1
|
Shim B, Ciryam P, Tosun C, Serra R, Tsymbalyuk N, Keledjian K, Gerzanich V, Simard JM. RiboTag RNA Sequencing Identifies Local Translation of HSP70 in Astrocyte Endfeet After Cerebral Ischemia. Int J Mol Sci 2025; 26:309. [PMID: 39796165 PMCID: PMC11720067 DOI: 10.3390/ijms26010309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/07/2024] [Accepted: 12/15/2024] [Indexed: 01/13/2025] Open
Abstract
Brain ischemia causes disruption in cerebral blood flow and blood-brain barrier integrity, which are normally maintained by astrocyte endfeet. Emerging evidence points to dysregulation of the astrocyte translatome during ischemia, but its effects on the endfoot translatome are unknown. In this study, we aimed to investigate the early effects of ischemia on the astrocyte endfoot translatome in a rodent cerebral ischemia and reperfusion model of stroke. To do so, we immunoprecipitated astrocyte-specific tagged ribosomes (RiboTag IP) from mechanically isolated brain microvessels. In mice subjected to middle cerebral artery occlusion and reperfusion and contralateral controls, we sequenced ribosome-bound RNAs from perivascular astrocyte endfeet and identified 205 genes that were differentially expressed in the endfoot translatome after ischemia. The main biological processes associated with these differentially expressed genes included proteostasis, inflammation, cell cycle/death, and metabolism. Transcription factors whose targets were enriched amongst upregulated translating genes included HSF1, the master regulator of the heat shock response. The most highly upregulated genes in the translatome were HSF1-dependent Hspa1a and Hspa1b, which encode the inducible HSP70. Using qPCR, Western blot, and immunohistochemistry, we confirmed that HSP70 is upregulated in astrocyte endfeet after ischemia. This coincided with an increase in ubiquitination across the proteome that suggests that ischemia induces a disruption in proteostasis in astrocyte endfeet. These findings suggest a robust proteostasis response to proteotoxic stress in the endfoot translatome after ischemia. Modulating proteostasis in endfeet may be a strategy to preserve endfoot function and BBB integrity after ischemic stroke.
Collapse
Affiliation(s)
- Bosung Shim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA; (B.S.); (C.T.); (R.S.); (N.T.); (K.K.); (V.G.)
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Prajwal Ciryam
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
- Shock Trauma Neurocritical Care, Program in Trauma, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD 20201, USA
| | - Cigdem Tosun
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA; (B.S.); (C.T.); (R.S.); (N.T.); (K.K.); (V.G.)
| | - Riccardo Serra
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA; (B.S.); (C.T.); (R.S.); (N.T.); (K.K.); (V.G.)
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Natalya Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA; (B.S.); (C.T.); (R.S.); (N.T.); (K.K.); (V.G.)
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA; (B.S.); (C.T.); (R.S.); (N.T.); (K.K.); (V.G.)
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA; (B.S.); (C.T.); (R.S.); (N.T.); (K.K.); (V.G.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA; (B.S.); (C.T.); (R.S.); (N.T.); (K.K.); (V.G.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| |
Collapse
|
2
|
Shim B, Ciryam P, Tosun C, Serra R, Tsymbalyuk N, Keledjian K, Gerzanich V, Simard JM. RiboTag RNA Sequencing Identifies Local Translation of HSP70 In Astrocyte Endfeet After Cerebral Ischemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617236. [PMID: 39416227 PMCID: PMC11482819 DOI: 10.1101/2024.10.08.617236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Brain ischemia causes disruption in cerebral blood flow and blood-brain barrier (BBB) integrity which are normally maintained by the astrocyte endfeet. Emerging evidence points to dysregulation of the astrocyte translatome during ischemia, but its effects on the endfoot translatome are unknown. In this study, we aimed to investigate the early effects of ischemia on the astrocyte endfoot translatome in a rodent model of cerebral ischemia-reperfusion. To do so, we immunoprecipitated astrocyte-specific tagged ribosomes (RiboTag IP) from mechanically isolated brain microvessels. In mice subjected to middle cerebral artery occlusion and reperfusion and contralateral controls, we sequenced ribosome-bound RNAs from perivascular astrocyte endfeet and identified 205 genes that were differentially expressed in the translatome after ischemia. Pathways associated with the differential expressions included proteostasis, inflammation, cell cycle, and metabolism. Transcription factors whose targets were enriched amongst upregulated translating genes included HSF1, the master regulator of the heat shock response. The most highly upregulated genes in the translatome were HSF1-dependent Hspa1a and Hspa1b , which encode the inducible HSP70. We found that HSP70 is upregulated in astrocyte endfeet after ischemia, coinciding with an increase in ubiquitination across the proteome. These findings suggest a robust proteostasis response to proteotoxic stress in the endfoot translatome after ischemia. Modulating proteostasis in endfeet may be a strategy to preserve endfeet function and BBB integrity after ischemic stroke.
