1
|
Yamada C, Akkaoui J, Morozov A, Movila A. Role of Canonical and Non-Canonical Sphingolipids and their Metabolic Enzymes in Bone Health. Curr Osteoporos Rep 2025; 23:21. [PMID: 40266422 PMCID: PMC12018623 DOI: 10.1007/s11914-025-00908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2025] [Indexed: 04/24/2025]
Abstract
PURPOSE OF REVIEW This review summarizes the recently published scientific evidence regarding the role of enzymes engaged in de novo anabolic biosynthesis, catabolic, and salvage pathways of ceramide bioactive sphingolipids in bone dynamics and skeletal health. RECENT FINDINGS Ceramides are precursors for bioactive sphingolipids, including sphingosine, sphingosine-1-phosphate, and others. Studies of bone metabolism and bone-related cells demonstrated that ceramide and sphingosine-1-phosphate control levels of bone remodeling and resorption generated by osteoblasts and osteoclasts. Multiple published studies demonstrated the critical role of enzymes in regulating the ceramide/sphingosine-1-phosphate ratio relative to bone physiology and the promotion of inflammatory osteolysis. Accordingly, emerging evidence suggests that targeting sphingolipid metabolism has the potential to alleviate inflammatory osteolysis and accelerate bone regeneration. Therefore, this study aimed to discuss current knowledge about crosstalk between sphingolipids and their metabolic enzymes within osteoclast and osteoblast coupling in bone remodeling and pathogenic osteolysis. This review highlights the complexity of de novo sphingolipid biosynthesis and knowledge gaps in bone physiology and pathology. We also discuss the importance of canonical and non-canonical mammalian and bacterial-derived sphingolipids relative to bone health.
Collapse
Affiliation(s)
- Chiaki Yamada
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN, USA
| | - Juliet Akkaoui
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alexandr Morozov
- Institute of Zoology, Moldova State University, Chisinau, Republic of Moldova
- Medpark International Hospital, Chisinau, Republic of Moldova
| | - Alexandru Movila
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Weber-Stout M, Nicholson RJ, Dumaguit CDC, Holland WL, Summers SA. Ceramide microdomains: the major influencers of the sphingolipid media platform. Biochem Soc Trans 2024; 52:1765-1776. [PMID: 39082976 PMCID: PMC11845337 DOI: 10.1042/bst20231395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Like 'influencers' who achieve fame and power through social media, ceramides are low abundance members of communication platforms that have a mighty impact on their surroundings. Ceramide microdomains form within sphingolipid-laden lipid rafts that confer detergent resistance to cell membranes and serve as important signaling hubs. In cells exposed to excessive amounts of saturated fatty acids (e.g. in obesity), the abundance of ceramide-rich microdomains within these rafts increases, leading to concomitant alterations in cellular metabolism and survival that contribute to cardiometabolic disease. In this mini-review, we discuss the evidence supporting the formation of these ceramide microdomains and describe the spectrum of harmful ceramide-driven metabolic actions under the context of an evolutionary theory. Moreover, we discuss the proximal 'followers' of these ceramide media stars that account for the diverse intracellular actions that allow them to influence obesity-linked disease.
Collapse
Affiliation(s)
- Mariah Weber-Stout
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, U.S.A
| | - Rebekah J Nicholson
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, U.S.A
| | - Carlos Dave C Dumaguit
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, U.S.A
| | - William L Holland
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, U.S.A
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, U.S.A
| |
Collapse
|
3
|
Norris MK, Tippetts TS, Wilkerson JL, Nicholson RJ, Maschek JA, Levade T, Medin JA, Summers SA, Holland WL. Adiponectin overexpression improves metabolic abnormalities caused by acid ceramidase deficiency but does not prolong lifespan in a mouse model of Farber Disease. Mol Genet Metab Rep 2024; 39:101077. [PMID: 38595987 PMCID: PMC11002753 DOI: 10.1016/j.ymgmr.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/23/2024] [Indexed: 04/11/2024] Open
Abstract
Farber Disease is a debilitating and lethal childhood disease of ceramide accumulation caused by acid ceramidase deficiency. The potent induction of a ligand-gated neutral ceramidase activity promoted by adiponectin may provide sufficient lowering of ceramides to allow for the treatment of Farber Disease. In vitro, adiponectin or adiponectin receptor agonist treatments lowered total ceramide concentrations in human fibroblasts from a patient with Farber Disease. However, adiponectin overexpression in a Farber Disease mouse model did not improve lifespan or immune infiltration. Intriguingly, mice heterozygous for the Farber Disease mutation were more prone to glucose intolerance and insulin resistance when fed a high-fat diet, and adiponectin overexpression protected from these metabolic perturbations. These studies suggest that adiponectin evokes a ceramidase activity that is not reliant on the functional expression of acid ceramidase, but indicates that additional strategies are required to ameliorate outcomes of Farber Disease.
