1
|
Irastorza-Azcarate I, Kukalev A, Kempfer R, Thieme CJ, Mastrobuoni G, Markowski J, Loof G, Sparks TM, Brookes E, Natarajan KN, Sauer S, Fisher AG, Nicodemi M, Ren B, Schwarz RF, Kempa S, Pombo A. Extensive folding variability between homologous chromosomes in mammalian cells. Mol Syst Biol 2025:10.1038/s44320-025-00107-3. [PMID: 40329044 DOI: 10.1038/s44320-025-00107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Genetic variation and 3D chromatin structure have major roles in gene regulation. Due to challenges in mapping chromatin conformation with haplotype-specific resolution, the effects of genetic sequence variation on 3D genome structure and gene expression imbalance remain understudied. Here, we applied Genome Architecture Mapping (GAM) to a hybrid mouse embryonic stem cell (mESC) line with high density of single-nucleotide polymorphisms (SNPs). GAM resolved haplotype-specific 3D genome structures with high sensitivity, revealing extensive allelic differences in chromatin compartments, topologically associating domains (TADs), long-range enhancer-promoter contacts, and CTCF loops. Architectural differences often coincide with allele-specific differences in gene expression, and with Polycomb occupancy. We show that histone genes are expressed with allelic imbalance in mESCs, and are involved in haplotype-specific chromatin contacts marked by H3K27me3. Conditional knockouts of Polycomb enzymatic subunits, Ezh2 or Ring1, show that one-third of ASE genes, including histone genes, is regulated through Polycomb repression. Our work reveals highly distinct 3D folding structures between homologous chromosomes, and highlights their intricate connections with allelic gene expression.
Collapse
Affiliation(s)
- Ibai Irastorza-Azcarate
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany.
| | - Alexander Kukalev
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
| | - Rieke Kempfer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Sophia Genetics SA, A-One Park, Rolle, 1180, Switzerland
| | - Christoph J Thieme
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
| | - Guido Mastrobuoni
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Proteomics and Metabolomic Platform, 10115, Berlin, Germany
| | - Julia Markowski
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Evolutionary and Cancer Genomics Group, 10115, Berlin, Germany
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Gesa Loof
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Aix Marseille Univ, CNRS, IBDM (UMR 7288), Turing Centre for Living Systems, Marseille, France
| | - Thomas M Sparks
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
| | - Emily Brookes
- MRC Laboratory of Medical Sciences, Imperial College London, London, W12 0NN, UK
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Kedar Nath Natarajan
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany
- MRC Laboratory of Medical Sciences, Imperial College London, London, W12 0NN, UK
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stephan Sauer
- MRC Laboratory of Medical Sciences, Imperial College London, London, W12 0NN, UK
- Regeneron Ireland DAC, Dublin 2, D02 HH27, Ireland
| | - Amanda G Fisher
- MRC Laboratory of Medical Sciences, Imperial College London, London, W12 0NN, UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli "Federico II", and INFN, Napoli, Italy
| | - Bing Ren
- Center for Epigenomics and Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Roland F Schwarz
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Evolutionary and Cancer Genomics Group, 10115, Berlin, Germany
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Cologne, Germany
- BIFOLD-Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
| | - Stefan Kempa
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Proteomics and Metabolomic Platform, 10115, Berlin, Germany
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115, Berlin, Germany.
- Humboldt-Universität zu Berlin, Berlin, Germany.
- MRC Laboratory of Medical Sciences, Imperial College London, London, W12 0NN, UK.
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Vercellone F, Chiariello AM, Esposito A, Conte M, Abraham A, Fontana A, Di Pierno F, Tafuri F, Guha S, Kundu S, Di Carluccio C, Nicodemi M, Bianco S. A Multiscale Perspective on Chromatin Architecture through Polymer Physics. Physiology (Bethesda) 2025; 40:0. [PMID: 39601793 DOI: 10.1152/physiol.00050.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
The spatial organization of chromatin within the eukaryotic nucleus is critical in regulating key cellular functions, such as gene expression, and its disruption can lead to disease. Advances in experimental techniques, such as Hi-C and microscopy, have significantly enhanced our understanding of chromatin's intricate and dynamic architecture, revealing complex patterns of interaction at multiple scales. Along with experimental methods, physics-based computational models, including polymer phase separation and loop-extrusion mechanisms, have been developed to explain chromatin structure in a principled manner. Here, we illustrate genomewide applications of these models, highlighting their ability to predict chromatin contacts across different scales and to spread light on the underlying molecular determinants. Additionally, we discuss how these models provide a framework for understanding alterations in chromosome folding associated with disease states, such as SARS-CoV-2 infection and pathogenic structural variants, providing valuable insights into the role of chromatin architecture in health and disease.
Collapse
Affiliation(s)
- Francesca Vercellone
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale-DICMaPI,11, Università degli Studi di Napoli Federico II and INFN Napoli, Naples, Italy
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Alex Abraham
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Andrea Fontana
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Florinda Di Pierno
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale-DICMaPI,11, Università degli Studi di Napoli Federico II and INFN Napoli, Naples, Italy
| | - Fabrizio Tafuri
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Sougata Guha
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Sumanta Kundu
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Ciro Di Carluccio
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale-DICMaPI,11, Università degli Studi di Napoli Federico II and INFN Napoli, Naples, Italy
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| |
Collapse
|
3
|
Mätlik K, Govek EE, Hatten ME. Histone bivalency in CNS development. Genes Dev 2025; 39:428-444. [PMID: 39880657 PMCID: PMC11960699 DOI: 10.1101/gad.352306.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Neuronal maturation is guided by changes in the chromatin landscape that control developmental gene expression programs. Histone bivalency, the co-occurrence of activating and repressive histone modifications, has emerged as an epigenetic feature of developmentally regulated genes during neuronal maturation. Although initially associated with early embryonic development, recent studies have shown that histone bivalency also exists in differentiated and mature neurons. In this review, we discuss methods to study bivalency in specific populations of neurons and summarize emerging studies on the function of bivalency in central nervous system neuronal maturation and in adult neurons.
Collapse
Affiliation(s)
- Kärt Mätlik
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA;
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA
| | - Mary E Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA;
| |
Collapse
|
4
|
Fontana A, Tafuri F, Abraham A, Bianco S, Esposito A, Conte M, Vercellone F, Pierno FD, Guha S, Carluccio CD, Chiariello AM. Polymer models of chromatin organization in virally infected cells. Biochem Soc Trans 2025; 53:BST20240598. [PMID: 39927819 DOI: 10.1042/bst20240598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/11/2025]
Abstract
Genome architecture is closely tied to essential biological functions, yet a complete understanding of the mechanisms governing DNA folding remains a significant challenge. Theoretical models based on polymer physics have been applied to decipher the complexity of chromatin architecture and uncover the physical processes shaping its structure. Importantly, recent findings suggest that certain viruses can alter the 3D organization of the host genome. In this review, we highlight recent advances in the development of polymer models used to study how chromatin 3D structure within a cell re-organizes following viral infection, with a particular emphasis on the SARS-CoV-2 virus, capable of altering genome organization of the host cell at different scales, including A/B compartments, TADs and gene-enhancer regulatory contacts.
Collapse
Affiliation(s)
- Andrea Fontana
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Fabrizio Tafuri
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Alex Abraham
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Mattia Conte
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Francesca Vercellone
- INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale - DICMaPI, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Naples, Italy
| | - Florinda Di Pierno
- INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale - DICMaPI, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Naples, Italy
| | - Sougata Guha
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Ciro Di Carluccio
- INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale - DICMaPI, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Naples, Italy
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| |
Collapse
|
5
|
Pletenev I, Bazarevich M, Zagirova D, Kononkova A, Cherkasov A, Efimova O, Tiukacheva E, Morozov K, Ulianov K, Komkov D, Tvorogova A, Golimbet V, Kondratyev N, Razin S, Khaitovich P, Ulianov S, Khrameeva E. Extensive long-range polycomb interactions and weak compartmentalization are hallmarks of human neuronal 3D genome. Nucleic Acids Res 2024; 52:6234-6252. [PMID: 38647066 PMCID: PMC11194087 DOI: 10.1093/nar/gkae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/21/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024] Open
Abstract
Chromatin architecture regulates gene expression and shapes cellular identity, particularly in neuronal cells. Specifically, polycomb group (PcG) proteins enable establishment and maintenance of neuronal cell type by reorganizing chromatin into repressive domains that limit the expression of fate-determining genes and sustain distinct gene expression patterns in neurons. Here, we map the 3D genome architecture in neuronal and non-neuronal cells isolated from the Wernicke's area of four human brains and comprehensively analyze neuron-specific aspects of chromatin organization. We find that genome segregation into active and inactive compartments is greatly reduced in neurons compared to other brain cells. Furthermore, neuronal Hi-C maps reveal strong long-range interactions, forming a specific network of PcG-mediated contacts in neurons that is nearly absent in other brain cells. These interacting loci contain developmental transcription factors with repressed expression in neurons and other mature brain cells. But only in neurons, they are rich in bivalent promoters occupied by H3K4me3 histone modification together with H3K27me3, which points to a possible functional role of PcG contacts in neurons. Importantly, other layers of chromatin organization also exhibit a distinct structure in neurons, characterized by an increase in short-range interactions and a decrease in long-range ones.
