1
|
Kopczyńska M, Saha U, Romanenko A, Nojima T, Gdula M, Kamieniarz-Gdula K. Defining gene ends: RNA polymerase II CTD threonine 4 phosphorylation marks transcription termination regions genome-wide. Nucleic Acids Res 2025; 53:gkae1240. [PMID: 39718990 PMCID: PMC11754735 DOI: 10.1093/nar/gkae1240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/06/2024] [Accepted: 12/03/2024] [Indexed: 12/26/2024] Open
Abstract
Defining the beginning of a eukaryotic protein-coding gene is relatively simple. It corresponds to the first ribonucleotide incorporated by RNA polymerase II (Pol II) into the nascent RNA molecule. This nucleotide is protected by capping and maintained in the mature messenger RNA (mRNA). However, in higher eukaryotes, the end of mRNA is separated from the sites of transcription termination by hundreds to thousands of base pairs. Currently used genomic annotations only take account of the end of the mature transcript - the sites where pre-mRNA cleavage occurs, while the regions in which transcription terminates are unannotated. Here, we describe the evidence for a marker of transcription termination, which could be widely applicable in genomic studies. Pol II termination regions can be determined genome-wide by detecting Pol II phosphorylated on threonine 4 of its C-terminal domain (Pol II CTD-T4ph). Pol II in this state pauses before leaving the DNA template. Up to date this potent mark has been underused because the evidence for its place and role in termination is scattered across multiple publications. We summarize the observations regarding Pol II CTD-T4ph in termination regions and present bioinformatic analyses that further support Pol II CTD-T4ph as a global termination mark in animals.
Collapse
Affiliation(s)
- Magda Kopczyńska
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Upasana Saha
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Anastasiia Romanenko
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Takayuki Nojima
- Medical institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Michał R Gdula
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Kinga Kamieniarz-Gdula
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| |
Collapse
|
2
|
Kempen RP, Dabas P, Ansari AZ. The Phantom Mark: Enigmatic roles of phospho-Threonine 4 modification of the C-terminal domain of RNA polymerase II. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1771. [PMID: 36606410 PMCID: PMC10323045 DOI: 10.1002/wrna.1771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/04/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023]
Abstract
The largest subunit of RNA polymerase II (Pol II) has an unusual carboxyl-terminal domain (CTD). This domain is composed of a tandemly repeating heptapeptide, Y1 S2 P3 T4 S5 P6 S7 , that has multiple roles in regulating Pol II function and processing newly synthesized RNA. Transient phosphorylation of Ser2 and Ser5 of the YS2 PTS5 PS repeat have well-defined roles in recruiting different protein complexes and coordinating sequential steps in gene transcription. As such, these phospho-marks encipher a molecular recognition code, colloquially termed the CTD code. In contrast, the contribution of phospho-Threonine 4 (pThr4/pT4) to the CTD code remains opaque and contentious. Fuelling the debate on the relevance of this mark to gene expression are the findings that replacing Thr4 with a valine or alanine has varied impact on cellular function in different species and independent proteomic analyses disagree on the relative abundance of pThr4 marks. Yet, substitution with negatively charged residues is lethal and even benign mutations selectively disrupt synthesis and 3' processing of distinct sets of coding and non-coding transcripts. Suggestive of non-canonical roles, pThr4 marked Pol II regulates distinct gene classes in a species- and signal-responsive manner. Hinting at undiscovered roles of this elusive mark, multiple signal-responsive kinases phosphorylate Thr4 at target genes. Here, we focus on this under-explored residue and postulate that the pThr4 mark is superimposed on the canonical CTD code to selectively regulate expression of targeted genes without perturbing genome-wide transcriptional processes. This article is categorized under: RNA Processing > 3' End Processing RNA Processing > Processing of Small RNAs RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Ryan P Kempen
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Preeti Dabas
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Aseem Z Ansari
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
3
|
Singh P, Chaudhuri A, Banerjea M, Marathe N, Das B. Nrd1p identifies aberrant and natural exosomal target messages during the nuclear mRNA surveillance in Saccharomyces cerevisiae. Nucleic Acids Res 2021; 49:11512-11536. [PMID: 34664673 PMCID: PMC8599857 DOI: 10.1093/nar/gkab930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022] Open
Abstract
Nuclear degradation of aberrant mRNAs in Saccharomyces cerevisiae is accomplished by the nuclear exosome and its cofactors TRAMP/CTEXT. Evidence from this investigation establishes a universal role of the Nrd1p-Nab3p-Sen1p (NNS) complex in the nuclear decay of all categories of aberrant mRNAs. In agreement with this, both nrd1-1 and nrd1-2 mutations impaired the decay of all classes of aberrant messages. This phenotype is similar to that displayed by GAL::RRP41 and rrp6-Δ mutant yeast strains. Remarkably, however, nrd1ΔCID mutation (lacking the C-terminal domain required for interaction of Nrd1p with RNAPII) only diminished the decay of aberrant messages with defects occurring during the early stage of mRNP biogenesis, without affecting other messages with defects generated later in the process. Co-transcriptional recruitment of Nrd1p on the aberrant mRNAs was vital for their concomitant decay. Strikingly, this recruitment on to mRNAs defective in the early phases of biogenesis is solely dependent upon RNAPII. In contrast, Nrd1p recruitment onto export-defective transcripts with defects occurring in the later stage of biogenesis is independent of RNAPII and dependent on the CF1A component, Pcf11p, which explains the observed characteristic phenotype of nrd1ΔCID mutation. Consistently, pcf11-2 mutation displayed a selective impairment in the degradation of only the export-defective messages.
Collapse
Affiliation(s)
- Pragyan Singh
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata - 700032, West Bengal, India
| | - Anusha Chaudhuri
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata - 700032, West Bengal, India
| | - Mayukh Banerjea
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata - 700032, West Bengal, India
| | - Neeraja Marathe
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata - 700032, West Bengal, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata - 700032, West Bengal, India
| |
Collapse
|
4
|
Azouzi C, Jaafar M, Dez C, Abou Merhi R, Lesne A, Henras AK, Gadal O. Coupling Between Production of Ribosomal RNA and Maturation: Just at the Beginning. Front Mol Biosci 2021; 8:778778. [PMID: 34765647 PMCID: PMC8575686 DOI: 10.3389/fmolb.2021.778778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/12/2021] [Indexed: 01/28/2023] Open
Abstract
Ribosomal RNA (rRNA) production represents the most active transcription in the cell. Synthesis of the large rRNA precursors (35S/47S in yeast/human) is achieved by up to hundreds of RNA polymerase I (Pol I) enzymes simultaneously transcribing a single rRNA gene. In this review, we present recent advances in understanding the coupling between rRNA production and nascent rRNA folding. Mapping of the distribution of Pol I along ribosomal DNA at nucleotide resolution, using either native elongating transcript sequencing (NET-Seq) or crosslinking and analysis of cDNAs (CRAC), revealed frequent Pol I pausing, and CRAC results revealed a direct coupling between pausing and nascent RNA folding. High density of Pol I per gene imposes topological constraints that establish a defined pattern of polymerase distribution along the gene, with a persistent spacing between transcribing enzymes. RNA folding during transcription directly acts as an anti-pausing mechanism, implying that proper folding of the nascent rRNA favors elongation in vivo. Defects in co-transcriptional folding of rRNA are likely to induce Pol I pausing. We propose that premature termination of transcription, at defined positions, can control rRNA production in vivo.
Collapse
Affiliation(s)
- Chaima Azouzi
- Laboratoire de Biologie Moléculaire, Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Mariam Jaafar
- Laboratoire de Biologie Moléculaire, Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Christophe Dez
- Laboratoire de Biologie Moléculaire, Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Raghida Abou Merhi
- Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon
| | - Annick Lesne
- CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, Sorbonne Université, Paris, France.,Institut de Génétique Moléculaire de Montpellier, IGMM, CNRS, Université Montpellier, Montpellier, France
| | - Anthony K Henras
- Laboratoire de Biologie Moléculaire, Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Olivier Gadal
- Laboratoire de Biologie Moléculaire, Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
5
|
Turowski TW, Boguta M. Specific Features of RNA Polymerases I and III: Structure and Assembly. Front Mol Biosci 2021; 8:680090. [PMID: 34055890 PMCID: PMC8160253 DOI: 10.3389/fmolb.2021.680090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/16/2021] [Indexed: 12/22/2022] Open
Abstract
RNA polymerase I (RNAPI) and RNAPIII are multi-heterogenic protein complexes that specialize in the transcription of highly abundant non-coding RNAs, such as ribosomal RNA (rRNA) and transfer RNA (tRNA). In terms of subunit number and structure, RNAPI and RNAPIII are more complex than RNAPII that synthesizes thousands of different mRNAs. Specific subunits of the yeast RNAPI and RNAPIII form associated subcomplexes that are related to parts of the RNAPII initiation factors. Prior to their delivery to the nucleus where they function, RNAP complexes are assembled at least partially in the cytoplasm. Yeast RNAPI and RNAPIII share heterodimer Rpc40-Rpc19, a functional equivalent to the αα homodimer which initiates assembly of prokaryotic RNAP. In the process of yeast RNAPI and RNAPIII biogenesis, Rpc40 and Rpc19 form the assembly platform together with two small, bona fide eukaryotic subunits, Rpb10 and Rpb12. We propose that this assembly platform is co-translationally seeded while the Rpb10 subunit is synthesized by cytoplasmic ribosome machinery. The translation of Rpb10 is stimulated by Rbs1 protein, which binds to the 3′-untranslated region of RPB10 mRNA and hypothetically brings together Rpc19 and Rpc40 subunits to form the αα-like heterodimer. We suggest that such a co-translational mechanism is involved in the assembly of RNAPI and RNAPIII complexes.
