1
|
Sahoo R, Pattnaik S, Mohanty B, Mir SA, Behera B. Aryl hydrocarbon receptor (AHR) signalling: A double-edged sword guiding both cancer progression and cancer therapy. Biochim Biophys Acta Gen Subj 2025; 1869:130805. [PMID: 40222634 DOI: 10.1016/j.bbagen.2025.130805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025]
Abstract
Aryl Hydrocarbon Receptor (AHR) reported to be associated with major carcinogenic signalling cascades which cause cell proliferations, metastasis and invasion as well as immune imbalance. AHR Participates in cellular processes not only through genomic pathways to cause genomic alterations but also via nongenomic pathways to alter various cytoplasmic proteins. In addition, AHR senses a wide range of ligands that modulate its downstream mechanisms that are intricated in cancer induction and prevention. Thus, AHR functions as a two-sided sword where some AHR ligands contribute to enhance cancer whereas few are useful for cancer treatment. Therefore, AHR represent as a regulatory point in cancer progression and treatment. There is a need to reinvestigate the regulatory role of AHR in major intracellular pathways and to explore the potential of AHR ligand for the design of cancer therapeutics. This review emphasizes the interaction of AHR with pro-carcinogenic signalling pathways that modulate cancer induction and progression. Furthermore, it also discusses about the current discovery of AHR ligands for cancer initiation or inhibition. This information could be useful for development of therapeutic strategies for the management of cancer by targeting AHR.
Collapse
Affiliation(s)
- Rahul Sahoo
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Sriya Pattnaik
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Biswajit Mohanty
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Showkat Ahmad Mir
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Birendra Behera
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India.
| |
Collapse
|
2
|
Polonio CM, McHale KA, Sherr DH, Rubenstein D, Quintana FJ. The aryl hydrocarbon receptor: a rehabilitated target for therapeutic immune modulation. Nat Rev Drug Discov 2025:10.1038/s41573-025-01172-x. [PMID: 40247142 DOI: 10.1038/s41573-025-01172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2025] [Indexed: 04/19/2025]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor originally identified as the target mediating the toxic effects of environmental pollutants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and dioxins. For years, AHR activation was actively avoided during drug development. However, the AHR was later identified as an important physiological regulator of the immune response. These findings triggered a paradigm shift that resulted in identification of the AHR as a regulator of both innate and adaptive immunity and outlined a pathway for its modulation by the diet, commensal flora and metabolism in the context of autoimmunity, cancer and infection. Moreover, the AHR was revealed as a candidate target for the therapeutic modulation of the immune response. Indeed, the first AHR-activating drug (tapinarof) was recently approved for the treatment of psoriasis. Clinical trials are underway to evaluate the effects of tapinarof and other AHR-targeting therapeutics in inflammatory diseases, cancer and infections. This Review outlines the molecular mechanism of AHR action, and describes how it regulates the immune response. We also discuss links to disease and AHR-targeting therapeutics that have been tested in past and ongoing clinical trials.
Collapse
Affiliation(s)
- Carolina M Polonio
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | | | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Snyder M, Wang Z, Lara B, Fimbres J, Pichardo T, Mazzilli S, Khan MM, Duggineni VK, Monti S, Sherr DH. The aryl hydrocarbon receptor controls IFN-γ-induced immune checkpoints PD-L1 and IDO via the JAK/STAT pathway in lung adenocarcinoma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae023. [PMID: 40073102 DOI: 10.1093/jimmun/vkae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/12/2024] [Indexed: 03/14/2025]
Abstract
While immunotherapy has shown some efficacy in lung adenocarcinoma (LUAD) patients, many respond only partially or not at all. One limitation in improving outcomes is the lack of a complete understanding of immune checkpoint regulation. Here, we investigated a possible link between an environmental chemical receptor implicated in lung cancer and immune regulation, the AhR, a known but counterintuitive mediator of immunosuppression (interferon (IFN)-γ), and regulation of two immune checkpoints (PD-L1 and IDO). AhR gene-edited LUAD cell lines, a syngeneic LUAD mouse model, bulk and scRNA sequencing of LUADs and tumor-infiltrating T cells were used to map out a signaling pathway leading from IFN-γ through the AhR to JAK/STAT, PD-L1, IDO, and tumor-mediated immunosuppression. The data demonstrate that: (1) IFN-γ activation of the JAK/STAT pathway leading to PD-L1 and IDO1 up-regulation is mediated by the AhR in murine and human LUAD cells, (2) AhR-driven IDO1 induction results in the production of Kynurenine (Kyn), an AhR ligand, which likely mediates an AhR→IDO1→Kyn→AhR amplification loop, (3) transplantation of AhR-knockout LUAD cells results in long-term tumor immunity in most recipients. (4) The 23% of AhR-knockout tumors that do grow do so at a much slower pace than controls and exhibit higher densities of CD8+ T cells expressing markers of immunocompetence, increased activity, and increased cell-cell communication. The data definitively link the AhR to IFN-γ-induced JAK/STAT pathway and immune checkpoint-mediated immunosuppression and support the targeting of the AhR in the context of LUAD.