Collapse
|
3
|
Chen X, Qin X, Bai W, Ren J, Yu Y, Nie H, Li X, Liu Z, Huang J, Li J, Yao J, Jiang Q. Kavain Alleviates Choroidal Neovascularization Via Decreasing the Activity of the HIF-1α/VEGF-A/VEGFR2 Signaling Pathway and Inhibiting Inflammation. Adv Pharm Bull 2024; 14:469-482. [PMID: 39206403 PMCID: PMC11347728 DOI: 10.34172/apb.2024.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/07/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Neovascular age-related macular degeneration (nAMD) is a prevalent cause of blindness in the elderly. Standard treatment includes anti-vascular endothelial growth factor (anti-VEGF) drugs, such as aflibercept. However, anti-VEGF drugs may have limited efficacy and cause drug resistance. This study explores whether Kavain, an anti-inflammatory molecule from Piper methysticum, can treat choroidal neovascularization (CNV). Methods Various experiments were conducted to assess the Kavain's toxicity. The impact of Kavain on in vitro cultured endothelial cells was examined through 5-ethynyl-20-deoxyuridine (EdU) assays, transwell migration assays, and tube formation assays. The therapeutic effects of Kavain on CNV were investigated using a laser-induced CNV mice model. To elucidate the mechanism of Kavain, network pharmacology analysis, molecular docking, and western blots were performed. Results Kavain exhibited no apparent toxicity both in vitro and in vivo. Kavain significantly decreased endothelial cell viability, proliferation, migration, and tube formation ability in a dose-dependent manner compared to the hypoxia groups (P<0.05). Kavain alleviated CNV in the laser-induced CNV mouse model compared to the control groups (P<0.05). These effects were statistically significantly enhanced in the Kavain plus aflibercept groups (P<0.05). Following Kavain administration, the expression levels of various inflammatory factors were markedly reduced in retinal pigment epithelium (RPE)/choroid complexes (P<0.05). Mechanistically, Kavain decreased the activity of the hypoxia-inducible factor 1α (HIF-1α)/VEGF-A/ VEGF receptor 2 (VEGFR2) signaling pathway. Conclusion Our study is the first to demonstrate Kavain's potential as a promising treatment for nAMD, owing to its dual effects of anti-inflammation and anti-angiogenesis.
Collapse
Affiliation(s)
- Xi Chen
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Ophthalmology, Northern Jiangsu People’s Hospital, Yangzhou, 225001, China
| | - Xun Qin
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wen Bai
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Junsong Ren
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yang Yu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Huiling Nie
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiumiao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhangyu Liu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiayu Huang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Juxue Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
4
|
Ma C, Shi ZH, Han XY, Liu C, Yan B, Du JL. Targeting circRNA-MAP4K2 for the treatment of diabetes-induced retinal vascular dysfunction. Aging (Albany NY) 2022; 14:6255-6268. [PMID: 35963645 PMCID: PMC9417218 DOI: 10.18632/aging.204215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Diabetic retinopathy (DR) is an important ocular vascular disease in working-age adults. However, the molecular mechanism underlying retinal vascular dysfunction is still not fully understood in DR. Circular RNAs have been recognized as the crucial regulators in many biological processes and human diseases. Herein, we determined the role of circular RNA-MAP4K2 (cMAP4K2) in diabetes-induced retinal vascular dysfunction. The results showed that high glucose treatment led to increased levels of cMAP4K2 expression in vitro and in vivo. Silencing of cMAP4K2 could reduce endothelial cell viability, proliferation, migration, and tube formation in vitro and alleviate retinal vascular dysfunction in vivo as shown by decreased vascular leakage and inflammation. By contrast, cMAP4K2 overexpression had an opposite effect on retinal vascular dysfunction. Mechanistically, cMAP4K2 acted as miR-377 sponge to affect the biological activity of miR-377, which led to increased expression of vascular endothelial growth factor A (VEGFA). Clinically, cMAP4K2 expression was significantly up-regulated in the clinical sample of DR patients. Collectively, cMAP4K2 is shown as a potential target for the diagnosis and treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Cong Ma
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China.,Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Ze-Hui Shi
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Yan Han
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chang Liu
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Biao Yan
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian-Ling Du