Collapse
Affiliation(s)
- Tomasz W Turowski
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Boguta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Villa T, Barucco M, Martin-Niclos MJ, Jacquier A, Libri D. Degradation of Non-coding RNAs Promotes Recycling of Termination Factors at Sites of Transcription. Cell Rep 2021; 32:107942. [PMID: 32698007 DOI: 10.1016/j.celrep.2020.107942] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/08/2020] [Accepted: 06/30/2020] [Indexed: 12/27/2022] Open
Abstract
A large share of the non-coding transcriptome in yeast is controlled by the Nrd1-Nab3-Sen1 (NNS) complex, which promotes transcription termination of non-coding RNA (ncRNA) genes, and by the nuclear exosome, which limits the steady-state levels of the transcripts produced. How unconstrained ncRNA levels affect RNA metabolism and gene expression are long-standing and important questions. Here, we show that degradation of ncRNAs by the exosome is required for freeing Nrd1 and Nab3 from the released transcript after termination. In exosome mutants, these factors are sequestered by ncRNAs and cannot be efficiently recycled to sites of transcription, inducing termination defects at NNS targets. ncRNA-dependent, genome-wide termination defects can be recapitulated by the expression of a degradation-resistant, circular RNA containing a natural NNS target in exosome-proficient cells. Our results have important implications for the mechanism of termination, the general impact of ncRNAs abundance, and the importance of nuclear ncRNA degradation.
Collapse
Affiliation(s)
- Tommaso Villa
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France.
| | - Mara Barucco
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | | | - Alain Jacquier
- Institut Pasteur, Centre National de la Recherche Scientifique, UMR3525 Paris, France
| | - Domenico Libri
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France.
| |
Collapse
|
7
|
Krischuns T, Lukarska M, Naffakh N, Cusack S. Influenza Virus RNA-Dependent RNA Polymerase and the Host Transcriptional Apparatus. Annu Rev Biochem 2021; 90:321-348. [PMID: 33770447 DOI: 10.1146/annurev-biochem-072820-100645] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Influenza virus RNA-dependent RNA polymerase (FluPol) transcribes the viral RNA genome in the infected cell nucleus. In the 1970s, researchers showed that viral transcription depends on host RNA polymerase II (RNAP II) activity and subsequently that FluPol snatches capped oligomers from nascent RNAP II transcripts to prime its own transcription. Exactly how this occurs remains elusive. Here, we review recent advances in the mechanistic understanding of FluPol transcription and early events in RNAP II transcription that are relevant to cap-snatching. We describe the known direct interactions between FluPol and the RNAP II C-terminal domain and summarize the transcription-related host factors that have been found to interact with FluPol. We also discuss open questions regarding how FluPol may be targeted to actively transcribing RNAP II and the exact context and timing of cap-snatching, which is presumed to occur after cap completion but before the cap is sequestered by the nuclear cap-binding complex.
Collapse
Affiliation(s)
- Tim Krischuns
- Unité Biologie des ARN et Virus Influenza, Département de Virologie, Institut Pasteur, CNRS UMR 3569, F-75015 Paris, France; ,
| | - Maria Lukarska
- European Molecular Biology Laboratory, 38042 Grenoble CEDEX 9, France; .,Current affiliation: Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA;
| | - Nadia Naffakh
- Unité Biologie des ARN et Virus Influenza, Département de Virologie, Institut Pasteur, CNRS UMR 3569, F-75015 Paris, France; ,
| | - Stephen Cusack
- European Molecular Biology Laboratory, 38042 Grenoble CEDEX 9, France;
| |
Collapse
|
8
|
Abstract
Histone acetylation is a ubiquitous hallmark of transcription, but whether the link between histone acetylation and transcription is causal or consequential has not been addressed. Using immunoblot and chromatin immunoprecipitation-sequencing in S. cerevisiae, here we show that the majority of histone acetylation is dependent on transcription. This dependency is partially explained by the requirement of RNA polymerase II (RNAPII) for the interaction of H4 histone acetyltransferases (HATs) with gene bodies. Our data also confirms the targeting of HATs by transcription activators, but interestingly, promoter-bound HATs are unable to acetylate histones in the absence of transcription. Indeed, HAT occupancy alone poorly predicts histone acetylation genome-wide, suggesting that HAT activity is regulated post-recruitment. Consistent with this, we show that histone acetylation increases at nucleosomes predicted to stall RNAPII, supporting the hypothesis that this modification is dependent on nucleosome disruption during transcription. Collectively, these data show that histone acetylation is a consequence of RNAPII promoting both the recruitment and activity of histone acetyltransferases.
Collapse
|
9
|
Liu C, Zhang W, Xing W. Diverse and conserved roles of the protein Ssu72 in eukaryotes: from yeast to higher organisms. Curr Genet 2020; 67:195-206. [PMID: 33244642 DOI: 10.1007/s00294-020-01132-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 01/21/2023]
Abstract
Gene transcription is a complex biological process that involves a set of factors, enzymes and nucleotides. Ssu72 plays a crucial role in every step of gene transcription. RNA polymerase II (RNAPII) occupies an important position in the synthesis of mRNAs. The largest subunit of RNAPII, Rpb1, harbors its C-terminal domain (CTD), which participates in the initiation, elongation and termination of transcription. The CTD consists of heptad repeats of the consensus motif Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 and is highly conserved among different species. The CTD is flexible in structure and undergoes conformational changes in response to serine phosphorylation and proline isomerization, which are regulated by specific kinases/phosphatases and isomerases, respectively. Ssu72 is a CTD phosphatase with catalytic activity against phosphorylated Ser5 and Ser7. The isomerization of Pro6 affects the binding of Ssu72 to its substrate. Ssu72 can also indirectly change the phosphorylation status of Ser2. In addition, Ssu72 is a member of the 3'-end cleavage and polyadenylation factor (CPF) complex. Together with other CPF components, Ssu72 regulates the 3'-end processing of premature mRNA. Recent studies have revealed other roles of Ssu72, including its roles in balancing phosphate homeostasis and controlling chromosome behaviors, which should be further explored. In conclusion, the protein Ssu72 is an enzyme worthy of attention, not confined to its role in gene transcription.
Collapse
Affiliation(s)
- Changfu Liu
- Department of Interventional Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Weihao Zhang
- Department of Interventional Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Wenge Xing
- Department of Interventional Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
10
|
Turowski TW, Petfalski E, Goddard BD, French SL, Helwak A, Tollervey D. Nascent Transcript Folding Plays a Major Role in Determining RNA Polymerase Elongation Rates. Mol Cell 2020; 79:488-503.e11. [PMID: 32585128 PMCID: PMC7427326 DOI: 10.1016/j.molcel.2020.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/01/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Transcription elongation rates influence RNA processing, but sequence-specific regulation is poorly understood. We addressed this in vivo, analyzing RNAPI in S. cerevisiae. Mapping RNAPI by Miller chromatin spreads or UV crosslinking revealed 5' enrichment and strikingly uneven local polymerase occupancy along the rDNA, indicating substantial variation in transcription speed. Two features of the nascent transcript correlated with RNAPI distribution: folding energy and GC content in the transcription bubble. In vitro experiments confirmed that strong RNA structures close to the polymerase promote forward translocation and limit backtracking, whereas high GC in the transcription bubble slows elongation. A mathematical model for RNAPI elongation confirmed the importance of nascent RNA folding in transcription. RNAPI from S. pombe was similarly sensitive to transcript folding, as were S. cerevisiae RNAPII and RNAPIII. For RNAPII, unstructured RNA, which favors slowed elongation, was associated with faster cotranscriptional splicing and proximal splice site use, indicating regulatory significance for transcript folding.
