1
|
Maiocchi A, Pedrini M, Ferrari V, Carreira ASA, D'Amore VM, Santoro F, Di Porzio A, Bosetti M, Cristofani R, Silvani A, Brancaccio D, Marinelli L, Di Leva FS, Provenzani A, Poletti A, Seneci P. Design, synthesis and characterization of aryl bis-guanyl hydrazones as RNA binders of C9orf72 G 4C 2 extended repeats. Eur J Med Chem 2025; 293:117736. [PMID: 40349639 DOI: 10.1016/j.ejmech.2025.117736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/28/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Expanded G4C2 repeats derived from mutations of the C9orf72 gene are causative factors in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients, leading to multiple pathological events. Bis thiophene para dinicotinimidamide 2a was reported to preferentially stabilize G-quadruplex G4C2 RNA structures at sub-micromolar concentrations. We replaced its amidine groups with BBB-compliant guanyl hydrazones, and carried out scaffold variations to improve water solubility. An eight-membered array was built around bis-thiophene- (4b-6a), bis-oxazole- (7b), diphenylurea diamide- (8b) and phenyldioxy ditriazolephenyl scaffolds (9a,b). Biological profiling of the array identified 4b as a promising, drug-like hit, active in cellular assays on ALS patient-derived cells.
Collapse
Affiliation(s)
- Alice Maiocchi
- Chemistry Department, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Martina Pedrini
- Chemistry Department, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DisFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Agata Sofia Assunçao Carreira
- Laboratory of Genomic Screening, Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, Povo, 38123, (TN), Italy
| | - Vincenzo Maria D'Amore
- Department of Pharmacy, Università degli Studi di Napoli Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Federica Santoro
- Department of Pharmacy, Università degli Studi di Napoli Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Anna Di Porzio
- Department of Pharmacy, Università degli Studi di Napoli Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Maddalena Bosetti
- Laboratory of Genomic Screening, Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, Povo, 38123, (TN), Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DisFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Alessandra Silvani
- Chemistry Department, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Diego Brancaccio
- Department of Pharmacy, Università degli Studi di Napoli Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Luciana Marinelli
- Department of Pharmacy, Università degli Studi di Napoli Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Francesco Saverio Di Leva
- Department of Pharmacy, Università degli Studi di Napoli Federico II, via D. Montesano 49, 80131, Napoli, Italy.
| | - Alessandro Provenzani
- Laboratory of Genomic Screening, Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, Povo, 38123, (TN), Italy.
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DisFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| | - Pierfausto Seneci
- Chemistry Department, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy.
| |
Collapse
|
2
|
Romano F, Persico C, Barra A, Pinto G, Illiano A, Amoresano A, Aiello I, Abate S, D'Auria L, Martello V, D'Agostino N, Giustiniano M, Russo C, Izzo L, Merlino F, Brancaccio D, Pagano B, Amato J, Marzano S, D'Aria F, Amente S, Bro R, Rasmussen MA, Cassese M, Ammendola R, Cattaneo F, De Tito S, Iaccarino N, Di Porzio A, Randazzo A. Unveiling the biological effects of DNA G-quadruplex ligands through multi-omics data integration. Int J Biol Macromol 2025; 313:144325. [PMID: 40383348 DOI: 10.1016/j.ijbiomac.2025.144325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 05/08/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
G-quadruplexes (G4s) are non-canonical DNA structures that have proved to play a pivotal role in various biological processes, including telomere maintenance and gene expression regulation. Owing to their prevalence in tumor cells, G4s have emerged as promising targets for cancer therapy, with a substantial body of research demonstrating the potential of G4 ligands as anti-cancer tools. Nonetheless, a comprehensive multi-omics study to fully elucidate the mode of action of G-quadruplex ligands is still lacking. Such an investigation would be crucial for advancing the development of potent G4-based therapies against cancer. Herein, we employed a multi-omics approach, integrating transcriptomics, proteomics, and metabolomics, to identify key signaling pathways that mediate the anti-cancer effects of well-characterized G4-binding agents (berberine, pyridostatin and RHPS4) on human cervical adenocarcinoma (HeLa) cells. Particularly, we analyzed gene expression changes using RNA sequencing, quantified proteins by liquid-chromatography tandem mass spectrometry and examined metabolite levels via nuclear magnetic resonance. Our results revealed that, under the investigated experimental conditions, berberine treatment had only negligible cellular effects. In contrast, pyridostatin induced significant changes at the transcriptomic, proteomic, and metabolomic levels, decreasing the abundance of enzymes involved in cellular energy production, reducing the availability of precursors for lipid and nucleotide biosynthesis, and depleting essential cofactors and enzymes required for redox balance. Notably, RHPS4 could selectively disrupt mitochondrial activity, possibly through the specific stabilization of mitochondrial G-quadruplex structures. Overall, our findings provide a valuable multi-omics perspective on the cellular changes driven by G-quadruplex binders, that may accelerate the development of effective anti-cancer G4-targeted therapies.
Collapse
Affiliation(s)
- Francesca Romano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Carolina Persico
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Alessandra Barra
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Anna Illiano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Immacolata Aiello
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Sara Abate
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Ludovica D'Auria
- CEINGE - Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| | - Verdiana Martello
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, 20139 Milan, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences University of Naples Federico II, piazza Carlo di Borbone 1, 80055, Portici, Naples, Italy
| | - Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Camilla Russo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Simona Marzano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Rasmus Bro
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten Arendt Rasmussen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark; COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Myrhiam Cassese
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Stefano De Tito
- The Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London NW11AT, United Kingdom
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy.
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy.
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
3
|
Zhou Y, Xu D, Zhang Y, Zhou H. G-Quadruplexes in Tumor Immune Regulation: Molecular Mechanisms and Therapeutic Prospects in Gastrointestinal Cancers. Biomedicines 2025; 13:1057. [PMID: 40426885 PMCID: PMC12109316 DOI: 10.3390/biomedicines13051057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/18/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
G-quadruplex (G4) is a noncanonical nucleic acid secondary structure self-assembled by guanine-rich sequences. Recent studies have not only revealed the key role of G4 in gene regulation, DNA replication, and telomere maintenance but also showed that it plays a core role in regulating the tumor immune microenvironment. G4 participates in tumor immune escape and the inhibition of immune response by regulating immune checkpoint molecules, cytokine expression, immune cell function, and their interaction network, thus significantly affecting the effect of tumor immunotherapy. This article systematically reviews the molecular mechanism of G4 in tumor immune regulation, especially gastrointestinal tumors, and explores the potential and application prospects of G4-targeted drug strategies in improving anti-tumor immunotherapy.