Collapse
Affiliation(s)
- Ilya A Pletenev
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Maria Bazarevich
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Diana R Zagirova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Moscow 127051, Russia
| | - Anna D Kononkova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Alexander V Cherkasov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Olga I Efimova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Eugenia A Tiukacheva
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow 141700, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
- CNRS UMR9018, Institut Gustave Roussy, Villejuif 94805, France
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Department of Cellular Genomics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Kirill V Morozov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Kirill A Ulianov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Dmitriy Komkov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anna V Tvorogova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Vera E Golimbet
- Laboratory of Clinical Genetics, Mental Health Research Center, Moscow 115522, Russia
| | - Nikolay V Kondratyev
- Laboratory of Clinical Genetics, Mental Health Research Center, Moscow 115522, Russia
| | - Sergey V Razin
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Cellular Genomics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Philipp Khaitovich
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Sergey V Ulianov
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Cellular Genomics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Ekaterina E Khrameeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| |
Collapse
|
6
|
Irastorza-Azcarate I, Kukalev A, Kempfer R, Thieme CJ, Mastrobuoni G, Markowski J, Loof G, Sparks TM, Brookes E, Natarajan KN, Sauer S, Fisher AG, Nicodemi M, Ren B, Schwarz RF, Kempa S, Pombo A. Extensive folding variability between homologous chromosomes in mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.591087. [PMID: 38766012 PMCID: PMC11100664 DOI: 10.1101/2024.05.08.591087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Genetic variation and 3D chromatin structure have major roles in gene regulation. Due to challenges in mapping chromatin conformation with haplotype-specific resolution, the effects of genetic sequence variation on 3D genome structure and gene expression imbalance remain understudied. Here, we applied Genome Architecture Mapping (GAM) to a hybrid mouse embryonic stem cell (mESC) line with high density of single nucleotide polymorphisms (SNPs). GAM resolved haplotype-specific 3D genome structures with high sensitivity, revealing extensive allelic differences in chromatin compartments, topologically associating domains (TADs), long-range enhancer-promoter contacts, and CTCF loops. Architectural differences often coincide with allele-specific differences in gene expression, mediated by Polycomb repression. We show that histone genes are expressed with allelic imbalance in mESCs, are involved in haplotype-specific chromatin contact marked by H3K27me3, and are targets of Polycomb repression through conditional knockouts of Ezh2 or Ring1b. Our work reveals highly distinct 3D folding structures between homologous chromosomes, and highlights their intricate connections with allelic gene expression.
Collapse
|
7
|
Carvalho S, Zea-Redondo L, Tang TCC, Stachel-Braum P, Miller D, Caldas P, Kukalev A, Diecke S, Grosswendt S, Grosso AR, Pombo A. SRRM2 splicing factor modulates cell fate in early development. Biol Open 2024; 13:bio060415. [PMID: 38656788 PMCID: PMC11070786 DOI: 10.1242/bio.060415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
Embryo development is an orchestrated process that relies on tight regulation of gene expression to guide cell differentiation and fate decisions. The Srrm2 splicing factor has recently been implicated in developmental disorders and diseases, but its role in early mammalian development remains unexplored. Here, we show that Srrm2 dosage is critical for maintaining embryonic stem cell pluripotency and cell identity. Srrm2 heterozygosity promotes loss of stemness, characterised by the coexistence of cells expressing naive and formative pluripotency markers, together with extensive changes in gene expression, including genes regulated by serum-response transcription factor (SRF) and differentiation-related genes. Depletion of Srrm2 by RNA interference in embryonic stem cells shows that the earliest effects of Srrm2 heterozygosity are specific alternative splicing events on a small number of genes, followed by expression changes in metabolism and differentiation-related genes. Our findings unveil molecular and cellular roles of Srrm2 in stemness and lineage commitment, shedding light on the roles of splicing regulators in early embryogenesis, developmental diseases and tumorigenesis.
Collapse
Affiliation(s)
- Silvia Carvalho
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Structure Group, 10115 Berlin, Germany
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
- Graduate Program in Areas of Basic and Applied Biology (GABBA), ICBAS, University of Porto, 4050-313 Porto, Portugal
| | - Luna Zea-Redondo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Structure Group, 10115 Berlin, Germany
- Humboldt-Universität zu Berlin, Institute of Biology, 10115 Berlin, Germany
| | - Tsz Ching Chloe Tang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Structure Group, 10115 Berlin, Germany
| | - Philipp Stachel-Braum
- Humboldt-Universität zu Berlin, Institute of Biology, 10115 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, Exploratory Diagnostic Sciences (EDS) 10178 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), From Cell State to Function Group, 10115 Berlin, Germany
| | - Duncan Miller
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Pluripotent Stem Cells Platform, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10785 Berlin, Germany
| | - Paulo Caldas
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Alexander Kukalev
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Structure Group, 10115 Berlin, Germany
| | - Sebastian Diecke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Pluripotent Stem Cells Platform, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10785 Berlin, Germany
| | - Stefanie Grosswendt
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, Exploratory Diagnostic Sciences (EDS) 10178 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), From Cell State to Function Group, 10115 Berlin, Germany
| | - Ana Rita Grosso
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Structure Group, 10115 Berlin, Germany
- Humboldt-Universität zu Berlin, Institute of Biology, 10115 Berlin, Germany
| |
Collapse
|
8
|
Willemin A, Szabó D, Pombo A. Epigenetic regulatory layers in the 3D nucleus. Mol Cell 2024; 84:415-428. [PMID: 38242127 PMCID: PMC10872226 DOI: 10.1016/j.molcel.2023.12.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024]
Abstract
Nearly 7 decades have elapsed since Francis Crick introduced the central dogma of molecular biology, as part of his ideas on protein synthesis, setting the fundamental rules of sequence information transfer from DNA to RNAs and proteins. We have since learned that gene expression is finely tuned in time and space, due to the activities of RNAs and proteins on regulatory DNA elements, and through cell-type-specific three-dimensional conformations of the genome. Here, we review major advances in genome biology and discuss a set of ideas on gene regulation and highlight how various biomolecular assemblies lead to the formation of structural and regulatory features within the nucleus, with roles in transcriptional control. We conclude by suggesting further developments that will help capture the complex, dynamic, and often spatially restricted events that govern gene expression in mammalian cells.
Collapse
Affiliation(s)
- Andréa Willemin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany.
| | - Dominik Szabó
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany.
| |
Collapse
|
9
|
Bamgbose G, Tulin A. PARP-1 is a transcriptional rheostat of metabolic and bivalent genes during development. Life Sci Alliance 2024; 7:e202302369. [PMID: 38012002 PMCID: PMC10682175 DOI: 10.26508/lsa.202302369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
PARP-1 participates in various cellular processes, including gene regulation. In Drosophila, PARP-1 mutants undergo developmental arrest during larval-to-pupal transition. In this study, we investigated PARP-1 binding and its transcriptional regulatory role at this stage. Our findings revealed that PARP-1 binds and represses active metabolic genes, including glycolytic genes, whereas activating low-expression developmental genes, including a subset of "bivalent" genes in third-instar larvae. These bivalent promoters, characterized by dual enrichment of low H3K4me3 and high H3K27me3, a unimodal H3K4me1 enrichment at the transcription start site (conserved in C. elegans and zebrafish), H2Av depletion, and high accessibility, may persist throughout development. In PARP-1 mutant third-instar larvae, metabolic genes typically down-regulated during the larval-to-pupal transition in response to reduced energy needs were repressed by PARP-1. Simultaneously, developmental and bivalent genes typically active at this stage were activated by PARP-1. In addition, glucose and ATP levels were significantly reduced in PARP-1 mutants, suggesting an imbalance in metabolic regulation. We propose that PARP-1 is essential for maintaining the delicate balance between metabolic and developmental gene expression programs to ensure proper developmental progression.