Collapse
Affiliation(s)
- Marie K. Norris
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| | - Trevor S. Tippetts
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph L. Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| | - Rebekah J. Nicholson
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| | - J. Alan Maschek
- Metabolomics Core Facility, University of Utah, Salt Lake City, UT, USA
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, CHU Toulouse and INSERM U1037, Centre de Recherches en Cancérologie de Toulouse, Université Paul Sabatier, 31037 Toulouse, France
| | - Jeffrey A. Medin
- Departments of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| | - William L. Holland
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
4
|
Mu J, Lam SM, Shui G. Emerging roles and therapeutic potentials of sphingolipids in pathophysiology: emphasis on fatty acyl heterogeneity. J Genet Genomics 2024; 51:268-278. [PMID: 37364711 DOI: 10.1016/j.jgg.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Sphingolipids not only exert structural roles in cellular membranes, but also act as signaling molecules in various physiological and pathological processes. A myriad of studies have shown that abnormal levels of sphingolipids and their metabolic enzymes are associated with a variety of human diseases. Moreover, blood sphingolipids can also be used as biomarkers for disease diagnosis. This review summarizes the biosynthesis, metabolism, and pathological roles of sphingolipids, with emphasis on the biosynthesis of ceramide, the precursor for the biosynthesis of complex sphingolipids with different fatty acyl chains. The possibility of using sphingolipids for disease prediction, diagnosis, and treatment is also discussed. Targeting endogenous ceramides and complex sphingolipids along with their specific fatty acyl chain to promote future drug development will also be discussed.
Collapse
Affiliation(s)
- Jinming Mu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Lipidall Technologies Company Limited, Changzhou, Jiangsu 213000, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
5
|
Hergesell K, Paraskevopoulou A, Opálka L, Velebný V, Vávrová K, Dolečková I. The effect of long-term cigarette smoking on selected skin barrier proteins and lipids. Sci Rep 2023; 13:11572. [PMID: 37463939 DOI: 10.1038/s41598-023-38178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
The negative impact of cigarette smoking on the skin includes accelerated aging, pigmentation disorders, and impaired wound healing, but its effect on the skin barrier is not completely understood. Here, we studied the changes in selected epidermal proteins and lipids between smokers (45-66 years, smoking > 10 years, > 10 cigarettes per day) and non-smokers. Volar forearm epidermal and stratum corneum samples, obtained by suction blister and tape stripping, respectively, showed increased thickness in smokers. In the epidermis of smokers, we observed a significant upregulation of filaggrin, loricrin, and a trend of increased involucrin but no differences were found in the case of transglutaminase 1 and kallikrein-related peptidase 7, on the gene and protein levels. No significant changes were observed in the major skin barrier lipids, except for increased cholesterol sulfate in smokers. Liquid chromatography coupled with mass spectrometry revealed shorter acyl chains in ceramides, and an increased proportion of sphingosine and 6-hydroxysphingosine ceramides (with C4 trans-double bond) over dihydrosphingosine and phytosphingosine ceramides in smokers, suggesting altered desaturase 1 activity. Smokers had more ordered lipid chains found by infrared spectroscopy. In conclusion, cigarette smoking perturbs the homeostasis of the barrier proteins and lipids even at a site not directly exposed to smoke.