Collapse
Affiliation(s)
| | | | - Ying Zhang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Huaixiang Zhou
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
4
|
Hile SE, Weissensteiner MH, Pytko KG, Dahl J, Kejnovsky E, Kejnovská I, Hedglin M, Georgakopoulos-Soares I, Makova K, Eckert KA. Replicative DNA polymerase epsilon and delta holoenzymes show wide-ranging inhibition at G-quadruplexes in the human genome. Nucleic Acids Res 2025; 53:gkaf352. [PMID: 40298112 PMCID: PMC12038398 DOI: 10.1093/nar/gkaf352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
G-quadruplexes (G4s) are functional elements of the human genome, some of which inhibit DNA replication. We investigated replication of G4s within highly abundant microsatellite (GGGA, GGGT) and transposable element (L1 and SVA) sequences. We found that genome-wide, numerous motifs are located preferentially on the replication leading strand and the transcribed strand templates. We directly tested replicative polymerase ϵ and δ holoenzyme inhibition at these G4s, compared to low abundant motifs. For all G4s, DNA synthesis inhibition was higher on the G-rich than C-rich strand or control sequence. No single G4 was an absolute block for either holoenzyme; however, the inhibitory potential varied over an order of magnitude. Biophysical analyses showed the motifs form varying topologies, but replicative polymerase inhibition did not correlate with a specific G4 structure. Addition of the G4 stabilizer pyridostatin severely inhibited forward polymerase synthesis specifically on the G-rich strand, enhancing G/C strand asynchrony. Our results reveal that replicative polymerase inhibition at every G4 examined is distinct, causing complementary strand synthesis to become asynchronous, which could contribute to slowed fork elongation. Altogether, we provide critical information regarding how replicative eukaryotic holoenzymes navigate synthesis through G4s naturally occurring thousands of times in functional regions of the human genome.
Collapse
Affiliation(s)
- Suzanne E Hile
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, PA 17033, United States
| | - Matthias H Weissensteiner
- Department of Biology, Penn State University Eberly College of Science, University Park, PA 16802, United States
| | - Kara G Pytko
- Department of Chemistry, Penn State University Eberly College of Science, University Park, PA 16802, United States
| | - Joseph Dahl
- National Institute of Environmental Health Sciences, Z01 ES065070, Durham, NC 27709, United States
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, 61265, Czech Republic
| | - Iva Kejnovská
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Brno, 61265, Czech Republic
| | - Mark Hedglin
- Department of Chemistry, Penn State University Eberly College of Science, University Park, PA 16802, United States
| | - Ilias Georgakopoulos-Soares
- Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, PA, 17033, United States
| | - Kateryna D Makova
- Department of Biology, Penn State University Eberly College of Science, University Park, PA 16802, United States
| | - Kristin A Eckert
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, PA 17033, United States
| |
Collapse
|
5
|
Li HX, He YM, Fei J, Guo M, Zeng C, Yan PJ, Xu Y, Qin G, Teng FY. The G-quadruplex ligand CX-5461: an innovative candidate for disease treatment. J Transl Med 2025; 23:457. [PMID: 40251554 PMCID: PMC12007140 DOI: 10.1186/s12967-025-06473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
The ribosomal DNA (rDNA) plays a vital role in regulating protein synthesis by ribosome biogenesis, essential for maintaining cellular growth, metabolism, and more. Cancer cells show a high dependence on ribosome biogenesis and exhibit elevated rDNA transcriptional activity. CX-5461, also known as Pidnarulex, is a First-in-Class anticancer drug that has received 'Fast Track Designation' approval from the FDA. Initially reported to inhibit Pol I-driven rDNA transcription, CX-5461 was recently identified as a G-quadruplex structure (G4) stabilizer and is currently completed or undergoing multiple Phase I clinical trials in patients with breast and ovarian cancers harboring BRCA1/2, PALB2, or other DNA repair deficiencies. Additionally, preclinical studies have confirmed that CX-5461 demonstrates promising therapeutic effects against multifarious non-cancer diseases, including viral infections, and autoimmune diseases. This review summarizes the mechanisms of CX-5461, including its transcriptional inhibition of rDNA, binding to G4, and toxicity towards topoisomerase, along with its research status and therapeutic effects across various diseases. Lastly, this review highlights the targeted therapy strategy of CX-5461 based on nanomedicine delivery, particularly the drug delivery utilizing the nucleic acid aptamer AS1411, which contains a G4 motif to specifically target the highly expressed nucleolin on the surface of tumor cell membranes; It also anticipates the strategy of coupling CX-5461 with peptide nucleic acids and locked nucleic acids to achieve dual targeting, thereby realizing individualized G4-targeting by CX-5461. This review aims to provide a general overview of the progress of CX-5461 in recent years and suggest potential strategies for disease treatment involving ribosomal RNA synthesis, G4, and topoisomerase.
Collapse
Affiliation(s)
- Hong-Xia Li
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China
| | - Yi-Meng He
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jing Fei
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Man Guo
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chen Zeng
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Pi-Jun Yan
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Gang Qin
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Fang-Yuan Teng
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China.
- Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
6
|
Peng M, Zhang S, Wu P, Hou X, Wang D, Ge J, Qu H, Fan C, Zhou Y, Xiang B, Liao Q, Zhou M, Tan M, Li G, Xiong W, Chen P, Zeng Z, Gong Z. Circular RNA circCLASP2 promotes nasopharyngeal carcinoma progression through binding to DHX9 to enhance PCMT1 translation. Mol Cancer 2025; 24:67. [PMID: 40050914 PMCID: PMC11884054 DOI: 10.1186/s12943-025-02272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 02/14/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Circular RNAs (circRNAs), characterized by their covalently closed-loop structures, constitute a distinct class of non-coding RNAs. They play pivotal regulatory roles within cells and are intricately associated with the progression of malignant tumors. However, their roles and the underlying mechanisms in nasopharyngeal carcinoma (NPC) progression have yet to be fully uncovered and comprehensively understood. METHODS Employing RNA sequencing technology, high-abundance circular RNAs in NPC were identified. Expression analysis of circCLASP2 in NPC tissues was conducted using quantitative real-time polymerase chain reaction (qRT-PCR) and in situ hybridization experiments. Through in vitro and in vivo functional assays, the influence of circCLASP2 on the proliferation and metastasis of NPC was investigated. LC-MS/MS technology analyzed the binding partners of circCLASP2, its differentially regulated targets, and the associated proteins of PCMT1. Interactions among circCLASP2, DHX9 protein, and PCMT1 mRNA were elucidated through RNA immunoprecipitation and RNA pull-down techniques. The effects of circCLASP2 and DHX9 on RNA G-quadruplex (rG4) structures and PCMT1 mRNA translation were explored through immunofluorescence (IF), ribosomal gradient separation, and dual-luciferase reporter assays. Immunoprecipitation (IP) revealed the downstream effector of the circCLASP2-DHX9-PCMT1 regulatory axis and Phalloidin staining confirmed its ultimate effect on the cytoskeleton. PDS treatment was applied for interventions in NPC, demonstrating potential therapeutic avenues. RESULTS Our research revealed that circCLASP2, a novel circRNA that has not been reported in tumors, is upregulated in NPC and fosters cell proliferation and metastasis both in vitro and in vivo. Mechanistically, circCLASP2 acts as a molecular scaffold, facilitating the approximation of DHX9 to PCMT1 mRNA. DHX9 unwinds the inhibitory rG4 structure near the translation initiation site on PCMT1 mRNA, increasing PCMT1 expression. PCMT1 binds to and upregulates cytoskeleton-associated proteins, modulating cytoskeleton strength and dynamics and ultimately driving NPC cell proliferation and metastasis. In both in vitro and in vivo experiments, PDS significantly inhibits NPC growth and metastasis, showcasing promising therapeutic potential. CONCLUSIONS Our investigation pinpointed a circular RNA, circCLASP2, which is upregulated in NPC and augments cytoskeletal functions via the DHX9-PCMT1 axis, contributing to the malignancy progression of NPC. This pathway holds promise as a potential therapeutic target for NPC. Furthermore, these molecules could also serve as biomarkers for adjunct diagnosis and prognosis assessment in NPC.