Collapse
Affiliation(s)
- Megan Snyder
- Graduate Program in Genetics and Genomics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Brian Lara
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Jocelyn Fimbres
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Táchira Pichardo
- Department of Medicine, Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Sarah Mazzilli
- Department of Medicine, Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Mohammed Muzamil Khan
- Department of Medicine, Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Vinay K Duggineni
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Stefano Monti
- Department of Medicine, Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| |
Collapse
|
4
|
Yang J, Qiao P, Wang G, Dang E. The Role of Aryl Hydrocarbon Receptor in Skin Homeostasis: Implications for Therapeutic Strategies in Skin Disorders. Cell Biochem Funct 2025; 43:e70047. [PMID: 39866071 DOI: 10.1002/cbf.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/26/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is extensively expressed in diverse human organs and plays a pivotal role in mediating the onset, progression, and severity of numerous diseases. Recent research has explored the substantial impact of AhR on skin homeostasis and related pathologies. As a multi-layered organ, the skin comprises multiple cell populations that express AhR. In this review, we introduce the role of AhR in various skin cells and its impact on skin barrier function. Furthermore, we explore the involvement of AhR in the development of various skin diseases, highlighting its potential as a therapeutic target for skin disorders. By targeting AhR, we may open new avenues for the development of novel and efficient skin disease treatments.
Collapse
Affiliation(s)
- Jundan Yang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Liu WS, Lu ZM, Pu XH, Li XY, Zhang HQ, Zhang ZZ, Zhang XY, Shi T, Jiang XH, Zhou JS, Zhou X, Xin ZY, Li MG, Yuan J, Chen CM, Zhang XW, Gao J, Li M. A dendritic cell-recruiting, antimicrobial blood clot hydrogel for melanoma recurrence prevention and infected wound management. Biomaterials 2025; 313:122776. [PMID: 39236629 DOI: 10.1016/j.biomaterials.2024.122776] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/07/2024] [Accepted: 08/24/2024] [Indexed: 09/07/2024]
Abstract
Surgical resection, the mainstay for melanoma treatment, faces challenges due to high tumor recurrence rates and complex postoperative wound healing. Chronic inflammation from residual disease and the risk of secondary infections impede healing. We introduce an innovative, injectable hydrogel system that integrates a multifaceted therapeutic approach. The hydrogel, crosslinked by calcium ions with sodium alginate, encapsulates a blood clot rich in dendritic cells (DCs) chemoattractants and melanoma cell-derived nanovesicles (NVs), functioning as a potent immunostimulant. This in situ recruitment strategy overcomes the limitations of subcutaneous tumor vaccine injections and more effectively achieves antitumor immunity. Additionally, the hydrogel incorporates Chlorella extracts, enhancing its antimicrobial properties to prevent wound infections and promote healing. One of the key findings of our research is the dual functionality of Chlorella extracts; they not only expedite the healing process of infected wounds but also increase the hydrogel's ability to stimulate an antitumor immune response. Given the patient-specific nature of the blood clot and NVs, our hydrogel system offers customizable solutions for individual postoperative requirements. This personalized approach is highlighted by our study, which demonstrates the synergistic impact of the composite hydrogel on preventing melanoma recurrence and hastening wound healing, potentially transforming postsurgical melanoma management.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China; School of Pharmacy, Henan University, Kaifeng, 475004, People's Republic of China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Xiao-Hui Pu
- School of Pharmacy, Henan University, Kaifeng, 475004, People's Republic of China
| | - Xin-Ying Li
- Department of Laboratory & Diagnosis, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Hui-Qi Zhang
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China; School of Pharmacy, Henan University, Kaifeng, 475004, People's Republic of China
| | - Zhuan-Zhuan Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xin-Yi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Te Shi
- Department of Gastroenterology, People's Liberation Army of China Naval Medical Center, Shanghai, 200052, People's Republic of China