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
5
|
Wagstaff EL, Heredero Berzal A, Boon CJF, Quinn PMJ, ten Asbroek ALMA, Bergen AA. The Role of Small Molecules and Their Effect on the Molecular Mechanisms of Early Retinal Organoid Development. Int J Mol Sci 2021; 22:7081. [PMID: 34209272 PMCID: PMC8268497 DOI: 10.3390/ijms22137081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Early in vivo embryonic retinal development is a well-documented and evolutionary conserved process. The specification towards eye development is temporally controlled by consecutive activation or inhibition of multiple key signaling pathways, such as the Wnt and hedgehog signaling pathways. Recently, with the use of retinal organoids, researchers aim to manipulate these pathways to achieve better human representative models for retinal development and disease. To achieve this, a plethora of different small molecules and signaling factors have been used at various time points and concentrations in retinal organoid differentiations, with varying success. Additions differ from protocol to protocol, but their usefulness or efficiency has not yet been systematically reviewed. Interestingly, many of these small molecules affect the same and/or multiple pathways, leading to reduced reproducibility and high variability between studies. In this review, we make an inventory of the key signaling pathways involved in early retinogenesis and their effect on the development of the early retina in vitro. Further, we provide a comprehensive overview of the small molecules and signaling factors that are added to retinal organoid differentiation protocols, documenting the molecular and functional effects of these additions. Lastly, we comparatively evaluate several of these factors using our established retinal organoid methodology.
Collapse
Affiliation(s)
- Ellie L. Wagstaff
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
| | - Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Peter M. J. Quinn
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center—New York-Presbyterian Hospital, New York, NY 10032, USA;
| | | | - Arthur A. Bergen
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Netherlands Institute for Neuroscience (NIN-KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
6
|
Jia J, Qiu D, Lu C, Wang W, Li N, Han Y, Tong P, Sun X, Wu M, Dai J. Transcriptome Analysis of Choroid and Retina From Tree Shrew With Choroidal Neovascularization Reveals Key Signaling Moieties. Front Genet 2021; 12:654955. [PMID: 34040635 PMCID: PMC8141912 DOI: 10.3389/fgene.2021.654955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/15/2021] [Indexed: 11/13/2022] Open
Abstract
Pathological neovascularization in choroid, a leading cause of blindness, is a characteristic of many fundus diseases, such as diabetic retinopathy and age-related macular degeneration. The present study aimed to elucidate the key signaling pathways in choroidal neovascularization (CNV) by analyzing the mRNA profiles of choroid and retina in tree shrews with CNV. We induced choroidal angiogenesis by laser photocoagulation in 15 tree shrews and obtained mRNA profiles of their choroids and retinas by high-throughput transcriptome sequencing. Hierarchical cluster analysis, weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) network analysis, hematoxylin and eosin (HE) staining, CD31 immunohistochemistry (IHC), and reverse transcription quantitative PCR (RT-qPCR) were performed. After laser photocoagulation, we obtained a total of 350 differentially expressed genes (DEGs) in the choroid, including 59 genes in Module-FASN (“ME-FASN”) module and 28 genes in Module-RPL (“ME-RPL”) module. A total of 69 DEGs in retina, including 20 genes in Module-SLC (“ME-SLC”) module. Bioinformatics analysis demonstrated that DEGs in choroid were mainly involved in membrane transport; DEGs in “ME-RPL” were prominent in pathways associated with IgA production, antigen presentation, and cell adhesion molecules (CAMs) signaling. DEGs in “ME-FASN” were involved in fatty acid metabolism and PPAR signaling pathway, while DEGs in “ME-SLC” were involved in GABAergic synapse, neuroactive life receptor interaction, cholinergic synapse, and retrograde endocannabinoid signaling pathway. PPI network analysis demonstrated that the ribosomal protein family genes (RPL31, RPL7, RPL26L1, and RPL19) are key factors of “ME-RPL,” acyl-CoA superfamily genes (ACACA, ACAT1, ACAA2, and ACACB) and FASN are key factors of “ME-FASN” and superfamily of solid carrier genes (SLC17A6, SLC32A1, SLC12A5, and SLC6A1) and complement genes (C4A, C3, and C2) are key factors of “ME-SLC.” In conclusion, the present study discovered the important signal transductions (fatty acid metabolic pathway and CAMs signaling) and genes (ribosomal protein family and the complement system) in tree shrew CNV. We consider that our findings hold implications in unraveling molecular mechanisms that underlie occurrence and development of CNV.