Collapse
Affiliation(s)
- Gbolahan Bamgbose
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Alexei Tulin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
10
|
Beagrie RA, Thieme CJ, Annunziatella C, Baugher C, Zhang Y, Schueler M, Kukalev A, Kempfer R, Chiariello AM, Bianco S, Li Y, Davis T, Scialdone A, Welch LR, Nicodemi M, Pombo A. Multiplex-GAM: genome-wide identification of chromatin contacts yields insights overlooked by Hi-C. Nat Methods 2023:10.1038/s41592-023-01903-1. [PMID: 37336949 PMCID: PMC10333126 DOI: 10.1038/s41592-023-01903-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/01/2023] [Indexed: 06/21/2023]
Abstract
Technology for measuring 3D genome topology is increasingly important for studying gene regulation, for genome assembly and for mapping of genome rearrangements. Hi-C and other ligation-based methods have become routine but have specific biases. Here, we develop multiplex-GAM, a faster and more affordable version of genome architecture mapping (GAM), a ligation-free technique that maps chromatin contacts genome-wide. We perform a detailed comparison of multiplex-GAM and Hi-C using mouse embryonic stem cells. When examining the strongest contacts detected by either method, we find that only one-third of these are shared. The strongest contacts specifically found in GAM often involve 'active' regions, including many transcribed genes and super-enhancers, whereas in Hi-C they more often contain 'inactive' regions. Our work shows that active genomic regions are involved in extensive complex contacts that are currently underestimated in ligation-based approaches, and highlights the need for orthogonal advances in genome-wide contact mapping technologies.
Collapse
Affiliation(s)
- Robert A Beagrie
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Laboratory of Gene Regulation, Weatherall Institute of Molecular Medicine, Oxford, UK
- Chromatin and Disease Group, Wellcome Centre for Human Genetics, Oxford, UK
| | - Christoph J Thieme
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
| | - Carlo Annunziatella
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Catherine Baugher
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Yingnan Zhang
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Markus Schueler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
| | - Alexander Kukalev
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
| | - Rieke Kempfer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Simona Bianco
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Yichao Li
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Trenton Davis
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Lonnie R Welch
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA.
| | - Mario Nicodemi
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany.
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant'Angelo, Naples, Italy.
- Berlin Institute of Health (BIH), MDC-Berlin, Berlin, Germany.
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany.
- Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
11
|
Zhang S, Übelmesser N, Barbieri M, Papantonis A. Enhancer-promoter contact formation requires RNAPII and antagonizes loop extrusion. Nat Genet 2023; 55:832-840. [PMID: 37012454 DOI: 10.1038/s41588-023-01364-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023]
Abstract
Homotypic chromatin interactions and loop extrusion are thought to be the two main drivers of mammalian chromosome folding. Here we tested the role of RNA polymerase II (RNAPII) across different scales of interphase chromatin organization in a cellular system allowing for its rapid, auxin-mediated degradation. We combined Micro-C and computational modeling to characterize subsets of loops differentially gained or lost upon RNAPII depletion. Gained loops, extrusion of which was antagonized by RNAPII, almost invariably formed by engaging new or rewired CTCF anchors. Lost loops selectively affected contacts between enhancers and promoters anchored by RNAPII, explaining the repression of most genes. Surprisingly, promoter-promoter interactions remained essentially unaffected by polymerase depletion, and cohesin occupancy was sustained. Together, our findings reconcile the role of RNAPII in transcription with its direct involvement in setting-up regulatory three-dimensional chromatin contacts genome wide, while also revealing an impact on cohesin loop extrusion.
Collapse
Affiliation(s)
- Shu Zhang
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Nadine Übelmesser
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Mariano Barbieri
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
12
|
Ramesh V, Liu F, Minto MS, Chan U, West AE. Bidirectional regulation of postmitotic H3K27me3 distributions underlie cerebellar granule neuron maturation dynamics. eLife 2023; 12:e86273. [PMID: 37092728 PMCID: PMC10181825 DOI: 10.7554/elife.86273] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/21/2023] [Indexed: 04/25/2023] Open
Abstract
The functional maturation of neurons is a prolonged process that extends past the mitotic exit and is mediated by the chromatin-dependent orchestration of gene transcription programs. We find that expression of this maturation gene program in mouse cerebellar granule neurons (CGNs) requires dynamic changes in the genomic distribution of histone H3 lysine 27 trimethylation (H3K27me3), demonstrating a function for this chromatin modification beyond its role in cell fate specification. The developmental loss of H3K27me3 at promoters of genes activated as CGNs mature is facilitated by the lysine demethylase and ASD-risk gene, Kdm6b. Interestingly, inhibition of the H3K27 methyltransferase EZH2 in newborn CGNs not only blocks the repression of progenitor genes but also impairs the induction of mature CGN genes, showing the importance of bidirectional H3K27me3 regulation across the genome. These data demonstrate that H3K27me3 turnover in developing postmitotic neurons regulates the temporal coordination of gene expression programs that underlie functional neuronal maturation.
Collapse
Affiliation(s)
- Vijyendra Ramesh
- Molecular Cancer Biology Program, Duke UniversityDurhamUnited States
| | - Fang Liu
- Department of Neurobiology, Duke UniversityDurhamUnited States
| | - Melyssa S Minto
- Department of Neurobiology, Duke UniversityDurhamUnited States
| | - Urann Chan
- Department of Neurobiology, Duke UniversityDurhamUnited States
| | - Anne E West
- Molecular Cancer Biology Program, Duke UniversityDurhamUnited States
- Department of Neurobiology, Duke UniversityDurhamUnited States
| |
Collapse
|
13
|
Semprich CI, Davidson L, Amorim Torres A, Patel H, Briscoe J, Metzis V, Storey KG. ERK1/2 signalling dynamics promote neural differentiation by regulating chromatin accessibility and the polycomb repressive complex. PLoS Biol 2022; 20:e3000221. [PMID: 36455041 PMCID: PMC9746999 DOI: 10.1371/journal.pbio.3000221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 12/13/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022] Open
Abstract
Fibroblast growth factor (FGF) is a neural inducer in many vertebrate embryos, but how it regulates chromatin organization to coordinate the activation of neural genes is unclear. Moreover, for differentiation to progress, FGF signalling must decline. Why these signalling dynamics are required has not been determined. Here, we show that dephosphorylation of the FGF effector kinase ERK1/2 rapidly increases chromatin accessibility at neural genes in mouse embryos, and, using ATAC-seq in human embryonic stem cell derived spinal cord precursors, we demonstrate that this occurs genome-wide across neural genes. Importantly, ERK1/2 inhibition induces precocious neural gene transcription, and this involves dissociation of the polycomb repressive complex from key gene loci. This takes place independently of subsequent loss of the repressive histone mark H3K27me3 and transcriptional onset. Transient ERK1/2 inhibition is sufficient for the dissociation of the repressive complex, and this is not reversed on resumption of ERK1/2 signalling. Moreover, genomic footprinting of sites identified by ATAC-seq together with ChIP-seq for polycomb protein Ring1B revealed that ERK1/2 inhibition promotes the occupancy of neural transcription factors (TFs) at non-polycomb as well as polycomb associated sites. Together, these findings indicate that ERK1/2 signalling decline promotes global changes in chromatin accessibility and TF binding at neural genes by directing polycomb and other regulators and appears to serve as a gating mechanism that provides directionality to the process of differentiation.