| | - Xiang-He Jiang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Jing-Sheng Zhou
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Xuan Zhou
- School of Pharmacy, Henan University, Kaifeng, 475004, People's Republic of China
| | - Zhong-Yuan Xin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Mei-Gui Li
- School of Pharmacy, Henan University, Kaifeng, 475004, People's Republic of China
| | - Jing Yuan
- Department of Pediatrics, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Cui-Min Chen
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Xiao-Wei Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China.
| | - Meng Li
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
6
|
Yang C, Hu Y, Gao L, Li Z, Zhang Y, Zhuo R, Du Y, Liu H, Ji Q, Liu M, Pan J, Lu J, Xiao P, Tian Y, He S, Ling J, Hu S. Anagrelide and idarubicin combination induces GSDME-mediated pyroptosis as a potential therapy for high-PDE3A acute myeloid leukemia. Leukemia 2025; 39:98-111. [PMID: 39406931 DOI: 10.1038/s41375-024-02437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Acute myeloid leukemia (AML) is an invasive hematopoietic malignancy requiring novel treatment strategies. In this study, we identified phosphodiesterase 3 A (PDE3A) as a potential new target for drug repositioning in AML. PDE3A was preferentially overexpressed in AML cells than in normal cells, and high expression of PDE3A was correlated with lower event-free survival (EFS) in de novo AML patients. The PDE3A inhibitor anagrelide (ANA) profoundly suppresses the proliferation of high PDE3A-expressing AML cells while exhibiting minimal impact on those with low PDE3A expression. Moreover, synergistic effect of ANA with other chemotherapeutic drugs in high PDE3A expression AML cells was observed. The ANA-idarubicin (IDA) combination showed the most remarkable synergistic effect among all ANA-chemotherapeutic drugs commonly used in AML cell line models. Mechanistically, the synergy between ANA and IDA inhibited the survival of PDE3Ahigh AML cell lines through pyroptosis. This mechanism was initiated by GSDME cleavage triggered by caspase-3 activation. In vivo combination treatment of leukemic animals with high PDE3A expression significantly reduced leukemia burden and prolonged survival time compared with single-drug and vehicle control treatments. Our findings suggest that combined ANA and IDA treatment is an innovative and promising therapeutic strategy for AML patients with high PDE3A expression.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Animals
- Mice
- Pyroptosis/drug effects
- Idarubicin/pharmacology
- Idarubicin/administration & dosage
- Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 3/genetics
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Xenograft Model Antitumor Assays
- Cell Proliferation/drug effects
- Drug Synergism
- Female
- Cell Line, Tumor
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Chenwei Yang
- Department of Pediatric Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Yixin Hu
- Department of Pediatric Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Li Gao
- Department of Pediatric Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Zhiheng Li
- Institution of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Yongping Zhang
- Department of Pediatric Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Ran Zhuo
- Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Yayun Du
- State Key Laboratory of Common Mechanism Research for Major Diseases and Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Hu Liu
- Department of Pediatric Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Qi Ji
- Department of Pediatric Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Minyuan Liu
- Department of Pediatric Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Jian Pan
- Institution of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Jun Lu
- Department of Pediatric Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Peifang Xiao
- Department of Pediatric Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Yuanyuan Tian
- Institution of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215000, China.
| | - Sudan He
- State Key Laboratory of Common Mechanism Research for Major Diseases and Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China.
| | - Jing Ling
- Department of Transfusion Medicine, Children's Hospital of Soochow University, Suzhou, 215000, China.
| | - Shaoyan Hu
- Department of Pediatric Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215000, China.