Collapse
Affiliation(s)
- Miao Peng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shanshan Zhang
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Department of Oral Medicine, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
| | - Pan Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Xiangchan Hou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Dan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Junshang Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Hongke Qu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Chunmei Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Yujuan Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Ming Tan
- Institute of Biochemistry & Molecular Biology, and Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan
| | - Guiyuan Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
| | - Zhaojian Gong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China.
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
7
|
Hillmann J, Maass N, Bauerschlag DO, Flörkemeier I. Promising new drugs and therapeutic approaches for treatment of ovarian cancer-targeting the hallmarks of cancer. BMC Med 2025; 23:10. [PMID: 39762846 PMCID: PMC11706140 DOI: 10.1186/s12916-024-03826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Ovarian cancer remains the most lethal gynecological malignancy. Despite the approval of promising targeted therapy such as bevacizumab and PARP inhibitors, 5-year survival has not improved significantly. Thus, there is an urgent need for new therapeutics. New advancements in therapeutic strategies target the pivotal hallmarks of cancer. This review is giving an updated overview of innovative and upcoming therapies for the treatment of ovarian cancer that focuses specific on the hallmarks of cancer. The hallmarks of cancer constitute a broad concept to reenact complexity of malignancies and furthermore identify possible targets for new treatment strategies. For this purpose, we analyzed approvals and current clinical phase III studies (registered at ClinicalTrials.gov (National Library of Medicine, National Institutes of Health; U.S. Department of Health and Human Services, 2024)) for new drugs on the basis of their mechanisms of action and identified new target approaches. A broad spectrum of new promising drugs is currently under investigation in clinical phase III studies targeting mainly the hallmarks "self-sufficiency in growth signals," "genomic instability," and "angiogenesis." The benefit of immune checkpoint inhibitors in ovarian cancer has been demonstrated for the first time. Besides, targeting the tumor microenvironment is of growing interest. Replicative immortality, energy metabolism, tumor promoting inflammation, and the microbiome of ovarian cancer are still barely targeted by drugs. Nevertheless, precision medicine, which focuses on specific disease characteristics, is becoming increasingly important in cancer treatment.
Collapse
Affiliation(s)
- Julia Hillmann
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Nicolai Maass
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Dirk O Bauerschlag
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany.
- Department of Gynaecology, Jena University Hospital, Jena, Germany.
| | - Inken Flörkemeier
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany.
| |
Collapse
|
8
|
M J VK, Mitteaux J, Wang Z, Wheeler E, Tandon N, Yun Jung S, Hudson RHE, Monchaud D, Tsvetkov AS. Small molecule-based regulation of gene expression in human astrocytes switching on and off the G-quadruplex control systems. J Biol Chem 2025; 301:108040. [PMID: 39615684 PMCID: PMC11750478 DOI: 10.1016/j.jbc.2024.108040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
A great deal of attention is being paid to strategies seeking to uncover the biology of the four-stranded nucleic acid structure G-quadruplex (G4) via their stabilization in cells with G4-specific ligands. The conventional definition of chemical biology implies that a complete assessment of G4 biology can only be achieved by implementing a complementary approach involving the destabilization of cellular G4s by ad hoc molecular effectors. We report here on an unprecedented comparison of the cellular consequences of G4 chemical stabilization by pyridostatin (PDS) and destabilization by phenylpyrrolocytosine (PhpC) at both transcriptome- and proteome-wide scales in patient-derived primary human astrocytes. Our results show that the stabilization of G4s by PDS triggers the dysregulation of many cellular circuitries, the most drastic effects originating in the downregulation of 354 transcripts and 158 proteins primarily involved in RNA transactions. In contrast, destabilization of G4s by PhpC modulates the G4 landscapes in a far more focused manner with upregulation of 295 proteins, mostly involved in RNA transactions as well, thus mirroring the effects of PDS. Our study is the first of its kind to report the extent of G4-associated cellular circuitries in human cells by systematically pitting the effect of G4 stabilization against destabilization in a direct and unbiased manner.
Collapse
Affiliation(s)
- Vijay Kumar M J
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - Jérémie Mitteaux
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), CNRS UMR6302, Dijon, France
| | - Zi Wang
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | - Ellery Wheeler
- The Department of Neurosurgery, The University of Texas, McGovern Medical School at Houston, Houston, Texas, USA
| | - Nitin Tandon
- The Department of Neurosurgery, The University of Texas, McGovern Medical School at Houston, Houston, Texas, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert H E Hudson
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), CNRS UMR6302, Dijon, France.
| | - Andrey S Tsvetkov
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, Texas, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; UTHealth Consortium on Aging, The University of Texas McGovern Medical School, Houston, Texas, USA.
| |
Collapse
|
9
|
Persico C, Iaccarino N, Romano F, Giustiniano M, Russo C, Laneri S, Di Lorenzo R, Aiello I, Abate S, Izzo L, Merlino F, Brancaccio D, Pagano B, Amato J, Marzano S, D’Aria F, De Tito S, Di Porzio A, Randazzo A. Sensitization of melanoma cells to standard chemotherapy: G-quadruplex binders as synergistic agents. NAR Cancer 2024; 6:zcae042. [PMID: 39478935 PMCID: PMC11523109 DOI: 10.1093/narcan/zcae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/13/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
The use of chemotherapeutics has achieved considerable success in cancer therapy; however, their toxicity can severely impact patients' health. In this study, aiming to reduce the doses and potential side effects of traditional chemotherapeutics, we systematically treated A375MM human melanoma cells with seven clinically approved antineoplastic drugs, in combination with three well-characterized G-quadruplex (G4) ligands, using either simultaneous or sequential dosing schedules. Interestingly, the G4 binders synergized with most of the investigated anticancer drugs, with the degree of synergism being strictly dependent on both the treatment schedule and the drug sequence employed. Notably, some of the synergistic combinations showed selective toxicity toward melanoma cells over nontumorigenic human keratinocytes. Furthermore, immunofluorescence experiments highlighted the potential implication of G4 structures in the molecular mechanisms driving the synergistic interaction between some chemotherapeutics and G4 binders. Overall, our systematic study supports the combination of G4-interacting molecules with standard antineoplastic drugs as a promising antitumor strategy.