Collapse
Affiliation(s)
- Kristýna Hergesell
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
- Contipro a.s., Dolní Dobrouč 401, 561 02, Dolní Dobrouč, Czech Republic
| | - Anna Paraskevopoulou
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Lukáš Opálka
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Vladimír Velebný
- Contipro a.s., Dolní Dobrouč 401, 561 02, Dolní Dobrouč, Czech Republic
| | - Kateřina Vávrová
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Iva Dolečková
- Contipro a.s., Dolní Dobrouč 401, 561 02, Dolní Dobrouč, Czech Republic.
| |
Collapse
|
6
|
Tzou FY, Hornemann T, Yeh JY, Huang SY. The pathophysiological role of dihydroceramide desaturase in the nervous system. Prog Lipid Res 2023; 91:101236. [PMID: 37187315 DOI: 10.1016/j.plipres.2023.101236] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/18/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
Dihydroceramide desaturase 1 (DEGS1) converts dihydroceramide (dhCer) to ceramide (Cer) by inserting a C4-C5 trans (∆4E) double bond into the sphingoid backbone. Low DEGS activity causes accumulation of dhCer and other dihydrosphingolipid species. Although dhCer and Cer are structurally very similar, their imbalances can have major consequences both in vitro and in vivo. Mutations in the human DEGS1 gene are known to cause severe neurological defects, such as hypomyelinating leukodystrophy. Likewise, inhibition of DEGS1 activity in fly and zebrafish models causes dhCer accumulation and subsequent neuronal dysfunction, suggesting that DEGS1 activity plays a conserved and critical role in the nervous system. Dihydrosphingolipids and their desaturated counterparts are known to control various essential processes, including autophagy, exosome biogenesis, ER stress, cell proliferation, and cell death. Furthermore, model membranes with either dihydrosphingolipids or sphingolipids exhibit different biophysical properties, including membrane permeability and packing, thermal stability, and lipid diffusion. However, the links between molecular properties, in vivo functional data, and clinical manifestations that underlie impaired DEGS1 function remain largely unresolved. In this review, we summarize the known biological and pathophysiological roles of dhCer and its derivative dihydrosphingolipid species in the nervous system, and we highlight several possible disease mechanisms that warrant further investigation.
Collapse
Affiliation(s)
- Fei-Yang Tzou
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital and University Zurich, 8091 Zürich, Switzerland
| | - Jui-Yu Yeh
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
7
|
Guo Z. Ganglioside GM1 and the Central Nervous System. Int J Mol Sci 2023; 24:ijms24119558. [PMID: 37298512 DOI: 10.3390/ijms24119558] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 06/12/2023] Open
Abstract
GM1 is one of the major glycosphingolipids (GSLs) on the cell surface in the central nervous system (CNS). Its expression level, distribution pattern, and lipid composition are dependent upon cell and tissue type, developmental stage, and disease state, which suggests a potentially broad spectrum of functions of GM1 in various neurological and neuropathological processes. The major focus of this review is the roles that GM1 plays in the development and activities of brains, such as cell differentiation, neuritogenesis, neuroregeneration, signal transducing, memory, and cognition, as well as the molecular basis and mechanisms for these functions. Overall, GM1 is protective for the CNS. Additionally, this review has also examined the relationships between GM1 and neurological disorders, such as Alzheimer's disease, Parkinson's disease, GM1 gangliosidosis, Huntington's disease, epilepsy and seizure, amyotrophic lateral sclerosis, depression, alcohol dependence, etc., and the functional roles and therapeutic applications of GM1 in these disorders. Finally, current obstacles that hinder more in-depth investigations and understanding of GM1 and the future directions in this field are discussed.
Collapse
Affiliation(s)
- Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
8
|
Efimova SS, Ostroumova OS. Modulation of the Dipole Potential of Model Lipid Membranes with Phytochemicals: Molecular Mechanisms, Structure-Activity Relationships, and Implications in Reconstituted Ion Channels. MEMBRANES 2023; 13:453. [PMID: 37103880 PMCID: PMC10141572 DOI: 10.3390/membranes13040453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Phytochemicals, such as flavonoids, stilbenoids, alkaloids, terpenoids, and related compounds, have a wide range of useful pharmacological properties which cannot be ascribed to binding to a single peptide or protein target alone. Due to the relatively high lipophilicity of phytochemicals, the lipid membrane is thought to mediate their effects via changes in the properties of the lipid matrix, in particular, by modulating the transmembrane distribution of the electrical potential and, consequently, the formation and functioning of the ion channels reconstituted in the lipid bilayers. Therefore, biophysical studies on the interactions between plant metabolites and model lipid membranes are still of interest. This review represents an attempt to provide a critical analysis of a variety of studies on altering membranes and ion channels with phytochemicals via disturbing the potential drop at the membrane-aqueous solution interface. Critical structural motifs and functioning groups in the molecules of plant polyphenols (alkaloids and saponins are identified) and the possible mechanisms of dipole potential modulation with phytochemicals are discussed.