Collapse
Affiliation(s)
- Tomasz W Turowski
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK.
| | - Elisabeth Petfalski
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK
| | - Benjamin D Goddard
- School of Mathematics and Maxwell Institute for Mathematical Sciences, The University of Edinburgh, Edinburgh, UK
| | - Sarah L French
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Aleksandra Helwak
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
11
|
Delan-Forino C, Spanos C, Rappsilber J, Tollervey D. Substrate specificity of the TRAMP nuclear surveillance complexes. Nat Commun 2020; 11:3122. [PMID: 32561742 PMCID: PMC7305330 DOI: 10.1038/s41467-020-16965-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 05/29/2020] [Indexed: 01/01/2023] Open
Abstract
During nuclear surveillance in yeast, the RNA exosome functions together with the TRAMP complexes. These include the DEAH-box RNA helicase Mtr4 together with an RNA-binding protein (Air1 or Air2) and a poly(A) polymerase (Trf4 or Trf5). To better determine how RNA substrates are targeted, we analyzed protein and RNA interactions for TRAMP components. Mass spectrometry identified three distinct TRAMP complexes formed in vivo. These complexes preferentially assemble on different classes of transcripts. Unexpectedly, on many substrates, including pre-rRNAs and pre-mRNAs, binding specificity is apparently conferred by Trf4 and Trf5. Clustering of mRNAs by TRAMP association shows co-enrichment for mRNAs with functionally related products, supporting the significance of surveillance in regulating gene expression. We compared binding sites of TRAMP components with multiple nuclear RNA binding proteins, revealing preferential colocalization of subsets of factors. TRF5 deletion reduces Mtr4 recruitment and increases RNA abundance for mRNAs specifically showing high Trf5 binding.
Collapse
Affiliation(s)
- Clémentine Delan-Forino
- Wellcome Center for Cell Biology, University of Edinburgh, Kings Buildings, Swann Building, Edinburgh, EH9 3BF, UK
| | - Christos Spanos
- Wellcome Center for Cell Biology, University of Edinburgh, Kings Buildings, Swann Building, Edinburgh, EH9 3BF, UK
| | - Juri Rappsilber
- Wellcome Center for Cell Biology, University of Edinburgh, Kings Buildings, Swann Building, Edinburgh, EH9 3BF, UK
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - David Tollervey
- Wellcome Center for Cell Biology, University of Edinburgh, Kings Buildings, Swann Building, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
12
|
Gregersen LH, Mitter R, Svejstrup JQ. Using TT chem-seq for profiling nascent transcription and measuring transcript elongation. Nat Protoc 2020; 15:604-627. [PMID: 31915390 DOI: 10.1038/s41596-019-0262-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/29/2019] [Indexed: 01/08/2023]
Abstract
The dynamics of transcription can be studied genome wide by high-throughput sequencing of nascent and newly synthesized RNA. 4-thiouridine (4SU) labeling in vivo enables the specific capture of such new transcripts, with 4SU residues being tagged by biotin linkers and captured using streptavidin beads before library production and high-throughput sequencing. To achieve high-resolution profiles of transcribed regions, an RNA fragmentation step before biotin tagging was introduced, in an approach known as transient transcriptome sequencing (TT-seq). We recently introduced a chemical approach for RNA fragmentation that we refer to as TTchem-seq. We describe how TTchem-seq can be used in combination with transient inhibition of early elongation using the reversible CDK9 inhibitor, 5,6-dichlorobenzimidazole 1-β-D-ribofuranoside (DRB), to measure RNA polymerase II (RNAPII) elongation rates in vivo, a technique we call DRB/TTchem-seq. Here, we provide detailed protocols for carrying out TTchem-seq and DRB/TTchem-seq, including computational analysis. Experiments and data analysis can be performed over a period of 10-13 d and require molecular biology and bioinformatics skills.
Collapse
Affiliation(s)
- Lea H Gregersen
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
13
|
Simultaneous Measurement of Transcriptional and Post-transcriptional Parameters by 3' End RNA-Seq. Cell Rep 2020; 24:2468-2478.e4. [PMID: 30157438 PMCID: PMC6130049 DOI: 10.1016/j.celrep.2018.07.104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/31/2018] [Accepted: 07/30/2018] [Indexed: 11/23/2022] Open
Abstract
Cellular RNA levels are determined by transcription and decay rates, which are fundamental in understanding gene expression regulation. Measurement of these two parameters is usually performed independently, complicating analysis as well as introducing methodological biases and batch effects that hamper direct comparison. Here, we present a simple approach of concurrent sequencing of S. cerevisiae poly(A)+ and poly(A)- RNA 3' ends to simultaneously estimate total RNA levels, transcription, and decay rates from the same RNA sample. The transcription data generated correlate well with reported estimates and also reveal local RNA polymerase stalling and termination sites with high precision. Although the method by design uses brief metabolic labeling of newly synthesized RNA with 4-thiouracil, the results demonstrate that transcription estimates can also be gained from unlabeled RNA samples. These findings underscore the potential of the approach, which should be generally applicable to study a range of biological questions in diverse organisms.
Collapse
|
14
|
Lee TA, Bailey-Serres J. Integrative Analysis from the Epigenome to Translatome Uncovers Patterns of Dominant Nuclear Regulation during Transient Stress. THE PLANT CELL 2019; 31:2573-2595. [PMID: 31519798 PMCID: PMC6881120 DOI: 10.1105/tpc.19.00463] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/21/2019] [Accepted: 09/12/2019] [Indexed: 05/19/2023]
Abstract
Gene regulation is a dynamic process involving changes ranging from the remodeling of chromatin to preferential translation. To understand integrated nuclear and cytoplasmic gene regulatory dynamics, we performed a survey spanning the epigenome to translatome of Arabidopsis (Arabidopsis thaliana) seedlings in response to hypoxia and reoxygenation. This included chromatin assays (examining histones, accessibility, RNA polymerase II [RNAPII], and transcription factor binding) and three RNA assays (nuclear, polyadenylated, and ribosome-associated). Dynamic patterns of nuclear regulation distinguished stress-induced and growth-associated mRNAs. The rapid upregulation of hypoxia-responsive gene transcripts and their preferential translation were generally accompanied by increased chromatin accessibility, RNAPII engagement, and reduced Histone 2A.Z association. Hypoxia promoted a progressive upregulation of heat stress transcripts, as evidenced by RNAPII binding and increased nuclear RNA, with polyadenylated RNA levels only elevated after prolonged stress or reoxygenation. Promoters of rapidly versus progressively upregulated genes were enriched for cis-elements of ethylene-responsive and heat shock factor transcription factors, respectively. Genes associated with growth, including many encoding cytosolic ribosomal proteins, underwent distinct histone modifications, yet retained RNAPII engagement and accumulated nuclear transcripts during the stress. Upon reaeration, progressively upregulated and growth-associated gene transcripts were rapidly mobilized to ribosomes. Thus, multilevel nuclear regulation of nucleosomes, transcript synthesis, accumulation, and translation tailor transient stress responses.plantcell;31/11/2573/FX1F1fx1.
Collapse
Affiliation(s)
- Travis A Lee
- Center for Plant Cell Biology and Botany and Plant Sciences Department, University of California, Riverside, California 92521
| | - Julia Bailey-Serres
- Center for Plant Cell Biology and Botany and Plant Sciences Department, University of California, Riverside, California 92521
| |
Collapse
|
15
|
Neugebauer KM. Nascent RNA and the Coordination of Splicing with Transcription. Cold Spring Harb Perspect Biol 2019; 11:11/8/a032227. [PMID: 31371351 DOI: 10.1101/cshperspect.a032227] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
At each active protein-encoding gene, nascent RNA is tethered to the DNA axis by elongating RNA polymerase II (Pol II) and is continuously altered by splicing and other processing events during its synthesis. This review discusses the development of three major methods that enable us to track the conversion of precursor messenger RNA (pre-mRNA) to messenger RNA (mRNA) products in vivo: live-cell imaging, metabolic labeling of RNA, and RNA-seq of purified nascent RNA. These approaches are complementary, addressing distinct issues of transcription rates and intron lifetimes alongside spatial information regarding the gene position of Pol II at which spliceosomes act. The findings will be placed in the context of active transcription units, each of which-because of the presence of nascent RNA, Pol II, and features of the chromatin environment-will recruit a potentially gene-specific constellation of RNA binding proteins and processing machineries.