Collapse
Affiliation(s)
- Carolina Persico
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Francesca Romano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Camilla Russo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Ritamaria Di Lorenzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Immacolata Aiello
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Sara Abate
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Simona Marzano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Federica D’Aria
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Stefano De Tito
- The Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
10
|
Keahi DL, Sanders MA, Paul MR, Webster ALH, Fang Y, Wiley TF, Shalaby S, Carroll TS, Chandrasekharappa SC, Sandoval-Garcia C, MacMillan ML, Wagner JE, Hatten ME, Smogorzewska A. G-quadruplexes are a source of vulnerability in BRCA2 deficient granule cell progenitors and medulloblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.20.604431. [PMID: 39091814 PMCID: PMC11291086 DOI: 10.1101/2024.07.20.604431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Biallelic pathogenic variants in the essential DNA repair gene BRCA2 causes Fanconi anemia, complementation group FA-D1. Patients in this group are highly prone to develop embryonal tumors, most commonly medulloblastoma arising from the cerebellar granule cell progenitors (GCPs). GCPs undergo high proliferation in the postnatal cerebellum under SHH activation, but the type of DNA lesions that require the function of the BRCA2 to prevent tumorigenesis remains unknown. To identify such lesions, we assessed both GCP neurodevelopment and tumor formation using a mouse model with deletion of exons three and four of Brca2 in the central nervous system, coupled with global Trp53 loss. Brca2 Δex3-4 ;Trp53 -/- animals developed SHH subgroup medulloblastomas with complete penetrance. Whole-genome sequencing of the tumors identified structural variants with breakpoints enriched in areas overlapping G-quadruplexes (G4s). Brca2-deficient GCPs exhibited decreased replication speed in the presence of the G4-stabilizer pyridostatin. Pif1 helicase, which resolves G4s during replication, was highly upregulated in tumors, and Pif1 knockout in primary MB tumor cells resulted in increased genome instability upon pyridostatin treatment. These data suggest that G4s may represent sites prone to replication stalling in highly proliferative GCPs and without BRCA2, G4s become a source of genome instability. Tumor cells upregulate G4-resolving helicases to facilitate rapid proliferation through G4s highlighting PIF1 helicase as a potential therapeutic target for treatment of BRCA2-deficient medulloblastomas.
Collapse
Affiliation(s)
- Danielle L. Keahi
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, USA
| | - Mathijs A. Sanders
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Matthew R. Paul
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | | | - Yin Fang
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, USA
| | - Tom F. Wiley
- Comparative Bioscience Center, The Rockefeller University, New York, NY, USA
| | - Samer Shalaby
- Flow Cytometry Resource Center, The Rockefeller University, New York, NY, USA
| | - Thomas S. Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Settara C. Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - John E. Wagner
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Mary E. Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, USA
| |
Collapse
|
11
|
Wu J, Song L, Lu M, Gao Q, Xu S, Zhou P, Ma T. The multifaceted functions of DNA-PKcs: implications for the therapy of human diseases. MedComm (Beijing) 2024; 5:e613. [PMID: 38898995 PMCID: PMC11185949 DOI: 10.1002/mco2.613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
The DNA-dependent protein kinase (DNA-PK), catalytic subunit, also known as DNA-PKcs, is complexed with the heterodimer Ku70/Ku80 to form DNA-PK holoenzyme, which is well recognized as initiator in the nonhomologous end joining (NHEJ) repair after double strand break (DSB). During NHEJ, DNA-PKcs is essential for both DNA end processing and end joining. Besides its classical function in DSB repair, DNA-PKcs also shows multifaceted functions in various biological activities such as class switch recombination (CSR) and variable (V) diversity (D) joining (J) recombination in B/T lymphocytes development, innate immunity through cGAS-STING pathway, transcription, alternative splicing, and so on, which are dependent on its function in NHEJ or not. Moreover, DNA-PKcs deficiency has been proven to be related with human diseases such as neurological pathogenesis, cancer, immunological disorder, and so on through different mechanisms. Therefore, it is imperative to summarize the latest findings about DNA-PKcs and diseases for better targeting DNA-PKcs, which have shown efficacy in cancer treatment in preclinical models. Here, we discuss the multifaceted roles of DNA-PKcs in human diseases, meanwhile, we discuss the progresses of DNA-PKcs inhibitors and their potential in clinical trials. The most updated review about DNA-PKcs will hopefully provide insights and ideas to understand DNA-PKcs associated diseases.
Collapse
Affiliation(s)
- Jinghong Wu
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Liwei Song
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Mingjun Lu
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Qing Gao
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Shaofa Xu
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Teng Ma
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| |
Collapse
|
12
|
Ma TZ, Liu LY, Zeng YL, Ding K, Zhang H, Liu W, Cao Q, Xia W, Xiong X, Wu C, Mao ZW. G-quadruplex-guided cisplatin triggers multiple pathways in targeted chemotherapy and immunotherapy. Chem Sci 2024; 15:9756-9774. [PMID: 38939132 PMCID: PMC11206235 DOI: 10.1039/d4sc00643g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
G-quadruplexes (G4s) are atypical nucleic acid structures involved in basic human biological processes and are regulated by small molecules. To date, pyridostatin and its derivatives [e.g., PyPDS (4-(2-aminoethoxy)-N 2,N 6-bis(4-(2-(pyrrolidin-1-yl) ethoxy) quinolin-2-yl) pyridine-2,6-dicarboxamide)] are the most widely used G4-binding small molecules and considered to have the best G4 specificity, which provides a new option for the development of cisplatin-binding DNA. By combining PyPDS with cisplatin and its analogs, we synthesize three platinum complexes, named PyPDSplatins. We found that cisplatin with PyPDS (CP) exhibits stronger specificity for covalent binding to G4 domains even in the presence of large amounts of dsDNA compared with PyPDS either extracellularly or intracellularly. Multiomics analysis reveals that CP can effectively regulate G4 functions, directly damage G4 structures, activate multiple antitumor signaling pathways, including the typical cGAS-STING pathway and AIM2-ASC pathway, trigger a strong immune response and lead to potent antitumor effects. These findings reflect that cisplatin-conjugated specific G4 targeting groups have antitumor mechanisms different from those of classic cisplatin and provide new strategies for the antitumor immunity of metals.