Collapse
Affiliation(s)
| | - Olga S. Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Science, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
9
|
de Andrade L, Duarte EL, Lamy MT, Rozenfeld JHK. Thermotropic Behavior and Structural Organization of C24:1 Sulfatide Dispersions and Its Mixtures with Cationic Bilayers. ACS OMEGA 2023; 8:5306-5315. [PMID: 36816677 PMCID: PMC9933474 DOI: 10.1021/acsomega.2c06189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
C24:1 sulfatide (SF) is an endogenous activator of type II NKT cells. The thermotropic behavior and structure of SF dispersions and its mixtures (4.8-16.6 mol %) with cationic dioctadecyldimethylammonium bromide (DODAB) bilayers were investigated by differential scanning calorimetry and electron paramagnetic resonance spectroscopy. The non-interdigitated lamellar structures formed by pure SF display broad thermal events around 27.5 °C when heated and cooled. These events disappear upon mixing with DODAB, showing complete lipid miscibility. SF decreases the DODAB gel-phase packing, with a consequent decrease in phase-transition temperatures and cooperativity upon heating. In contrast, SF increases the rigidity of the DODAB fluid phase, resulting in a smaller decrease in transition temperatures upon cooling. The hysteresis between heating and cooling decreased as the SF molar fraction increased. These effects on DODAB are similar to the ones described for other glycolipids, such as αGalCer and βGlcCer. This might be due to the orientation of the rigid and planar amide bond that connects their sphingoid bases and acyl chains, which result in a V-shaped conformation of the glycolipid molecules. The current results may be important to plan and develop new immunotherapeutic tools based on SF.
Collapse
Affiliation(s)
- Lucas de Andrade
- Departamento
de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Botucatu 862, 04023-062São Paulo, São Paulo, Brazil
| | - Evandro L. Duarte
- Instituto
de Física, Universidade de São
Paulo, Rua do Matão
1371, 05508090São
Paulo, São Paulo, Brazil
| | - M. Teresa Lamy
- Instituto
de Física, Universidade de São
Paulo, Rua do Matão
1371, 05508090São
Paulo, São Paulo, Brazil
| | - Julio H. K. Rozenfeld
- Departamento
de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Botucatu 862, 04023-062São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Miranda ER, Funai K. Suppression of de novo sphingolipid biosynthesis mitigates sarcopenia. NATURE AGING 2022; 2:1088-1089. [PMID: 37118546 PMCID: PMC10148949 DOI: 10.1038/s43587-022-00307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Edwin R Miranda
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
11
|
DiPasquale M, Deering TG, Desai D, Sharma AK, Amin S, Fox TE, Kester M, Katsaras J, Marquardt D, Heberle FA. Influence of ceramide on lipid domain stability studied with small-angle neutron scattering: The role of acyl chain length and unsaturation. Chem Phys Lipids 2022; 245:105205. [PMID: 35483419 PMCID: PMC9320172 DOI: 10.1016/j.chemphyslip.2022.105205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022]
Abstract
Ceramides and diacylglycerols are groups of lipids capable of nucleating and stabilizing ordered lipid domains, structures that have been implicated in a range of biological processes. Previous studies have used fluorescence reporter molecules to explore the influence of ceramide acyl chain structure on sphingolipid-rich ordered phases. Here, we use small-angle neutron scattering (SANS) to examine the ability of ceramides and diacylglycerols to promote lipid domain formation in the well-characterized domain-forming mixture DPPC/DOPC/cholesterol. SANS is a powerful, probe-free technique for interrogating membrane heterogeneity, as it is differentially sensitive to hydrogen's stable isotopes protium and deuterium. Specifically, neutron contrast is generated through selective deuteration of lipid species, thus enabling the detection of nanoscopic domains enriched in deuterated saturated lipids dispersed in a matrix of protiated unsaturated lipids. Using large unilamellar vesicles, we found that upon replacing 10 mol% DPPC with either C16:0 or C18:0 ceramide, or 16:0 diacylglycerol (dag), lipid domains persisted to higher temperatures. However, when DPPC was replaced with short chain (C6:0 or C12:0) or very long chain (C24:0) ceramides, or ceramides with unsaturated acyl chains of any length (C6:1(3), C6:1(5), C18:1, and C24:1), as well as C18:1-dag, lipid domains were destabilized, melting at lower temperatures than those in the DPPC/DOPC/cholesterol system. These results show how ceramide acyl chain length and unsaturation influence lipid domains and have implications for how cell membranes might modify their function through the generation of different ceramide species.