Collapse
Affiliation(s)
- Karla M Neugebauer
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
16
|
Sohrabi-Jahromi S, Hofmann KB, Boltendahl A, Roth C, Gressel S, Baejen C, Soeding J, Cramer P. Transcriptome maps of general eukaryotic RNA degradation factors. eLife 2019; 8:47040. [PMID: 31135339 PMCID: PMC6570525 DOI: 10.7554/elife.47040] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/27/2019] [Indexed: 12/27/2022] Open
Abstract
RNA degradation pathways enable RNA processing, the regulation of RNA levels, and the surveillance of aberrant or poorly functional RNAs in cells. Here we provide transcriptome-wide RNA-binding profiles of 30 general RNA degradation factors in the yeast Saccharomyces cerevisiae. The profiles reveal the distribution of degradation factors between different RNA classes. They are consistent with the canonical degradation pathway for closed-loop forming mRNAs after deadenylation. Modeling based on mRNA half-lives suggests that most degradation factors bind intact mRNAs, whereas decapping factors are recruited only for mRNA degradation, consistent with decapping being a rate-limiting step. Decapping factors preferentially bind mRNAs with non-optimal codons, consistent with rapid degradation of inefficiently translated mRNAs. Global analysis suggests that the nuclear surveillance machinery, including the complexes Nrd1/Nab3 and TRAMP4, targets aberrant nuclear RNAs and processes snoRNAs. Cells contain a large group of DNA-like molecules called RNAs. While DNA stores and preserves information, RNA influences how cells use and regulate that information. As such, regulating the quantities of different RNAs is a key part of how cells survive, grow, adapt and respond to changes. For example, messenger RNAs (or mRNAs for short) carry genetic information from DNA which the cell reads to produce proteins. RNAs that are not needed can be degraded and removed from the cell by RNA degradation proteins. Most RNA degradation proteins need to be able to bind to RNA in order to work. A technique called “photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation”, often shortened to PAR-CLIP, can detect these proteins on their targets. The PAR-CLIP technique irreversibly links RNA-binding proteins to RNA and then collects those proteins and their bound RNAs for analysis. As with DNA, the RNAs can be identified using genetic sequencing. Degradation often starts at RNA ends, where specialized structures protect the RNA from accidental damage. Using PAR-CLIP, Sohrabi-Jahromi, Hofmann et al performed a detailed study of 30 RNA degradation proteins in the yeast Saccharomyces cerevisiae. The results highlight the specialization of different proteins to different groups of RNAs. One group of proteins, for example, remove the protective ‘cap’ structure at the start of RNAs. Those mRNAs that are not efficiently producing proteins attracted a lot of these cap-removing proteins. The findings also identify proteins involved in RNA degradation in the cell nucleus – the compartment that houses most of the cell’s DNA. Together these findings provide an extensive data resource for cell biologists. It offers many links between different RNAs and their degradation proteins. Understanding these key cellular processes helps to reveal more about the mechanisms underlying all of biology. It can also shed light on what happens when these processes fail and the diseases that may result.
Collapse
Affiliation(s)
- Salma Sohrabi-Jahromi
- Quantitative and Computational Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Katharina B Hofmann
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Andrea Boltendahl
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christian Roth
- Quantitative and Computational Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Saskia Gressel
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Carlo Baejen
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Johannes Soeding
- Quantitative and Computational Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
17
|
Moreau K, Le Dantec A, Mosrin-Huaman C, Bigot Y, Piégu B, Rahmouni AR. Perturbation of mRNP biogenesis reveals a dynamic landscape of the Rrp6-dependent surveillance machinery trafficking along the yeast genome. RNA Biol 2019; 16:879-889. [PMID: 31007122 PMCID: PMC6546349 DOI: 10.1080/15476286.2019.1593745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Eukaryotic cells have evolved a nuclear quality control (QC) system to monitor the co-transcriptional mRNA processing and packaging reactions that lead to the formation of export-competent ribonucleoprotein particles (mRNPs). Aberrant mRNPs that fail to pass the QC steps are retained in the nucleus and eliminated by the exonuclease activity of Rrp6. It is still unclear how the surveillance system is precisely coordinated both physically and functionally with the transcription machinery to detect the faulty events that may arise at each step of transcript elongation and mRNP formation. To dissect the QC mechanism, we previously implemented a powerful assay based on global perturbation of mRNP biogenesis in yeast by the bacterial Rho helicase. By monitoring model genes, we have shown that the QC process is coordinated by Nrd1, a component of the NNS complex (Nrd1-Nab3-Sen1) involved in termination, processing and decay of ncRNAs which is recruited by the CTD of RNAP II. Here, we have extended our investigations by analyzing the QC behaviour over the whole yeast genome. We performed high-throughput RNA sequencing (RNA-seq) to survey a large collection of mRNPs whose biogenesis is affected by Rho action and which can be rescued upon Rrp6 depletion. This genome-wide perspective was extended by generating high-resolution binding landscapes (ChIP-seq) of QC components along the yeast chromosomes before and after perturbation of mRNP biogenesis. Our results show that perturbation of mRNP biogenesis redistributes the QC components over the genome with a significant hijacking of Nrd1 and Nab3 from genomic loci producing ncRNAs to Rho-affected protein-coding genes, triggering termination and processing defects of ncRNAs.
Collapse
Affiliation(s)
- Kévin Moreau
- a Centre de Biophysique Moléculaire , UPR 4301 du CNRS, Orléans , France
| | - Aurélia Le Dantec
- a Centre de Biophysique Moléculaire , UPR 4301 du CNRS, Orléans , France
| | | | - Yves Bigot
- b Physiologie de la Reproduction et des Comportements , UMR 7247 INRA-CNRS, Nouzilly , France
| | - Benoit Piégu
- b Physiologie de la Reproduction et des Comportements , UMR 7247 INRA-CNRS, Nouzilly , France
| | - A Rachid Rahmouni
- a Centre de Biophysique Moléculaire , UPR 4301 du CNRS, Orléans , France
| |
Collapse
|
18
|
Kecman T, Kuś K, Heo DH, Duckett K, Birot A, Liberatori S, Mohammed S, Geis-Asteggiante L, Robinson CV, Vasiljeva L. Elongation/Termination Factor Exchange Mediated by PP1 Phosphatase Orchestrates Transcription Termination. Cell Rep 2018; 25:259-269.e5. [PMID: 30282034 PMCID: PMC6180485 DOI: 10.1016/j.celrep.2018.09.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/27/2018] [Accepted: 09/04/2018] [Indexed: 11/20/2022] Open
Abstract
Termination of RNA polymerase II (Pol II) transcription is a key step that is important for 3' end formation of functional mRNA, mRNA release, and Pol II recycling. Even so, the underlying termination mechanism is not yet understood. Here, we demonstrate that the conserved and essential termination factor Seb1 is found on Pol II near the end of the RNA exit channel and the Rpb4/7 stalk. Furthermore, the Seb1 interaction surface with Pol II largely overlaps with that of the elongation factor Spt5. Notably, Seb1 co-transcriptional recruitment is dependent on Spt5 dephosphorylation by the conserved PP1 phosphatase Dis2, which also dephosphorylates threonine 4 within the Pol II heptad repeated C-terminal domain. We propose that Dis2 orchestrates the transition from elongation to termination phase during the transcription cycle by mediating elongation to termination factor exchange and dephosphorylation of Pol II C-terminal domain.
Collapse
Affiliation(s)
- Tea Kecman
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Krzysztof Kuś
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Dong-Hyuk Heo
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Katie Duckett
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Adrien Birot
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Department of Chemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Lidia Vasiljeva
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
19
|
Tudek A, Schmid M, Makaras M, Barrass JD, Beggs JD, Jensen TH. A Nuclear Export Block Triggers the Decay of Newly Synthesized Polyadenylated RNA. Cell Rep 2018; 24:2457-2467.e7. [PMID: 30157437 PMCID: PMC6130047 DOI: 10.1016/j.celrep.2018.07.103] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/31/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
Genomes are promiscuously transcribed, necessitating mechanisms that facilitate the sorting of RNA for function or destruction. The polyA (pA) tail is one such distinguishing feature, which in the Saccharomyces cerevisiae nucleus is bound by the Nab2p protein, yielding transcript protection. As Nab2p also contacts the main nuclear export factor Mex67p, we asked whether transport kinetics contributes to RNA sorting. Indeed, 3' end sequencing of newly transcribed pA+ RNAs demonstrates that nuclear depletion of Mex67p elicits their instant and global decay. A similar phenotype is evident upon inactivation of other export factors and proportional to the amount of nuclear pA+ RNA. As RNA expression is partially rescued by Nab2p overexpression, we propose that an export block out-titrates Nab2p onto nuclear-retained pA+ RNA, reducing the pool of Nab2p available to protect new transcripts. More generally, we suggest that nuclear RNA decay, negotiated by Nab2p availability, aids in balancing cellular transcript supply with demand.