Collapse
Affiliation(s)
- Tian-Zhu Ma
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - You-Liang Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ke Ding
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine Hangzhou 311121 P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xushen Xiong
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine Hangzhou 311121 P. R. China
| | - Chao Wu
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University Guangzhou 510080 P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
13
|
Iachettini S, Biroccio A, Zizza P. Therapeutic Use of G4-Ligands in Cancer: State-of-the-Art and Future Perspectives. Pharmaceuticals (Basel) 2024; 17:771. [PMID: 38931438 PMCID: PMC11206494 DOI: 10.3390/ph17060771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
G-quadruplexes (G4s) are guanine-rich non-canonical secondary structures of nucleic acids that were identified in vitro almost half a century ago. Starting from the early 1980s, these structures were also observed in eukaryotic cells, first at the telomeric level and later in regulatory regions of cancer-related genes, in regulatory RNAs and within specific cell compartments such as lysosomes, mitochondria, and ribosomes. Because of the involvement of these structures in a large number of biological processes and in the pathogenesis of several diseases, including cancer, the interest in G4 targeting has exponentially increased in the last few years, and a great number of novel G4 ligands have been developed. Notably, G4 ligands represent a large family of heterogeneous molecules that can exert their functions by recognizing, binding, and stabilizing G4 structures in multiple ways. Regarding anti-cancer activity, the efficacy of G4 ligands was originally attributed to the capability of these molecules to inhibit the activity of telomerase, an enzyme that elongates telomeres and promotes endless replication in cancer cells. Thereafter, novel mechanisms through which G4 ligands exert their antitumoral activities have been defined, including the induction of DNA damage, control of gene expression, and regulation of metabolic pathways, among others. Here, we provided a perspective on the structure and function of G4 ligands with particular emphasis on their potential role as antitumoral agents. In particular, we critically examined the problems associated with the clinical translation of these molecules, trying to highlight the main aspects that should be taken into account during the phases of drug design and development. Indeed, taking advantage of the successes and failures, and the more recent technological progresses in the field, it would be possible to hypothesize the development of these molecules in the future that would represent a valid option for those cancers still missing effective therapies.
Collapse
Affiliation(s)
| | | | - Pasquale Zizza
- Translational Oncology Research Unit, IRCCS—Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Roma, Italy; (S.I.); (A.B.)
| |
Collapse
|
14
|
Chaurembo AI, Xing N, Chanda F, Li Y, Zhang HJ, Fu LD, Huang JY, Xu YJ, Deng WH, Cui HD, Tong XY, Shu C, Lin HB, Lin KX. Mitofilin in cardiovascular diseases: Insights into the pathogenesis and potential pharmacological interventions. Pharmacol Res 2024; 203:107164. [PMID: 38569981 DOI: 10.1016/j.phrs.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.
Collapse
Affiliation(s)
- Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China.
| | - Francis Chanda
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin-Yue Tong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Zhang J, Yu S, Peng Q, Wang P, Fang L. Emerging mechanisms and implications of cGAS-STING signaling in cancer immunotherapy strategies. Cancer Biol Med 2024; 21:j.issn.2095-3941.2023.0440. [PMID: 38172538 PMCID: PMC10875285 DOI: 10.20892/j.issn.2095-3941.2023.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
The intricate interplay between the human immune system and cancer development underscores the central role of immunotherapy in cancer treatment. Within this landscape, the innate immune system, a critical sentinel protecting against tumor incursion, is a key player. The cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) pathway has been found to be a linchpin of innate immunity: activation of this signaling pathway orchestrates the production of type I interferon (IFN-α/β), thus fostering the maturation, differentiation, and mobilization of immune effectors in the tumor microenvironment. Furthermore, STING activation facilitates the release and presentation of tumor antigens, and therefore is an attractive target for cancer immunotherapy. Current strategies to activate the STING pathway, including use of pharmacological agonists, have made substantial advancements, particularly when combined with immune checkpoint inhibitors. These approaches have shown promise in preclinical and clinical settings, by enhancing patient survival rates. This review describes the evolving understanding of the cGAS-STING pathway's involvement in tumor biology and therapy. Moreover, this review explores classical and non-classical STING agonists, providing insights into their mechanisms of action and potential for optimizing immunotherapy strategies. Despite challenges and complexities, the cGAS-STING pathway, a promising avenue for enhancing cancer treatment efficacy, has the potential to revolutionize patient outcomes.
Collapse
Affiliation(s)
- Jiawen Zhang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Sihui Yu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiao Peng
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lan Fang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
16
|
Koh GCC, Boushaki S, Zhao SJ, Pregnall AM, Sadiyah F, Badja C, Memari Y, Georgakopoulos-Soares I, Nik-Zainal S. The chemotherapeutic drug CX-5461 is a potent mutagen in cultured human cells. Nat Genet 2024; 56:23-26. [PMID: 38036782 PMCID: PMC10786719 DOI: 10.1038/s41588-023-01602-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
The chemotherapeutic agent CX-5461, or pidnarulex, has been fast-tracked by the United States Food and Drug Administration for early-stage clinical studies of BRCA1-, BRCA2- and PALB2-mutated cancers. It is under investigation in phase I and II trials. Here, we find that, although CX-5461 exhibits synthetic lethality in BRCA1-/BRCA2-deficient cells, it also causes extensive, nonselective, collateral mutagenesis in all three cell lines tested, to magnitudes that exceed known environmental carcinogens.
Collapse
Affiliation(s)
- Gene Ching Chiek Koh
- Department of Oncology, Early Cancer Institute, University of Cambridge, Cambridge, UK
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Soraya Boushaki
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Salome Jingchen Zhao
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Andrew Marcel Pregnall
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Firas Sadiyah
- Department of Oncology, Early Cancer Institute, University of Cambridge, Cambridge, UK
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Cherif Badja
- Department of Oncology, Early Cancer Institute, University of Cambridge, Cambridge, UK
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Yasin Memari
- Department of Oncology, Early Cancer Institute, University of Cambridge, Cambridge, UK
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Ilias Georgakopoulos-Soares
- Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Serena Nik-Zainal
- Department of Oncology, Early Cancer Institute, University of Cambridge, Cambridge, UK.