- Jiangsu Pediatric Hematology & Oncology Center, Jiangsu, China.
| |
Collapse
|
7
|
Gaudel C, Pisibon C, Soysouvanh F, Giuliano S, Picard-Gauci A, Leclerc J, Hofman P, Bahadoran P, Bertolotto C, Ballotti R. Loss of LYN Is Frequent in Targeted Therapy-Resistant Melanoma Cells and Favors Metastatic Properties. J Invest Dermatol 2025; 145:214-218.e5. [PMID: 39033988 DOI: 10.1016/j.jid.2024.06.1286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/23/2024] [Accepted: 06/01/2024] [Indexed: 07/23/2024]
Affiliation(s)
- Céline Gaudel
- Université Côte d'Azur, Nice, France; Inserm U1065, Biology and Pathologies of Mélanocytes, Team 1, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Céline Pisibon
- Université Côte d'Azur, Nice, France; Inserm U1065, Biology and Pathologies of Mélanocytes, Team 1, Centre Méditerranéen de Médecine Moléculaire, Nice, France; Equipe labellisée ARC 2022, Nice, France
| | - Frédéric Soysouvanh
- Université Côte d'Azur, Nice, France; Inserm U1065, Biology and Pathologies of Mélanocytes, Team 1, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Serena Giuliano
- Université Côte d'Azur, Nice, France; Inserm U1065, Biology and Pathologies of Mélanocytes, Team 1, Centre Méditerranéen de Médecine Moléculaire, Nice, France; Equipe labellisée ARC 2022, Nice, France
| | - Alexandra Picard-Gauci
- Université Côte d'Azur, Nice, France; Inserm U1065, Biology and Pathologies of Mélanocytes, Team 1, Centre Méditerranéen de Médecine Moléculaire, Nice, France; Département de Dermatologie, CHU de Nice, Nice, France
| | - Justine Leclerc
- Université Côte d'Azur, Nice, France; Inserm U1065, Biology and Pathologies of Mélanocytes, Team 1, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Paul Hofman
- Université Côte d'Azur, Nice, France; Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, FHU OncoAge, IHU RespirERA, Nice, France
| | - Philippe Bahadoran
- Université Côte d'Azur, Nice, France; Inserm U1065, Biology and Pathologies of Mélanocytes, Team 1, Centre Méditerranéen de Médecine Moléculaire, Nice, France; Equipe labellisée ARC 2022, Nice, France; Département de Dermatologie, CHU de Nice, Nice, France
| | - Corine Bertolotto
- Université Côte d'Azur, Nice, France; Inserm U1065, Biology and Pathologies of Mélanocytes, Team 1, Centre Méditerranéen de Médecine Moléculaire, Nice, France; Equipe labellisée Ligue Contre le Cancer 2020, Nice, France
| | - Robert Ballotti
- Université Côte d'Azur, Nice, France; Inserm U1065, Biology and Pathologies of Mélanocytes, Team 1, Centre Méditerranéen de Médecine Moléculaire, Nice, France; Equipe labellisée ARC 2022, Nice, France.