Collapse
Affiliation(s)
- Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor N9B 3P4, ON, Canada
| | - Tye G Deering
- Department of Pharmacology, University of Virginia, Charlottesville 22908, VA, USA
| | - Dhimant Desai
- Department of Pharmacology, Penn State University, University Park 16801, PA, USA
| | - Arun K Sharma
- Department of Pharmacology, Penn State University, University Park 16801, PA, USA
| | - Shantu Amin
- Department of Pharmacology, Penn State University, University Park 16801, PA, USA
| | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville 22908, VA, USA
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville 22908, VA, USA; Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville 22908, VA, USA
| | - John Katsaras
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge 37831, TN, USA; Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge 37831, TN, USA; Department of Physics and Astronomy, University of Tennessee, Knoxville 37996, TN, USA.
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor N9B 3P4, ON, Canada; Department of Physics, University of Windsor, Windsor N9B 3P4, ON, Canada.
| | | |
Collapse
|
12
|
A set of gene knockouts as a resource for global lipidomic changes. Sci Rep 2022; 12:10533. [PMID: 35732804 PMCID: PMC9218125 DOI: 10.1038/s41598-022-14690-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/10/2022] [Indexed: 11/14/2022] Open
Abstract
Enzyme specificity in lipid metabolic pathways often remains unresolved at the lipid species level, which is needed to link lipidomic molecular phenotypes with their protein counterparts to construct functional pathway maps. We created lipidomic profiles of 23 gene knockouts in a proof-of-concept study based on a CRISPR/Cas9 knockout screen in mammalian cells. This results in a lipidomic resource across 24 lipid classes. We highlight lipid species phenotypes of multiple knockout cell lines compared to a control, created by targeting the human safe-harbor locus AAVS1 using up to 1228 lipid species and subspecies, charting lipid metabolism at the molecular level. Lipid species changes are found in all knockout cell lines, however, some are most apparent on the lipid class level (e.g., SGMS1 and CEPT1), while others are most apparent on the fatty acid level (e.g., DECR2 and ACOT7). We find lipidomic phenotypes to be reproducible across different clones of the same knockout and we observed similar phenotypes when two enzymes that catalyze subsequent steps of the long-chain fatty acid elongation cycle were targeted.
Collapse
|
13
|
Ranjit DK, Moye ZD, Rocha FG, Ottenberg G, Nichols FC, Kim HM, Walker AR, Gibson FC, Davey ME. Characterization of a Bacterial Kinase That Phosphorylates Dihydrosphingosine to Form dhS1P. Microbiol Spectr 2022; 10:e0000222. [PMID: 35286133 PMCID: PMC9045371 DOI: 10.1128/spectrum.00002-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022] Open
Abstract
Like other members of the phylum Bacteroidetes, the oral anaerobe Porphyromonas gingivalis synthesizes a variety of sphingolipids, similar to its human host. Studies have shown that synthesis of these lipids (dihydroceramides [DHCs]) is involved in oxidative stress resistance, the survival of P. gingivalis during stationary phase, and immune modulation. Here, we constructed a deletion mutant of P. gingivalis strain W83 with a deletion of the gene encoding DhSphK1, a protein that shows high similarity to a eukaryotic sphingosine kinase, an enzyme that phosphorylates sphingosine to form sphingosine-1-phosphate. Our data show that deletion of the dhSphK1 gene results in a shift in the sphingolipid composition of P. gingivalis cells; specifically, the mutant synthesizes higher levels of phosphoglycerol DHCs (PG-DHCs) than the parent strain W83. Although PG1348 shows high similarity to the eukaryotic sphingosine kinase, we discovered that the PG1348 enzyme is unique, since it preferentially phosphorylates dihydrosphingosine, not sphingosine. Besides changes in lipid composition, the W83 ΔPG1348 mutant displayed a defect in cell division, the biogenesis of outer membrane vesicles (OMVs), and the amount of K antigen capsule. Taken together, we have identified the first bacterial dihydrosphingosine kinase whose activity regulates the lipid profile of P. gingivalis and underlies a regulatory mechanism of immune modulation. IMPORTANCE Sphingoid base phosphates, such as sphingosine-1-phosphate (S1P) and dihydrosphingosine-1-phosphate (dhS1P), act as ligands for S1P receptors, and this interaction is known to play a central role in mediating angiogenesis, vascular stability and permeability, and immune cell migration to sites of inflammation. Studies suggest that a shift in ratio to higher levels of dhS1P in relation to S1P alters downstream signaling cascades due to differential binding and activation of the various S1P receptor isoforms. Specifically, higher levels of dhS1P are thought to be anti-inflammatory. Here, we report on the characterization of a novel kinase in Porphyromonas gingivalis that phosphorylates dihydrosphingosine to form dhS1P.