Collapse
Affiliation(s)
- Agnieszka Tudek
- Department of Molecular Biology and Genetics, Aarhus University, C. F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| | - Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, C. F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| | - Marius Makaras
- Department of Molecular Biology and Genetics, Aarhus University, C. F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| | - J David Barrass
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Jean D Beggs
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, C. F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark.
| |
Collapse
|
20
|
Kecman T, Heo DH, Vasiljeva L. Profiling RNA Polymerase II Phosphorylation Genome-Wide in Fission Yeast. Methods Enzymol 2018; 612:489-504. [PMID: 30502955 DOI: 10.1016/bs.mie.2018.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The RNA polymerase II carboxyl-terminal domain (CTD) consists of tandem repeats of consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Dynamic posttranslational modifications of the CTD generate a CTD code crucial for the cotranscriptional recruitment of factors that control transcription, chromatin modification, and RNA processing. Analysis of CTD phosphorylation by ChIP (Chromatin ImmunoPrecipitation) coupled with high-throughput DNA sequencing (ChIP-seq) is a powerful tool to investigate the changes in CTD phosphorylation during the transcription cycle. In this chapter, we describe a ChIP-seq protocol to profile the different CTD phospho-marks in fission yeast. Using this protocol, we have found that Tyr1P, Ser2P, and Thr4P signals are highest at gene 3' ends, whereas Ser5P is enriched across the gene bodies.
Collapse
Affiliation(s)
- Tea Kecman
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Dong-Hyuk Heo
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Lidia Vasiljeva
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
21
|
Tuck AC, Natarajan KN, Rice GM, Borawski J, Mohn F, Rankova A, Flemr M, Wenger A, Nutiu R, Teichmann S, Bühler M. Distinctive features of lincRNA gene expression suggest widespread RNA-independent functions. Life Sci Alliance 2018; 1:e201800124. [PMID: 30456373 PMCID: PMC6238598 DOI: 10.26508/lsa.201800124] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic genomes produce RNAs lacking protein-coding potential, with enigmatic roles. We integrated three approaches to study large intervening noncoding RNA (lincRNA) gene functions. First, we profiled mouse embryonic stem cells and neural precursor cells at single-cell resolution, revealing lincRNAs expressed in specific cell types, cell subpopulations, or cell cycle stages. Second, we assembled a transcriptome-wide atlas of nuclear lincRNA degradation by identifying targets of the exosome cofactor Mtr4. Third, we developed a reversible depletion system to separate the role of a lincRNA gene from that of its RNA. Our approach distinguished lincRNA loci functioning in trans from those modulating local gene expression. Some genes express stable and/or abundant lincRNAs in single cells, but many prematurely terminate transcription and produce lincRNAs rapidly degraded by the nuclear exosome. This suggests that besides RNA-dependent functions, lincRNA loci act as DNA elements or through transcription. Our integrative approach helps distinguish these mechanisms.
Collapse
Affiliation(s)
- Alex C Tuck
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Kedar Nath Natarajan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.,Danish Institute of Advanced Study and Functional Genomics and Metabolism Unit, University of Southern Denmark, Denmark
| | - Greggory M Rice
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Jason Borawski
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Fabio Mohn
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Aneliya Rankova
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Matyas Flemr
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Alice Wenger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Razvan Nutiu
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Sarah Teichmann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
22
|
Klopf E, Moes M, Amman F, Zimmermann B, von Pelchrzim F, Wagner C, Schroeder R. Nascent RNA signaling to yeast RNA Pol II during transcription elongation. PLoS One 2018; 13:e0194438. [PMID: 29570714 PMCID: PMC5865726 DOI: 10.1371/journal.pone.0194438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/02/2018] [Indexed: 11/18/2022] Open
Abstract
Transcription as the key step in gene expression is a highly regulated process. The speed of transcription elongation depends on the underlying gene sequence and varies on a gene by gene basis. The reason for this sequence dependence is not known in detail. Recently, our group studied the cross talk between the nascent RNA and the transcribing RNA polymerase by screening the Escherichia coli genome for RNA sequences with high affinity to RNA Pol by performing genomic SELEX. This approach led to the identification of RNA polymerase-binding APtamers termed "RAPs". RAPs can have positive and negative effects on gene expression. A subgroup is able to downregulate transcription via the activity of the termination factor Rho. In this study, we used a similar SELEX setup using yeast genomic DNA as source of RNA sequences and highly purified yeast RNA Pol II as bait and obtained almost 1300 yeast-derived RAPs. Yeast RAPs are found throughout the genome within genes and antisense to genes, they are overrepresented in the non-transcribed strand of yeast telomeres and underrepresented in intergenic regions. Genes harbouring a RAP are more likely to show lower mRNA levels. By determining the endogenous expression levels as well as using a reporter system, we show that RAPs located within coding regions can reduce the transcript level downstream of the RAP. Here we demonstrate that RAPs represent a novel type of regulatory RNA signal in Saccharomyces cerevisiae that act in cis and interfere with the elongating transcription machinery to reduce the transcriptional output.
Collapse
Affiliation(s)
- Eva Klopf
- Max F. Perutz Laboratories (MFPL); University of Vienna; Vienna, Austria
| | - Murielle Moes
- Max F. Perutz Laboratories (MFPL); University of Vienna; Vienna, Austria
| | - Fabian Amman
- Max F. Perutz Laboratories (MFPL); University of Vienna; Vienna, Austria
- Institute for Theoretical Chemistry; University of Vienna; Vienna, Austria
| | - Bob Zimmermann
- Department of Molecular Evolution and Development; University of Vienna; Vienna, Austria
| | | | - Christina Wagner
- Institute for Theoretical Chemistry; University of Vienna; Vienna, Austria
| | - Renée Schroeder
- Max F. Perutz Laboratories (MFPL); University of Vienna; Vienna, Austria
| |
Collapse
|
23
|
Bresson S, Tollervey D. Surveillance-ready transcription: nuclear RNA decay as a default fate. Open Biol 2018; 8:170270. [PMID: 29563193 PMCID: PMC5881035 DOI: 10.1098/rsob.170270] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/23/2018] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic cells synthesize enormous quantities of RNA from diverse classes, most of which are subject to extensive processing. These processes are inherently error-prone, and cells have evolved robust quality control mechanisms to selectively remove aberrant transcripts. These surveillance pathways monitor all aspects of nuclear RNA biogenesis, and in addition remove nonfunctional transcripts arising from spurious transcription and a host of non-protein-coding RNAs (ncRNAs). Surprisingly, this is largely accomplished with only a handful of RNA decay enzymes. It has, therefore, been unclear how these factors efficiently distinguish between functional RNAs and huge numbers of diverse transcripts that must be degraded. Here we describe how bona fide transcripts are specifically protected, particularly by 5' and 3' modifications. Conversely, a plethora of factors associated with the nascent transcripts all act to recruit the RNA quality control, surveillance and degradation machinery. We conclude that initiating RNAPII is 'surveillance ready', with degradation being a default fate for all transcripts that lack specific protective features. We further postulate that this promiscuity is a key feature that allowed the proliferation of vast numbers of ncRNAs in eukaryotes, including humans.
Collapse
Affiliation(s)
- Stefan Bresson
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
24
|
Candelli T, Challal D, Briand JB, Boulay J, Porrua O, Colin J, Libri D. High-resolution transcription maps reveal the widespread impact of roadblock termination in yeast. EMBO J 2018; 37:embj.201797490. [PMID: 29351914 DOI: 10.15252/embj.201797490] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 01/04/2023] Open
Abstract
Transcription termination delimits transcription units but also plays important roles in limiting pervasive transcription. We have previously shown that transcription termination occurs when elongating RNA polymerase II (RNAPII) collides with the DNA-bound general transcription factor Reb1. We demonstrate here that many different DNA-binding proteins can induce termination by a similar roadblock (RB) mechanism. We generated high-resolution transcription maps by the direct detection of RNAPII upon nuclear depletion of two essential RB factors or when the canonical termination pathways for coding and non-coding RNAs are defective. We show that RB termination occurs genomewide and functions independently of (and redundantly with) the main transcription termination pathways. We provide evidence that transcriptional readthrough at canonical terminators is a significant source of pervasive transcription, which is controlled to a large extent by RB termination. Finally, we demonstrate the occurrence of RB termination around centromeres and tRNA genes, which we suggest shields these regions from RNAPII to preserve their functional integrity.
