1
|
Lou P, Dong Y, Ding C, Wang C, Guo R, Pang X, Wang C, Li C. PathoGraph: A Graph-Based Method for Standardized Representation of Pathology Knowledge. Sci Data 2025; 12:872. [PMID: 40425649 PMCID: PMC12117166 DOI: 10.1038/s41597-025-04906-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 03/26/2025] [Indexed: 05/29/2025] Open
Abstract
Pathology data, primarily consisting of slides and diagnostic reports, inherently contain knowledge that is pivotal for advancing data-driven biomedical research and clinical practice. However, the hidden and fragmented nature of this knowledge across various data modalities not only hinders its computational utilization, but also impedes the effective integration of AI technologies within the domain of pathology. To systematically organize pathology knowledge for its computational use, we propose PathoGraph, a knowledge representation method that describes pathology knowledge in a graph-based format. PathoGraph can represent: (1) pathological entities' types and morphological features; (2) the composition, spatial arrangements, and dynamic behaviors associated with pathological phenotypes; and (3) the differential diagnostic approaches used by pathologists. By applying PathoGraph to neoplastic diseases, we illustrate its ability to comprehensively and structurally capture multi-scale disease characteristics alongside pathologists' expertise. Furthermore, we validate its computational utility by demonstrating the feasibility of large-scale automated PathoGraph construction, showing performance improvements in downstream deep learning tasks, and presenting two illustrative use cases that highlight its clinical potential. We believe PathoGraph opens new avenues for AI-driven advances in the field of pathology.
Collapse
Affiliation(s)
- Peiliang Lou
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Yuxin Dong
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Caixia Ding
- Department of Pathology, Shaanxi Provincial Tumor Hospital, Xi'an Jiaotong University, 309 Yanta West Road, Xi'an, Shaanxi, China
| | - Chunbao Wang
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, China
| | - Ruifeng Guo
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - XiaoBo Pang
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chen Wang
- Division of Computational Biology, Mayo Clinic, Rochester, MN, USA.
| | - Chen Li
- National Engineering Lab for Big Data Analytics, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Renz A, Hohner M, Jami R, Breitenbach M, Josephs-Spaulding J, Dürrwald J, Best L, Dulière V, Mialon C, Bader SM, Marinos G, Leonidou N, Cabreiro F, Pellegrini M, Doerflinger M, Rosa-Calatrava M, Pizzorno A, Dräger A, Schindler M, Kaleta C. Metabolic modeling elucidates phenformin and atpenin A5 as broad-spectrum antiviral drugs against RNA viruses. Commun Biol 2025; 8:791. [PMID: 40410544 PMCID: PMC12102274 DOI: 10.1038/s42003-025-08148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 04/30/2025] [Indexed: 05/25/2025] Open
Abstract
The SARS-CoV-2 pandemic has reemphasized the urgent need for broad-spectrum antiviral therapies. We developed a computational workflow using scRNA-Seq data to assess cellular metabolism during viral infection. With this workflow we predicted the capacity of cells to sustain SARS-CoV-2 virion production in patients and found a tissue-wide induction of metabolic pathways that support viral replication. Expanding our analysis to influenza A and dengue viruses, we identified metabolic targets and inhibitors for potential broad-spectrum antiviral treatment. These targets were highly enriched for known interaction partners of all analyzed viruses. Indeed, phenformin, an NADH:ubiquinone oxidoreductase inhibitor, suppressed SARS-CoV-2 and dengue virus replication. Atpenin A5, blocking succinate dehydrogenase, inhibited SARS-CoV-2, dengue virus, respiratory syncytial virus, and influenza A virus with high selectivity indices. In vivo, phenformin showed antiviral activity against SARS-CoV-2 in a Syrian hamster model. Our work establishes host metabolism as druggable for broad-spectrum antiviral strategies, providing invaluable tools for pandemic preparedness.
Collapse
Affiliation(s)
- Alina Renz
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Mirjam Hohner
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site, Tübingen, Germany
| | - Raphaël Jami
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site, Tübingen, Germany
| | - Maximilian Breitenbach
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site, Tübingen, Germany
| | - Jonathan Josephs-Spaulding
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-University Kiel & University Hospital Schleswig Holstein, Kiel, Germany
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Johanna Dürrwald
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Lena Best
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-University Kiel & University Hospital Schleswig Holstein, Kiel, Germany
| | - Victoria Dulière
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France-Canada, Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Canada, Centre International de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, Lyon, France
| | - Chloé Mialon
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France-Canada, Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Canada, Centre International de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, Lyon, France
| | - Stefanie M Bader
- Division of Infectious Diseases and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Georgios Marinos
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-University Kiel & University Hospital Schleswig Holstein, Kiel, Germany
| | - Nantia Leonidou
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site, Tübingen, Germany
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
- Cluster of Excellence 'Controlling Microbes to Fight Infections', Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Filipe Cabreiro
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marc Pellegrini
- Division of Infectious Diseases and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Marcel Doerflinger
- Division of Infectious Diseases and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France-Canada, Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Canada, Centre International de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, Lyon, France
| | - Andrés Pizzorno
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France-Canada, Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Canada, Centre International de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, Lyon, France
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany.
- German Center for Infection Research (DZIF), partner site, Tübingen, Germany.
- Data Analytics and Bioinformatics Research Group, Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany.
- German Center for Infection Research (DZIF), partner site, Tübingen, Germany.
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-University Kiel & University Hospital Schleswig Holstein, Kiel, Germany.
| |
Collapse
|
3
|
Balaur I, Welter D, Rougny A, Inau ET, Mazein A, Ghosh S, Schneider R, Waltemath D, Ostaszewski M, Satagopam V. FAIR assessment of Disease Maps fosters open science and scientific crowdsourcing in systems biomedicine. Sci Data 2025; 12:851. [PMID: 40410181 PMCID: PMC12102143 DOI: 10.1038/s41597-025-05147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 05/07/2025] [Indexed: 05/25/2025] Open
Abstract
The Disease Maps Project focuses on the development of disease-specific comprehensive structured knowledge repositories supporting translational medicine research. These disease maps require continuous interdisciplinary collaboration and should be reusable and interoperable. Adhering to the Findable, Accessible, Interoperable and Reusable (FAIR) principles enhances the utility of such digital assets. We used the RDA FAIR Data Maturity Model and assessed the FAIRness of the Molecular Interaction NEtwoRk VisuAlization (MINERVA) Platform. MINERVA is a standalone webserver that allows users to manage, explore and analyse disease maps and their related data manually or programmatically. We exemplify the FAIR assessment on the Parkinson's Disease Map (PD map) and the COVID-19 Disease Map, which are large-scale projects under the umbrella of the Disease Maps Project, aiming to investigate molecular mechanisms of the Parkinson's disease and SARS-CoV-2 infection, respectively. We discuss the FAIR features supported by the MINERVA Platform and we outline steps to further improve the MINERVA FAIRness and to better connect this resource to other ongoing scientific initiatives supporting FAIR in computational systems biomedicine.
Collapse
Affiliation(s)
- Irina Balaur
- Luxembourg Centre For Systems Biomedicine (LCSB), University of Luxembourg, L-4367, Belval, Luxembourg.
| | - Danielle Welter
- Luxembourg Centre For Systems Biomedicine (LCSB), University of Luxembourg, L-4367, Belval, Luxembourg
| | - Adrien Rougny
- Luxembourg Centre For Systems Biomedicine (LCSB), University of Luxembourg, L-4367, Belval, Luxembourg
| | - Esther Thea Inau
- Medical Informatics Laboratory, Institute for Community Medicine, University Medicine Greifswald, Walther-Rathenau-Str. 48, D-17475, Greifswald, Germany
| | - Alexander Mazein
- Luxembourg Centre For Systems Biomedicine (LCSB), University of Luxembourg, L-4367, Belval, Luxembourg
| | - Soumyabrata Ghosh
- Luxembourg Centre For Systems Biomedicine (LCSB), University of Luxembourg, L-4367, Belval, Luxembourg
| | - Reinhard Schneider
- Luxembourg Centre For Systems Biomedicine (LCSB), University of Luxembourg, L-4367, Belval, Luxembourg
| | - Dagmar Waltemath
- Medical Informatics Laboratory, Institute for Community Medicine, University Medicine Greifswald, Walther-Rathenau-Str. 48, D-17475, Greifswald, Germany
| | - Marek Ostaszewski
- Luxembourg Centre For Systems Biomedicine (LCSB), University of Luxembourg, L-4367, Belval, Luxembourg.
| | - Venkata Satagopam
- Luxembourg Centre For Systems Biomedicine (LCSB), University of Luxembourg, L-4367, Belval, Luxembourg
| |
Collapse
|
4
|
Leonidou N, Renz A, Winnerling B, Grekova A, Grein F, Dräger A. Genome-scale metabolic model of Staphylococcus epidermidis ATCC 12228 matches in vitro conditions. mSystems 2025:e0041825. [PMID: 40396730 DOI: 10.1128/msystems.00418-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/15/2025] [Indexed: 05/22/2025] Open
Abstract
Staphylococcus epidermidis, a commensal bacterium inhabiting collagen-rich areas like human skin, has gained significance due to its probiotic potential in the nasal microbiome and as a leading cause of nosocomial infections. While infrequently leading to severe illnesses, S. epidermidis exerts a significant influence, particularly in its close association with implant-related infections and its role as a classic opportunistic biofilm former. Understanding its opportunistic nature is crucial for developing novel therapeutic strategies, addressing both its beneficial and pathogenic aspects, and alleviating the burdens it imposes on patients and healthcare systems. Here, we employ genome-scale metabolic modeling as a powerful tool to elucidate the metabolic capabilities of S. epidermidis. We created a comprehensive computational resource for understanding the organism's growth conditions within diverse habitats by reconstructing and analyzing a manually curated and experimentally validated metabolic model. The final network, iSep23, incorporates 1,415 reactions, 1,051 metabolites, and 705 genes, adhering to established community standards and modeling guidelines. Benchmarking with the Metabolic Model Testing suite yields a high score, indicating the model's remarkable semantic quality. Following the findable, accessible, interoperable, and reusable (FAIR) data principles, iSep23 becomes a valuable and publicly accessible asset for subsequent studies. Growth simulations and carbon source utilization predictions align with experimental results, showcasing the model's predictive power. Ultimately, this work provides a robust foundation for future research aimed at both exploiting the probiotic potential and mitigating the pathogenic risks posed by S. epidermidis. IMPORTANCE Staphylococcus epidermidis, a bacterium commonly found on human skin, has shown probiotic effects in the nasal microbiome and is a notable causative agent of hospital-acquired infections. While these infections are typically non-life-threatening, their economic impact is considerable, with annual costs reaching billions of dollars in the United States. To better understand its opportunistic nature, we employed genome-scale metabolic modeling to construct a detailed network of S. epidermidis's metabolic capabilities. This model, comprising over a thousand reactions, metabolites, and genes, adheres to established standards and demonstrates solid benchmarking performance. Following the findable, accessible, interoperable, and reusable (FAIR) data principles, the model provides a valuable resource for future research. Growth simulations and predictions closely match experimental data, underscoring the model's predictive accuracy. Overall, this work lays a solid foundation for future studies aimed at leveraging the beneficial properties of S. epidermidis while mitigating its pathogenic potential.
Collapse
Affiliation(s)
- Nantia Leonidou
- Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Tübingen, Germany
- Quantitative Biology Center (QBiC), Eberhard Karl University of Tübingen, Tübingen, Germany
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany
| | - Alina Renz
- Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Benjamin Winnerling
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, North Rhine-Westphalia, Germany
- German Center for Infection Research (DZIF), Bonn, Germany
| | - Anastasiia Grekova
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Baden-Württemberg, Germany
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, North Rhine-Westphalia, Germany
- German Center for Infection Research (DZIF), Bonn, Germany
| | - Andreas Dräger
- Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Tübingen, Germany
- Quantitative Biology Center (QBiC), Eberhard Karl University of Tübingen, Tübingen, Germany
- Data Analytics and Bioinformatics, Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
5
|
Höpfl S, Özverin M, Nowack H, Tamas R, Clark AG, Radde N, Olayioye MA. Integrated mathematical and experimental modeling uncovers enhanced EMT plasticity upon loss of the DLC1 tumor suppressor. PLoS Comput Biol 2025; 21:e1013076. [PMID: 40354489 PMCID: PMC12121911 DOI: 10.1371/journal.pcbi.1013076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 05/29/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays an essential role in embryonic development, wound healing, and tumor progression. Partial EMT states have been linked to metastatic dissemination and drug resistance. Several interconnected feedback loops at the RNA and protein levels control the transition between different cellular states. Using a combination of mathematical modeling and experimental analyses in the TGFβ-responsive breast epithelial MCF10A cell model, we identify a central role for the tumor suppressor protein Deleted in Liver Cancer 1 (DLC1) during EMT. By extending a previous model of EMT comprising key transcription factors and microRNAs, our work shows that DLC1 acts as a positive regulator of TGFβ-driven EMT, mainly by promoting SNAIL1 expression. Our model predictions indicate that DLC1 loss impairs EMT progression. Experimental analyses confirm this prediction and reveal the acquisition of a partial EMT phenotype in DLC1-depleted cells. Furthermore, our model results indicate a possible EMT reversion to partial or epithelial states upon DLC1 loss in MCF10A cells induced toward mesenchymal phenotypes. The increased EMT plasticity of cells lacking DLC1 may explain its importance as a tumor suppressor.