Collapse
Affiliation(s)
- Dev K. Ranjit
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Zachary D. Moye
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Fernanda G. Rocha
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Gregory Ottenberg
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Frank C. Nichols
- Division of Periodontology, University of Connecticut School of Dental Medicine, Farmington, Connecticut, USA
| | - Hey-Min Kim
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Alejandro R. Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Frank C. Gibson
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Mary E. Davey
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Zhao L, Liao C, Chen D, Zhang D, Li G, Zhang X. Stiffening Effect of Ceramide on Lipid Membranes Provides Non-Sacrificial Protection against Potent Chemical Damage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3522-3529. [PMID: 35263105 DOI: 10.1021/acs.langmuir.1c03427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ceramide is a sphingolipid that constitutes only a small fraction of membrane biomolecules but plays a central role in regulating many biological processes. The ceramide level in cell membranes can drastically increase in response to external damage, which has been hypothesized to involve ceramide's biophysical role that increases the membrane packing density and lowers the membrane permeability. However, direct observation of the consequent influence on membrane chemistry resulting from these ceramide-induced physical properties has been absent. Using our unique field-induced droplet ionization mass spectrometry technique combined with molecular dynamics simulations, here we report that the addition of ceramide to POPC monolayer membranes at the air-water interface greatly reduces the chemical damage from potent chemicals, •OH radicals, and HCl vapor, by stiffening the membrane packing and lowering the permeability. These results shed new light on the underlying chemoprotective role of ceramide in lipid membranes, which might serve as a previously unknown protection mechanism in response to external stimuli that cause cell stress or death.
Collapse
Affiliation(s)
- Lingling Zhao
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Chenyi Liao
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Danye Chen
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Dongmei Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Santos TCB, Saied EM, Arenz C, Fedorov A, Prieto M, Silva LC. The long chain base unsaturation has a stronger impact on 1-deoxy(methyl)-sphingolipids biophysical properties than the structure of its C1 functional group. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183628. [PMID: 33915167 DOI: 10.1016/j.bbamem.2021.183628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/22/2022]
Abstract
1-deoxy-sphingolipids, also known as atypical sphingolipids, are directly implicated in the development and progression of hereditary sensory and autonomic neuropathy type 1 and diabetes type 2. The mechanisms underlying their patho-physiological actions are yet to be elucidated. Accumulating evidence suggests that the biological actions of canonical sphingolipids are triggered by changes promoted on membrane organization and biophysical properties. However, little is known regarding the biophysical implications of atypical sphingolipids. In this study, we performed a comprehensive characterization of the effects of the naturally occurring 1-deoxy-dihydroceramide, 1-deoxy-ceramideΔ14Z and 1-deoxymethyl-ceramideΔ3E in the properties of a fluid membrane. In addition, to better define which structural features determine sphingolipid ability to form ordered domains, the synthetic 1-O-methyl-ceramideΔ4E and 1-deoxy-ceramideΔ4E were also studied. Our results show that natural and synthetic 1-deoxy(methyl)-sphingolipids fail to laterally segregate into ordered domains as efficiently as the canonical C16-ceramide. The impaired ability of atypical sphingolipids to form ordered domains was more dependent on the presence, position, and configuration of the sphingoid base double bond than on the structure of its C1 functional group, due to packing constraints introduced by an unsaturated backbone. Nonetheless, absence of a hydrogen bond donor and acceptor group at the C1 position strongly reduced the capacity of atypical sphingolipids to form gel domains. Altogether, the results showed that 1-deoxy(methyl)-sphingolipids induce unique changes on the biophysical properties of the membranes, suggesting that these alterations might, in part, trigger the patho-biological actions of these lipids.