Collapse
Affiliation(s)
- Tito Candelli
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Paris, France.,Ecole doctorale Structure et Dynamique des Systèmes Vivants, Université Paris Saclay, Gif sur Yvette, France
| | - Drice Challal
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Paris, France.,Ecole doctorale Structure et Dynamique des Systèmes Vivants, Université Paris Saclay, Gif sur Yvette, France
| | - Jean-Baptiste Briand
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Paris, France.,Ecole doctorale Structure et Dynamique des Systèmes Vivants, Université Paris Saclay, Gif sur Yvette, France
| | - Jocelyne Boulay
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, UMR 9198, Univ Paris-Saclay, Centre Energie Atomique, Gif sur Yvette, France
| | - Odil Porrua
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Paris, France
| | - Jessie Colin
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Paris, France
| | - Domenico Libri
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Paris, France
| |
Collapse
|
25
|
Volanakis A, Kamieniarz-Gdula K, Schlackow M, Proudfoot NJ. WNK1 kinase and the termination factor PCF11 connect nuclear mRNA export with transcription. Genes Dev 2017; 31:2175-2185. [PMID: 29196535 PMCID: PMC5749165 DOI: 10.1101/gad.303677.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022]
Abstract
In this study, Volankis et al. present evidence for a new connection between gene transcription and mRNA export. They show that the kinase WNK1 phosphorylates termination factor PCF11 on its RNA polymerase II CTD-interacting domain (CID) and suggest that WNK1 and the associated phosphorylation of the PCF11 CID act to promote transcript release from chromatin-associated Pol II, which facilitates mRNA export to the cytoplasm. Nuclear gene transcription is coordinated with transcript release from the chromatin template and messenger RNA (mRNA) export to the cytoplasm. Here we describe the role of nuclear-localized kinase WNK1 (with no lysine [K] 1) in the mammalian mRNA export pathway even though it was previously established as a critical regulator of ion homeostasis in the cytoplasm. Our data reveal that WNK1 phosphorylates the termination factor PCF11 on its RNA polymerase II (Pol II) C-terminal domain (CTD)-interacting domain (CID). Furthermore, phosphorylation of the PCF11 CID weakens its interaction with Pol II. We predict that WNK1 and the associated phosphorylation of the PCF11 CID act to promote transcript release from chromatin-associated Pol II. This in turn facilitates mRNA export to the cytoplasm.
Collapse
Affiliation(s)
- Adam Volanakis
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Kinga Kamieniarz-Gdula
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Margarita Schlackow
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
26
|
Iasillo C, Schmid M, Yahia Y, Maqbool MA, Descostes N, Karadoulama E, Bertrand E, Andrau JC, Jensen TH. ARS2 is a general suppressor of pervasive transcription. Nucleic Acids Res 2017; 45:10229-10241. [PMID: 28973446 PMCID: PMC5622339 DOI: 10.1093/nar/gkx647] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/18/2017] [Indexed: 01/06/2023] Open
Abstract
Termination of transcription is important for establishing gene punctuation marks. It is also critical for suppressing many of the pervasive transcription events occurring throughout eukaryotic genomes and coupling their RNA products to efficient decay. In human cells, the ARS2 protein has been implicated in such function as its depletion causes transcriptional read-through of selected gene terminators and because it physically interacts with the ribonucleolytic nuclear RNA exosome. Here, we study the role of ARS2 on transcription and RNA metabolism genome wide. We show that ARS2 depletion negatively impacts levels of promoter-proximal RNA polymerase II at protein-coding (pc) genes. Moreover, our results reveal a general role of ARS2 in transcription termination-coupled RNA turnover at short transcription units like snRNA-, replication-dependent histone-, promoter upstream transcript- and enhancer RNA-loci. Depletion of the ARS2 interaction partner ZC3H18 mimics the ARS2 depletion, although to a milder extent, whereas depletion of the exosome core subunit RRP40 only impacts RNA abundance post-transcriptionally. Interestingly, ARS2 is also involved in transcription termination events within first introns of pc genes. Our work therefore establishes ARS2 as a general suppressor of pervasive transcription with the potential to regulate pc gene expression.
Collapse
Affiliation(s)
- Claudia Iasillo
- Department of Molecular Biology and Genetics, Aarhus University, C. F. M⊘llers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark.,IGMM, CNRS, Univ. Montpellier, 34293 Montpellier, Cedex 5, France
| | - Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, C. F. M?llers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark
| | - Yousra Yahia
- IGMM, CNRS, Univ. Montpellier, 34293 Montpellier, Cedex 5, France
| | | | - Nicolas Descostes
- IGMM, CNRS, Univ. Montpellier, 34293 Montpellier, Cedex 5, France.,Howard Hughes Medical Institute, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Evdoxia Karadoulama
- Department of Molecular Biology and Genetics, Aarhus University, C. F. M?llers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark
| | - Edouard Bertrand
- IGMM, CNRS, Univ. Montpellier, 34293 Montpellier, Cedex 5, France
| | | | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, C. F. M?llers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark
| |
Collapse
|
27
|
Abstract
Eukaryotic genomes are rich in transcription units encoding "long noncoding RNAs" (lncRNAs). The purpose of all this transcription is unclear since most lncRNAs are quickly targeted for destruction during synthesis or shortly thereafter. As debates continue over the functional significance of many specific lncRNAs, support grows for the notion that the act of transcription rather than the RNA product itself is functionally important in many cases. Indeed, this alternative mechanism might better explain how low-abundance lncRNAs transcribed from noncoding DNA function in organisms. Here, we highlight some of the recently emerging features that distinguish coding from noncoding transcription and discuss how these differences might have important implications for the functional consequences of noncoding transcription.
Collapse
|
28
|
Herzel L, Ottoz DSM, Alpert T, Neugebauer KM. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Nat Rev Mol Cell Biol 2017; 18:637-650. [PMID: 28792005 DOI: 10.1038/nrm.2017.63] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several macromolecular machines collaborate to produce eukaryotic messenger RNA. RNA polymerase II (Pol II) translocates along genes that are up to millions of base pairs in length and generates a flexible RNA copy of the DNA template. This nascent RNA harbours introns that are removed by the spliceosome, which is a megadalton ribonucleoprotein complex that positions the distant ends of the intron into its catalytic centre. Emerging evidence that the catalytic spliceosome is physically close to Pol II in vivo implies that transcription and splicing occur on similar timescales and that the transcription and splicing machineries may be spatially constrained. In this Review, we discuss aspects of spliceosome assembly, transcription elongation and other co-transcriptional events that allow the temporal coordination of co-transcriptional splicing.
Collapse
Affiliation(s)
- Lydia Herzel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Diana S M Ottoz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Tara Alpert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
29
|
Sayou C, Millán-Zambrano G, Santos-Rosa H, Petfalski E, Robson S, Houseley J, Kouzarides T, Tollervey D. RNA Binding by Histone Methyltransferases Set1 and Set2. Mol Cell Biol 2017; 37:e00165-17. [PMID: 28483910 PMCID: PMC5492175 DOI: 10.1128/mcb.00165-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Histone methylation at H3K4 and H3K36 is commonly associated with genes actively transcribed by RNA polymerase II (RNAPII) and is catalyzed by Saccharomyces cerevisiae Set1 and Set2, respectively. Here we report that both methyltransferases can be UV cross-linked to RNA in vivo High-throughput sequencing of the bound RNAs revealed strong Set1 enrichment near the transcription start site, whereas Set2 was distributed along pre-mRNAs. A subset of transcripts showed notably high enrichment for Set1 or Set2 binding relative to RNAPII, suggesting functional posttranscriptional interactions. In particular, Set1 was strongly bound to the SET1 mRNA, Ty1 retrotransposons, and noncoding RNAs from the ribosomal DNA (rDNA) intergenic spacers, consistent with its previously reported silencing roles. Set1 lacking RNA recognition motif 2 (RRM2) showed reduced in vivo cross-linking to RNA and reduced chromatin occupancy. In addition, levels of H3K4 trimethylation were decreased, whereas levels of dimethylation were increased. We conclude that RNA binding by Set1 contributes to both chromatin association and methyltransferase activity.
Collapse
Affiliation(s)
- Camille Sayou
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland
| | - Gonzalo Millán-Zambrano
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Helena Santos-Rosa
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Elisabeth Petfalski
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland
| | - Samuel Robson
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Tony Kouzarides
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
30
|
Delan-Forino C, Schneider C, Tollervey D. RNA substrate length as an indicator of exosome interactions in vivo. Wellcome Open Res 2017; 2:34. [PMID: 28748221 PMCID: PMC5500899 DOI: 10.12688/wellcomeopenres.10724.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2017] [Indexed: 11/20/2022] Open
Abstract
Background: The exosome complex plays key roles in RNA processing and degradation in Eukaryotes and Archaea. Outstanding structural studies identified multiple pathways for RNA substrates into the exosome
in vitro, but identifying the pathway followed by individual RNA species
in vivo remains challenging. Methods: We attempted to address this question using RNase protection.