Collapse
Affiliation(s)
- Sebastian Höpfl
- Institute for Stochastics and Applications, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Merih Özverin
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Helena Nowack
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Raluca Tamas
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Andrew G. Clark
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- University of Tübingen, Center for Personalized Medicine, Tübingen, Stuttgart, Germany
| | - Nicole Radde
- Institute for Stochastics and Applications, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Monilola A. Olayioye
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
6
|
Sokolov V, Peskov K, Helmlinger G. A Framework for Quantitative Systems Pharmacology Model Execution. Handb Exp Pharmacol 2025. [PMID: 40111538 DOI: 10.1007/164_2024_738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A mathematical model can be defined as a theoretical approximation of an observed pattern. The specific form of the model and the associated mathematical methods are typically dictated by the question(s) to be addressed by the model and the underlying data. In the context of research and development of new medicines, these questions often focus on the dose-exposure-response relationship.The general workflow for model development and application can be delineated in three major elements: defining the model, qualifying the model, and performing simulations. These elements may vary significantly depending on modeling objectives. Quantitative systems pharmacology (QSP) models address the formidable challenge of quantitatively and mechanistically characterizing human and animal biology, pathophysiology, and therapeutic intervention.QSP model development, by necessity, relies heavily on preexisting knowledge, requires a comprehensive understanding of current physiological concepts, and often makes use of heterogeneous and aggregated datasets from multiple sources. This reliance on diverse datasets presents an upfront challenge: the determination of an optimal model structure while balancing model complexity and uncertainty. Additionally, QSP model calibration is arduous due to data scarcity (particularly at the human subject level), which necessitates the use of a variety of parameter estimation approaches and sensitivity analyses, earlier in the modeling workflow as compared to, for example, population modeling. Finally, the interpretation of model-based predictions must be thoughtfully aligned with the data and the mathematical methods applied during model development.The purpose of this chapter is to provide readers with a high-level yet comprehensive overview of a QSP modeling workflow, with an emphasis on the various challenges encountered in this process. The workflow is centered around the construction of ordinary differential equation models and may be extended beyond this framework. It includes the fundamentals of systematic literature reviews, the selection of appropriate structural model equations, the analysis of system behavior, model qualification, and the application of various types of model-based simulations. The chapter concludes with details on existing software options suitable for implementing the described methodologies.This workflow may serve as a valuable resource to both newcomers and experienced QSP modelers, offering an introduction to the field as well as operating procedures and references for routine analyses.
Collapse
Affiliation(s)
- Victor Sokolov
- M&S Decisions FZ LLC, Dubai, UAE.
- Marchuk Institute of Numerical Mathematics of Russian Academy of Sciences, Moscow, Russia.
| | - Kirill Peskov
- M&S Decisions FZ LLC, Dubai, UAE
- Marchuk Institute of Numerical Mathematics of Russian Academy of Sciences, Moscow, Russia
- Research Center of Model-Informed Drug Development, Sechenov First Moscow State Medical University, Moscow, Russia
| | | |
Collapse
|
7
|
Kannan M, Bridgewater G, Zhang M, Blinov ML. Leveraging public AI tools to explore systems biology resources in mathematical modeling. NPJ Syst Biol Appl 2025; 11:15. [PMID: 39910106 PMCID: PMC11799200 DOI: 10.1038/s41540-025-00496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
Predictive mathematical modeling is an essential part of systems biology and is interconnected with information management. Systems biology information is often stored in specialized formats to facilitate data storage and analysis. These formats are not designed for easy human readability and thus require specialized software to visualize and interpret results. Therefore, comprehending modeling and underlying networks and pathways is contingent on mastering systems biology tools, which is particularly challenging for users with no or little background in data science or system biology. To address this challenge, we investigated the usage of public Artificial Intelligence (AI) tools in exploring systems biology resources in mathematical modeling. We tested public AI's understanding of mathematics in models, related systems biology data, and the complexity of model structures. Our approach can enhance the accessibility of systems biology for non-system biologists and help them understand systems biology without a deep learning curve.
Collapse
Affiliation(s)
- Meera Kannan
- Center for Cell Analysis and Modeling, UConn Health, Farmington, CT, 06030, USA
| | | | - Ming Zhang
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | - Michael L Blinov
- Center for Cell Analysis and Modeling, UConn Health, Farmington, CT, 06030, USA.
| |
Collapse
|
8
|
Fonseca LL, Böttcher L, Mehrad B, Laubenbacher RC. Optimal control of agent-based models via surrogate modeling. PLoS Comput Biol 2025; 21:e1012138. [PMID: 39808665 PMCID: PMC11790234 DOI: 10.1371/journal.pcbi.1012138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 02/03/2025] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
This paper describes and validates an algorithm to solve optimal control problems for agent-based models (ABMs). For a given ABM and a given optimal control problem, the algorithm derives a surrogate model, typically lower-dimensional, in the form of a system of ordinary differential equations (ODEs), solves the control problem for the surrogate model, and then transfers the solution back to the original ABM. It applies to quite general ABMs and offers several options for the ODE structure, depending on what information about the ABM is to be used. There is a broad range of applications for such an algorithm, since ABMs are used widely in the life sciences, such as ecology, epidemiology, and biomedicine and healthcare, areas where optimal control is an important purpose for modeling, such as for medical digital twin technology.
Collapse
Affiliation(s)
- Luis L. Fonseca
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Lucas Böttcher
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Computational Science and Philosophy, Frankfurt School of Finance and Management, Frankfurt am Main, Germany
| | - Borna Mehrad
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Reinhard C. Laubenbacher
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
9
|
Chen J, Hoops S, Mortveit HS, Lewis BL, Machi D, Bhattacharya P, Venkatramanan S, Wilson ML, Barrett CL, Marathe MV. Epihiper-A high performance computational modeling framework to support epidemic science. PNAS NEXUS 2025; 4:pgae557. [PMID: 39720202 PMCID: PMC11667244 DOI: 10.1093/pnasnexus/pgae557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/02/2024] [Indexed: 12/26/2024]
Abstract
This paper describes Epihiper, a state-of-the-art, high performance computational modeling framework for epidemic science. The Epihiper modeling framework supports custom disease models, and can simulate epidemics over dynamic, large-scale networks while supporting modulation of the epidemic evolution through a set of user-programmable interventions. The nodes and edges of the social-contact network have customizable sets of static and dynamic attributes which allow the user to specify intervention target sets at a very fine-grained level; these also permit the network to be updated in response to nonpharmaceutical interventions, such as school closures. The execution of interventions is governed by trigger conditions, which are Boolean expressions formed using any of Epihiper's primitives (e.g. the current time, transmissibility) and user-defined sets (e.g. people with work activities). Rich expressiveness, extensibility, and high-performance computing responsiveness were central design goals to ensure that the framework could effectively target realistic scenarios at the scale and detail required to support the large computational designs needed by state and federal public health policymakers in their efforts to plan and respond in the event of epidemics. The modeling framework has been used to support the CDC Scenario Modeling Hub for COVID-19 response, and was a part of a hybrid high-performance cloud system that was nominated as a finalist for the 2021 ACM Gordon Bell Special Prize for high performance computing-based COVID-19 Research.
Collapse
Affiliation(s)
- Jiangzhuo Chen
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA
| | - Stefan Hoops
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA
| | - Henning S Mortveit
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA
- Department of Systems and Information Engineering, University of Virginia, Charlottesville, VA, USA
| | - Bryan L Lewis
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA
| | - Dustin Machi
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA
| | | | | | - Mandy L Wilson
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA
| | - Chris L Barrett
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA
- Department of Computer Science, University of Virginia, Charlottesville, VA, USA
| | - Madhav V Marathe
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA
- Department of Computer Science, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
10
|
Beust C, Becker E, Théret N, Dameron O. BioPAX in 2024: Where we are and where we are heading. Comput Struct Biotechnol J 2024; 23:3999-4010. [PMID: 39582893 PMCID: PMC11585474 DOI: 10.1016/j.csbj.2024.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024] Open
Abstract
In systems biology, the study of biological pathways plays a central role in understanding the complexity of biological systems. The massification of pathway data made available by numerous online databases in recent years has given rise to an important need for standardization of this data. The BioPAX format (Biological Pathway Exchange) emerged in 2010 as a solution for standardizing and exchanging pathway data across databases. BioPAX is a Semantic Web format associated to an ontology. It is highly expressive, allowing to finely describe biological pathways at the molecular and cellular levels, but the associated intrinsic complexity may be an obstacle to its widespread adoption. Here, we report on the use of the BioPAX format in 2024. We compare how the different pathway databases use BioPAX to standardize their data and point out possible avenues for improvement to make full use of its potential. We also report on the various tools and software that have been developed to work with BioPAX data. Finally, we present a new concept of abstraction on BioPAX graphs that would allow to specifically target areas in a BioPAX graph needed for a specific analysis, thus differentiating the format suited for representation and the abstraction suited for contextual analysis.
Collapse
Affiliation(s)
- Cécile Beust
- Univ Rennes, Inria, CNRS, IRISA - UMR 6074, Rennes, F-35000, France
| | | | - Nathalie Théret
- Univ Rennes, Inria, CNRS, IRISA - UMR 6074, Rennes, F-35000, France
- Univ Rennes, Inserm, EHESP, Irset, UMR S1085, Rennes, F-35000, France
| | - Olivier Dameron
- Univ Rennes, Inria, CNRS, IRISA - UMR 6074, Rennes, F-35000, France
| |
Collapse
|
11
|
Chen Z, Wang L. Process simulation and evaluation of scaled-up biocatalytic systems: Advances, challenges, and future prospects. Biotechnol Adv 2024; 77:108470. [PMID: 39437878 DOI: 10.1016/j.biotechadv.2024.108470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
With the increased demand for bio-based products and the rapid development of biomanufacturing technologies, biocatalytic reactions including microorganisms and enzyme based, have become promising approaches. Prior to the scale-up of production process, environmental and economic feasibility analysis are essential for the development of a sustainable and intelligent bioeconomy in the context of industry 4.0. To achieve these goals, process simulation supports system optimization, improves energy and resource utilization efficiencies, and supports digital bioprocessing. However, due to the insufficient understanding of cellular metabolism and interaction mechanisms, there is still a lack of rational and transparent simulation tools to efficiently simulate, control, and optimize microbial/enzymatic reaction processes. Therefore, there is an urgent need to develop frameworks that integrate kinetic modeling, process simulation, and sustainability analysis for bioreaction simulations and their optimization. This review summarizes and compares the advantages and disadvantages of different process simulation software and models in simulating biocatalytic processes, identifies the limitations of traditional reaction kinetics models, and proposes the requirement of simulations close to real reactions. In addition, we explore the current state of kinetic modeling at the microscopic scale and how process simulation can be linked to kinetic models of cellular metabolism and computational fluid dynamics modeling. Finally, this review discusses the requirement of sensitivity analysis and how machine learning can assist with optimization of simulations to improve energy efficiency and product yields from techno-economic and life cycle assessment perspectives.
Collapse
Affiliation(s)
- Zhonghao Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lei Wang
- Zhejiang Key Laboratory of Low-Carbon Intelligent Synthetic Biology, Westlake University, Hangzhou, Zhejiang 310030, China; School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
12
|
Chiaradonna S, Jevtić P, Sterner B. MPAT: Modular Petri Net Assembly Toolkit. SOFTWAREX 2024; 28:101913. [PMID: 40416937 PMCID: PMC12101618 DOI: 10.1016/j.softx.2024.101913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
We present a Python package called Modular Petri Net Assembly Toolkit (MPAT) that empowers users to easily create large-scale, modular Petri Nets for various spatial configurations, including extensive spatial grids or those derived from shapefiles, augmented with heterogeneous information layers. Petri Nets are powerful discrete event system modeling tools in computational biology and engineering. However, their utility for automated construction of large-scale spatial models has been limited by gaps in existing modeling software packages. MPAT addresses this gap by supporting the development of modular Petri Net models with flexible spatial geometries.