| |
Collapse
|
8
|
Snyder M, Wang Z, Lara B, Fimbres J, Pichardo T, Mazzilli S, Khan MM, Duggineni VK, Monti S, Sherr DH. The Aryl Hydrocarbon Receptor Controls IFNγ-Induced Immune Checkpoints PD-L1 and IDO via the JAK/STAT Pathway in Lung Adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607602. [PMID: 39185148 PMCID: PMC11343147 DOI: 10.1101/2024.08.12.607602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
While immunotherapy has shown efficacy in lung adenocarcinoma (LUAD) patients, many respond only partially or not at all. One limitation in improving outcomes is the lack of a complete understanding of immune checkpoint regulation. Here, we investigated a possible link between an environmental chemical receptor implicated in lung cancer and immune regulation, (the aryl hydrocarbon receptor/AhR), a known but counterintuitive mediator of immunosuppression (IFNγ), and regulation of two immune checkpoints (PD-L1 and IDO). AhR gene-edited LUAD cell lines, a syngeneic LUAD mouse model, bulk- and scRNA sequencing of LUADs and tumor-infiltrating leukocytes were used to map out a signaling pathway leading from IFNγ through the AhR to JAK/STAT, PD-L1, IDO, and tumor-mediated immunosuppression. The data demonstrate that: 1) IFNγ activation of the JAK/STAT pathway leading to PD-L1 and IDO1 upregulation is mediated by the AhR in murine and human LUAD cells, 2) AhR-driven IDO1 induction results in the production of Kynurenine (Kyn), an AhR ligand, which likely mediates an AhR→IDO1→Kyn→AhR amplification loop, 3) transplantation of AhR-knockout LUAD cells results in long-term tumor immunity in most recipients. 4) The 23% of AhR-knockout tumors that do grow do so at a much slower pace than controls and exhibit higher densities of CD8+ T cells expressing markers of immunocompetence, increased activity, and increased cell-cell communication. The data definitively link the AhR to IFNγ-induced JAK/STAT pathway and immune checkpoint-mediated immunosuppression and support the targeting of the AhR in the context of LUAD.
Collapse
Affiliation(s)
- Megan Snyder
- Graduate Program in Genetics and Genomics, Boston University School of Medicine
| | - Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health
| | - Brian Lara
- Department of Environmental Health, Boston University School of Public Health
| | - Jocelyn Fimbres
- Department of Environmental Health, Boston University School of Public Health
| | | | | | - Mohammed Muzamil Khan
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine
| | - Vinay K. Duggineni
- Department of Environmental Health, Boston University School of Public Health
| | - Stefano Monti
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine
| | - David H. Sherr
- Department of Environmental Health, Boston University School of Public Health
| |
Collapse
|
9
|
Slominski RM, Kim TK, Janjetovic Z, Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R, Crossman DK, Elmets C, Raman C, Jetten AM, Indra AK, Slominski AT. Malignant Melanoma: An Overview, New Perspectives, and Vitamin D Signaling. Cancers (Basel) 2024; 16:2262. [PMID: 38927967 PMCID: PMC11201527 DOI: 10.3390/cancers16122262] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Melanoma, originating through malignant transformation of melanin-producing melanocytes, is a formidable malignancy, characterized by local invasiveness, recurrence, early metastasis, resistance to therapy, and a high mortality rate. This review discusses etiologic and risk factors for melanoma, diagnostic and prognostic tools, including recent advances in molecular biology, omics, and bioinformatics, and provides an overview of its therapy. Since the incidence of melanoma is rising and mortality remains unacceptably high, we discuss its inherent properties, including melanogenesis, that make this disease resilient to treatment and propose to use AI to solve the above complex and multidimensional problems. We provide an overview on vitamin D and its anticancerogenic properties, and report recent advances in this field that can provide solutions for the prevention and/or therapy of melanoma. Experimental papers and clinicopathological studies on the role of vitamin D status and signaling pathways initiated by its active metabolites in melanoma prognosis and therapy are reviewed. We conclude that vitamin D signaling, defined by specific nuclear receptors and selective activation by specific vitamin D hydroxyderivatives, can provide a benefit for new or existing therapeutic approaches. We propose to target vitamin D signaling with the use of computational biology and AI tools to provide a solution to the melanoma problem.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Department of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Tae-Kang Kim
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Zorica Janjetovic
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Ewa Podgorska
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Katie M. Dixon
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Rebecca S. Mason
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Rahul Sharma
- Department of Biomedical Informatics and Data Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - David K. Crossman
- Department of Genetics and Bioinformatics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Craig Elmets
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Chander Raman
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anton M. Jetten
- Cell Biology Section, NIEHS—National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrzej T. Slominski
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, Veteran Administration Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
10
|