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Duardo RC, Guerra F, Pepe S, Capranico G. Non-B DNA structures as a booster of genome instability. Biochimie 2023; 214:176-192. [PMID: 37429410 DOI: 10.1016/j.biochi.2023.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Non-canonical secondary structures (NCSs) are alternative nucleic acid structures that differ from the canonical B-DNA conformation. NCSs often occur in repetitive DNA sequences and can adopt different conformations depending on the sequence. The majority of these structures form in the context of physiological processes, such as transcription-associated R-loops, G4s, as well as hairpins and slipped-strand DNA, whose formation can be dependent on DNA replication. It is therefore not surprising that NCSs play important roles in the regulation of key biological processes. In the last years, increasing published data have supported their biological role thanks to genome-wide studies and the development of bioinformatic prediction tools. Data have also highlighted the pathological role of these secondary structures. Indeed, the alteration or stabilization of NCSs can cause the impairment of transcription and DNA replication, modification in chromatin structure and DNA damage. These events lead to a wide range of recombination events, deletions, mutations and chromosomal aberrations, well-known hallmarks of genome instability which are strongly associated with human diseases. In this review, we summarize molecular processes through which NCSs trigger genome instability, with a focus on G-quadruplex, i-motif, R-loop, Z-DNA, hairpin, cruciform and multi-stranded structures known as triplexes.
Collapse
Affiliation(s)
- Renée C Duardo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Federico Guerra
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Simona Pepe
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
18
|
Rizzo A, Maresca C, D'Angelo C, Porru M, Di Vito S, Salvati E, Sacconi A, Berardinelli F, Sgura A, Kuznetsov S, Potdar S, Hassinen A, Stoppacciaro A, Zizza P, Biroccio A. Drug repositioning strategy for the identification of novel telomere-damaging agents: A role for NAMPT inhibitors. Aging Cell 2023; 22:e13944. [PMID: 37858982 PMCID: PMC10652301 DOI: 10.1111/acel.13944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 10/21/2023] Open
Abstract
Drug repositioning strategy represents a valid tool to accelerate the pharmacological development through the identification of new applications for already existing compounds. In this view, we aimed at discovering molecules able to trigger telomere-localized DNA damage and tumor cell death. By applying an automated high-content spinning-disk microscopy, we performed a screening aimed at identifying, on a library of 527 drugs, molecules able to negatively affect the expression of TRF2, a key protein in telomere maintenance. FK866, resulting from the screening as the best candidate hit, was then validated at biochemical and molecular levels and the mechanism underlying its activity in telomere deprotection was elucidated both in vitro and in vivo. The results of this study allow us to discover a novel role of FK866 in promoting, through the production of reactive oxygen species, telomere loss and deprotection, two events leading to an accumulation of DNA damage and tumor cell death. The ability of FK866 to induce telomere damage and apoptosis was also demonstrated in advanced preclinical models evidencing the antitumoral activity of FK866 in triple-negative breast cancer-a particularly aggressive breast cancer subtype still orphan of targeted therapies and characterized by high expression levels of both NAMPT and TRF2. Overall, our findings pave the way to the development of novel anticancer strategies to counteract triple-negative breast cancer, based on the use of telomere deprotecting agents, including NAMPT inhibitors, that would rapidly progress from bench to bedside.
Collapse
Affiliation(s)
- Angela Rizzo
- IRCCS—Regina Elena National Cancer InstituteTranslational Oncology Research UnitRomeItaly
| | - Carmen Maresca
- IRCCS—Regina Elena National Cancer InstituteTranslational Oncology Research UnitRomeItaly
| | - Carmen D'Angelo
- IRCCS—Regina Elena National Cancer InstituteTranslational Oncology Research UnitRomeItaly
| | - Manuela Porru
- IRCCS—Regina Elena National Cancer InstituteTranslational Oncology Research UnitRomeItaly
| | - Serena Di Vito
- IRCCS—Regina Elena National Cancer InstituteTranslational Oncology Research UnitRomeItaly
| | - Erica Salvati
- Institute of Molecular Biology and PathologyNational Research CouncilRomeItaly
| | - Andrea Sacconi
- IRCCS—Regina Elena National Cancer InstituteClinical Trial Center, Biostatistics and Bioinformatics UnitRomeItaly
| | | | | | - Sergey Kuznetsov
- Institute for Molecular Medicine Finland (FIMM), University of HelsinkiHelsinkiFinland
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland (FIMM), University of HelsinkiHelsinkiFinland
| | - Antti Hassinen
- Institute for Molecular Medicine Finland (FIMM), University of HelsinkiHelsinkiFinland
| | - Antonella Stoppacciaro
- Department of Clinical and Molecular Medicine, Sant'Andrea HospitalSapienza University of RomeRomeItaly
| | - Pasquale Zizza
- IRCCS—Regina Elena National Cancer InstituteTranslational Oncology Research UnitRomeItaly
| | - Annamaria Biroccio
- IRCCS—Regina Elena National Cancer InstituteTranslational Oncology Research UnitRomeItaly
| |
Collapse
|
19
|
Sato K, Knipscheer P. G-quadruplex resolution: From molecular mechanisms to physiological relevance. DNA Repair (Amst) 2023; 130:103552. [PMID: 37572578 DOI: 10.1016/j.dnarep.2023.103552] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Guanine-rich DNA sequences can fold into stable four-stranded structures called G-quadruplexes or G4s. Research in the past decade demonstrated that G4 structures are widespread in the genome and prevalent in regulatory regions of actively transcribed genes. The formation of G4s has been tightly linked to important biological processes including regulation of gene expression and genome maintenance. However, they can also pose a serious threat to genome integrity especially by impeding DNA replication, and G4-associated somatic mutations have been found accumulated in the cancer genomes. Specialised DNA helicases and single stranded DNA binding proteins that can resolve G4 structures play a crucial role in preventing genome instability. The large variety of G4 unfolding proteins suggest the presence of multiple G4 resolution mechanisms in cells. Recently, there has been considerable progress in our detailed understanding of how G4s are resolved, especially during DNA replication. In this review, we first discuss the current knowledge of the genomic G4 landscapes and the impact of G4 structures on DNA replication and genome integrity. We then describe the recent progress on the mechanisms that resolve G4 structures and their physiological relevance. Finally, we discuss therapeutic opportunities to target G4 structures.
