S, Cruchaga C, Morris JC, Bateman RJ, the Dominantly Inherited Alzheimer Network (DIAN), Pébay A, Goate AM. Human fibroblast and stem cell resource from the Dominantly Inherited Alzheimer Network. Alzheimers Res Ther 2018; 10:69. [PMID: 30045758 PMCID: PMC6060509 DOI: 10.1186/s13195-018-0400-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mutations in amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) cause autosomal dominant forms of Alzheimer disease (ADAD). More than 280 pathogenic mutations have been reported in APP, PSEN1, and PSEN2. However, understanding of the basic biological mechanisms that drive the disease are limited. The Dominantly Inherited Alzheimer Network (DIAN) is an international observational study of APP, PSEN1, and PSEN2 mutation carriers with the goal of determining the sequence of changes in presymptomatic mutation carriers who are destined to develop Alzheimer disease. RESULTS We generated a library of 98 dermal fibroblast lines from 42 ADAD families enrolled in DIAN. We have reprogrammed a subset of the DIAN fibroblast lines into patient-specific induced pluripotent stem cell (iPSC) lines. These cells were thoroughly characterized for pluripotency markers. CONCLUSIONS This library represents a comprehensive resource that can be used for disease modeling and the development of novel therapeutics.
Collapse
Affiliation(s)
- Celeste M. Karch
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Damián Hernández
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC Australia
| | - Jen-Chyong Wang
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA
| | - Jacob Marsh
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Alex W. Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC Australia
- School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Simon Hsu
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Joanne Norton
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Denise Levitch
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Tamara Donahue
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Wendy Sigurdson
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University, 635 Barnhill Drive, MS A 142, Indianapolis, IN 46202 USA
| | - Martin Farlow
- Department of Neurology, Indiana University, 635 Barnhill Drive, MS A 142, Indianapolis, IN 46202 USA
| | - Jasmeer Chhatwal
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, 149 13th Street, Charlestown, MA 02129 USA
| | - Sarah Berman
- Alzheimer Disease Research Center, University of Pittsburgh School of Medicine, 4-West Montefiore University Hospital, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - John C. Morris
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - the Dominantly Inherited Alzheimer Network (DIAN)
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110 USA
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC Australia
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA
- School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110 USA
- Department of Pathology and Laboratory Medicine, Indiana University, 635 Barnhill Drive, MS A 142, Indianapolis, IN 46202 USA
- Department of Neurology, Indiana University, 635 Barnhill Drive, MS A 142, Indianapolis, IN 46202 USA
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, 149 13th Street, Charlestown, MA 02129 USA
- Alzheimer Disease Research Center, University of Pittsburgh School of Medicine, 4-West Montefiore University Hospital, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - Alice Pébay
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC Australia
| | - Alison M. Goate
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA
| |
Collapse
|
18
|
Hollingsworth EW, Vaughn JE, Orack JC, Skinner C, Khouri J, Lizarraga SB, Hester ME, Watanabe F, Kosik KS, Imitola J. iPhemap: an atlas of phenotype to genotype relationships of human iPSC models of neurological diseases. EMBO Mol Med 2018; 9:1742-1762. [PMID: 29051230 PMCID: PMC5731211 DOI: 10.15252/emmm.201708191] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Disease modeling with induced pluripotent stem cells (iPSCs) is creating an abundance of phenotypic information that has become difficult to follow and interpret. Here, we report a systematic analysis of research practices and reporting bias in neurological disease models from 93 published articles. We find heterogeneity in current research practices and a reporting bias toward certain diseases. Moreover, we identified 663 CNS cell-derived phenotypes from 243 patients and 214 controls, which varied by mutation type and developmental stage in vitro We clustered these phenotypes into a taxonomy and characterized these phenotype-genotype relationships to generate a phenogenetic map that revealed novel correlations among previously unrelated genes. We also find that alterations in patient-derived molecular profiles associated with cellular phenotypes, and dysregulated genes show predominant expression in brain regions with pathology. Last, we developed the iPS cell phenogenetic map project atlas (iPhemap), an open submission, online database to continually catalog disease phenotypes. Overall, our findings offer new insights into the phenogenetics of iPSC-derived models while our web tool provides a platform for researchers to query and deposit phenotypic information of neurological diseases.
Collapse
Affiliation(s)
- Ethan W Hollingsworth
- Laboratory for Neural Stem Cells and Functional Neurogenetics, Division of Neuroimmunology and Multiple Sclerosis, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Departments of Neurology and Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jacob E Vaughn
- Laboratory for Neural Stem Cells and Functional Neurogenetics, Division of Neuroimmunology and Multiple Sclerosis, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Departments of Neurology and Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Josh C Orack
- Laboratory for Neural Stem Cells and Functional Neurogenetics, Division of Neuroimmunology and Multiple Sclerosis, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Departments of Neurology and Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Chelsea Skinner
- Laboratory for Neural Stem Cells and Functional Neurogenetics, Division of Neuroimmunology and Multiple Sclerosis, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Departments of Neurology and Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jamil Khouri
- Laboratory for Neural Stem Cells and Functional Neurogenetics, Division of Neuroimmunology and Multiple Sclerosis, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Departments of Neurology and Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sofia B Lizarraga
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Mark E Hester
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Fumihiro Watanabe
- Laboratory for Neural Stem Cells and Functional Neurogenetics, Division of Neuroimmunology and Multiple Sclerosis, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kenneth S Kosik
- Department of Molecular Cellular and Developmental Biology, Neuroscience Research Institute, Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jaime Imitola
- Laboratory for Neural Stem Cells and Functional Neurogenetics, Division of Neuroimmunology and Multiple Sclerosis, The Ohio State University Wexner Medical Center, Columbus, OH, USA .,Departments of Neurology and Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,The James Comprehensive Cancer Hospital, Columbus, OH, USA
| |
Collapse
|