Collapse
Affiliation(s)
- Claudia I. Semprich
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
| | - Lindsay Davidson
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
| | - Adriana Amorim Torres
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
| | | | | | - Vicki Metzis
- The Francis Crick Institute, London, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail: (VM); (KGS)
| | - Kate G. Storey
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
- * E-mail: (VM); (KGS)
| |
Collapse
|
14
|
p300/CBP sustains Polycomb silencing by non-enzymatic functions. Mol Cell 2022; 82:3580-3597.e9. [DOI: 10.1016/j.molcel.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/16/2022] [Accepted: 09/06/2022] [Indexed: 12/29/2022]
|
15
|
Regulation and Therapeutic Targeting of MTHFD2 and EZH2 in KRAS-Mutated Human Pulmonary Adenocarcinoma. Metabolites 2022; 12:metabo12070652. [PMID: 35888776 PMCID: PMC9324032 DOI: 10.3390/metabo12070652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Activating KRAS mutations occur in about 30% of pulmonary adenocarcinoma (AC) cases and the discovery of specific inhibitors of G12C-mutated KRAS has considerably improved the prognosis for a subgroup of about 14% of non-small cell lung cancer (NSCLC) patients. However, even in patients with a KRAS G12C mutation, the overall response rate only reaches about 40% and mutations other than G12C still cannot be targeted. Despite the fact that one-carbon metabolism (1CM) and epigenetic regulation are known to be dysregulated by aberrant KRAS activity, we still lack evidence that co-treatment with drugs that regulate these factors might ameliorate response rates and patient prognosis. In this study, we show a direct dependency of Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) and Enhancer of Zeste Homolog 2 (EZH2) expression on mutationally activated KRAS and their prognostic relevance in KRAS-mutated AC. We show that aberrant KRAS activity generates a vulnerability of AC cancer cell lines to both MTHFD2 and EZH2 inhibitors. Importantly, co-inhibition of both factors was synergistically effective and comparable to KRASG12C inhibition alone, paving the way for their use in a therapeutic approach for NSCLC cancer patients.
Collapse
|
16
|
Garipler G, Lu C, Morrissey A, Lopez-Zepeda LS, Pei Y, Vidal SE, Zen Petisco Fiore AP, Aydin B, Stadtfeld M, Ohler U, Mahony S, Sanjana NE, Mazzoni EO. The BTB transcription factors ZBTB11 and ZFP131 maintain pluripotency by repressing pro-differentiation genes. Cell Rep 2022; 38:110524. [PMID: 35294876 PMCID: PMC8972945 DOI: 10.1016/j.celrep.2022.110524] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/21/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
In pluripotent cells, a delicate activation-repression balance maintains pro-differentiation genes ready for rapid activation. The identity of transcription factors (TFs) that specifically repress pro-differentiation genes remains obscure. By targeting ∼1,700 TFs with CRISPR loss-of-function screen, we found that ZBTB11 and ZFP131 are required for embryonic stem cell (ESC) pluripotency. ESCs without ZBTB11 or ZFP131 lose colony morphology, reduce proliferation rate, and upregulate transcription of genes associated with three germ layers. ZBTB11 and ZFP131 bind proximally to pro-differentiation genes. ZBTB11 or ZFP131 loss leads to an increase in H3K4me3, negative elongation factor (NELF) complex release, and concomitant transcription at associated genes. Together, our results suggest that ZBTB11 and ZFP131 maintain pluripotency by preventing premature expression of pro-differentiation genes and present a generalizable framework to maintain cellular potency.
Collapse
Affiliation(s)
- Görkem Garipler
- Department of Biology, New York University, New York, NY 10003, USA
| | - Congyi Lu
- Department of Biology, New York University, New York, NY 10003, USA; New York Genome Center, New York, NY 10013, USA
| | - Alexis Morrissey
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lorena S Lopez-Zepeda
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany; Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Yingzhen Pei
- Department of Biology, New York University, New York, NY 10003, USA
| | - Simon E Vidal
- Sanford I Weill Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Begüm Aydin
- Department of Biology, New York University, New York, NY 10003, USA
| | - Matthias Stadtfeld
- Sanford I Weill Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Uwe Ohler
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany; Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neville E Sanjana
- Department of Biology, New York University, New York, NY 10003, USA; New York Genome Center, New York, NY 10013, USA.
| | - Esteban O Mazzoni
- Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
17
|
Krause F, Mohebian K, Delpero M, Hesse D, Kühn R, Arends D, Brockmann GA. A deletion containing a CTCF-element in intron 8 of the Bbs7 gene is partially responsible for juvenile obesity in the Berlin Fat Mouse. Mamm Genome 2021; 33:465-470. [PMID: 34910225 PMCID: PMC9360062 DOI: 10.1007/s00335-021-09938-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
The Berlin Fat Mouse Inbred (BFMI) line is a model for juvenile obesity. Previous studies on crosses between BFMI and C57Bl/6N (B6N) have identified a recessive defect causing juvenile obesity on chromosome 3 (jObes1). Bbs7 was identified as the most likely candidate gene for the observed effect. Comparative sequence analysis showed a 1578 bp deletion in intron 8 of Bbs7 in BFMI mice. A CTCF-element is located inside this deletion. To investigate the functional effect of this deletion, it was introduced into B6N mice using CRISPR/Cas9. Two mice containing the target deletion were obtained (B6N Bbs7emI8∆1 and Bbs7emI8∆2) and were subsequently mated to BFMI and B6N to generate two families suitable for complementation. Inherited alleles were determined and body composition was measured by quantitative magnetic resonance. Evidence for a partial complementation (13.1-15.1%) of the jObes1 allele by the CRISPR/Cas9 modified B6N Bbs7emI8∆1 and Bbs7emI8∆2 alleles was found. Mice carrying the complementation alleles had a 23-27% higher fat-to-lean ratio compared to animals which have a B6N allele (P(Bbs7emI8∆1) = 4.25 × 10-7; P(Bbs7emI8∆2) = 3.17 × 10-5). Consistent with previous findings, the recessive effect of the BFMI allele was also seen for the B6N Bbs7emI8∆1 and Bbs7emI8∆2 alleles. However, the effect size of the B6N Bbs7emI8∆1 and Bbs7emI8∆2 alleles was smaller than the BFMI allele, and thus showed only a partial complementation. Findings suggest additional variants near Bbs7 in addition to or interacting with the deletion in intron 8.
Collapse
Affiliation(s)
- Florian Krause
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Kourosh Mohebian
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Manuel Delpero
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Deike Hesse
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Danny Arends
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Gudrun A Brockmann
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany.
| |
Collapse
|
18
|
Kumar D, Cinghu S, Oldfield AJ, Yang P, Jothi R. Decoding the function of bivalent chromatin in development and cancer. Genome Res 2021; 31:2170-2184. [PMID: 34667120 PMCID: PMC8647824 DOI: 10.1101/gr.275736.121] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022]
Abstract
Bivalent chromatin is characterized by the simultaneous presence of H3K4me3 and H3K27me3, histone modifications generally associated with transcriptionally active and repressed chromatin, respectively. Prevalent in embryonic stem cells (ESCs), bivalency is postulated to poise/prime lineage-controlling developmental genes for rapid activation during embryogenesis while maintaining a transcriptionally repressed state in the absence of activation cues; however, this hypothesis remains to be directly tested. Most gene promoters DNA hypermethylated in adult human cancers are bivalently marked in ESCs, and it was speculated that bivalency predisposes them for aberrant de novo DNA methylation and irreversible silencing in cancer, but evidence supporting this model is largely lacking. Here, we show that bivalent chromatin does not poise genes for rapid activation but protects promoters from de novo DNA methylation. Genome-wide studies in differentiating ESCs reveal that activation of bivalent genes is no more rapid than that of other transcriptionally silent genes, challenging the premise that H3K4me3 is instructive for transcription. H3K4me3 at bivalent promoters-a product of the underlying DNA sequence-persists in nearly all cell types irrespective of gene expression and confers protection from de novo DNA methylation. Bivalent genes in ESCs that are frequent targets of aberrant hypermethylation in cancer are particularly strongly associated with loss of H3K4me3/bivalency in cancer. Altogether, our findings suggest that bivalency protects reversibly repressed genes from irreversible silencing and that loss of H3K4me3 may make them more susceptible to aberrant DNA methylation in diseases such as cancer. Bivalency may thus represent a distinct regulatory mechanism for maintaining epigenetic plasticity.