Han S, Zhang M, Qu X, Wu Z, Huang Z, Hu Y, Li Y, Cui L, Si L, Liu J, Shao Y. SOX10 deficiency-mediated LAMB3 upregulation determines the invasiveness of MAPKi-resistant melanoma. Oncogene 2024; 43:434-446. [PMID: 38102338 DOI: 10.1038/s41388-023-02917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Melanoma that develops adaptive resistance to MAPK inhibitors (MAPKi) through transcriptional reprograming-mediated phenotype switching is associated with enhanced metastatic potential, yet the underlying mechanism of this improved invasiveness has not been fully elucidated. In this study, we show that MAPKi-resistant melanoma cells are more motile and invasive than the parental cells. We further show that LAMB3, a β subunit of the extracellular matrix protein laminin-332 is upregulated in MAPKi-resistant melanoma cells and that the LAMB3-Integrin α3/α6 signaling mediates the motile and invasive phenotype of resistant cells. In addition, we demonstrate that SOX10 deficiency in MAPKi-resistant melanoma cells drives LAMB3 upregulation through TGF-β signaling. Transcriptome profiling and functional studies further reveal a FAK/MMPs axis mediates the pro-invasiveness effect of LAMB3. Using a mouse lung metastasis model, we demonstrate LAMB3 depletion inhibits the metastatic potential of MAPKi-resistant cells in vivo. In summary, this study identifies a SOX10low/TGF-β/LAMB3/FAK/MMPs signaling pathway that determines the migration and invasion properties of MAPKi-resistant melanoma cells and provide rationales for co-targeting LAMB3 to curb the metastasis of melanoma cells in targeted therapy.
Collapse
Affiliation(s)
- Shujun Han
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mo Zhang
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoyan Qu
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zihao Wu
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zongguan Huang
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yiming Hu
- Department of Dermatology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Li
- Department of Dermatology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lanlan Cui
- Department of Dermatology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing, 100142, China
| | - Jiankang Liu
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Yongping Shao
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Department of Dermatology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
11
|
Opitz CA, Holfelder P, Prentzell MT, Trump S. The complex biology of aryl hydrocarbon receptor activation in cancer and beyond. Biochem Pharmacol 2023; 216:115798. [PMID: 37696456 PMCID: PMC10570930 DOI: 10.1016/j.bcp.2023.115798] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
The aryl hydrocarbon receptor (AHR) signaling pathway is a complex regulatory network that plays a critical role in various biological processes, including cellular metabolism, development, and immune responses. The complexity of AHR signaling arises from multiple factors, including the diverse ligands that activate the receptor, the expression level of AHR itself, and its interaction with the AHR nuclear translocator (ARNT). Additionally, the AHR crosstalks with the AHR repressor (AHRR) or other transcription factors and signaling pathways and it can also mediate non-genomic effects. Finally, posttranslational modifications of the AHR and its interaction partners, epigenetic regulation of AHR and its target genes, as well as AHR-mediated induction of enzymes that degrade AHR-activating ligands may contribute to the context-specificity of AHR activation. Understanding the complexity of AHR signaling is crucial for deciphering its physiological and pathological roles and developing therapeutic strategies targeting this pathway. Ongoing research continues to unravel the intricacies of AHR signaling, shedding light on the regulatory mechanisms controlling its diverse functions.
Collapse
Affiliation(s)
- Christiane A Opitz
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Neurology Clinic and National Center for Tumor Diseases, 69120 Heidelberg, Germany.
| | - Pauline Holfelder
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Mirja Tamara Prentzell
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Saskia Trump
- Molecular Epidemiology Unit, Berlin Institute of Health at Charité and the German Cancer Consortium (DKTK), Partner Site Berlin, a partnership between DKFZ and Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
12
|
Perdew GH, Esser C, Snyder M, Sherr DH, van den Bogaard EH, McGovern K, Fernández-Salguero PM, Coumoul X, Patterson AD. The Ah Receptor from Toxicity to Therapeutics: Report from the 5th AHR Meeting at Penn State University, USA, June 2022. Int J Mol Sci 2023; 24:5550. [PMID: 36982624 PMCID: PMC10058801 DOI: 10.3390/ijms24065550] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a sensor of low-molecular-weight molecule signals that originate from environmental exposures, the microbiome, and host metabolism. Building upon initial studies examining anthropogenic chemical exposures, the list of AHR ligands of microbial, diet, and host metabolism origin continues to grow and has provided important clues as to the function of this enigmatic receptor. The AHR has now been shown to be directly involved in numerous biochemical pathways that influence host homeostasis, chronic disease development, and responses to toxic insults. As this field of study has continued to grow, it has become apparent that the AHR is an important novel target for cancer, metabolic diseases, skin conditions, and autoimmune disease. This meeting attempted to cover the scope of basic and applied research being performed to address possible applications of our basic knowledge of this receptor on therapeutic outcomes.