Collapse
Affiliation(s)
- Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
20
|
Razzaq M, Han JH, Ravichandran S, Kim J, Bae JY, Park MS, Kannappan S, Chung WC, Ahn JH, Song MJ, Kim KK. Stabilization of RNA G-quadruplexes in the SARS-CoV-2 genome inhibits viral infection via translational suppression. Arch Pharm Res 2023; 46:598-615. [PMID: 37563335 DOI: 10.1007/s12272-023-01458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
The G-quadruplex (G4) formed in single-stranded DNAs or RNAs plays a key role in diverse biological processes and is considered as a potential antiviral target. In the genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 25 putative G4-forming sequences are predicted; however, the effects of G4-binding ligands on SARS-CoV-2 replication have not been studied in the context of viral infection. In this study, we investigated whether G4-ligands suppressed SARS-CoV-2 replication and whether their antiviral activity involved stabilization of viral RNA G4s and suppression of viral gene expression. We found that pyridostatin (PDS) suppressed viral gene expression and genome replication as effectively as the RNA polymerase inhibitor remdesivir. Biophysical analyses revealed that the 25 predicted G4s in the SARS-CoV-2 genome formed a parallel G4 structure. In particular, G4-644 and G4-3467 located in the 5' region of ORF1a, formed a G4 structure that could be effectively stabilized by PDS. We also showed that PDS significantly suppressed translation of the reporter genes containing these G4s. Taken together, our results demonstrate that stabilization of RNA G4s by PDS in the SARS-CoV-2 genome inhibits viral infection via translational suppression, highlighting the therapeutic potential of G4-ligands in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Maria Razzaq
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ji Ho Han
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Subramaniyam Ravichandran
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Department of Biology, Stanford University, Stanford, United States of America
| | - Jaehyun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, Biosafety Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Biosafety Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Shrute Kannappan
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Woo-Chang Chung
- Department of Microbiology, Graduate School of Basic Medical Science (GSBMS), Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Microbiology, Graduate School of Basic Medical Science (GSBMS), Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| | - Moon Jung Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
21
|
Lin HY, Wu HJ, Chu PY. Multi-omics and experimental analysis unveil theragnostic value and immunological roles of inner membrane mitochondrial protein (IMMT) in breast cancer. J Transl Med 2023; 21:189. [PMID: 36899366 PMCID: PMC9999521 DOI: 10.1186/s12967-023-04035-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND The inner membrane mitochondrial protein (IMMT) is a central unit of the mitochondrial contact site and cristae organizing system (MICOS). While researchers continue to demonstrate the physiological function of IMMT in regulating mitochondrial dynamics and preserving mitochondrial structural integrity, the roles of IMMT in clinicopathology, the tumor immune microenvironment (TIME), and precision oncology in breast cancer (BC) remain unclear. METHODS Multi-omics analysis was used here to evaluate the diagnostic and prognostic value of IMMT. Web applications aimed at analyzing the whole tumor tissue, single cells, and spatial transcriptomics were used to examine the relationship of IMMT with TIME. Gene set enrichment analysis (GSEA) was employed to determine the primary biological impact of IMMT. Experimental verification using siRNA knockdown and clinical specimens of BC patients confirmed the mechanisms behind IMMT on BC cells and the clinical significance, respectively. Potent drugs were identified by accessing the data repositories of CRISPR-based drug screenings. RESULTS High IMMT expression served as an independent diagnostic biomarker, correlated with advanced clinical status, and indicated a poor relapse-free survival (RFS) rate for patients with BC. Although, the contents of Th1, Th2, MSC, macrophages, basophil, CD4 + T cell and B cell, and TMB levels counteracted the prognostic significance. Single-cell level and whole-tissue level analyses revealed that high IMMT was associated with an immunosuppressive TIME. GSEA identified IMMT perturbation as involved in cell cycle progression and mitochondrial antioxidant defenses. Experimental knockdown of IMMT impeded the migration and viability of BC cells, arrested the cell cycle, disturbed mitochondrial function, and increased the ROS level and lipid peroxidation. The clinical values of IMMT were amenable to ethnic Chinese BC patients, and can be extrapolated to some other cancer types. Furthermore, we discovered that pyridostatin acted as a potent drug candidate in BC cells harboring an elevated IMMT expression. CONCLUSION This study combined a multi-omics survey with experimental verification to reveal the novel clinical significance of IMMT in BC, demonstrating its role in TIME, cancer cell growth and mitochondrial fitness, and identified pyridostatin as a promising drug candidate for the development of precision medicine.
Collapse
Affiliation(s)
- Hung-Yu Lin
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 402, Taiwan.,Research Assistant Center, Show Chwan Memorial Hospital, Changhua, 500, Taiwan
| | - Hsing-Ju Wu
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua, 500, Taiwan.,Department of Biology, National Changhua University of Education, Changhua, 500, Taiwan
| | - Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 402, Taiwan. .,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan. .,Department of Pathology, Show Chwan Memorial Hospital, Changhua, 500, Taiwan. .,Department of Health Food, Chung Chou University of Science and Technology, Changhua, 510, Taiwan. .,National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan.
| |
Collapse
|
22
|
Bag S, Burman MD, Bhowmik S. Structural insights and shedding light on preferential interactions of dietary flavonoids with G-quadruplex DNA structures: A new horizon. Heliyon 2023; 9:e13959. [PMID: 36879969 PMCID: PMC9984854 DOI: 10.1016/j.heliyon.2023.e13959] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
G-quadruplex, a structurally unique structure in nucleic acids present all throughout the human genome, has sparked great attention in therapeutic investigations. Targeting G-quadruplex structure is a new strategy for the drug development. Flavonoids are found in almost all dietary plant-based beverages and food products; therefore, they are ingested in significant proportions through the human diet. Although synthetically developed drug molecules are used vigorously but they have various adverse effects. While on the other hand, nature supplies chemically unique scaffolds in the form of distinct dietary flavonoids that are easily accessible, less poisonous, and have higher bioavailability. Because of their great pharmacological effectiveness and minimal cytotoxicity, such low molecular weight compounds are feasible alternatives to synthetic therapeutic medicines. Therefore, from a drug-development point of view, investigation on screening the binding capabilities of quadruplex-interactive small natural compounds like dietary flavonoids are expected to be highly effective, with a particular emphasis on the selectivity towards polymorphic G-quadruplex structures. In this respect, quadruplexes have scintillated research into their potential interaction with these dietary flavonoids. The purpose of this review is to offer an up-to-date close-up look at the research on their interaction with structurally varied dietary flavonoids with the goal of providing newer perspectives to construct novel therapeutic agents for next-generation disease managements.