Collapse
Affiliation(s)
- Dhirendra Kumar
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Senthilkumar Cinghu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Andrew J Oldfield
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Pengyi Yang
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Raja Jothi
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
19
|
Winick-Ng W, Kukalev A, Harabula I, Zea-Redondo L, Szabó D, Meijer M, Serebreni L, Zhang Y, Bianco S, Chiariello AM, Irastorza-Azcarate I, Thieme CJ, Sparks TM, Carvalho S, Fiorillo L, Musella F, Irani E, Torlai Triglia E, Kolodziejczyk AA, Abentung A, Apostolova G, Paul EJ, Franke V, Kempfer R, Akalin A, Teichmann SA, Dechant G, Ungless MA, Nicodemi M, Welch L, Castelo-Branco G, Pombo A. Cell-type specialization is encoded by specific chromatin topologies. Nature 2021; 599:684-691. [PMID: 34789882 PMCID: PMC8612935 DOI: 10.1038/s41586-021-04081-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/30/2021] [Indexed: 11/09/2022]
Abstract
The three-dimensional (3D) structure of chromatin is intrinsically associated with gene regulation and cell function1-3. Methods based on chromatin conformation capture have mapped chromatin structures in neuronal systems such as in vitro differentiated neurons, neurons isolated through fluorescence-activated cell sorting from cortical tissues pooled from different animals and from dissociated whole hippocampi4-6. However, changes in chromatin organization captured by imaging, such as the relocation of Bdnf away from the nuclear periphery after activation7, are invisible with such approaches8. Here we developed immunoGAM, an extension of genome architecture mapping (GAM)2,9, to map 3D chromatin topology genome-wide in specific brain cell types, without tissue disruption, from single animals. GAM is a ligation-free technology that maps genome topology by sequencing the DNA content from thin (about 220 nm) nuclear cryosections. Chromatin interactions are identified from the increased probability of co-segregation of contacting loci across a collection of nuclear slices. ImmunoGAM expands the scope of GAM to enable the selection of specific cell types using low cell numbers (approximately 1,000 cells) within a complex tissue and avoids tissue dissociation2,10. We report cell-type specialized 3D chromatin structures at multiple genomic scales that relate to patterns of gene expression. We discover extensive 'melting' of long genes when they are highly expressed and/or have high chromatin accessibility. The contacts most specific of neuron subtypes contain genes associated with specialized processes, such as addiction and synaptic plasticity, which harbour putative binding sites for neuronal transcription factors within accessible chromatin regions. Moreover, sensory receptor genes are preferentially found in heterochromatic compartments in brain cells, which establish strong contacts across tens of megabases. Our results demonstrate that highly specific chromatin conformations in brain cells are tightly related to gene regulation mechanisms and specialized functions.
Collapse
Affiliation(s)
- Warren Winick-Ng
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany.
| | - Alexander Kukalev
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
| | - Izabela Harabula
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Luna Zea-Redondo
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dominik Szabó
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mandy Meijer
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Leonid Serebreni
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Yingnan Zhang
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Simona Bianco
- Dipartimentio di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Andrea M Chiariello
- Dipartimentio di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Ibai Irastorza-Azcarate
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
| | - Christoph J Thieme
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
| | - Thomas M Sparks
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
| | - Sílvia Carvalho
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Graduate Program in Areas of Basic and Applied Biology, Universidade do Porto, Porto, Portugal
| | - Luca Fiorillo
- Dipartimentio di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Francesco Musella
- Dipartimentio di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Ehsan Irani
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Elena Torlai Triglia
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aleksandra A Kolodziejczyk
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Andreas Abentung
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Galina Apostolova
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Eleanor J Paul
- Institute of Clinical Sciences, Imperial College London, London, UK
- Center for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Center for Neurodevelopmental Disorders, King's College London, London, UK
| | - Vedran Franke
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Bioinformatics and Omics Data Science Platform, Berlin, Germany
| | - Rieke Kempfer
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Altuna Akalin
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Bioinformatics and Omics Data Science Platform, Berlin, Germany
| | - Sarah A Teichmann
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Georg Dechant
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Mark A Ungless
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Mario Nicodemi
- Dipartimentio di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
- Berlin Institute of Health, Berlin, Germany
| | - Lonnie Welch
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Ana Pombo
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany.
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
- Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
20
|
Appel LM, Franke V, Bruno M, Grishkovskaya I, Kasiliauskaite A, Kaufmann T, Schoeberl UE, Puchinger MG, Kostrhon S, Ebenwaldner C, Sebesta M, Beltzung E, Mechtler K, Lin G, Vlasova A, Leeb M, Pavri R, Stark A, Akalin A, Stefl R, Bernecky C, Djinovic-Carugo K, Slade D. PHF3 regulates neuronal gene expression through the Pol II CTD reader domain SPOC. Nat Commun 2021; 12:6078. [PMID: 34667177 PMCID: PMC8526623 DOI: 10.1038/s41467-021-26360-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022] Open
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is a regulatory hub for transcription and RNA processing. Here, we identify PHD-finger protein 3 (PHF3) as a regulator of transcription and mRNA stability that docks onto Pol II CTD through its SPOC domain. We characterize SPOC as a CTD reader domain that preferentially binds two phosphorylated Serine-2 marks in adjacent CTD repeats. PHF3 drives liquid-liquid phase separation of phosphorylated Pol II, colocalizes with Pol II clusters and tracks with Pol II across the length of genes. PHF3 knock-out or SPOC deletion in human cells results in increased Pol II stalling, reduced elongation rate and an increase in mRNA stability, with marked derepression of neuronal genes. Key neuronal genes are aberrantly expressed in Phf3 knock-out mouse embryonic stem cells, resulting in impaired neuronal differentiation. Our data suggest that PHF3 acts as a prominent effector of neuronal gene regulation by bridging transcription with mRNA decay.
Collapse
Affiliation(s)
- Lisa-Marie Appel
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Vedran Franke
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany
| | - Melania Bruno
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Irina Grishkovskaya
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Aiste Kasiliauskaite
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tanja Kaufmann
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Ursula E Schoeberl
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin G Puchinger
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Sebastian Kostrhon
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Carmen Ebenwaldner
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Marek Sebesta
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Etienne Beltzung
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Gen Lin
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Anna Vlasova
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Martin Leeb
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Rushad Pavri
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Altuna Akalin
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany
| | - Richard Stefl
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Carrie Bernecky
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg, Austria
| | - Kristina Djinovic-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Dea Slade
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
21
|
Pancholi A, Klingberg T, Zhang W, Prizak R, Mamontova I, Noa A, Sobucki M, Kobitski AY, Nienhaus GU, Zaburdaev V, Hilbert L. RNA polymerase II clusters form in line with surface condensation on regulatory chromatin. Mol Syst Biol 2021; 17:e10272. [PMID: 34569155 PMCID: PMC8474054 DOI: 10.15252/msb.202110272] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
It is essential for cells to control which genes are transcribed into RNA. In eukaryotes, two major control points are recruitment of RNA polymerase II (Pol II) into a paused state, and subsequent pause release toward transcription. Pol II recruitment and pause release occur in association with macromolecular clusters, which were proposed to be formed by a liquid-liquid phase separation mechanism. How such a phase separation mechanism relates to the interaction of Pol II with DNA during recruitment and transcription, however, remains poorly understood. Here, we use live and super-resolution microscopy in zebrafish embryos to reveal Pol II clusters with a large variety of shapes, which can be explained by a theoretical model in which regulatory chromatin regions provide surfaces for liquid-phase condensation at concentrations that are too low for canonical liquid-liquid phase separation. Model simulations and chemical perturbation experiments indicate that recruited Pol II contributes to the formation of these surface-associated condensates, whereas elongating Pol II is excluded from these condensates and thereby drives their unfolding.