Collapse
Affiliation(s)
- Jie Jia
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Scientific Research Laboratory Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dandan Qiu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Kunming Medical University, Kunming, China
| | - Caixia Lu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Wenguang Wang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Na Li
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yuanyuan Han
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Pinfen Tong
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Xiaomei Sun
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Min Wu
- Yunnan Eye Institute, The Second People's Hospital of Yunnan, Kunming, China
| | - Jiejie Dai
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| |
Collapse
|
7
|
Popovic N, Hooker E, Barabino A, Flamier A, Provost F, Buscarlet M, Bernier G, Larrivée B. COCO/DAND5 inhibits developmental and pathological ocular angiogenesis. EMBO Mol Med 2021; 13:e12005. [PMID: 33587337 PMCID: PMC7933934 DOI: 10.15252/emmm.202012005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
Neovascularization contributes to multiple visual disorders including age-related macular degeneration (AMD) and retinopathy of prematurity. Current therapies for treating ocular angiogenesis are centered on the inhibition of vascular endothelial growth factor (VEGF). While clinically effective, some AMD patients are refractory or develop resistance to anti-VEGF therapies and concerns of increased risks of developing geographic atrophy following long-term treatment have been raised. Identification of alternative pathways to inhibit pathological angiogenesis is thus important. We have identified a novel inhibitor of angiogenesis, COCO, a member of the Cerberus-related DAN protein family. We demonstrate that COCO inhibits sprouting, migration and cellular proliferation of cultured endothelial cells. Intravitreal injections of COCO inhibited retinal vascularization during development and in models of retinopathy of prematurity. COCO equally abrogated angiogenesis in models of choroidal neovascularization. Mechanistically, COCO inhibited TGFβ and BMP pathways and altered energy metabolism and redox balance of endothelial cells. Together, these data show that COCO is an inhibitor of retinal and choroidal angiogenesis, possibly representing a therapeutic option for the treatment of neovascular ocular diseases.
Collapse
Affiliation(s)
- Natalija Popovic
- Faculty of MedicineUniversity of MontrealMontrealQCCanada
- Hôpital Maisonneuve Rosemont Research CentreMontrealQCCanada
| | - Erika Hooker
- Faculty of MedicineUniversity of MontrealMontrealQCCanada
- Hôpital Maisonneuve Rosemont Research CentreMontrealQCCanada
| | - Andrea Barabino
- Hôpital Maisonneuve Rosemont Research CentreMontrealQCCanada
- Department of NeurosciencesUniversity of MontrealMontrealQCCanada
| | - Anthony Flamier
- Hôpital Maisonneuve Rosemont Research CentreMontrealQCCanada
- Department of NeurosciencesUniversity of MontrealMontrealQCCanada
- Present address:
Whitehead Institute of Biomedical ResearchCambridgeMAUSA
| | | | | | - Gilbert Bernier
- Faculty of MedicineUniversity of MontrealMontrealQCCanada
- Hôpital Maisonneuve Rosemont Research CentreMontrealQCCanada
- Department of NeurosciencesUniversity of MontrealMontrealQCCanada
| | - Bruno Larrivée
- Faculty of MedicineUniversity of MontrealMontrealQCCanada
- Hôpital Maisonneuve Rosemont Research CentreMontrealQCCanada
- Department of OphthalmologyUniversity of MontrealMontrealQCCanada
| |
Collapse
|