Collapse
Affiliation(s)
- Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Mangal Deep Burman
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to Be University), Pondy-Cuddalore Main Road, Pillayarkuppam, Pondicherry, 607402, India
| |
Collapse
|
23
|
Targeting RNA G-quadruplex with repurposed drugs blocks SARS-CoV-2 entry. PLoS Pathog 2023; 19:e1011131. [PMID: 36701392 PMCID: PMC9904497 DOI: 10.1371/journal.ppat.1011131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/07/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
The rapid emergence of SARS-CoV-2 variants of concern, the complexity of infection, and the functional redundancy of host factors, underscore an urgent need for broad-spectrum antivirals against the continuous COVID-19 pandemic, with drug repurposing as a viable therapeutic strategy. Here we report the potential of RNA G-quadruplex (RG4)-targeting therapeutic strategy for SARS-CoV-2 entry. Combining bioinformatics, biochemical and biophysical approaches, we characterize the existence of RG4s in several SARS-CoV-2 host factors. In silico screening followed by experimental validation identify Topotecan (TPT) and Berbamine (BBM), two clinical approved drugs, as RG4-stabilizing agents with repurposing potential for COVID-19. Both TPT and BBM can reduce the protein level of RG4-containing host factors, including ACE2, AXL, FURIN, and TMPRSS2. Intriguingly, TPT and BBM block SARS-CoV-2 pseudovirus entry into target cells in vitro and murine tissues in vivo. These findings emphasize the significance of RG4 in SARS-CoV-2 pathogenesis and provide a potential broad-spectrum antiviral strategy for COVID-19 prevention and treatment.
Collapse
|
24
|
Roles of G4-DNA and G4-RNA in Class Switch Recombination and Additional Regulations in B-Lymphocytes. Molecules 2023; 28:molecules28031159. [PMID: 36770824 PMCID: PMC9921937 DOI: 10.3390/molecules28031159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Mature B cells notably diversify immunoglobulin (Ig) production through class switch recombination (CSR), allowing the junction of distant "switch" (S) regions. CSR is initiated by activation-induced deaminase (AID), which targets cytosines adequately exposed within single-stranded DNA of transcribed targeted S regions, with a specific affinity for WRCY motifs. In mammals, G-rich sequences are additionally present in S regions, forming canonical G-quadruplexes (G4s) DNA structures, which favor CSR. Small molecules interacting with G4-DNA (G4 ligands), proved able to regulate CSR in B lymphocytes, either positively (such as for nucleoside diphosphate kinase isoforms) or negatively (such as for RHPS4). G4-DNA is also implicated in the control of transcription, and due to their impact on both CSR and transcriptional regulation, G4-rich sequences likely play a role in the natural history of B cell malignancies. Since G4-DNA stands at multiple locations in the genome, notably within oncogene promoters, it remains to be clarified how it can more specifically promote legitimate CSR in physiology, rather than pathogenic translocation. The specific regulatory role of G4 structures in transcribed DNA and/or in corresponding transcripts and recombination hereby appears as a major issue for understanding immune responses and lymphomagenesis.
Collapse
|
25
|
Jia B, Xia P, Dong J, Feng W, Wang W, Liu E, Jiang G, Qin Y. Genetic testing and prognosis of sarcomatoid hepatocellular carcinoma patients. Front Oncol 2023; 12:1086908. [PMID: 36741696 PMCID: PMC9891294 DOI: 10.3389/fonc.2022.1086908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Background Sarcomatoid hepatocellular carcinoma (SHC) is a rare epithelial malignancy with high invasiveness and poor prognosis. However, the molecular characteristics and main driver genes for SHC have not been determined. The aim of this study is to explore the potentially actionable mutations of driver genes, which may provide more therapeutic options for SHC. Methods In this study, DNA extraction and library preparation were performed using tumor tissues from 28 SHC patients. Then we used Miseq platform (Illumina) to sequence the target-enriched library, and we aligned and processed the sequencing data. The gene groups were tested for SNVs/Indels/CNVs. Tumor mutation burden (TMB) was assessed by the 425-cancer-relevant gene panel. Multivariate analysis of COX's model was used for survival analysis (OS) of patients' clinical characteristics. Result The median overall survival (OS) of the patients was only 4.4 months. TP53, TERT, and KRAS were the top three frequently mutated genes, with frequencies of 89.3%, 64.3%, and 21.4%, respectively. A considerable number of patients carried mutations in genes involved in the TP53 pathway (96%) and DNA Damage Repair (DDR) pathway (21%). Multiple potentially actionable mutations, such as NTRK1 fusions and BRCA1/2 mutations, were identified in SHCs. Conclusions This study shows a landscape of gene mutations in SHC. SHC has high mutation rates in TP53 pathway and DDR pathway. The potentially actionable mutations of driver genes may provide more therapeutic options for SHC. Survival analysis found that age, smoking, drinking, and tumor diameter may be independent prognostic predictors of SHC.
Collapse
Affiliation(s)
- Bin Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peiyi Xia
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junqiang Dong
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenhao Feng
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjia Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guozhong Jiang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Guozhong Jiang, ; Yanru Qin,
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Guozhong Jiang, ; Yanru Qin,
| |
Collapse
|
26
|
Tian Z, Zeng Y, Peng Y, Liu J, Wu F. Cancer immunotherapy strategies that target the cGAS-STING pathway. Front Immunol 2022; 13:996663. [PMID: 36353640 PMCID: PMC9639746 DOI: 10.3389/fimmu.2022.996663] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/03/2022] [Indexed: 10/22/2023] Open
Abstract
Activation of the cGAS-STING pathway by cytoplasmic DNA induces the production of Type-1 interferons. Recent advances in research suggest that the cGAS-STING pathway is involved in different parts of the cancer-immunity cycle (CIC) to promote or suppress antitumor immune responses. Combination therapy of STING agonists has made certain progress in preclinical as well as clinical trials, but the selection of combination therapy regimens remains a challenge. In this review, we summarize the role of the cGAS-STING in all aspects of CIC, and focus on the combination immunotherapy strategies of STING agonists and current unsolved challenges.
Collapse
Affiliation(s)
- Zhuoying Tian
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yue Zeng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yurong Peng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Junqi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
27
|
Vertecchi E, Rizzo A, Salvati E. Telomere Targeting Approaches in Cancer: Beyond Length Maintenance. Int J Mol Sci 2022; 23:ijms23073784. [PMID: 35409143 PMCID: PMC8998427 DOI: 10.3390/ijms23073784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/19/2022] Open
Abstract
Telomeres are crucial structures that preserve genome stability. Their progressive erosion over numerous DNA duplications determines the senescence of cells and organisms. As telomere length homeostasis is critical for cancer development, nowadays, telomere maintenance mechanisms are established targets in cancer treatment. Besides telomere elongation, telomere dysfunction impinges on intracellular signaling pathways, in particular DNA damage signaling and repair, affecting cancer cell survival and proliferation. This review summarizes and discusses recent findings in anticancer drug development targeting different “telosome” components.
Collapse
Affiliation(s)
- Eleonora Vertecchi
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy;
| | - Angela Rizzo
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy;
| | - Erica Salvati
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy;
- Correspondence:
| |
Collapse
|