Collapse
Affiliation(s)
- Agnieszka Pancholi
- Zoological InstituteDepartment of Systems Biology and BioinformaticsKarlsruhe Institute of TechnologyKarlsruheGermany
- Institute of Biological and Chemical Systems—Biological Information ProcessingKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
| | - Tim Klingberg
- Department of BiologyFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
- Max‐Planck‐Zentrum für Physik und MedizinErlangenGermany
| | - Weichun Zhang
- Institute of Applied PhysicsKarlsruhe Institute of TechnologyKarlsruheGermany
- Institute of NanotechnologyKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
| | - Roshan Prizak
- Institute of Biological and Chemical Systems—Biological Information ProcessingKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
| | - Irina Mamontova
- Institute of Biological and Chemical Systems—Biological Information ProcessingKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
| | - Amra Noa
- Institute of Biological and Chemical Systems—Biological Information ProcessingKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
| | - Marcel Sobucki
- Institute of Biological and Chemical Systems—Biological Information ProcessingKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
| | - Andrei Yu Kobitski
- Institute of Applied PhysicsKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Gerd Ulrich Nienhaus
- Institute of Biological and Chemical Systems—Biological Information ProcessingKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
- Institute of Applied PhysicsKarlsruhe Institute of TechnologyKarlsruheGermany
- Institute of NanotechnologyKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
- Department of PhysicsUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Vasily Zaburdaev
- Department of BiologyFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
- Max‐Planck‐Zentrum für Physik und MedizinErlangenGermany
| | - Lennart Hilbert
- Zoological InstituteDepartment of Systems Biology and BioinformaticsKarlsruhe Institute of TechnologyKarlsruheGermany
- Institute of Biological and Chemical Systems—Biological Information ProcessingKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
| |
Collapse
|
22
|
Kitazawa T, Machlab D, Joshi O, Maiorano N, Kohler H, Ducret S, Kessler S, Gezelius H, Soneson C, Papasaikas P, López-Bendito G, Stadler MB, Rijli FM. A unique bipartite Polycomb signature regulates stimulus-response transcription during development. Nat Genet 2021; 53:379-391. [PMID: 33603234 PMCID: PMC7610396 DOI: 10.1038/s41588-021-00789-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/19/2021] [Indexed: 01/31/2023]
Abstract
Rapid cellular responses to environmental stimuli are fundamental for development and maturation. Immediate early genes can be transcriptionally induced within minutes in response to a variety of signals. How their induction levels are regulated and their untimely activation by spurious signals prevented during development is poorly understood. We found that in developing sensory neurons, before perinatal sensory-activity-dependent induction, immediate early genes are embedded into a unique bipartite Polycomb chromatin signature, carrying active H3K27ac on promoters but repressive Ezh2-dependent H3K27me3 on gene bodies. This bipartite signature is widely present in developing cell types, including embryonic stem cells. Polycomb marking of gene bodies inhibits mRNA elongation, dampening productive transcription, while still allowing for fast stimulus-dependent mark removal and bipartite gene induction. We reveal a developmental epigenetic mechanism regulating the rapidity and amplitude of the transcriptional response to relevant stimuli, while preventing inappropriate activation of stimulus-response genes.
Collapse
Affiliation(s)
- Taro Kitazawa
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Dania Machlab
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,Swiss Institute of Bioinformatics, Basel, Switzerland,University of Basel, Basel, Switzerland
| | - Onkar Joshi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Nicola Maiorano
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sebastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sandra Kessler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Henrik Gezelius
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| | - Charlotte Soneson
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| | - Michael B. Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,University of Basel, Basel, Switzerland,Correspondence to:
| |
Collapse
|
23
|
Das P, Bhadra MP. Histone deacetylase (Rpd3) regulates Drosophila early brain development via regulation of Tailless. Open Biol 2020; 10:200029. [PMID: 32873153 PMCID: PMC7536075 DOI: 10.1098/rsob.200029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022] Open
Abstract
Tailless is a committed transcriptional repressor and principal regulator of the brain and eye development in Drosophila. Rpd3, the histone deacetylase, is an established repressor that interacts with co-repressors like Sin3a, Prospero, Brakeless and Atrophin. This study aims at deciphering the role of Rpd3 in embryonic segmentation and larval brain development in Drosophila. It delineates the mechanism of Tailless regulation by Rpd3, along with its interacting partners. There was a significant reduction in Tailless in Rpd3 heteroallelic mutant embryos, substantiating that Rpd3 is indispensable for the normal Tailless expression. The expression of the primary readout, Tailless was correlative to the expression of the neural cell adhesion molecule homologue, Fascilin2 (Fas2). Rpd3 also aids in the proper development of the mushroom body. Both Tailless and Fas2 expression are reported to be antagonistic to the epidermal growth factor receptor (EGFR) expression. The decrease in Tailless and Fas2 expression highlights that EGFR is upregulated in the larval mutants, hindering brain development. This study outlines the axis comprising Rpd3, dEGFR, Tailless and Fas2, which interact to fine-tune the early segmentation and larval brain development. Therefore, Rpd3 along with Tailless has immense significance in early embryogenesis and development of the larval brain.
Collapse
Affiliation(s)
- Paromita Das
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR) Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai 600 113, India
| | - Manika Pal Bhadra
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR) Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai 600 113, India
| |
Collapse
|
24
|
Gorkin DU, Barozzi I, Zhao Y, Zhang Y, Huang H, Lee AY, Li B, Chiou J, Wildberg A, Ding B, Zhang B, Wang M, Strattan JS, Davidson JM, Qiu Y, Afzal V, Akiyama JA, Plajzer-Frick I, Novak CS, Kato M, Garvin TH, Pham QT, Harrington AN, Mannion BJ, Lee EA, Fukuda-Yuzawa Y, He Y, Preissl S, Chee S, Han JY, Williams BA, Trout D, Amrhein H, Yang H, Cherry JM, Wang W, Gaulton K, Ecker JR, Shen Y, Dickel DE, Visel A, Pennacchio LA, Ren B. An atlas of dynamic chromatin landscapes in mouse fetal development. Nature 2020; 583:744-751. [PMID: 32728240 PMCID: PMC7398618 DOI: 10.1038/s41586-020-2093-3] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
Abstract
The Encyclopedia of DNA Elements (ENCODE) project has established a genomic resource for mammalian development, profiling a diverse panel of mouse tissues at 8 developmental stages from 10.5 days after conception until birth, including transcriptomes, methylomes and chromatin states. Here we systematically examined the state and accessibility of chromatin in the developing mouse fetus. In total we performed 1,128 chromatin immunoprecipitation with sequencing (ChIP-seq) assays for histone modifications and 132 assay for transposase-accessible chromatin using sequencing (ATAC-seq) assays for chromatin accessibility across 72 distinct tissue-stages. We used integrative analysis to develop a unified set of chromatin state annotations, infer the identities of dynamic enhancers and key transcriptional regulators, and characterize the relationship between chromatin state and accessibility during developmental gene regulation. We also leveraged these data to link enhancers to putative target genes and demonstrate tissue-specific enrichments of sequence variants associated with disease in humans. The mouse ENCODE data sets provide a compendium of resources for biomedical researchers and achieve, to our knowledge, the most comprehensive view of chromatin dynamics during mammalian fetal development to date.
Collapse
Affiliation(s)
- David U Gorkin
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Iros Barozzi
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Yuan Zhao
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Yanxiao Zhang
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Hui Huang
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Ah Young Lee
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Bin Li
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Joshua Chiou
- Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Andre Wildberg
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Bo Ding
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Bo Zhang
- Department of Biochemistry and Molecular Biology, Penn State School of Medicine, Hershey, PA, USA
| | - Mengchi Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - J Seth Strattan
- Stanford University School of Medicine, Department of Genetics, Stanford, CA, USA
| | - Jean M Davidson
- Stanford University School of Medicine, Department of Genetics, Stanford, CA, USA
| | - Yunjiang Qiu
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Veena Afzal
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jennifer A Akiyama
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Catherine S Novak
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Momoe Kato
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tyler H Garvin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Quan T Pham
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anne N Harrington
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Brandon J Mannion
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Elizabeth A Lee
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yoko Fukuda-Yuzawa
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yupeng He
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sebastian Preissl
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Sora Chee
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Jee Yun Han
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Brian A Williams
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Diane Trout
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Henry Amrhein
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hongbo Yang
- Department of Biochemistry and Molecular Biology, Penn State School of Medicine, Hershey, PA, USA
| | - J Michael Cherry
- Stanford University School of Medicine, Department of Genetics, Stanford, CA, USA
| | - Wei Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Kyle Gaulton
- Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yin Shen
- Institute for Human Genetics and University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
- School of Natural Sciences, University of California, Merced, Merced, CA, USA.
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
- Comparative Biochemistry Program, University of California, Berkeley, Berkeley, CA, USA.
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA, USA.
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA.