Collapse
Affiliation(s)
- Tania C B Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, Ed F, 1649-003 Lisbon, Portugal; iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Essa M Saied
- Humboldt Universität zu Berlin, Institute for Chemistry, Brook Taylor Str. 2, 12489 Berlin, Germany; Chemistry Department, Faculty of Science, Suez Canal University, The Ring Road km 4.5, Ismailia, Egypt
| | - Christoph Arenz
- Humboldt Universität zu Berlin, Institute for Chemistry, Brook Taylor Str. 2, 12489 Berlin, Germany
| | - Aleksander Fedorov
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Manuel Prieto
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Liana C Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, Ed F, 1649-003 Lisbon, Portugal.
| |
Collapse
|
16
|
Lachkar F, Ferré P, Foufelle F, Papaioannou A. Dihydroceramides: their emerging physiological roles and functions in cancer and metabolic diseases. Am J Physiol Endocrinol Metab 2021; 320:E122-E130. [PMID: 33135459 DOI: 10.1152/ajpendo.00330.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dihydroceramides (DhCers) are a type of sphingolipids that for a long time were regarded as biologically inactive. They are metabolic intermediates of the de novo sphingolipid synthesis pathway, and are converted into ceramides (Cers) with the addition of a double bond. Ceramides are abundant in tissues and have well-established biological functions. On the contrary, dihydroceramides are less prevalent, and despite their hitherto characterization as inert lipids, studies of the past decade began to unravel their implication in various biological processes distinct from those involving ceramides. These processes include cellular stress responses and autophagy, cell growth, pro-death or pro-survival pathways, hypoxia, and immune responses. In addition, their plasma concentration has been related to metabolic diseases and shown as a long-term predictor of type 2 diabetes onset. They are thus important players and potential biomarkers in pathologies ranging from diabetes to cancer and neurodegenerative diseases. The purpose of this mini-review is to highlight the emergence of dihydroceramides as a new class of bioactive sphingolipids by reporting recent advances on their biological characterization and pathological implications, focusing on cancer and metabolic diseases.
Collapse
Affiliation(s)
- Floriane Lachkar
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Pascal Ferré
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
- Department of Oncology and Endocrine Biochemistry, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandra Papaioannou
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
17
|
Mah M, Febbraio M, Turpin-Nolan S. Circulating Ceramides- Are Origins Important for Sphingolipid Biomarkers and Treatments? Front Endocrinol (Lausanne) 2021; 12:684448. [PMID: 34385976 PMCID: PMC8353232 DOI: 10.3389/fendo.2021.684448] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/23/2021] [Indexed: 01/13/2023] Open
Abstract
Biomarkers are important tools for describing the adequacy or inadequacy of biological processes (to allow for the early and accurate diagnosis) and monitoring the biological effects of intervention strategies (to identify and develop optimal dose and treatment strategies). A number of lipid biomarkers are implicated in metabolic disease and the circulating levels of these biomarkers are used in clinical settings to predict and monitor disease severity. There is convincing evidence that specific circulating ceramide species can be used as biological predictors and markers of cardiovascular disease, atherosclerosis and type 2 diabetes mellitus. Here, we review the existing literature that investigated sphingolipids as biomarkers for metabolic disease prediction. What are the advantages and disadvantages? Are circulating ceramides predominantly produced in the liver? Will hepatic sphingolipid inhibitors be able to completely prevent and treat metabolic disease? As sphingolipids are being employed as biomarkers and potential metabolic disease treatments, we explore what is currently known and what still needs to be discovered.