Collapse
Affiliation(s)
- Stefano Chiaradonna
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Petar Jevtić
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Beckett Sterner
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
13
|
Niarakis A, Laubenbacher R, An G, Ilan Y, Fisher J, Flobak Å, Reiche K, Rodríguez Martínez M, Geris L, Ladeira L, Veschini L, Blinov ML, Messina F, Fonseca LL, Ferreira S, Montagud A, Noël V, Marku M, Tsirvouli E, Torres MM, Harris LA, Sego TJ, Cockrell C, Shick AE, Balci H, Salazar A, Rian K, Hemedan AA, Esteban-Medina M, Staumont B, Hernandez-Vargas E, Martis B S, Madrid-Valiente A, Karampelesis P, Sordo Vieira L, Harlapur P, Kulesza A, Nikaein N, Garira W, Malik Sheriff RS, Thakar J, Tran VDT, Carbonell-Caballero J, Safaei S, Valencia A, Zinovyev A, Glazier JA. Immune digital twins for complex human pathologies: applications, limitations, and challenges. NPJ Syst Biol Appl 2024; 10:141. [PMID: 39616158 PMCID: PMC11608242 DOI: 10.1038/s41540-024-00450-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/27/2024] [Indexed: 12/06/2024] Open
Abstract
Digital twins represent a key technology for precision health. Medical digital twins consist of computational models that represent the health state of individual patients over time, enabling optimal therapeutics and forecasting patient prognosis. Many health conditions involve the immune system, so it is crucial to include its key features when designing medical digital twins. The immune response is complex and varies across diseases and patients, and its modelling requires the collective expertise of the clinical, immunology, and computational modelling communities. This review outlines the initial progress on immune digital twins and the various initiatives to facilitate communication between interdisciplinary communities. We also outline the crucial aspects of an immune digital twin design and the prerequisites for its implementation in the clinic. We propose some initial use cases that could serve as "proof of concept" regarding the utility of immune digital technology, focusing on diseases with a very different immune response across spatial and temporal scales (minutes, days, months, years). Lastly, we discuss the use of digital twins in drug discovery and point out emerging challenges that the scientific community needs to collectively overcome to make immune digital twins a reality.
Collapse
Affiliation(s)
- Anna Niarakis
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, UPS, CNRS, Toulouse, France.
- Lifeware Group, Inria, Saclay-île de France, Palaiseau, France.
| | | | - Gary An
- Department of Surgery, University of Vermont Larner College of Medicine, Vermont, USA
| | - Yaron Ilan
- Faculty of Medicine Hebrew University, Hadassah Medical Center, Jerusalem, Israel
| | - Jasmin Fisher
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Åsmund Flobak
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- The Cancer Clinic, St Olav's University Hospital, Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Kristin Reiche
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Institute of Clinical Immunology, Medical Faculty, University Hospital, University of Leipzig, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden/Leipzig, Germany
| | - María Rodríguez Martínez
- Department of Biomedical Informatics & Data Science, Yale School of Medicine, New Haven, CT, USA
| | - Liesbet Geris
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Biomechanics Research Unit, GIGA Molecular and Computational Biology, University of Liège, Liège, Belgium
| | - Luiz Ladeira
- Biomechanics Research Unit, GIGA Molecular and Computational Biology, University of Liège, Liège, Belgium
| | - Lorenzo Veschini
- Faculty of Dentistry Oral & Craniofacial Sciences, King's College London, London, UK
- Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, 47408, USA
| | - Michael L Blinov
- Center for Cell Analysis and Modeling, UConn Health, Farmington, CT, 06030, USA
| | - Francesco Messina
- Department of Epidemiology, Preclinical Research and Advanced Diagnostic, National Institute for Infectious Diseases 'Lazzaro Spallanzani' - I.R.C.C.S., Rome, Italy
| | - Luis L Fonseca
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Sandra Ferreira
- Mathematics Department and Center of Mathematics, University of Beira Interior, Covilhã, Portugal
| | - Arnau Montagud
- Barcelona Supercomputing Center (BSC), Barcelone, Spain
- Institute for Integrative Systems Biology (I2SysBio), CSIC-UV, Valencia, Spain
| | - Vincent Noël
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
| | - Malvina Marku
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Eirini Tsirvouli
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marcella M Torres
- Department of Mathematics and Statistics, University of Richmond, Richmond, VA, USA
| | - Leonard A Harris
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
- Cancer Biology Program, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - T J Sego
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Chase Cockrell
- Department of Surgery, University of Vermont Larner College of Medicine, Vermont, USA
| | - Amanda E Shick
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Hasan Balci
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - Albin Salazar
- INRIA Paris/CNRS/École Normale Supérieure/PSL Research University, Paris, France
| | - Kinza Rian
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
| | - Ahmed Abdelmonem Hemedan
- Bioinformatics Core Unit, Luxembourg Centre of Systems Biomedicine LCSB, Luxembourg University, Esch-sur-Alzette, Luxembourg
| | - Marina Esteban-Medina
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
| | - Bernard Staumont
- Biomechanics Research Unit, GIGA Molecular and Computational Biology, University of Liège, Liège, Belgium
| | - Esteban Hernandez-Vargas
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID, 83844-1103, USA
| | | | | | | | | | - Pradyumna Harlapur
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India
| | | | - Niloofar Nikaein
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-70182, Örebro, Sweden
- X-HiDE - Exploring Inflammation in Health and Disease Consortium, Örebro University, Örebro, Sweden
| | - Winston Garira
- Multiscale Mathematical Modelling of Living Systems program (M3-LSP), Kimberley, South Africa
- Department of Mathematical Sciences, Sol Plaatje University, Kimberley, South Africa
- Private Bag X5008, Kimberley, 8300, South Africa
| | - Rahuman S Malik Sheriff
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Hinxton, Cambridge, UK
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Juilee Thakar
- Department of Microbiology & Immunology and Department of Biostatistics & Computational Biology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Van Du T Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Soroush Safaei
- Institute of Biomedical Engineering and Technology, Ghent University, Gent, Belgium
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), Barcelone, Spain
- ICREA, 23 Passeig Lluís Companys, 08010, Barcelona, Spain
| | | | - James A Glazier
- Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, 47408, USA
| |
Collapse
|
14
|
Agmon E. Foundations of a Compositional Systems Biology. ARXIV 2024:arXiv:2408.00942v2. [PMID: 39130201 PMCID: PMC11312625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Composition is a powerful principle for systems biology, focused on the interfaces, interconnections, and orchestration of distributed processes to enable integrative multiscale simulations. Whereas traditional models focus on the structure or dynamics of specific subsystems in controlled conditions, compositional systems biology aims to connect these models, asking critical questions about the space between models: What variables should a submodel expose through its interface? How do coupled models connect and translate across scales? How do domain-specific models connect across biological and physical disciplines to drive the synthesis of new knowledge? This approach requires robust software to integrate diverse datasets and submodels, providing researchers with tools to flexibly recombine, iteratively refine, and collaboratively expand their models. This article offers a comprehensive framework to support this vision, including: a conceptual and graphical framework to define interfaces and composition patterns; standardized schemas that facilitate modular data and model assembly; biological templates that integrate detailed submodels that connect molecular processes to the emergence of the cellular interface; and user-friendly software interfaces that empower research communities to construct and improve multiscale models of cellular systems. By addressing these needs, compositional systems biology will foster a unified and scalable approach to understanding complex cellular systems.
Collapse
|
15
|
Chapman S, Brunet T, Mourier A, Habermann BH. MitoMAMMAL: a genome scale model of mammalian mitochondria predicts cardiac and BAT metabolism. BIOINFORMATICS ADVANCES 2024; 5:vbae172. [PMID: 39758828 PMCID: PMC11696703 DOI: 10.1093/bioadv/vbae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 01/07/2025]
Abstract
Motivation Mitochondria are essential for cellular metabolism and are inherently flexible to allow correct function in a wide range of tissues. Consequently, dysregulated mitochondrial metabolism affects different tissues in different ways leading to challenges in understanding the pathology of mitochondrial diseases. System-level metabolic modelling is useful in studying tissue-specific mitochondrial metabolism, yet despite the mouse being a common model organism in research, no mouse specific mitochondrial metabolic model is currently available. Results Building upon the similarity between human and mouse mitochondrial metabolism, we present mitoMammal, a genome-scale metabolic model that contains human and mouse specific gene-product reaction rules. MitoMammal is able to model mouse and human mitochondrial metabolism. To demonstrate this, using an adapted E-Flux algorithm, we integrated proteomic data from mitochondria of isolated mouse cardiomyocytes and mouse brown adipocyte tissue, as well as transcriptomic data from in vitro differentiated human brown adipocytes and modelled the context specific metabolism using flux balance analysis. In all three simulations, mitoMammal made mostly accurate, and some novel predictions relating to energy metabolism in the context of cardiomyocytes and brown adipocytes. This demonstrates its usefulness in research in cardiac disease and diabetes in both mouse and human contexts. Availability and implementation The MitoMammal Jupyter Notebook is available at: https://gitlab.com/habermann_lab/mitomammal.
Collapse
Affiliation(s)
- Stephen Chapman
- Aix-Marseille University, CNRS, IBDM UMR7288, Turing Center for Living Systems (CENTURI), Marseille 13009, France
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Theo Brunet
- Aix-Marseille University, CNRS, IBDM UMR7288, Turing Center for Living Systems (CENTURI), Marseille 13009, France
| | - Arnaud Mourier
- Université de Bordeaux, IBGC UMR 5095, Bordeaux 33077, France
| | - Bianca H Habermann
- Aix-Marseille University, CNRS, IBDM UMR7288, Turing Center for Living Systems (CENTURI), Marseille 13009, France
| |
Collapse
|
16
|
Armistead J, Höpfl S, Goldhausen P, Müller-Hartmann A, Fahle E, Hatzold J, Franzen R, Brodesser S, Radde NE, Hammerschmidt M. A sphingolipid rheostat controls apoptosis versus apical cell extrusion as alternative tumour-suppressive mechanisms. Cell Death Dis 2024; 15:746. [PMID: 39397024 PMCID: PMC11471799 DOI: 10.1038/s41419-024-07134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Evasion of cell death is a hallmark of cancer, and consequently the induction of cell death is a common strategy in cancer treatment. However, the molecular mechanisms regulating different types of cell death are poorly understood. We have formerly shown that in the epidermis of hypomorphic zebrafish hai1a mutant embryos, pre-neoplastic transformations of keratinocytes caused by unrestrained activity of the type II transmembrane serine protease Matriptase-1 heal spontaneously. This healing is driven by Matriptase-dependent increased sphingosine kinase (SphK) activity and sphingosine-1-phosphate (S1P)-mediated keratinocyte loss via apical cell extrusion. In contrast, amorphic hai1afr26 mutants with even higher Matriptase-1 and SphK activity die within a few days. Here we show that this lethality is not due to epidermal carcinogenesis, but to aberrant tp53-independent apoptosis of keratinocytes caused by increased levels of pro-apoptotic C16 ceramides, sphingolipid counterparts to S1P within the sphingolipid rheostat, which severely compromises the epidermal barrier. Mathematical modelling of sphingolipid rheostat homeostasis, combined with in vivo manipulations of components of the rheostat or the ceramide de novo synthesis pathway, indicate that this unexpected overproduction of ceramides is caused by a negative feedback loop sensing ceramide levels and controlling ceramide replenishment via de novo synthesis. Therefore, despite their initial decrease due to increased conversion to S1P, ceramides eventually reach cell death-inducing levels, making transformed pre-neoplastic keratinocytes die even before they are extruded, thereby abrogating the normally barrier-preserving mode of apical live cell extrusion. Our results offer an in vivo perspective of the dynamics of sphingolipid homeostasis and its relevance for epithelial cell survival versus cell death, linking apical cell extrusion and apoptosis. Implications for human carcinomas and their treatments are discussed.
Collapse
Affiliation(s)
- Joy Armistead
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Sebastian Höpfl
- Institute for Stochastics and Applications, University of Stuttgart, Stuttgart, Germany
| | - Pierre Goldhausen
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany
| | | | - Evelin Fahle
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany
| | - Julia Hatzold
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany
| | - Rainer Franzen
- Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Susanne Brodesser
- Lipidomics/Metabolomics Facility, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Nicole E Radde
- Institute for Stochastics and Applications, University of Stuttgart, Stuttgart, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
17
|
Xu J, Wiley HS, Sauro HM. Generating synthetic signaling networks for in silico modeling studies. J Theor Biol 2024; 593:111901. [PMID: 39004118 PMCID: PMC11309880 DOI: 10.1016/j.jtbi.2024.111901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Predictive models of signaling pathways have proven to be difficult to develop. Traditional approaches to developing mechanistic models rely on collecting experimental data and fitting a single model to that data. This approach works for simple systems but has proven unreliable for complex systems such as biological signaling networks. Thus, there is a need to develop new approaches to create predictive mechanistic models of complex systems. To meet this need, we developed a method for generating artificial signaling networks that were reasonably realistic and thus could be treated as ground truth models. These synthetic models could then be used to generate synthetic data for developing and testing algorithms designed to recover the underlying network topology and associated parameters. We defined the reaction degree and reaction distance to measure the topology of reaction networks, especially to consider enzymes. To determine whether our generated signaling networks displayed meaningful behavior, we compared them with signaling networks from the BioModels Database. This comparison indicated that our generated signaling networks had high topological similarities with BioModels signaling networks with respect to the reaction degree and distance distributions. In addition, our synthetic signaling networks had similar behavioral dynamics with respect to both steady states and oscillations, suggesting that our method generated synthetic signaling networks comparable with BioModels and thus could be useful for building network evaluation tools.