- Institute of Genomic Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
25
|
Blanco E, González-Ramírez M, Alcaine-Colet A, Aranda S, Di Croce L. The Bivalent Genome: Characterization, Structure, and Regulation. Trends Genet 2019; 36:118-131. [PMID: 31818514 DOI: 10.1016/j.tig.2019.11.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/28/2019] [Accepted: 11/08/2019] [Indexed: 02/05/2023]
Abstract
An intricate molecular machinery is at the core of gene expression regulation in every cell. During the initial stages of organismal development, the coordinated activation of diverse transcriptional programs is crucial and must be carefully executed to shape every organ and tissue. Bivalent promoters and poised enhancers are regulatory regions decorated with histone marks that are associated with both positive and negative transcriptional outcomes. These apparently contradictory signals are important for setting bivalent genes in a poised state, which is subsequently resolved during differentiation into either active or repressive states. We discuss the origins of bivalent promoters and the mechanisms implicated in their acquisition and maintenance. We further review how the presence of bivalent marks influences genome architecture. Finally, we highlight the potential link between bivalency and cancer which could drive biomedical research in disease etiology and treatment.
Collapse
Affiliation(s)
- Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Mar González-Ramírez
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Anna Alcaine-Colet
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Plaça de la Mercè 10, 08002 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
26
|
Cheutin T, Cavalli G. The multiscale effects of polycomb mechanisms on 3D chromatin folding. Crit Rev Biochem Mol Biol 2019; 54:399-417. [PMID: 31698957 DOI: 10.1080/10409238.2019.1679082] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/30/2022]
Abstract
Polycomb group (PcG) proteins silence master regulatory genes required to properly confer cell identity during the development of both Drosophila and mammals. They may act through chromatin compaction and higher-order folding of chromatin inside the cell nucleus. During the last decade, analysis on interphase chromosome architecture discovered self-interacting regions named topologically associated domains (TADs). TADs result from the 3D chromatin folding of a succession of transcribed and repressed epigenomic domains and from loop extrusion mediated by cohesin/CTCF in mammals. Polycomb silenced chromatin constitutes one type of repressed epigenomic domains which form compacted nano-compartments inside cell nuclei. Recruitment of canonical PcG proteins on chromatin relies on initial binding to discrete elements and further spreading into large chromatin domains covered with H3K27me3. Some of these discrete elements have a bivalent nature both in mammals and Drosophila and are dynamically regulated during development. Loops can occur between them, suggesting that their interaction plays both functional and structural roles. Formation of large chromatin domains covered by H3K27me3 seems crucial for PcG silencing and PcG proteins might exert their function through compaction of these domains in both mammals and flies, rather than by directly controlling the nucleosomal accessibility of discrete regulatory elements. In addition, PcG chromatin domains interact over long genomic distances, shaping a higher-order chromatin network. Therefore, PcG silencing might rely on multiscale chromatin folding to maintain cell identity during differentiation.
Collapse
Affiliation(s)
- Thierry Cheutin
- Institute of Human Genetics, CNRS and the University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and the University of Montpellier, Montpellier, France
| |
Collapse
|
27
|
Hou J, Wang X. The polycomb group proteins functions in epithelial to mesenchymal transition in lung cancer. Semin Cell Dev Biol 2019; 90:138-143. [PMID: 30004017 DOI: 10.1016/j.semcdb.2018.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/08/2018] [Indexed: 12/29/2022]
|
28
|
Agrawal P, Chung P, Heberlein U, Kent C. Enabling cell-type-specific behavioral epigenetics in Drosophila: a modified high-yield INTACT method reveals the impact of social environment on the epigenetic landscape in dopaminergic neurons. BMC Biol 2019; 17:30. [PMID: 30967153 PMCID: PMC6456965 DOI: 10.1186/s12915-019-0646-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/07/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Epigenetic mechanisms play fundamental roles in brain function and behavior and stressors such as social isolation can alter animal behavior via epigenetic mechanisms. However, due to cellular heterogeneity, identifying cell-type-specific epigenetic changes in the brain is challenging. Here, we report the first use of a modified isolation of nuclei tagged in specific cell type (INTACT) method in behavioral epigenetics of Drosophila melanogaster, a method we call mini-INTACT. RESULTS Using ChIP-seq on mini-INTACT purified dopaminergic nuclei, we identified epigenetic signatures in socially isolated and socially enriched Drosophila males. Social experience altered the epigenetic landscape in clusters of genes involved in transcription and neural function. Some of these alterations could be predicted by expression changes of four transcription factors and the prevalence of their binding sites in several clusters. These transcription factors were previously identified as activity-regulated genes, and their knockdown in dopaminergic neurons reduced the effects of social experience on sleep. CONCLUSIONS Our work enables the use of Drosophila as a model for cell-type-specific behavioral epigenetics and establishes that social environment shifts the epigenetic landscape in dopaminergic neurons. Four activity-related transcription factors are required in dopaminergic neurons for the effects of social environment on sleep.
Collapse
Affiliation(s)
- Pavan Agrawal
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Phuong Chung
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ulrike Heberlein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Clement Kent
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
- Department of Biology, York University, Toronto, Canada.
| |
Collapse
|
29
|
Loubiere V, Martinez AM, Cavalli G. Cell Fate and Developmental Regulation Dynamics by Polycomb Proteins and 3D Genome Architecture. Bioessays 2019; 41:e1800222. [PMID: 30793782 DOI: 10.1002/bies.201800222] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/22/2018] [Indexed: 12/14/2022]
Abstract
Targeted transitions in chromatin states at thousands of genes are essential drivers of eukaryotic development. Therefore, understanding the in vivo dynamics of epigenetic regulators is crucial for deciphering the mechanisms underpinning cell fate decisions. This review illustrates how, in addition to its cell memory function, the Polycomb group of transcriptional regulators orchestrates temporal, cell and tissue-specific expression of master genes during development. These highly sophisticated developmental transitions are dependent on the context- and tissue-specific assembly of the different types of Polycomb Group (PcG) complexes, which regulates their targeting and/or activities on chromatin. Here, an overview is provided of how PcG complexes function at multiple scales to regulate transcription, local chromatin environment, and higher order structures that support normal differentiation and are perturbed in tumorigenesis.
Collapse
Affiliation(s)
- Vincent Loubiere
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| |
Collapse
|
30
|
Skourti-Stathaki K, Torlai Triglia E, Warburton M, Voigt P, Bird A, Pombo A. R-Loops Enhance Polycomb Repression at a Subset of Developmental Regulator Genes. Mol Cell 2019; 73:930-945.e4. [PMID: 30709709 PMCID: PMC6414425 DOI: 10.1016/j.molcel.2018.12.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 09/14/2018] [Accepted: 12/14/2018] [Indexed: 12/26/2022]
Abstract
R-loops are three-stranded nucleic acid structures that form during transcription, especially over unmethylated CpG-rich promoters of active genes. In mouse embryonic stem cells (mESCs), CpG-rich developmental regulator genes are repressed by the Polycomb complexes PRC1 and PRC2. Here, we show that R-loops form at a subset of Polycomb target genes, and we investigate their contribution to Polycomb repression. At R-loop-positive genes, R-loop removal leads to decreased PRC1 and PRC2 recruitment and Pol II activation into a productive elongation state, accompanied by gene derepression at nascent and processed transcript levels. Stable removal of PRC2 derepresses R-loop-negative genes, as expected, but does not affect R-loops, PRC1 recruitment, or transcriptional repression of R-loop-positive genes. Our results highlight that Polycomb repression does not occur via one mechanism but consists of different layers of repression, some of which are gene specific. We uncover that one such mechanism is mediated by an interplay between R-loops and RING1B recruitment. R-loops form at a subset of PcG target genes R-loops contribute to PcG recruitment genome-wide Loss of R-loops leads to transcriptional activation of R-loop-positive PcG targets R-loops and PRC1 contribute to transcriptional repression of PcG targets
Collapse
Affiliation(s)
- Konstantina Skourti-Stathaki
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK; Berlin Institute for Medical Systems Biology, Max Delbrueck Centre for Molecular Medicine, Berlin-Buch 13092, Germany.