Collapse
Affiliation(s)
- Gary H. Perdew
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA 16802, USA
| | - Charlotte Esser
- IUF-Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Megan Snyder
- Department of Environmental Health, Boston University School of Public Health, 72 East Concord Street, Boston, MA 02118, USA
| | - David H. Sherr
- Department of Environmental Health, Boston University School of Public Health, 72 East Concord Street, Boston, MA 02118, USA
| | - Ellen H. van den Bogaard
- Department of Dermatology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Karen McGovern
- Ikena Oncology, Inc., 645 Summer Street Suite 101, Boston, MA 02210, USA
| | - Pedro M. Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Avenida de la Investigación s/n, 06071 Badajoz, Spain
| | - Xavier Coumoul
- INSERM UMR-S1124, 45 rue des Saints-Peères, 75006 Paris, France
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
13
|
Pagliuca C, Di Leo L, De Zio D. New Insights into the Phenotype Switching of Melanoma. Cancers (Basel) 2022; 14:cancers14246118. [PMID: 36551603 PMCID: PMC9776915 DOI: 10.3390/cancers14246118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Melanoma is considered one of the deadliest skin cancers, partly because of acquired resistance to standard therapies. The most recognized driver of resistance relies on acquired melanoma cell plasticity, or the ability to dynamically switch among differentiation phenotypes. This confers the tumor noticeable advantages. During the last year, two new features have been included in the hallmarks of cancer, namely "Unlocking phenotypic plasticity" and "Non-mutational epigenetic reprogramming". Such are inextricably intertwined as, most of the time, plasticity is not discernable at the genetic level, as it rather consists of epigenetic reprogramming heavily influenced by external factors. By analyzing current literature, this review provides reasoning about the origin of plasticity and clarifies whether such features already exist among tumors or are acquired by selection. Moreover, markers of plasticity, molecular effectors, and related tumor advantages in melanoma will be explored. Ultimately, as this new branch of tumor biology opened a wide landscape of therapeutic possibilities, in the final paragraph of this review, we will focus on newly characterized drugs targeting melanoma plasticity.
Collapse
Affiliation(s)
- Chiara Pagliuca
- Melanoma Research Team, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Luca Di Leo
- Melanoma Research Team, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Daniela De Zio
- Melanoma Research Team, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
14
|
Yadav V, Jobe N, Satapathy SR, Mohapatra P, Andersson T. Increased MARCKS Activity in BRAF Inhibitor-Resistant Melanoma Cells Is Essential for Their Enhanced Metastatic Behavior Independent of Elevated WNT5A and IL-6 Signaling. Cancers (Basel) 2022; 14:cancers14246077. [PMID: 36551563 PMCID: PMC9775662 DOI: 10.3390/cancers14246077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Treatment of melanoma with a BRAF inhibitor (BRAFi) frequently initiates development of BRAFi resistance, leading to increased tumor progression and metastasis. Previously, we showed that combined inhibition of elevated WNT5A and IL-6 signaling reduced the invasion and migration of BRAFi-resistant (BRAFi-R) melanoma cells. However, the use of a combined approach per se and the need for high inhibitor concentrations to achieve this effect indicate a need for an alternative and single target. One such target could be myristoylated alanine-rich C-kinase substrate (MARCKS), a downstream target of WNT5A in BRAFi-sensitive melanoma cells. Our results revealed that MARCKS protein expression and activity are significantly elevated in PLX4032 and PLX4720 BRAFi-R A375 and HTB63 melanoma cells. Surprisingly, neither WNT5A nor IL-6 contributed to the increases in MARCKS expression and activity in BRAFi-R melanoma cells, unlike in BRAFi-sensitive melanoma cells. However, despite the above findings, our functional validation experiments revealed that MARCKS is essential for the increased metastatic behavior of BRAFi-R melanoma cells. Knockdown of MARCKS in BRAFi-R melanoma cells caused reductions in the F-actin content and the number of filopodia-like protrusions, explaining the impaired migration, invasion and metastasis of these cells observed in vitro and in an in vivo zebrafish model. In our search for an alternative explanation for the increased activity of MARCKS in BRAFi-R melanoma cells, we found elevated basal activities of PKCα, PKCε, PKCι, and RhoA. Interestingly, combined inhibition of basal PKC and RhoA effectively impaired MARCKS activity in BRAFi-R melanoma cells. Our results reveal that MARCKS is an attractive single antimetastatic target in BRAFi-R melanoma cells.