Collapse
Affiliation(s)
- Jin Xu
- Department of Bioengineering, University of Washington, Seattle 98195, WA, USA.
| | - H Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland 99352, WA, USA
| | - Herbert M Sauro
- Department of Bioengineering, University of Washington, Seattle 98195, WA, USA
| |
Collapse
|
18
|
Leonidou N, Xia Y, Friedrich L, Schütz MS, Dräger A. Exploring the metabolic profile of A. baumannii for antimicrobial development using genome-scale modeling. PLoS Pathog 2024; 20:e1012528. [PMID: 39312576 PMCID: PMC11463759 DOI: 10.1371/journal.ppat.1012528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/09/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
With the emergence of multidrug-resistant bacteria, the World Health Organization published a catalog of microorganisms urgently needing new antibiotics, with the carbapenem-resistant Acinetobacter baumannii designated as "critical". Such isolates, frequently detected in healthcare settings, pose a global pandemic threat. One way to facilitate a systemic view of bacterial metabolism and allow the development of new therapeutics is to apply constraint-based modeling. Here, we developed a versatile workflow to build high-quality and simulation-ready genome-scale metabolic models. We applied our workflow to create a metabolic model for A. baumannii and validated its predictive capabilities using experimental nutrient utilization and gene essentiality data. Our analysis showed that our model iACB23LX could recapitulate cellular metabolic phenotypes observed during in vitro experiments, while positive biomass production rates were observed and experimentally validated in various growth media. We further defined a minimal set of compounds that increase A. baumannii's cellular biomass and identified putative essential genes with no human counterparts, offering new candidates for future antimicrobial development. Finally, we assembled and curated the first collection of metabolic reconstructions for distinct A. baumannii strains and analyzed their growth characteristics. The presented models are in a standardized and well-curated format, enhancing their usability for multi-strain network reconstruction.
Collapse
Affiliation(s)
- Nantia Leonidou
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, Eberhard Karl University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Germany
- Quantitative Biology Center (QBiC), Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Yufan Xia
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Lea Friedrich
- Interfaculty Institute for Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
| | - Monika S. Schütz
- German Center for Infection Research (DZIF), partner site Tübingen, Germany
- Interfaculty Institute for Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Germany
- Quantitative Biology Center (QBiC), Eberhard Karl University of Tübingen, Tübingen, Germany
- Data Analytics and Bioinformatics, Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
19
|
Holtzapple E, Zhou G, Luo H, Tang D, Arazkhani N, Hansen C, Telmer CA, Miskov-Zivanov N. The BioRECIPE Knowledge Representation Format. ACS Synth Biol 2024; 13:2621-2624. [PMID: 39051984 PMCID: PMC11334182 DOI: 10.1021/acssynbio.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
The BioRECIPE (Biological system Representation for Evaluation, Curation, Interoperability, Preserving, and Execution) knowledge representation format was introduced to standardize and facilitate human-machine interaction while creating, verifying, evaluating, curating, and expanding executable models of intra- and intercellular signaling. This format allows a human user to easily preview and modify any model component, while it is at the same time readable by machines and can be processed by a suite of model development and analysis tools. The BioRECIPE format is compatible with multiple representation formats, natural language processing tools, modeling tools, and databases that are used by the systems and synthetic biology communities.
Collapse
Affiliation(s)
- Emilee Holtzapple
- Electrical
and Computer Engineering Department, Computational and Systems Biology
Department, Bioengineering Department, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Gaoxiang Zhou
- Electrical
and Computer Engineering Department, Computational and Systems Biology
Department, Bioengineering Department, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Haomiao Luo
- Electrical
and Computer Engineering Department, Computational and Systems Biology
Department, Bioengineering Department, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Difei Tang
- Electrical
and Computer Engineering Department, Computational and Systems Biology
Department, Bioengineering Department, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Niloofar Arazkhani
- Electrical
and Computer Engineering Department, Computational and Systems Biology
Department, Bioengineering Department, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Casey Hansen
- Electrical
and Computer Engineering Department, Computational and Systems Biology
Department, Bioengineering Department, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Cheryl A. Telmer
- Department
of Biological Sciences, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Natasa Miskov-Zivanov
- Electrical
and Computer Engineering Department, Computational and Systems Biology
Department, Bioengineering Department, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
20
|
Priego Espinosa D, Espinal-Enríquez J, Aldana A, Aldana M, Martínez-Mekler G, Carneiro J, Darszon A. Reviewing mathematical models of sperm signaling networks. Mol Reprod Dev 2024; 91:e23766. [PMID: 39175359 DOI: 10.1002/mrd.23766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
Dave Garbers' work significantly contributed to our understanding of sperm's regulated motility, capacitation, and the acrosome reaction. These key sperm functions involve complex multistep signaling pathways engaging numerous finely orchestrated elements. Despite significant progress, many parameters and interactions among these elements remain elusive. Mathematical modeling emerges as a potent tool to study sperm physiology, providing a framework to integrate experimental results and capture functional dynamics considering biochemical, biophysical, and cellular elements. Depending on research objectives, different modeling strategies, broadly categorized into continuous and discrete approaches, reveal valuable insights into cell function. These models allow the exploration of hypotheses regarding molecules, conditions, and pathways, whenever they become challenging to evaluate experimentally. This review presents an overview of current theoretical and experimental efforts to understand sperm motility regulation, capacitation, and the acrosome reaction. We discuss the strengths and weaknesses of different modeling strategies and highlight key findings and unresolved questions. Notable discoveries include the importance of specific ion channels, the role of intracellular molecular heterogeneity in capacitation and the acrosome reaction, and the impact of pH changes on acrosomal exocytosis. Ultimately, this review underscores the crucial importance of mathematical frameworks in advancing our understanding of sperm physiology and guiding future experimental investigations.
Collapse
Affiliation(s)
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Andrés Aldana
- Network Science Institute, Northeastern University, Boston, Massachusetts, USA
| | - Maximino Aldana
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Gustavo Martínez-Mekler
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Jorge Carneiro
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Alberto Darszon
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| |
Collapse
|
21
|
Lange E, Kranert L, Krüger J, Benndorf D, Heyer R. Microbiome modeling: a beginner's guide. Front Microbiol 2024; 15:1368377. [PMID: 38962127 PMCID: PMC11220171 DOI: 10.3389/fmicb.2024.1368377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Microbiomes, comprised of diverse microbial species and viruses, play pivotal roles in human health, environmental processes, and biotechnological applications and interact with each other, their environment, and hosts via ecological interactions. Our understanding of microbiomes is still limited and hampered by their complexity. A concept improving this understanding is systems biology, which focuses on the holistic description of biological systems utilizing experimental and computational methods. An important set of such experimental methods are metaomics methods which analyze microbiomes and output lists of molecular features. These lists of data are integrated, interpreted, and compiled into computational microbiome models, to predict, optimize, and control microbiome behavior. There exists a gap in understanding between microbiologists and modelers/bioinformaticians, stemming from a lack of interdisciplinary knowledge. This knowledge gap hinders the establishment of computational models in microbiome analysis. This review aims to bridge this gap and is tailored for microbiologists, researchers new to microbiome modeling, and bioinformaticians. To achieve this goal, it provides an interdisciplinary overview of microbiome modeling, starting with fundamental knowledge of microbiomes, metaomics methods, common modeling formalisms, and how models facilitate microbiome control. It concludes with guidelines and repositories for modeling. Each section provides entry-level information, example applications, and important references, serving as a valuable resource for comprehending and navigating the complex landscape of microbiome research and modeling.
Collapse
Affiliation(s)
- Emanuel Lange
- Multidimensional Omics Data Analysis, Department for Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Graduate School Digital Infrastructure for the Life Sciences, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Lena Kranert
- Institute for Automation Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Jacob Krüger
- Engineering of Software-Intensive Systems, Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Dirk Benndorf
- Applied Biosciences and Bioprocess Engineering, Anhalt University of Applied Sciences, Köthen, Germany
| | - Robert Heyer
- Multidimensional Omics Data Analysis, Department for Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Graduate School Digital Infrastructure for the Life Sciences, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Multidimensional Omics Data Analysis, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
22
|
Bleker C, Ramšak Ž, Bittner A, Podpečan V, Zagorščak M, Wurzinger B, Baebler Š, Petek M, Križnik M, van Dieren A, Gruber J, Afjehi-Sadat L, Weckwerth W, Županič A, Teige M, Vothknecht UC, Gruden K. Stress Knowledge Map: A knowledge graph resource for systems biology analysis of plant stress responses. PLANT COMMUNICATIONS 2024; 5:100920. [PMID: 38616489 PMCID: PMC11211517 DOI: 10.1016/j.xplc.2024.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Stress Knowledge Map (SKM; https://skm.nib.si) is a publicly available resource containing two complementary knowledge graphs that describe the current knowledge of biochemical, signaling, and regulatory molecular interactions in plants: a highly curated model of plant stress signaling (PSS; 543 reactions) and a large comprehensive knowledge network (488 390 interactions). Both were constructed by domain experts through systematic curation of diverse literature and database resources. SKM provides a single entry point for investigations of plant stress response and related growth trade-offs, as well as interactive explorations of current knowledge. PSS is also formulated as a qualitative and quantitative model for systems biology and thus represents a starting point for a plant digital twin. Here, we describe the features of SKM and show, through two case studies, how it can be used for complex analyses, including systematic hypothesis generation and design of validation experiments, or to gain new insights into experimental observations in plant biology.
Collapse
Affiliation(s)
- Carissa Bleker
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia.
| | - Živa Ramšak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Andras Bittner
- Plant Cell Biology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Vid Podpečan
- Department of Knowledge Technologies, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Bernhard Wurzinger
- Department of Functional & Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Maja Križnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Annelotte van Dieren
- Plant Cell Biology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Juliane Gruber
- Department of Functional & Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Leila Afjehi-Sadat
- Mass Spectrometry Unit, Core Facility Shared Services, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Wolfram Weckwerth
- Department of Functional & Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Anže Županič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Markus Teige
- Department of Functional & Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Ute C Vothknecht
- Plant Cell Biology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia.
| |
Collapse
|
23
|
Herajy M, Liu F, Heiner M. Design patterns for the construction of computational biological models. Brief Bioinform 2024; 25:bbae318. [PMID: 38961813 PMCID: PMC11222664 DOI: 10.1093/bib/bbae318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
Computational biological models have proven to be an invaluable tool for understanding and predicting the behaviour of many biological systems. While it may not be too challenging for experienced researchers to construct such models from scratch, it is not a straightforward task for early stage researchers. Design patterns are well-known techniques widely applied in software engineering as they provide a set of typical solutions to common problems in software design. In this paper, we collect and discuss common patterns that are usually used during the construction and execution of computational biological models. We adopt Petri nets as a modelling language to provide a visual illustration of each pattern; however, the ideas presented in this paper can also be implemented using other modelling formalisms. We provide two case studies for illustration purposes and show how these models can be built up from the presented smaller modules. We hope that the ideas discussed in this paper will help many researchers in building their own future models.
Collapse
Affiliation(s)
- Mostafa Herajy
- Department of Mathematics and Computer Science, Faculty of Science, Port Said University, 42521 Port Said, Egypt
| | - Fei Liu
- School of Software Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Monika Heiner
- Computer Science Institute, Brandenburg University of Technology, 03013 Cottbus, Germany
| |
Collapse
|
24
|
Fonseca LL, Böttcher L, Mehrad B, Laubenbacher RC. Surrogate modeling and control of medical digital twins. ARXIV 2024:arXiv:2402.05750v2. [PMID: 38827450 PMCID: PMC11142319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The vision of personalized medicine is to identify interventions that maintain or restore a person's health based on their individual biology. Medical digital twins, computational models that integrate a wide range of health-related data about a person and can be dynamically updated, are a key technology that can help guide medical decisions. Such medical digital twin models can be high-dimensional, multi-scale, and stochastic. To be practical for healthcare applications, they often need to be simplified into low-dimensional surrogate models that can be used for optimal design of interventions. This paper introduces surrogate modeling algorithms for the purpose of optimal control applications. As a use case, we focus on agent-based models (ABMs), a common model type in biomedicine for which there are no readily available optimal control algorithms. By deriving surrogate models that are based on systems of ordinary differential equations, we show how optimal control methods can be employed to compute effective interventions, which can then be lifted back to a given ABM. The relevance of the methods introduced here extends beyond medical digital twins to other complex dynamical systems.