| | - Elena Torlai Triglia
- Berlin Institute for Medical Systems Biology, Max Delbrueck Centre for Molecular Medicine, Berlin-Buch 13092, Germany
| | - Marie Warburton
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK
| | - Philipp Voigt
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK
| | - Ana Pombo
- Berlin Institute for Medical Systems Biology, Max Delbrueck Centre for Molecular Medicine, Berlin-Buch 13092, Germany; Berlin Institute of Health, Berlin, Germany; Institute for Biology, Humboldt-Universitat zu Berlin, Berlin, Germany.
| |
Collapse
|
31
|
Dattani A, Kao D, Mihaylova Y, Abnave P, Hughes S, Lai A, Sahu S, Aboobaker AA. Epigenetic analyses of planarian stem cells demonstrate conservation of bivalent histone modifications in animal stem cells. Genome Res 2018; 28:1543-1554. [PMID: 30143598 PMCID: PMC6169894 DOI: 10.1101/gr.239848.118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022]
Abstract
Planarian flatworms have an indefinite capacity to regenerate missing or damaged body parts owing to a population of pluripotent adult stems cells called neoblasts (NBs). Currently, little is known about the importance of the epigenetic status of NBs and how histone modifications regulate homeostasis and cellular differentiation. We have developed an improved and optimized ChIP-seq protocol for NBs in Schmidtea mediterranea and have generated genome-wide profiles for the active marks H3K4me3 and H3K36me3, and suppressive marks H3K4me1 and H3K27me3. The genome-wide profiles of these marks were found to correlate well with NB gene expression profiles. We found that genes with little transcriptional activity in the NB compartment but which switch on in post-mitotic progeny during differentiation are bivalent, being marked by both H3K4me3 and H3K27me3 at promoter regions. In further support of this hypothesis, bivalent genes also have a high level of paused RNA Polymerase II at the promoter-proximal region. Overall, this study confirms that epigenetic control is important for the maintenance of a NB transcriptional program and makes a case for bivalent promoters as a conserved feature of animal stem cells and not a vertebrate-specific innovation. By establishing a robust ChIP-seq protocol and analysis methodology, we further promote planarians as a promising model system to investigate histone modification–mediated regulation of stem cell function and differentiation.
Collapse
Affiliation(s)
- Anish Dattani
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Damian Kao
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Yuliana Mihaylova
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Prasad Abnave
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Samantha Hughes
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Alvina Lai
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Sounak Sahu
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - A Aziz Aboobaker
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| |
Collapse
|
32
|
Webber JL, Zhang J, Massey A, Sanchez-Luege N, Rebay I. Collaborative repressive action of the antagonistic ETS transcription factors Pointed and Yan fine-tunes gene expression to confer robustness in Drosophila. Development 2018; 145:dev.165985. [PMID: 29848501 DOI: 10.1242/dev.165985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/17/2018] [Indexed: 01/29/2023]
Abstract
The acquisition of cellular identity during development depends on precise spatiotemporal regulation of gene expression, with combinatorial interactions between transcription factors, accessory proteins and the basal transcription machinery together translating complex signaling inputs into appropriate gene expression outputs. The opposing repressive and activating inputs of the Drosophila ETS family transcription factors Yan and Pointed orchestrate numerous cell fate transitions downstream of receptor tyrosine kinase signaling, providing one of the premier systems for studying this process. Current models describe the differentiative transition as a switch from Yan-mediated repression to Pointed-mediated activation of common target genes. We describe here a new layer of regulation whereby Yan and Pointed co-occupy regulatory elements to repress gene expression in a coordinated manner, with Pointed being unexpectedly required for the genome-wide occupancy of both Yan and the co-repressor Groucho. Using even skipped as a test-case, synergistic genetic interactions between Pointed, Groucho, Yan and components of the RNA polymerase II pausing machinery suggest that Pointed integrates multiple scales of repressive regulation to confer robustness. We speculate that this mechanism may be used broadly to fine-tune the expression of many genes crucial for development.
Collapse
Affiliation(s)
- Jemma L Webber
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Jie Zhang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Alex Massey
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Nicelio Sanchez-Luege
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
33
|
Rada‐Iglesias A. Ready, Set…Poised!: Polycomb target genes are bound by poised RNA polymerase II throughout differentiation. Mol Syst Biol 2017; 13:950. [PMID: 29061670 PMCID: PMC5658701 DOI: 10.15252/msb.20177968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In embryonic stem cells (ESC s), silent genes with major developmental functions display a unique epigenetic state in which strong and broad binding by Polycomb repressive complexes (PRC s) is accompanied by the presence of poised RNA polymerase II (RNAPII ) and activating histone marks (e.g. H3K4me3) (Azuara et al , 2006 ; Bernstein et al , 2006 ; Stock et al , 2007 ; Brookes et al , 2012 ). It has been suggested that the plasticity and broad differentiation potential of pluripotent cells might rely, at least partly, on this unique epigenetic state (Bernstein et al , 2006 ; Stock et al , 2007 ). In their recent study, Pombo and colleagues (Ferrai et al , 2017 ) show that a similar epigenetic state can be found at a subset of major developmental genes throughout the differentiation of ESC s into neurons, providing novel and exciting insights into the molecular basis of cellular plasticity in differentiated cells.
Collapse
Affiliation(s)
- Alvaro Rada‐Iglesias
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| |
Collapse
|
34
|
Ferrai C, Torlai Triglia E, Risner-Janiczek JR, Rito T, Rackham OJ, de Santiago I, Kukalev A, Nicodemi M, Akalin A, Li M, Ungless MA, Pombo A. RNA polymerase II primes Polycomb-repressed developmental genes throughout terminal neuronal differentiation. Mol Syst Biol 2017; 13:946. [PMID: 29038337 PMCID: PMC5658700 DOI: 10.15252/msb.20177754] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Polycomb repression in mouse embryonic stem cells (ESCs) is tightly associated with promoter co‐occupancy of RNA polymerase II (RNAPII) which is thought to prime genes for activation during early development. However, it is unknown whether RNAPII poising is a general feature of Polycomb repression, or is lost during differentiation. Here, we map the genome‐wide occupancy of RNAPII and Polycomb from pluripotent ESCs to non‐dividing functional dopaminergic neurons. We find that poised RNAPII complexes are ubiquitously present at Polycomb‐repressed genes at all stages of neuronal differentiation. We observe both loss and acquisition of RNAPII and Polycomb at specific groups of genes reflecting their silencing or activation. Strikingly, RNAPII remains poised at transcription factor genes which are silenced in neurons through Polycomb repression, and have major roles in specifying other, non‐neuronal lineages. We conclude that RNAPII poising is intrinsically associated with Polycomb repression throughout differentiation. Our work suggests that the tight interplay between RNAPII poising and Polycomb repression not only instructs promoter state transitions, but also may enable promoter plasticity in differentiated cells.
Collapse
Affiliation(s)
- Carmelo Ferrai
- Epigenetic Regulation and Chromatin Architecture, Max Delbrück Center for Molecular Medicine, Berlin, Germany .,Genome Function, MRC London Institute of Medical Sciences (previously MRC Clinical Sciences Centre), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Elena Torlai Triglia
- Epigenetic Regulation and Chromatin Architecture, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Jessica R Risner-Janiczek
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.,Stem Cell Neurogenesis, MRC London Institute of Medical Sciences (previously MRC Clinical Sciences Centre), London, UK.,Neurophysiology Group, MRC London Institute of Medical Sciences (previously MRC Clinical Sciences Centre), London, UK
| | - Tiago Rito
- Epigenetic Regulation and Chromatin Architecture, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Inês de Santiago
- Genome Function, MRC London Institute of Medical Sciences (previously MRC Clinical Sciences Centre), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Alexander Kukalev
- Epigenetic Regulation and Chromatin Architecture, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Altuna Akalin
- Scientific Bioinformatics Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Meng Li
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.,Stem Cell Neurogenesis, MRC London Institute of Medical Sciences (previously MRC Clinical Sciences Centre), London, UK
| | - Mark A Ungless
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK .,Neurophysiology Group, MRC London Institute of Medical Sciences (previously MRC Clinical Sciences Centre), London, UK
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture, Max Delbrück Center for Molecular Medicine, Berlin, Germany .,Genome Function, MRC London Institute of Medical Sciences (previously MRC Clinical Sciences Centre), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.,Institute for Biology, Humboldt-Universität zu Berlin, Berlin Germany
| |
Collapse
|