Collapse
Affiliation(s)
- Vikas Yadav
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE 20213 Malmö, Sweden
- Correspondence: (V.Y.); (T.A.); Tel.: +46-40-391167 (V.Y. & T.A.)
| | - Njainday Jobe
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE 20213 Malmö, Sweden
| | - Shakti Ranjan Satapathy
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE 20213 Malmö, Sweden
| | - Purusottam Mohapatra
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE 20213 Malmö, Sweden
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati 781101, Assam, India
| | - Tommy Andersson
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE 20213 Malmö, Sweden
- Correspondence: (V.Y.); (T.A.); Tel.: +46-40-391167 (V.Y. & T.A.)
| |
Collapse
|
15
|
Paris A, Tardif N, Baietti FM, Berra C, Leclair HM, Leucci E, Galibert M, Corre S. The AhR-SRC axis as a therapeutic vulnerability in BRAFi-resistant melanoma. EMBO Mol Med 2022; 14:e15677. [PMID: 36305167 PMCID: PMC9728058 DOI: 10.15252/emmm.202215677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 12/14/2022] Open
Abstract
The nongenetic mechanisms required to control tumor phenotypic plasticity and shape drug-resistance remain unclear. We show here that the Aryl hydrocarbon Receptor (AhR) transcription factor directly regulates the gene expression program associated with the acquisition of resistance to BRAF inhibitor (BRAFi) in melanoma. In addition, we show in melanoma cells that canonical activation of AhR mediates the activation of the SRC pathway and promotes the acquisition of an invasive and aggressive resistant phenotype to front-line BRAFi treatment in melanoma. This nongenetic reprogramming identifies a clinically compatible approach to reverse BRAFi resistance in melanoma. Using a preclinical BRAFi-resistant PDX melanoma model, we demonstrate that SRC inhibition with dasatinib significantly re-sensitizes melanoma cells to BRAFi. Together we identify the AhR/SRC axis as a new therapeutic vulnerability to trigger resistance and warrant the introduction of SRC inhibitors during the course of the treatment in combination with front-line therapeutics to delay BRAFi resistance.
Collapse
Affiliation(s)
- Anaïs Paris
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance
| | - Nina Tardif
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance
| | - Francesca M Baietti
- Laboratory for RNA Cancer Biology, Department of OncologyLKI, KU LeuvenLeuvenBelgium,Trace PDX Platform, Department of OncologyLKI, KU LeuvenLeuvenBelgium
| | - Cyrille Berra
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance,Department of Molecular Genetics and GenomicsHospital University of Rennes (CHU Rennes)RennesFrance
| | - Héloïse M Leclair
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of OncologyLKI, KU LeuvenLeuvenBelgium,Trace PDX Platform, Department of OncologyLKI, KU LeuvenLeuvenBelgium
| | - Marie‐Dominique Galibert
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance,Department of Molecular Genetics and GenomicsHospital University of Rennes (CHU Rennes)RennesFrance
| | - Sébastien Corre
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance
| |
Collapse
|