Collapse
Affiliation(s)
- Luis L. Fonseca
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Lucas Böttcher
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
- Department of Computational Science and Philosophy, Frankfurt School of Finance and Management, 60322 Frankfurt am Main, Germany
| | - Borna Mehrad
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Reinhard C. Laubenbacher
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
25
|
Höpfl S, Albadry M, Dahmen U, Herrmann KH, Kindler EM, König M, Reichenbach JR, Tautenhahn HM, Wei W, Zhao WT, Radde NE. Bayesian modelling of time series data (BayModTS)-a FAIR workflow to process sparse and highly variable data. Bioinformatics 2024; 40:btae312. [PMID: 38741151 PMCID: PMC11128094 DOI: 10.1093/bioinformatics/btae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024] Open
Abstract
MOTIVATION Systems biology aims to better understand living systems through mathematical modelling of experimental and clinical data. A pervasive challenge in quantitative dynamical modelling is the integration of time series measurements, which often have high variability and low sampling resolution. Approaches are required to utilize such information while consistently handling uncertainties. RESULTS We present BayModTS (Bayesian modelling of time series data), a new FAIR (findable, accessible, interoperable, and reusable) workflow for processing and analysing sparse and highly variable time series data. BayModTS consistently transfers uncertainties from data to model predictions, including process knowledge via parameterized models. Further, credible differences in the dynamics of different conditions can be identified by filtering noise. To demonstrate the power and versatility of BayModTS, we applied it to three hepatic datasets gathered from three different species and with different measurement techniques: (i) blood perfusion measurements by magnetic resonance imaging in rat livers after portal vein ligation, (ii) pharmacokinetic time series of different drugs in normal and steatotic mice, and (iii) CT-based volumetric assessment of human liver remnants after clinical liver resection. AVAILABILITY AND IMPLEMENTATION The BayModTS codebase is available on GitHub at https://github.com/Systems-Theory-in-Systems-Biology/BayModTS. The repository contains a Python script for the executable BayModTS workflow and a widely applicable SBML (systems biology markup language) model for retarded transient functions. In addition, all examples from the paper are included in the repository. Data and code of the application examples are stored on DaRUS: https://doi.org/10.18419/darus-3876. The raw MRI ROI voxel data were uploaded to DaRUS: https://doi.org/10.18419/darus-3878. The steatosis metabolite data are published on FairdomHub: 10.15490/fairdomhub.1.study.1070.1.
Collapse
Affiliation(s)
- Sebastian Höpfl
- Institute for Stochastics and Applications, University of Stuttgart, 70569 Stuttgart, Germany
| | - Mohamed Albadry
- Experimental Transplantation Surgery, Department of General, Vascular and Visceral Surgery, University Hospital Jena, 07745 Jena, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkom, Menoufia, Egypt
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Vascular and Visceral Surgery, University Hospital Jena, 07745 Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, 07743 Jena, Germany
| | - Eva Marie Kindler
- Clinic for General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany
| | - Matthias König
- Institute for Biology, Faculty of Life Sciences, Humboldt-University Berlin, 10115 Berlin, Germany
| | - Jürgen Rainer Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, 07743 Jena, Germany
| | - Hans-Michael Tautenhahn
- Clinic for Visceral, Transplantation, Thoracic and Vascular Surgery, Leipzig University Hospital, 04103 Leipzig, Germany
| | - Weiwei Wei
- Experimental Transplantation Surgery, Department of General, Vascular and Visceral Surgery, University Hospital Jena, 07745 Jena, Germany
| | - Wan-Ting Zhao
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, 07743 Jena, Germany
| | - Nicole Erika Radde
- Institute for Stochastics and Applications, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
26
|
Giannantoni L, Bardini R, Savino A, Di Carlo S. Biology System Description Language (BiSDL): a modeling language for the design of multicellular synthetic biological systems. BMC Bioinformatics 2024; 25:166. [PMID: 38664639 PMCID: PMC11046772 DOI: 10.1186/s12859-024-05782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The Biology System Description Language (BiSDL) is an accessible, easy-to-use computational language for multicellular synthetic biology. It allows synthetic biologists to represent spatiality and multi-level cellular dynamics inherent to multicellular designs, filling a gap in the state of the art. Developed for designing and simulating spatial, multicellular synthetic biological systems, BiSDL integrates high-level conceptual design with detailed low-level modeling, fostering collaboration in the Design-Build-Test-Learn cycle. BiSDL descriptions directly compile into Nets-Within-Nets (NWNs) models, offering a unique approach to spatial and hierarchical modeling in biological systems. RESULTS BiSDL's effectiveness is showcased through three case studies on complex multicellular systems: a bacterial consortium, a synthetic morphogen system and a conjugative plasmid transfer process. These studies highlight the BiSDL proficiency in representing spatial interactions and multi-level cellular dynamics. The language facilitates the compilation of conceptual designs into detailed, simulatable models, leveraging the NWNs formalism. This enables intuitive modeling of complex biological systems, making advanced computational tools more accessible to a broader range of researchers. CONCLUSIONS BiSDL represents a significant step forward in computational languages for synthetic biology, providing a sophisticated yet user-friendly tool for designing and simulating complex biological systems with an emphasis on spatiality and cellular dynamics. Its introduction has the potential to transform research and development in synthetic biology, allowing for deeper insights and novel applications in understanding and manipulating multicellular systems.
Collapse
Affiliation(s)
- Leonardo Giannantoni
- Department of Control and Computer Engineering, Polytechnic University of Turin, Corso Duca degli Abruzzi, 24, 100129, Turin, TO, Italy
| | - Roberta Bardini
- Department of Control and Computer Engineering, Polytechnic University of Turin, Corso Duca degli Abruzzi, 24, 100129, Turin, TO, Italy.
| | - Alessandro Savino
- Department of Control and Computer Engineering, Polytechnic University of Turin, Corso Duca degli Abruzzi, 24, 100129, Turin, TO, Italy
| | - Stefano Di Carlo
- Department of Control and Computer Engineering, Polytechnic University of Turin, Corso Duca degli Abruzzi, 24, 100129, Turin, TO, Italy
| |
Collapse
|
27
|
Predl M, Mießkes M, Rattei T, Zanghellini J. PyCoMo: a python package for community metabolic model creation and analysis. Bioinformatics 2024; 40:btae153. [PMID: 38532295 PMCID: PMC10990682 DOI: 10.1093/bioinformatics/btae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/29/2023] [Accepted: 03/25/2024] [Indexed: 03/28/2024] Open
Abstract
SUMMARY PyCoMo is a python package for quick and easy generation of genome-scale compartmentalized community metabolic models that are compliant with current openCOBRA file formats. The resulting models can be used to predict (i) the maximum growth rate at a given abundance profile, (ii) the feasible community compositions at a given growth rate, and (iii) all exchange metabolites and cross-feeding interactions in a community metabolic model independent of the abundance profile; we demonstrate PyCoMo's capability by analysing methane production in a previously published simplified biogas community metabolic model. AVAILABILITY AND IMPLEMENTATION PyCoMo is freely available under an MIT licence at http://github.com/univieCUBE/PyCoMo, the Python Package Index, and Zenodo.
Collapse
Affiliation(s)
- Michael Predl
- Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, 1030 Vienna, Austria
| | - Marianne Mießkes
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Austrian Centre of Industrial Biotechnology, 1190 Vienna, Austria
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, 1030 Vienna, Austria
| | - Jürgen Zanghellini
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Austrian Centre of Industrial Biotechnology, 1190 Vienna, Austria
| |
Collapse
|
28
|
Vega C, Ostaszewski M, Grouès V, Schneider R, Satagopam V. BioKC: a collaborative platform for curation and annotation of molecular interactions. Database (Oxford) 2024; 2024:baae013. [PMID: 38537198 PMCID: PMC10972550 DOI: 10.1093/database/baae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2025]
Abstract
Curation of biomedical knowledge into systems biology diagrammatic or computational models is essential for studying complex biological processes. However, systems-level curation is a laborious manual process, especially when facing ever-increasing growth of domain literature. New findings demonstrating elaborate relationships between multiple molecules, pathways and cells have to be represented in a format suitable for systems biology applications. Importantly, curation should capture the complexity of molecular interactions in such a format together with annotations of the involved elements and support stable identifiers and versioning. This challenge calls for novel collaborative tools and platforms allowing to improve the quality and the output of the curation process. In particular, community-based curation, an important source of curated knowledge, requires support in role management, reviewing features and versioning. Here, we present Biological Knowledge Curation (BioKC), a web-based collaborative platform for the curation and annotation of biomedical knowledge following the standard data model from Systems Biology Markup Language (SBML). BioKC offers a graphical user interface for curation of complex molecular interactions and their annotation with stable identifiers and supporting sentences. With the support of collaborative curation and review, it allows to construct building blocks for systems biology diagrams and computational models. These building blocks can be published under stable identifiers and versioned and used as annotations, supporting knowledge building for modelling activities.
Collapse
Affiliation(s)
- Carlos Vega
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, 7 Avenue des Hauts Fourneaux, Esch-sur-Alzette 4362, Luxembourg
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, 7 Avenue des Hauts Fourneaux, Esch-sur-Alzette 4362, Luxembourg
| | - Valentin Grouès
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, 7 Avenue des Hauts Fourneaux, Esch-sur-Alzette 4362, Luxembourg
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, 7 Avenue des Hauts Fourneaux, Esch-sur-Alzette 4362, Luxembourg
| | - Venkata Satagopam
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, 7 Avenue des Hauts Fourneaux, Esch-sur-Alzette 4362, Luxembourg
| |
Collapse
|
29
|
Matzko RO, Konur S. BioNexusSentinel: a visual tool for bioregulatory network and cytohistological RNA-seq genetic expression profiling within the context of multicellular simulation research using ChatGPT-augmented software engineering. BIOINFORMATICS ADVANCES 2024; 4:vbae046. [PMID: 38571784 PMCID: PMC10990683 DOI: 10.1093/bioadv/vbae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Summary Motivated by the need to parameterize ongoing multicellular simulation research, this paper documents the culmination of a ChatGPT augmented software engineering cycle resulting in an integrated visual platform for efficient cytohistological RNA-seq and bioregulatory network exploration. As contrasted to other systems and synthetic biology tools, BioNexusSentinel was developed de novo to uniquely combine these features. Reactome served as the primary source of remotely accessible biological models, accessible using BioNexusSentinel's novel search engine and REST API requests. The innovative, feature-rich gene expression profiler component was developed to enhance the exploratory experience for the researcher, culminating in the cytohistological RNA-seq explorer based on Human Protein Atlas data. A novel cytohistological classifier would be integrated via pre-processed analysis of the RNA-seq data via R statistical language, providing for useful analytical functionality and good performance for the end-user. Implications of the work span prospects for model orthogonality evaluations, gap identification in network modelling, prototyped automatic kinetics parameterization, and downstream simulation and cellular biological state analysis. This unique computational biology software engineering collaboration with generative natural language processing artificial intelligence was shown to enhance worker productivity, with evident benefits in terms of accelerating coding and machine-human intelligence transfer. Availability and implementation BioNexusSentinel project releases, with corresponding data and installation instructions, are available at https://github.com/RichardMatzko/BioNexusSentinel.
Collapse
Affiliation(s)
- Richard Oliver Matzko
- School of Computer Science, AI and Electronics, University of Bradford, Bradford BD7 1HR, United Kingdom
| | - Savas Konur
- School of Computer Science, AI and Electronics, University of Bradford, Bradford BD7 1HR, United Kingdom
| |
Collapse
|
30
|
Golebiewski M, Bader G, Gleeson P, Gorochowski TE, Keating SM, König M, Myers CJ, Nickerson DP, Sommer B, Waltemath D, Schreiber F. Specifications of standards in systems and synthetic biology: status, developments, and tools in 2024. J Integr Bioinform 2024; 21:jib-2024-0015. [PMID: 39026464 PMCID: PMC11293897 DOI: 10.1515/jib-2024-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Affiliation(s)
- Martin Golebiewski
- Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | | | - Padraig Gleeson
- Dept. of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | - Sarah M. Keating
- Advanced Research Computing Centre, University College London, London, UK
| | - Matthias König
- Institute for Biology, Institute for Theoretical Biology, Humboldt-University Berlin, Berlin, Germany
| | - Chris J. Myers
- Dept. of Electrical, Computer, and Energy Eng., University of Colorado Boulder, Boulder, USA
| | - David P. Nickerson
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Dagmar Waltemath
- Medical Informatics Laboratory, University Medicine Greifswald, Greifswald, Germany
| | - Falk Schreiber
- Dept. of Computer and Information Science, University of Konstanz, Konstanz, Germany
- Faculty of Information Technology, Monash University, Clayton, Australia
| |
Collapse
|
31
|
Aghakhani S, Niarakis A, Soliman S. MetaLo: metabolic analysis of Logical models extracted from molecular interaction maps. J Integr Bioinform 2024; 21:jib-2023-0048. [PMID: 38314776 PMCID: PMC11293895 DOI: 10.1515/jib-2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Molecular interaction maps (MIMs) are static graphical representations depicting complex biochemical networks that can be formalized using one of the Systems Biology Graphical Notation languages. Regardless of their extensive coverage of various biological processes, they are limited in terms of dynamic insights. However, MIMs can serve as templates for developing dynamic computational models. We present MetaLo, an open-source Python package that enables the coupling of Boolean models inferred from process description MIMs with generic core metabolic networks. MetaLo provides a framework to study the impact of signaling cascades, gene regulation processes, and metabolic flux distribution of central energy production pathways. MetaLo computes the Boolean model's asynchronous asymptotic behavior, through the identification of trap-spaces, and extracts metabolic constraints to contextualize the generic metabolic network. MetaLo is able to handle large-scale Boolean models and genome-scale metabolic models without requiring kinetic information or manual tuning. The framework behind MetaLo enables in depth analysis of the regulatory model, and may allow tackling a lack of omics data in poorly addressed biological fields to contextualize generic metabolic networks along with improper automatic reconstructions of cell- and/or disease-specific metabolic networks. MetaLo is available at https://pypi.org/project/metalo/ under the terms of the GNU General Public License v3.