In vivo RNA-protein crosslinking (CRAC) was applied to the exosome component Rrp44/Dis3, which has both endonuclease and exonuclease activity. During CRAC, the exosome was purified under native conditions and subjected to RNase digestion, prior to protein denaturation and cDNA cloning. The resulting high-throughput sequence reads were stratified by length of the cDNA sequence. This should reflect RNA fragment lengths, and therefore the RNA region that was protected by exosome binding. We anticipated major read lengths of ~30nt and ~10nt, reflecting the “central channel” and “direct access” routes to the Rrp44 exonuclease active site observed
in vitro. Results: Unexpectedly, no clear peak was observed at 30nt, whereas a broad peak was seen around 20nt. The expected ~10nt peak was seen, and showed strong elevation in strains lacking exonuclease activity. Unexpectedly, this peak was suppressed by point mutations in the Rrp44 endonuclease active site. This indicates that the short fragments are degraded by the exonuclease activity of Rrp44, but also suggests that at least some may be generated by endonuclease activity. Conclusions: The absence of 30nt protected fragments may reflect obligatory binding of cofactors at the entrance to the exosome central channel
in vivo. The presence of ~20nt fragments apparently indicates an access route not yet reported from
in vitro studies. Confident mapping of 10nt reads is challenging, but they are clearly derived from a subset of exosome targets. In particular, pre-rRNA species, which are major exosome targets, are strongly disfavored for the generation of short reads.
Collapse
Affiliation(s)
| | - Claudia Schneider
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
31
|
Delan-Forino C, Schneider C, Tollervey D. RNA substrate length as an indicator of exosome interactions in vivo. Wellcome Open Res 2017. [DOI: 10.12688/wellcomeopenres.10724.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: The exosome complex plays key roles in RNA processing and degradation in Eukaryotes and Archaea. Outstanding structural studies identified multiple pathways for RNA substrates into the exosome in vitro, but identifying the pathway followed by individual RNA species in vivo remains challenging. Methods: We attempted to address this question using RNase protection. In vivo RNA-protein crosslinking (CRAC) was applied to the exosome component Rrp44/Dis3, which has both endonuclease and exonuclease activity. During CRAC, the exosome was purified under native conditions and subjected to RNase digestion, prior to protein denaturation and cDNA cloning. The resulting high-throughput sequence reads were stratified by length of the cDNA sequence. This should reflect RNA fragment lengths, and therefore the RNA region that was protected by exosome binding. We anticipated major read lengths of ~30nt and ~10nt, reflecting the “central channel” and “direct access” routes to the Rrp44 exonuclease active site observed in vitro. Results: Unexpectedly, no clear peak was observed at 30nt, whereas a broad peak was seen around 20nt. The expected ~10nt peak was seen, and showed strong elevation in strains lacking exonuclease activity. Unexpectedly, this peak was suppressed by point mutations in the Rrp44 endonuclease active site. This indicates that the short fragments are degraded by the exonuclease activity of Rrp44, but also suggests that at least some may be generated by endonuclease activity. Conclusions: The absence of 30nt protected fragments may reflect obligatory binding of cofactors at the entrance to the exosome central channel in vivo. The presence of ~20nt fragments apparently indicates an access route not yet reported from in vitro studies. Confident mapping of 10nt reads is challenging, but they are clearly derived from a subset of exosome targets. In particular, pre-rRNA species, which are major exosome targets, are strongly disfavored for the generation of short reads.
Collapse
|
32
|
Wallace EWJ, Beggs JD. Extremely fast and incredibly close: cotranscriptional splicing in budding yeast. RNA (NEW YORK, N.Y.) 2017; 23:601-610. [PMID: 28153948 PMCID: PMC5393171 DOI: 10.1261/rna.060830.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
RNA splicing, an essential part of eukaryotic pre-messenger RNA processing, can be simultaneous with transcription by RNA polymerase II. Here, we compare and review independent next-generation sequencing methods that jointly quantify transcription and splicing in budding yeast. For many yeast transcripts, splicing is fast, taking place within seconds of intron transcription, while polymerase is within a few dozens of nucleotides of the 3' splice site. Ribosomal protein transcripts are spliced particularly fast and cotranscriptionally. However, some transcripts are spliced inefficiently or mainly post-transcriptionally. Intron-mediated regulation of some genes is likely to be cotranscriptional. We suggest that intermediates of the splicing reaction, missing from current data sets, may hold key information about splicing kinetics.
Collapse
Affiliation(s)
- Edward W J Wallace
- School of Informatics, University of Edinburgh, EH8 9AB, United Kingdom
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF, United Kingdom
| | - Jean D Beggs
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF, United Kingdom
| |
Collapse
|
33
|
van Nues R, Schweikert G, de Leau E, Selega A, Langford A, Franklin R, Iosub I, Wadsworth P, Sanguinetti G, Granneman S. Kinetic CRAC uncovers a role for Nab3 in determining gene expression profiles during stress. Nat Commun 2017; 8:12. [PMID: 28400552 PMCID: PMC5432031 DOI: 10.1038/s41467-017-00025-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins play a key role in shaping gene expression profiles during stress, however, little is known about the dynamic nature of these interactions and how this influences the kinetics of gene expression. To address this, we developed kinetic cross-linking and analysis of cDNAs (χCRAC), an ultraviolet cross-linking method that enabled us to quantitatively measure the dynamics of protein-RNA interactions in vivo on a minute time-scale. Here, using χCRAC we measure the global RNA-binding dynamics of the yeast transcription termination factor Nab3 in response to glucose starvation. These measurements reveal rapid changes in protein-RNA interactions within 1 min following stress imposition. Changes in Nab3 binding are largely independent of alterations in transcription rate during the early stages of stress response, indicating orthogonal transcriptional control mechanisms. We also uncover a function for Nab3 in dampening expression of stress-responsive genes. χCRAC has the potential to greatly enhance our understanding of in vivo dynamics of protein-RNA interactions.Protein RNA interactions are dynamic and regulated in response to environmental changes. Here the authors describe 'kinetic CRAC', an approach that allows time resolved analyses of protein RNA interactions with minute time point resolution and apply it to gain insight into the function of the RNA-binding protein Nab3.
Collapse
Affiliation(s)
- Rob van Nues
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3BF, UK.,Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | | | - Erica de Leau
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3BF, UK.,Institute for Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Alina Selega
- School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK
| | - Andrew Langford
- UVO3 Ltd, Unit 25 Stephenson Road, St Ives, Cambridgeshire, PE27 3WJ, UK
| | - Ryan Franklin
- UVO3 Ltd, Unit 25 Stephenson Road, St Ives, Cambridgeshire, PE27 3WJ, UK
| | - Ira Iosub
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Peter Wadsworth
- UVO3 Ltd, Unit 25 Stephenson Road, St Ives, Cambridgeshire, PE27 3WJ, UK
| | - Guido Sanguinetti
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3BF, UK.,School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK
| | - Sander Granneman
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
34
|
The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat Rev Mol Cell Biol 2017; 18:263-273. [PMID: 28248323 DOI: 10.1038/nrm.2017.10] [Citation(s) in RCA: 331] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The carboxy-terminal domain (CTD) extends from the largest subunit of RNA polymerase II (Pol II) as a long, repetitive and largely unstructured polypeptide chain. Throughout the transcription process, the CTD is dynamically modified by post-translational modifications, many of which facilitate or hinder the recruitment of key regulatory factors of Pol II that collectively constitute the 'CTD code'. Recent studies have revealed how the physicochemical properties of the CTD promote phase separation in the presence of other low-complexity domains. Here, we discuss the intricacies of the CTD code and how the newly characterized physicochemical properties of the CTD expand the function of the CTD beyond the code.
Collapse
|
35
|
Fischl H, Howe FS, Furger A, Mellor J. Paf1 Has Distinct Roles in Transcription Elongation and Differential Transcript Fate. Mol Cell 2017; 65:685-698.e8. [PMID: 28190769 PMCID: PMC5316414 DOI: 10.1016/j.molcel.2017.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/22/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022]
Abstract
RNA polymerase II (Pol2) movement through chromatin and the co-transcriptional processing and fate of nascent transcripts is coordinated by transcription elongation factors (TEFs) such as polymerase-associated factor 1 (Paf1), but it is not known whether TEFs have gene-specific functions. Using strand-specific nucleotide resolution techniques, we show that levels of Paf1 on Pol2 vary between genes, are controlled dynamically by environmental factors via promoters, and reflect levels of processing and export factors on the encoded transcript. High levels of Paf1 on Pol2 promote transcript nuclear export, whereas low levels reflect nuclear retention. Strains lacking Paf1 show marked elongation defects, although low levels of Paf1 on Pol2 are sufficient for transcription elongation. Our findings support distinct Paf1 functions: a core general function in transcription elongation, satisfied by the lowest Paf1 levels, and a regulatory function in determining differential transcript fate by varying the level of Paf1 on Pol2.