Collapse
Affiliation(s)
- Sahar Aghakhani
- GenHotel – European Research Laboratory for Rheumatoid Arthritis, Univ. Evry, Univ. Paris-Saclay, Evry, France
- Lifeware Group, Inria Saclay, Palaiseau, France
| | - Anna Niarakis
- GenHotel – European Research Laboratory for Rheumatoid Arthritis, Univ. Evry, Univ. Paris-Saclay, Evry, France
- Lifeware Group, Inria Saclay, Palaiseau, France
| | | |
Collapse
|
32
|
Hu M, Suthers PF, Maranas CD. KETCHUP: Parameterizing of large-scale kinetic models using multiple datasets with different reference states. Metab Eng 2024; 82:123-133. [PMID: 38336004 DOI: 10.1016/j.ymben.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Large-scale kinetic models provide the computational means to dynamically link metabolic reaction fluxes to metabolite concentrations and enzyme levels while also conforming to substrate level regulation. However, the development of broadly applicable frameworks for efficiently and robustly parameterizing models remains a challenge. Challenges arise due to both the heterogeneity, paucity, and difficulty in obtaining flux and/or concentration data but also due to the computational difficulties of the underlying parameter identification problem. Both the computational demands for parameterization, degeneracy of obtained parameter solutions and interpretability of results has so far limited widespread adoption of large-scale kinetic models despite their potential. Herein, we introduce the Kinetic Estimation Tool Capturing Heterogeneous Datasets Using Pyomo (KETCHUP), a flexible parameter estimation tool that leverages a primal-dual interior-point algorithm to solve a nonlinear programming (NLP) problem that identifies a set of parameters capable of recapitulating the (non)steady-state fluxes and concentrations in wild-type and perturbed metabolic networks. KETCHUP is benchmarked against previously parameterized large-scale kinetic models demonstrating an at least an order of magnitude faster convergence than the tool K-FIT while at the same time attaining better data fits. This versatile toolbox accepts different kinetic descriptions, metabolic fluxes, enzyme levels and metabolite concentrations, under either steady-state or instationary conditions to enable robust kinetic model construction and parameterization. KETCHUP supports the SBML format and can be accessed at https://github.com/maranasgroup/KETCHUP.
Collapse
Affiliation(s)
- Mengqi Hu
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Patrick F Suthers
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA.
| |
Collapse
|
33
|
Niarakis A, Ostaszewski M, Mazein A, Kuperstein I, Kutmon M, Gillespie ME, Funahashi A, Acencio ML, Hemedan A, Aichem M, Klein K, Czauderna T, Burtscher F, Yamada TG, Hiki Y, Hiroi NF, Hu F, Pham N, Ehrhart F, Willighagen EL, Valdeolivas A, Dugourd A, Messina F, Esteban-Medina M, Peña-Chilet M, Rian K, Soliman S, Aghamiri SS, Puniya BL, Naldi A, Helikar T, Singh V, Fernández MF, Bermudez V, Tsirvouli E, Montagud A, Noël V, Ponce-de-Leon M, Maier D, Bauch A, Gyori BM, Bachman JA, Luna A, Piñero J, Furlong LI, Balaur I, Rougny A, Jarosz Y, Overall RW, Phair R, Perfetto L, Matthews L, Rex DAB, Orlic-Milacic M, Gomez LCM, De Meulder B, Ravel JM, Jassal B, Satagopam V, Wu G, Golebiewski M, Gawron P, Calzone L, Beckmann JS, Evelo CT, D’Eustachio P, Schreiber F, Saez-Rodriguez J, Dopazo J, Kuiper M, Valencia A, Wolkenhauer O, Kitano H, Barillot E, Auffray C, Balling R, Schneider R, the COVID-19 Disease Map Community. Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches. Front Immunol 2024; 14:1282859. [PMID: 38414974 PMCID: PMC10897000 DOI: 10.3389/fimmu.2023.1282859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/22/2023] [Indexed: 02/29/2024] Open
Abstract
Introduction The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. Methods Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors. Results Results revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19. Discussion The key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies.
Collapse
Affiliation(s)
- Anna Niarakis
- Université Paris-Saclay, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde - Genhotel, Univ Evry, Evry, France
- Lifeware Group, Inria, Saclay-île de France, Palaiseau, France
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Inna Kuperstein
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Martina Kutmon
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Marc E. Gillespie
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- St. John’s University, Queens, NY, United States
| | - Akira Funahashi
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Marcio Luis Acencio
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ahmed Hemedan
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michael Aichem
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
| | - Karsten Klein
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
| | - Tobias Czauderna
- Faculty of Applied Computer Sciences & Biosciences, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Felicia Burtscher
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Takahiro G. Yamada
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Yusuke Hiki
- Center for Biosciences and Informatics, Graduate School of Fundamental Science and Technology, Keio University, Kanagawa, Japan
| | - Noriko F. Hiroi
- Faculty of Creative Engineering, Kanagawa Institute of Technology, Kanagawa, Japan
- Keio University School of Medicine, Tokyo, Japan
| | - Finterly Hu
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Nhung Pham
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Friederike Ehrhart
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Egon L. Willighagen
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Alberto Valdeolivas
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Aurelien Dugourd
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Francesco Messina
- Department of Epidemiology, Preclinical Research and Advanced Diagnostic, National Institute for Infectious Diseases’ Lazzaro Spallanzani’ - IRCCS, Rome, Italy
| | - Marina Esteban-Medina
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Sevilla, Spain
| | - Maria Peña-Chilet
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, Seville, Spain
| | - Kinza Rian
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Sevilla, Spain
| | - Sylvain Soliman
- Lifeware Group, Inria, Saclay-île de France, Palaiseau, France
| | - Sara Sadat Aghamiri
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Bhanwar Lal Puniya
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Aurélien Naldi
- Lifeware Group, Inria, Saclay-île de France, Palaiseau, France
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Vidisha Singh
- Université Paris-Saclay, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde - Genhotel, Univ Evry, Evry, France
| | | | - Viviam Bermudez
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Eirini Tsirvouli
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arnau Montagud
- Barcelona Supercomputing Center (BSC.), Barcelona, Spain
| | - Vincent Noël
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | | | | | | | - Benjamin M. Gyori
- Harvard Medical School, Laboratory of Systems Pharmacology, Boston, MA, United States
| | - John A. Bachman
- Harvard Medical School, Laboratory of Systems Pharmacology, Boston, MA, United States
| | - Augustin Luna
- Computational Biology Branch, National Library of Medicine, Bethesda, MD, United States
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Janet Piñero
- Medbioinformatics Solutions SL, Barcelona, Spain
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Dept. of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura I. Furlong
- Medbioinformatics Solutions SL, Barcelona, Spain
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Dept. of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Irina Balaur
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Adrien Rougny
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Aomi, Tokyo, Japan
- Com. Bio Big Data Open Innovation Lab. (CBBD-OIL), AIST, Aomi, Tokyo, Japan
| | - Yohan Jarosz
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rupert W. Overall
- Institute for Biology, Humboldt University of Berlin, Berlin, Germany
| | - Robert Phair
- Integrative Bioinformatics, Inc., Mountain View, CA, United States
| | - Livia Perfetto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Lisa Matthews
- Department of Biochemistry & Molecular Pharmacology, NYU. Langone Medical Center, New York, NY, United States
| | | | | | - Luis Cristobal Monraz Gomez
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | | | - Jean Marie Ravel
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Bijay Jassal
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Venkata Satagopam
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Guanming Wu
- Oregon Health Sciences University, Portland, OR, United States
| | - Martin Golebiewski
- Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Piotr Gawron
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Laurence Calzone
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | | | - Chris T. Evelo
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Peter D’Eustachio
- Department of Biochemistry & Molecular Pharmacology, NYU. Langone Medical Center, New York, NY, United States
| | - Falk Schreiber
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
- Faculty of Information Technology, Monash University, Clayton, Victoria, VIC, Australia
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Joaquin Dopazo
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, Seville, Spain
- FPS/ELIXIR-es, Hospital Virgen del Rocío, Sevilla, Spain
| | - Martin Kuiper
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC.), Barcelona, Spain
- I.C.R.E.A., Pg. Lluís Companys 23, Barcelona, Spain
| | - Olaf Wolkenhauer
- Department of Systems Biology & Bioinformatics, University of Rostock, Rostock, Germany
- Leibniz Institute for Food Systems Biology, at the Technical University Munich, Munich, Germany
| | | | - Emmanuel Barillot
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | | | - Rudi Balling
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | |
Collapse
|
34
|
Jacopin E, Sakamoto Y, Nishida K, Kaizu K, Takahashi K. An architecture for collaboration in systems biology at the age of the Metaverse. NPJ Syst Biol Appl 2024; 10:12. [PMID: 38280851 PMCID: PMC10821884 DOI: 10.1038/s41540-024-00334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024] Open
Abstract
As the current state of the Metaverse is largely driven by corporate interests, which may not align with scientific goals and values, academia should play a more active role in its development. Here, we present the challenges and solutions for building a Metaverse that supports systems biology research and collaboration. Our solution consists of two components: Kosmogora, a server ensuring biological data access, traceability, and integrity in the context of a highly collaborative environment such as a metaverse; and ECellDive, a virtual reality application to explore, interact, and build upon the data managed by Kosmogora. We illustrate the synergy between the two components by visualizing a metabolic network and its flux balance analysis. We also argue that the Metaverse of systems biology will foster closer communication and cooperation between experimentalists and modelers in the field.
Collapse
Affiliation(s)
- Eliott Jacopin
- RIKEN, Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
| | - Yuki Sakamoto
- RIKEN, Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Kozo Nishida
- RIKEN, Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Tokyo University of Agriculture and Technology, Department of Biotechnology and Life Science, 2-24-16 Nakamachi, Koganei, Tokyo, 184-8588, Japan
| | - Kazunari Kaizu
- RIKEN, Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Koichi Takahashi
- RIKEN, Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| |
Collapse
|
35
|
Michael CT, Almohri SA, Linderman JJ, Kirschner DE. A framework for multi-scale intervention modeling: virtual cohorts, virtual clinical trials, and model-to-model comparisons. FRONTIERS IN SYSTEMS BIOLOGY 2024; 3:1283341. [PMID: 39310676 PMCID: PMC11415237 DOI: 10.3389/fsysb.2023.1283341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Computational models of disease progression have been constructed for a myriad of pathologies. Typically, the conceptual implementation for pathology-related in-silico intervention studies has been ad-hoc and similar in design to experimental studies. We introduce a multi-scale interventional design (MID) framework toward two key goals: tracking of disease dynamics from within-body to patient to population scale; and tracking impact(s) of interventions across these same spatial scales. Our MID framework prioritizes investigation of impact on individual patients within virtual pre-clinical trials, instead of replicating the design of experimental studies. We apply a MID framework to develop, organize, and analyze a cohort of virtual patients for the study of tuberculosis (TB) as an example disease. For this study, we use HostSim: our next-generation whole patient-scale computational model of individuals infected with Mycobacterium tuberculosis. HostSim captures infection within lungs by tracking multiple granulomas, together with dynamics occurring with blood and lymph node compartments, the compartments involved during pulmonary TB. We extend HostSim to include a simple drug intervention as an example of our approach and use our MID framework to quantify the impact of treatment at cellular and tissue (granuloma), patient (lungs, lymph nodes and blood), and population scales. Sensitivity analyses allow us to determine which features of virtual patients are the strongest predictors of intervention efficacy across scales. These insights allow us to identify patient-heterogeneous mechanisms that drive outcomes across scales.
Collapse
Affiliation(s)
- Christian T. Michael
- Department of Microbiology & Immunology, University of Michigan - Michigan Medicine, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sayed Ahmad Almohri
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Denise E. Kirschner
- Department of Microbiology & Immunology, University of Michigan - Michigan Medicine, Ann Arbor, MI, USA
| |
Collapse
|
36
|
Tummler K, Klipp E. Data integration strategies for whole-cell modeling. FEMS Yeast Res 2024; 24:foae011. [PMID: 38544322 PMCID: PMC11042497 DOI: 10.1093/femsyr/foae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Data makes the world go round-and high quality data is a prerequisite for precise models, especially for whole-cell models (WCM). Data for WCM must be reusable, contain information about the exact experimental background, and should-in its entirety-cover all relevant processes in the cell. Here, we review basic requirements to data for WCM and strategies how to combine them. As a species-specific resource, we introduce the Yeast Cell Model Data Base (YCMDB) to illustrate requirements and solutions. We discuss recent standards for data as well as for computational models including the modeling process as data to be reported. We outline strategies for constructions of WCM despite their inherent complexity.
Collapse
Affiliation(s)
- Katja Tummler
- Humboldt-Universität zu Berlin, Faculty of Life Sciences, Institute of Biology, Theoretical Biophysics,, Invalidenstr. 42, 10115 Berlin, Germany
| | - Edda Klipp
- Humboldt-Universität zu Berlin, Faculty of Life Sciences, Institute of Biology, Theoretical Biophysics,, Invalidenstr. 42, 10115 Berlin, Germany
| |
Collapse
|
37
|
Sego TJ. SimService: a lightweight library for building simulation services in Python. Bioinformatics 2024; 40:btae009. [PMID: 38237907 PMCID: PMC10809901 DOI: 10.1093/bioinformatics/btae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/27/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024] Open
Abstract
SUMMARY Integrative biological modeling requires software infrastructure to launch, interconnect, and execute simulation software components without loss of functionality. SimService is a software library that enables deploying simulations in integrated applications as memory-isolated services with interactive proxy objects in the Python programming language. SimService supports customizing the interface of proxies so that simulation developers and users alike can tailor generated simulation instances according to model, method, and integrated application. AVAILABILITY AND IMPLEMENTATION SimService is written in Python, is freely available on GitHub under the MIT license at https://github.com/tjsego/simservice, and is available for download via the Python Package Index (package name "simservice") and conda (package name "simservice" on the conda-forge channel).
Collapse
Affiliation(s)
- T J Sego
- Department of Medicine, University of Florida, Gainesville, FL 32610-0225, United States
| |
Collapse
|
38
|
Carrasco Muriel J, Long C, Sonnenschein N. Simultaneous application of enzyme and thermodynamic constraints to metabolic models using an updated Python implementation of GECKO. Microbiol Spectr 2023; 11:e0170523. [PMID: 37931133 PMCID: PMC10783817 DOI: 10.1128/spectrum.01705-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/11/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE The metabolism of biological cells is an intricate network of reactions that interconvert chemical compounds, gathering energy, and using that energy to grow. The static analysis of these metabolic networks can be turned into a computational model that can efficiently output the distribution of fluxes in the network. With the inclusion of enzymes in the network, we can also interpret the role and concentrations of the metabolic proteins. However, the models and the experimental data often clash, resulting in a network that cannot grow. Here, we tackle this situation with a suite of relaxation algorithms in a package called geckopy. Geckopy also integrates with other software to allow for adding thermodynamic and metabolomic constraints. In addition, to ensure that enzyme-constrained models follow the community standards, a format for the proteins is postulated. We hope that the package and algorithms presented here will be useful for the constraint-based modeling community.
Collapse
Affiliation(s)
- Jorge Carrasco Muriel
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- Novo Nordisk Foundation for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Nikolaus Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
39
|
Rahul R, Stinchcombe AR, Joseph JW, Ingalls B. Kinetic modelling of β-cell metabolism reveals control points in the insulin-regulating pyruvate cycling pathways. IET Syst Biol 2023; 17:303-315. [PMID: 37938890 PMCID: PMC10725709 DOI: 10.1049/syb2.12077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 11/10/2023] Open
Abstract
Insulin, a key hormone in the regulation of glucose homoeostasis, is secreted by pancreatic β-cells in response to elevated glucose levels. Insulin is released in a biphasic manner in response to glucose metabolism in β-cells. The first phase of insulin secretion is triggered by an increase in the ATP:ADP ratio; the second phase occurs in response to both a rise in ATP:ADP and other key metabolic signals, including a rise in the NADPH:NADP+ ratio. Experimental evidence indicates that pyruvate-cycling pathways play an important role in the elevation of the NADPH:NADP+ ratio in response to glucose. The authors developed a kinetic model for the tricarboxylic acid cycle and pyruvate cycling pathways. The authors successfully validated the model against experimental observations and performed a sensitivity analysis to identify key regulatory interactions in the system. The model predicts that the dicarboxylate carrier and the pyruvate transporter are the most important regulators of pyruvate cycling and NADPH production. In contrast, the analysis showed that variation in the pyruvate carboxylase flux was compensated by a response in the activity of mitochondrial isocitrate dehydrogenase (ICDm ) resulting in minimal effect on overall pyruvate cycling flux. The model predictions suggest starting points for further experimental investigation, as well as potential drug targets for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Rahul Rahul
- Department of Applied MathematicsUniversity of WaterlooWaterlooOntarioCanada
| | | | - Jamie W. Joseph
- School of PharmacyUniversity of WaterlooWaterlooOntarioCanada
| | - Brian Ingalls
- Department of Applied MathematicsUniversity of WaterlooWaterlooOntarioCanada
| |
Collapse
|
40
|
Mehta K, Ljungquist B, Ogden J, Nanda S, Ascoli RG, Ng L, Ascoli GA. Online conversion of reconstructed neural morphologies into standardized SWC format. Nat Commun 2023; 14:7429. [PMID: 37973857 PMCID: PMC10654402 DOI: 10.1038/s41467-023-42931-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Digital reconstructions provide an accurate and reliable way to store, share, model, quantify, and analyze neural morphology. Continuous advances in cellular labeling, tissue processing, microscopic imaging, and automated tracing catalyzed a proliferation of software applications to reconstruct neural morphology. These computer programs typically encode the data in custom file formats. The resulting format heterogeneity severely hampers the interoperability and reusability of these valuable data. Among these many alternatives, the SWC file format has emerged as a popular community choice, coalescing a rich ecosystem of related neuroinformatics resources for tracing, visualization, analysis, and simulation. This report presents a standardized specification of the SWC file format. In addition, we introduce xyz2swc, a free online service that converts all 26 reconstruction formats (and 72 variations) described in the scientific literature into the SWC standard. The xyz2swc service is available open source through a user-friendly browser interface ( https://neuromorpho.org/xyz2swc/ui/ ) and an Application Programming Interface (API).
Collapse
Affiliation(s)
- Ketan Mehta
- Center for Neural Informatics, Structures & Plasticity, George Mason University, Fairfax, VA, USA
| | - Bengt Ljungquist
- Center for Neural Informatics, Structures & Plasticity, George Mason University, Fairfax, VA, USA
| | - James Ogden
- Center for Neural Informatics, Structures & Plasticity, George Mason University, Fairfax, VA, USA
| | - Sumit Nanda
- Center for Neural Informatics, Structures & Plasticity, George Mason University, Fairfax, VA, USA
| | - Ruben G Ascoli
- Center for Neural Informatics, Structures & Plasticity, George Mason University, Fairfax, VA, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures & Plasticity, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
41
|
Velleuer E, Domínguez-Hüttinger E, Rodríguez A, Harris LA, Carlberg C. Concepts of multi-level dynamical modelling: understanding mechanisms of squamous cell carcinoma development in Fanconi anemia. Front Genet 2023; 14:1254966. [PMID: 38028610 PMCID: PMC10652399 DOI: 10.3389/fgene.2023.1254966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Fanconi anemia (FA) is a rare disease (incidence of 1:300,000) primarily based on the inheritance of pathogenic variants in genes of the FA/BRCA (breast cancer) pathway. These variants ultimately reduce the functionality of different proteins involved in the repair of DNA interstrand crosslinks and DNA double-strand breaks. At birth, individuals with FA might present with typical malformations, particularly radial axis and renal malformations, as well as other physical abnormalities like skin pigmentation anomalies. During the first decade of life, FA mostly causes bone marrow failure due to reduced capacity and loss of the hematopoietic stem and progenitor cells. This often makes hematopoietic stem cell transplantation necessary, but this therapy increases the already intrinsic risk of developing squamous cell carcinoma (SCC) in early adult age. Due to the underlying genetic defect in FA, classical chemo-radiation-based treatment protocols cannot be applied. Therefore, detecting and treating the multi-step tumorigenesis process of SCC in an early stage, or even its progenitors, is the best option for prolonging the life of adult FA individuals. However, the small number of FA individuals makes classical evidence-based medicine approaches based on results from randomized clinical trials impossible. As an alternative, we introduce here the concept of multi-level dynamical modelling using large, longitudinally collected genome, proteome- and transcriptome-wide data sets from a small number of FA individuals. This mechanistic modelling approach is based on the "hallmarks of cancer in FA", which we derive from our unique database of the clinical history of over 750 FA individuals. Multi-omic data from healthy and diseased tissue samples of FA individuals are to be used for training constituent models of a multi-level tumorigenesis model, which will then be used to make experimentally testable predictions. In this way, mechanistic models facilitate not only a descriptive but also a functional understanding of SCC in FA. This approach will provide the basis for detecting signatures of SCCs at early stages and their precursors so they can be efficiently treated or even prevented, leading to a better prognosis and quality of life for the FA individual.
Collapse
Affiliation(s)
- Eunike Velleuer
- Department of Cytopathology, Heinrich Heine University, Düsseldorf, Germany
- Center for Child and Adolescent Health, Helios Klinikum, Krefeld, Germany
| | - Elisa Domínguez-Hüttinger
- Departamento Düsseldorf Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad México, Mexico
| | - Alfredo Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad México, Mexico
- Instituto Nacional de Pediatría, Ciudad México, Mexico
| | - Leonard A. Harris
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, United States
- Cancer Biology Program, Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
42
|
Scheel J, Hoch M, Wolfien M, Gupta S. NaviCenta - The disease map for placental research. Placenta 2023; 143:12-15. [PMID: 37793322 DOI: 10.1016/j.placenta.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
The placenta remains the key organ to pregnancy complications, such as preeclampsia, contrarily the pathophysiology underlying the placental dysfunctions remains elusive. Here, we present our Disease Map "NaviCenta", which is an online resource based on the interactions between tissues, cellular compartments, and molecules that mediate disease-related processes in the placenta. We built cellular and molecular interaction networks based upon manual curation and annotation of publicly available information in the scientific literature, pathways resources, and Omics data. NaviCenta (Navigate the plaCenta) serves as an open access, spatio-temporal, multi-scale knowledge base, and analytical tool for enhanced interpretation and hypothesis testing on various placental disease phenotypes.
Collapse
Affiliation(s)
- Julia Scheel
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany.
| | - Matti Hoch
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Markus Wolfien
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden, Germany
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| |
Collapse
|
43
|
Bäuerle F, Döbel GO, Camus L, Heilbronner S, Dräger A. Genome-scale metabolic models consistently predict in vitro characteristics of Corynebacterium striatum. FRONTIERS IN BIOINFORMATICS 2023; 3:1214074. [PMID: 37936955 PMCID: PMC10626998 DOI: 10.3389/fbinf.2023.1214074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction: Genome-scale metabolic models (GEMs) are organism-specific knowledge bases which can be used to unravel pathogenicity or improve production of specific metabolites in biotechnology applications. However, the validity of predictions for bacterial proliferation in in vitro settings is hardly investigated. Methods: The present work combines in silico and in vitro approaches to create and curate strain-specific genome-scale metabolic models of Corynebacterium striatum. Results: We introduce five newly created strain-specific genome-scale metabolic models (GEMs) of high quality, satisfying all contemporary standards and requirements. All these models have been benchmarked using the community standard test suite Metabolic Model Testing (MEMOTE) and were validated by laboratory experiments. For the curation of those models, the software infrastructure refineGEMs was developed to work on these models in parallel and to comply with the quality standards for GEMs. The model predictions were confirmed by experimental data and a new comparison metric based on the doubling time was developed to quantify bacterial growth. Discussion: Future modeling projects can rely on the proposed software, which is independent of specific environmental conditions. The validation approach based on the growth rate calculation is now accessible and closely aligned with biological questions. The curated models are freely available via BioModels and a GitHub repository and can be used. The open-source software refineGEMs is available from https://github.com/draeger-lab/refinegems.
Collapse
Affiliation(s)
- Famke Bäuerle
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Eberhard Karl University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Gwendolyn O. Döbel
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Laura Camus
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Eberhard Karl University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Eberhard Karl University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, Eberhard Karl University of Tübingen, Tübingen, Germany
- Faculty of Biology, Microbiology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, Eberhard Karl University of Tübingen, Tübingen, Germany
| |
Collapse
|
44
|
Casini I, McCubbin T, Esquivel-Elizondo S, Luque GG, Evseeva D, Fink C, Beblawy S, Youngblut ND, Aristilde L, Huson DH, Dräger A, Ley RE, Marcellin E, Angenent LT, Molitor B. An integrated systems biology approach reveals differences in formate metabolism in the genus Methanothermobacter. iScience 2023; 26:108016. [PMID: 37854702 PMCID: PMC10579436 DOI: 10.1016/j.isci.2023.108016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
Methanogenesis allows methanogenic archaea to generate cellular energy for their growth while producing methane. Thermophilic hydrogenotrophic species of the genus Methanothermobacter have been recognized as robust biocatalysts for a circular carbon economy and are already applied in power-to-gas technology with biomethanation, which is a platform to store renewable energy and utilize captured carbon dioxide. Here, we generated curated genome-scale metabolic reconstructions for three Methanothermobacter strains and investigated differences in the growth performance of these same strains in chemostat bioreactor experiments with hydrogen and carbon dioxide or formate as substrates. Using an integrated systems biology approach, we identified differences in formate anabolism between the strains and revealed that formate anabolism influences the diversion of carbon between biomass and methane. This finding, together with the omics datasets and the metabolic models we generated, can be implemented for biotechnological applications of Methanothermobacter in power-to-gas technology, and as a perspective, for value-added chemical production.