Collapse
Affiliation(s)
- Harry Fischl
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Françoise S Howe
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Andre Furger
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
36
|
Bresson S, Tuck A, Staneva D, Tollervey D. Nuclear RNA Decay Pathways Aid Rapid Remodeling of Gene Expression in Yeast. Mol Cell 2017; 65:787-800.e5. [PMID: 28190770 PMCID: PMC5344683 DOI: 10.1016/j.molcel.2017.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/10/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022]
Abstract
In budding yeast, the nuclear RNA surveillance system is active on all pre-mRNA transcripts and modulated by nutrient availability. To test the role of nuclear surveillance in reprogramming gene expression, we identified transcriptome-wide binding sites for RNA polymerase II and the exosome cofactors Mtr4 (TRAMP complex) and Nab3 (NNS complex) by UV crosslinking immediately following glucose withdrawal (0, 4, and 8 min). In glucose, mRNA binding by Nab3 and Mtr4 was mainly restricted to promoter-proximal sites, reflecting early transcription termination. Following glucose withdrawal, many growth-related mRNAs showed reduced transcription but increased Nab3 binding, accompanied by downstream recruitment of Mtr4, and oligo(A) tailing. We conclude that transcription termination is followed by TRAMP-mediated RNA decay. Upregulated transcripts evaded increased surveillance factor binding following glucose withdrawal. Some upregulated genes showed use of alternative transcription starts to bypass strong NNS binding sites. We conclude that nuclear surveillance pathways regulate both positive and negative responses to glucose availability. Changes in nuclear surveillance factor binding very rapidly follow nutritional shift Downregulated genes frequently show strongly increased surveillance factor binding Upregulated genes are protected against elevated surveillance factor binding The behavior of functionally related genes indicates posttranscriptional coregulation
Collapse
MESH Headings
- Adaptation, Physiological
- Binding Sites
- Cell Nucleus/metabolism
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Gene Expression Regulation, Fungal
- Glucose/deficiency
- Glucose/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Binding
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Nuclear/genetics
- RNA, Nuclear/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Time Factors
- Transcription, Genetic
Collapse
Affiliation(s)
- Stefan Bresson
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Edinburgh EH9 3BF, Scotland
| | - Alex Tuck
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Desislava Staneva
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Edinburgh EH9 3BF, Scotland
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Edinburgh EH9 3BF, Scotland.
| |
Collapse
|
37
|
Milligan L, Sayou C, Tuck A, Auchynnikava T, Reid JEA, Alexander R, Alves FDL, Allshire R, Spanos C, Rappsilber J, Beggs JD, Kudla G, Tollervey D. RNA polymerase II stalling at pre-mRNA splice sites is enforced by ubiquitination of the catalytic subunit. eLife 2017; 6:27082. [PMID: 29027900 PMCID: PMC5673307 DOI: 10.7554/elife.27082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/12/2017] [Indexed: 01/16/2023] Open
Abstract
Numerous links exist between co-transcriptional RNA processing and the transcribing RNAPII. In particular, pre-mRNA splicing was reported to be associated with slowed RNAPII elongation. Here, we identify a site of ubiquitination (K1246) in the catalytic subunit of RNAPII close to the DNA entry path. Ubiquitination was increased in the absence of the Bre5-Ubp3 ubiquitin protease complex. Bre5 binds RNA in vivo, with a preference for exon 2 regions of intron-containing pre-mRNAs and poly(A) proximal sites. Ubiquitinated RNAPII showed similar enrichment. The absence of Bre5 led to impaired splicing and defects in RNAPII elongation in vivo on a splicing reporter construct. Strains expressing RNAPII with a K1246R mutation showed reduced co-transcriptional splicing. We propose that ubiquinitation of RNAPII is induced by RNA processing events and linked to transcriptional pausing, which is released by Bre5-Ubp3 associated with the nascent transcript.
Collapse
Affiliation(s)
- Laura Milligan
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghScotland
| | - Camille Sayou
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghScotland
| | - Alex Tuck
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | | | - Jane EA Reid
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghScotland
| | - Ross Alexander
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghScotland
| | | | - Robin Allshire
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghScotland
| | - Christos Spanos
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghScotland
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghScotland,Institute of BiotechnologyTechnische Universität BerlinBerlinGermany
| | - Jean D Beggs
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghScotland
| | - Grzegorz Kudla
- MRC Human Genetics Unit, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghScotland
| | - David Tollervey
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghScotland
| |
Collapse
|
38
|
The pol II CTD: new twists in the tail. Nat Struct Mol Biol 2016; 23:771-7. [DOI: 10.1038/nsmb.3285] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022]
|
39
|
Turowski TW, Leśniewska E, Delan-Forino C, Sayou C, Boguta M, Tollervey D. Global analysis of transcriptionally engaged yeast RNA polymerase III reveals extended tRNA transcripts. Genome Res 2016; 26:933-44. [PMID: 27206856 PMCID: PMC4937561 DOI: 10.1101/gr.205492.116] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/20/2016] [Indexed: 01/25/2023]
Abstract
RNA polymerase III (RNAPIII) synthesizes a range of highly abundant small stable RNAs, principally pre-tRNAs. Here we report the genome-wide analysis of nascent transcripts attached to RNAPIII under permissive and restrictive growth conditions. This revealed strikingly uneven polymerase distributions across transcription units, generally with a predominant 5' peak. This peak was higher for more heavily transcribed genes, suggesting that initiation site clearance is rate-limiting during RNAPIII transcription. Down-regulation of RNAPIII transcription under stress conditions was found to be uneven; a subset of tRNA genes showed low response to nutrient shift or loss of the major transcription regulator Maf1, suggesting potential "housekeeping" roles. Many tRNA genes were found to generate long, 3'-extended forms due to read-through of the canonical poly(U) terminators. The degree of read-through was anti-correlated with the density of U-residues in the nascent tRNA, and multiple, functional terminators can be located far downstream. The steady-state levels of 3'-extended pre-tRNA transcripts are low, apparently due to targeting by the nuclear surveillance machinery, especially the RNA binding protein Nab2, cofactors for the nuclear exosome, and the 5'-exonuclease Rat1.
Collapse
Affiliation(s)
- Tomasz W Turowski
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland; Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Ewa Leśniewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Clementine Delan-Forino
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| | - Camille Sayou
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| | - Magdalena Boguta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| |
Collapse
|
40
|
Milligan L, Huynh-Thu VA, Delan-Forino C, Tuck A, Petfalski E, Lombraña R, Sanguinetti G, Kudla G, Tollervey D. Strand-specific, high-resolution mapping of modified RNA polymerase II. Mol Syst Biol 2016; 12:874. [PMID: 27288397 PMCID: PMC4915518 DOI: 10.15252/msb.20166869] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Reversible modification of the RNAPII C‐terminal domain links transcription with RNA processing and surveillance activities. To better understand this, we mapped the location of RNAPII carrying the five types of CTD phosphorylation on the RNA transcript, providing strand‐specific, nucleotide‐resolution information, and we used a machine learning‐based approach to define RNAPII states. This revealed enrichment of Ser5P, and depletion of Tyr1P, Ser2P, Thr4P, and Ser7P in the transcription start site (TSS) proximal ~150 nt of most genes, with depletion of all modifications close to the poly(A) site. The TSS region also showed elevated RNAPII relative to regions further 3′, with high recruitment of RNA surveillance and termination factors, and correlated with the previously mapped 3′ ends of short, unstable ncRNA transcripts. A hidden Markov model identified distinct modification states associated with initiating, early elongating and later elongating RNAPII. The initiation state was enriched near the TSS of protein‐coding genes and persisted throughout exon 1 of intron‐containing genes. Notably, unstable ncRNAs apparently failed to transition into the elongation states seen on protein‐coding genes.
Collapse
Affiliation(s)
- Laura Milligan
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Vân A Huynh-Thu
- School of Informatics, University of Edinburgh, Edinburgh, UK Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
| | | | - Alex Tuck
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI) Wellcome Trust Genome Campus, Cambridge, UK
| | - Elisabeth Petfalski
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Rodrigo Lombraña
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | | | - Grzegorz Kudla
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|