Collapse
Affiliation(s)
- Isabella Casini
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Tim McCubbin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Synthetic Biology (COESB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sofia Esquivel-Elizondo
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Guillermo G. Luque
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Daria Evseeva
- Department of Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
| | - Christian Fink
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Sebastian Beblawy
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Nicholas D. Youngblut
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Ludmilla Aristilde
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Daniel H. Huson
- Department of Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Andreas Dräger
- Department of Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Synthetic Biology (COESB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Largus T. Angenent
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- AG Angenent, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10D, 8000 Aarhus C, Denmark
- The Novo Nordisk Foundation CO2 Research Center (CORC), Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Bastian Molitor
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
45
|
Vezina B, Watts SC, Hawkey J, Cooper HB, Judd LM, Jenney AWJ, Monk JM, Holt KE, Wyres KL. Bactabolize is a tool for high-throughput generation of bacterial strain-specific metabolic models. eLife 2023; 12:RP87406. [PMID: 37815531 PMCID: PMC10564454 DOI: 10.7554/elife.87406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Metabolic capacity can vary substantially within a bacterial species, leading to ecological niche separation, as well as differences in virulence and antimicrobial susceptibility. Genome-scale metabolic models are useful tools for studying the metabolic potential of individuals, and with the rapid expansion of genomic sequencing there is a wealth of data that can be leveraged for comparative analysis. However, there exist few tools to construct strain-specific metabolic models at scale. Here, we describe Bactabolize, a reference-based tool which rapidly produces strain-specific metabolic models and growth phenotype predictions. We describe a pan reference model for the priority antimicrobial-resistant pathogen, Klebsiella pneumoniae, and a quality control framework for using draft genome assemblies as input for Bactabolize. The Bactabolize-derived model for K. pneumoniae reference strain KPPR1 performed comparatively or better than currently available automated approaches CarveMe and gapseq across 507 substrate and 2317 knockout mutant growth predictions. Novel draft genomes passing our systematically defined quality control criteria resulted in models with a high degree of completeness (≥99% genes and reactions captured compared to models derived from matched complete genomes) and high accuracy (mean 0.97, n=10). We anticipate the tools and framework described herein will facilitate large-scale metabolic modelling analyses that broaden our understanding of diversity within bacterial species and inform novel control strategies for priority pathogens.
Collapse
Affiliation(s)
- Ben Vezina
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Stephen C Watts
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Helena B Cooper
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
| | | | - Jonathan M Monk
- Department of Bioengineering, University of California, San DiegoSan DiegoUnited States
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
- Department of Infection Biology, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| | - Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
| |
Collapse
|
46
|
Barry CJ, Pillay CS, Rohwer JM. Modelling the Decamerisation Cycle of PRDX1 and the Inhibition-like Effect on Its Peroxidase Activity. Antioxidants (Basel) 2023; 12:1707. [PMID: 37760010 PMCID: PMC10525498 DOI: 10.3390/antiox12091707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Peroxiredoxins play central roles in the detoxification of reactive oxygen species and have been modelled across multiple organisms using a variety of kinetic methods. However, the peroxiredoxin dimer-to-decamer transition has been underappreciated in these studies despite the 100-fold difference in activity between these forms. This is due to the lack of available kinetics and a theoretical framework for modelling this process. Using published isothermal titration calorimetry data, we obtained association and dissociation rate constants of 0.050 µM-4·s-1 and 0.055 s-1, respectively, for the dimer-decamer transition of human PRDX1. We developed an approach that greatly reduces the number of reactions and species needed to model the peroxiredoxin decamer oxidation cycle. Using these data, we simulated horse radish peroxidase competition and NADPH-oxidation linked assays and found that the dimer-decamer transition had an inhibition-like effect on peroxidase activity. Further, we incorporated this dimer-decamer topology and kinetics into a published and validated in vivo model of PRDX2 in the erythrocyte and found that it almost perfectly reconciled experimental and simulated responses of PRDX2 oxidation state to hydrogen peroxide insult. By accounting for the dimer-decamer transition of peroxiredoxins, we were able to resolve several discrepancies between experimental data and available kinetic models.
Collapse
Affiliation(s)
- Christopher J. Barry
- Laboratory for Molecular Systems Biology, Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - Ché S. Pillay
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg 3201, South Africa;
| | - Johann M. Rohwer
- Laboratory for Molecular Systems Biology, Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
47
|
Potter AD, Baiocco CM, Papin JA, Criss AK. Transcriptome-guided metabolic network analysis reveals rearrangements of carbon flux distribution in Neisseria gonorrhoeae during neutrophil co-culture. mSystems 2023; 8:e0126522. [PMID: 37387581 PMCID: PMC10470122 DOI: 10.1128/msystems.01265-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/19/2023] [Indexed: 07/01/2023] Open
Abstract
The ability of bacterial pathogens to metabolically adapt to the environmental conditions of their hosts is critical to both colonization and invasive disease. Infection with Neisseria gonorrhoeae (the gonococcus, Gc) is characterized by the influx of neutrophils [polymorphonuclear leukocytes (PMNs)], which fail to clear the bacteria and make antimicrobial products that can exacerbate tissue damage. The inability of the human host to clear Gc infection is particularly concerning in light of the emergence of strains that are resistant to all clinically recommended antibiotics. Bacterial metabolism represents a promising target for the development of new therapeutics against Gc. Here, we generated a curated genome-scale metabolic network reconstruction (GENRE) of Gc strain FA1090. This GENRE links genetic information to metabolic phenotypes and predicts Gc biomass synthesis and energy consumption. We validated this model with published data and in new results reported here. Contextualization of this model using the transcriptional profile of Gc exposed to PMNs revealed substantial rearrangements of Gc central metabolism and induction of Gc nutrient acquisition strategies for alternate carbon source use. These features enhanced the growth of Gc in the presence of neutrophils. From these results, we conclude that the metabolic interplay between Gc and PMNs helps define infection outcomes. The use of transcriptional profiling and metabolic modeling to reveal new mechanisms by which Gc persists in the presence of PMNs uncovers unique aspects of metabolism in this fastidious bacterium, which could be targeted to block infection and thereby reduce the burden of gonorrhea in the human population. IMPORTANCE The World Health Organization designated Gc as a high-priority pathogen for research and development of new antimicrobials. Bacterial metabolism is a promising target for new antimicrobials, as metabolic enzymes are widely conserved among bacterial strains and are critical for nutrient acquisition and survival within the human host. Here we used genome-scale metabolic modeling to characterize the core metabolic pathways of this fastidious bacterium and to uncover the pathways used by Gc during culture with primary human immune cells. These analyses revealed that Gc relies on different metabolic pathways during co-culture with human neutrophils than in rich media. Conditionally essential genes emerging from these analyses were validated experimentally. These results show that metabolic adaptation in the context of innate immunity is important to Gc pathogenesis. Identifying the metabolic pathways used by Gc during infection can highlight new therapeutic targets for drug-resistant gonorrhea.
Collapse
Affiliation(s)
- Aimee D. Potter
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Christopher M. Baiocco
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
48
|
Nègre D, Larhlimi A, Bertrand S. Reconciliation and evolution of Penicillium rubens genome-scale metabolic networks-What about specialised metabolism? PLoS One 2023; 18:e0289757. [PMID: 37647283 PMCID: PMC10468094 DOI: 10.1371/journal.pone.0289757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
In recent years, genome sequencing of filamentous fungi has revealed a high proportion of specialised metabolites with growing pharmaceutical interest. However, detecting such metabolites through in silico genome analysis does not necessarily guarantee their expression under laboratory conditions. However, one plausible strategy for enabling their production lies in modifying the growth conditions. Devising a comprehensive experimental design testing in different culture environments is time-consuming and expensive. Therefore, using in silico modelling as a preliminary step, such as Genome-Scale Metabolic Network (GSMN), represents a promising approach to predicting and understanding the observed specialised metabolite production in a given organism. To address these questions, we reconstructed a new high-quality GSMN for the Penicillium rubens Wisconsin 54-1255 strain, a commonly used model organism. Our reconstruction, iPrub22, adheres to current convention standards and quality criteria, incorporating updated functional annotations, orthology searches with different GSMN templates, data from previous reconstructions, and manual curation steps targeting primary and specialised metabolites. With a MEMOTE score of 74% and a metabolic coverage of 45%, iPrub22 includes 5,192 unique metabolites interconnected by 5,919 reactions, of which 5,033 are supported by at least one genomic sequence. Of the metabolites present in iPrub22, 13% are categorised as belonging to specialised metabolism. While our high-quality GSMN provides a valuable resource for investigating known phenotypes expressed in P. rubens, our analysis identifies bottlenecks related, in particular, to the definition of what is a specialised metabolite, which requires consensus within the scientific community. It also points out the necessity of accessible, standardised and exhaustive databases of specialised metabolites. These questions must be addressed to fully unlock the potential of natural product production in P. rubens and other filamentous fungi. Our work represents a foundational step towards the objective of rationalising the production of natural products through GSMN modelling.
Collapse
Affiliation(s)
- Delphine Nègre
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, Nantes, France
- Nantes Université, École Centrale Nantes, CNRS, Nantes, France
| | | | - Samuel Bertrand
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, Nantes, France
| |
Collapse
|
49
|
Davies C, Morgan AE, Mc Auley MT. Computationally Modelling Cholesterol Metabolism and Atherosclerosis. BIOLOGY 2023; 12:1133. [PMID: 37627017 PMCID: PMC10452179 DOI: 10.3390/biology12081133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. The underlying pathological driver of CVD is atherosclerosis. The primary risk factor for atherosclerosis is elevated low-density lipoprotein cholesterol (LDL-C). Dysregulation of cholesterol metabolism is synonymous with a rise in LDL-C. Due to the complexity of cholesterol metabolism and atherosclerosis mathematical models are routinely used to explore their non-trivial dynamics. Mathematical modelling has generated a wealth of useful biological insights, which have deepened our understanding of these processes. To date however, no model has been developed which fully captures how whole-body cholesterol metabolism intersects with atherosclerosis. The main reason for this is one of scale. Whole body cholesterol metabolism is defined by macroscale physiological processes, while atherosclerosis operates mainly at a microscale. This work describes how a model of cholesterol metabolism was combined with a model of atherosclerotic plaque formation. This new model is capable of reproducing the output from its parent models. Using the new model, we demonstrate how this system can be utilized to identify interventions that lower LDL-C and abrogate plaque formation.
Collapse
Affiliation(s)
- Callum Davies
- Department of Physical, Mathematical and Engineering Sciences, University of Chester, Chester CH1 4BJ, UK;
| | - Amy E. Morgan
- School of Health & Sport Sciences, Liverpool Hope University, Liverpool L16 9JD, UK;
| | - Mark T. Mc Auley
- Department of Physical, Mathematical and Engineering Sciences, University of Chester, Chester CH1 4BJ, UK;
| |
Collapse
|
50
|
Deepa Maheshvare M, Raha S, König M, Pal D. A pathway model of glucose-stimulated insulin secretion in the pancreatic β-cell. Front Endocrinol (Lausanne) 2023; 14:1185656. [PMID: 37600713 PMCID: PMC10433753 DOI: 10.3389/fendo.2023.1185656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/08/2023] [Indexed: 08/22/2023] Open
Abstract
The pancreas plays a critical role in maintaining glucose homeostasis through the secretion of hormones from the islets of Langerhans. Glucose-stimulated insulin secretion (GSIS) by the pancreatic β-cell is the main mechanism for reducing elevated plasma glucose. Here we present a systematic modeling workflow for the development of kinetic pathway models using the Systems Biology Markup Language (SBML). Steps include retrieval of information from databases, curation of experimental and clinical data for model calibration and validation, integration of heterogeneous data including absolute and relative measurements, unit normalization, data normalization, and model annotation. An important factor was the reproducibility and exchangeability of the model, which allowed the use of various existing tools. The workflow was applied to construct a novel data-driven kinetic model of GSIS in the pancreatic β-cell based on experimental and clinical data from 39 studies spanning 50 years of pancreatic, islet, and β-cell research in humans, rats, mice, and cell lines. The model consists of detailed glycolysis and phenomenological equations for insulin secretion coupled to cellular energy state, ATP dynamics and (ATP/ADP ratio). Key findings of our work are that in GSIS there is a glucose-dependent increase in almost all intermediates of glycolysis. This increase in glycolytic metabolites is accompanied by an increase in energy metabolites, especially ATP and NADH. One of the few decreasing metabolites is ADP, which, in combination with the increase in ATP, results in a large increase in ATP/ADP ratios in the β-cell with increasing glucose. Insulin secretion is dependent on ATP/ADP, resulting in glucose-stimulated insulin secretion. The observed glucose-dependent increase in glycolytic intermediates and the resulting change in ATP/ADP ratios and insulin secretion is a robust phenomenon observed across data sets, experimental systems and species. Model predictions of the glucose-dependent response of glycolytic intermediates and biphasic insulin secretion are in good agreement with experimental measurements. Our model predicts that factors affecting ATP consumption, ATP formation, hexokinase, phosphofructokinase, and ATP/ADP-dependent insulin secretion have a major effect on GSIS. In conclusion, we have developed and applied a systematic modeling workflow for pathway models that allowed us to gain insight into key mechanisms in GSIS in the pancreatic β-cell.
Collapse
Affiliation(s)
- M. Deepa Maheshvare
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| | - Soumyendu Raha
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| | - Matthias König
- Institute for Biology, Institute for Theoretical Biology, Humboldt-University Berlin, Berlin, Germany
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| |
Collapse
|