Collapse
|
18
|
Adar T, Shankar Lankalapalli R, Bittman R, Ilan Y. The assembly of glycosphingolipid determines their immunomodulatory effect: A novel method for structure-based design of immunotherapy. Cell Immunol 2020; 355:104157. [PMID: 32659503 DOI: 10.1016/j.cellimm.2020.104157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/27/2020] [Accepted: 07/01/2020] [Indexed: 11/18/2022]
Abstract
Structure-activity relationships provide insight into the binding interactions of beta-glycosphingolipids (GSLs) with both the TCR and the CD1d molecules, as well as the subsequent immunologic response of regulatory NKT cells. AIM To determine the effects of synthetic GSL structures on their immune modulatory functions. METHODS GSLs of various structures were tested in vitro and in an animal model of Concanavalin A (ConA) immune-mediated hepatitis. RESULTS In vitro, using SV40 binding to live monkey CV1 cells, the l-threo stereoisomer of C8-β-LacCer inhibits caveolar internalization, reducing viral binding to the cell surface. In vivo, in the ConA model, LR172, which has a saturated C8 chain, and LR178, which has a trans double bond at C-2 in the C8 chain, suppressed the immune-mediated liver inflammation and reduced IFNγ levels in a dose dependent manner. The beneficial effects of LR172 and of LR178 are associated with suppression of liver apoptosis, increased phosphorylated STAT3 expression in the liver, and an increase in the NKT liver/spleen ratio. SUMMARY The assembly of GSLs determines their immunomodulatory effect and can serve as a method for structure-based design of immunotherapy.
Collapse
Affiliation(s)
- Tomer Adar
- Department of Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ravi Shankar Lankalapalli
- Department of Chemistry & Biochemistry, Queens College of the City University of New York, United States; Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Robert Bittman
- Department of Chemistry & Biochemistry, Queens College of the City University of New York, United States
| | - Yaron Ilan
- Department of Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
19
|
Pant DC, Aguilera-Albesa S, Pujol A. Ceramide signalling in inherited and multifactorial brain metabolic diseases. Neurobiol Dis 2020; 143:105014. [PMID: 32653675 DOI: 10.1016/j.nbd.2020.105014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/13/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, research on sphingolipids, particularly ceramides, has attracted increased attention, revealing the important roles and many functions of these molecules in several human neurological disorders. The nervous system is enriched with important classes of sphingolipids, e.g., ceramide and its derivatives, which compose the major portion of this group, particularly in the form of myelin. Ceramides have also emerged as important nodes for lipid signalling, both inside the cell and between cells. Until recently, knowledge about ceramides in the nervous system was limited, but currently, multiple links between ceramide signalling and neurological diseases have been reported. Alterations in the regulation of ceramide pathobiology have been shown to influence the risk of developing neurometabolic diseases. Thus, these molecules are critically important in the maintenance and development of the nervous system and are culprits or major contributors to the development of brain disorders, either inherited or multifactorial. In the present review, we highlight the critical role of ceramide signalling in several different neurological disorders as well as the effects of their perturbations and discuss how this emerging class of bioactive sphingolipids has attracted interest in the field of neurological diseases.
Collapse
Affiliation(s)
- Devesh C Pant
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service Hospital, Irunlarrea 4, 310620 Pamplona, Spain; Navarrabiomed-Miguel Servet Research Foundation, Pamplona, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, IDIBELL, Hospital Duran i Reynals, Gran Via 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.
| |
Collapse
|
20
|
The influence of ceramide and its dihydro analog on the physico-chemical properties of sphingomyelin bilayers. Chem Phys Lipids 2020; 226:104835. [DOI: 10.1016/j.chemphyslip.2019.104835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 11/20/2022]
|
21
|
Wigger D, Gulbins E, Kleuser B, Schumacher F. Monitoring the Sphingolipid de novo Synthesis by Stable-Isotope Labeling and Liquid Chromatography-Mass Spectrometry. Front Cell Dev Biol 2019; 7:210. [PMID: 31632963 PMCID: PMC6779703 DOI: 10.3389/fcell.2019.00210] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Sphingolipids are a class of lipids that share a sphingoid base backbone. They exert various effects in eukaryotes, ranging from structural roles in plasma membranes to cellular signaling. De novo sphingolipid synthesis takes place in the endoplasmic reticulum (ER), where the condensation of the activated C16 fatty acid palmitoyl-CoA and the amino acid L-serine is catalyzed by serine palmitoyltransferase (SPT). The product, 3-ketosphinganine, is then converted into more complex sphingolipids by additional ER-bound enzymes, resulting in the formation of ceramides. Since sphingolipid homeostasis is crucial to numerous cellular functions, improved assessment of sphingolipid metabolism will be key to better understanding several human diseases. To date, no assay exists capable of monitoring de novo synthesis sphingolipid in its entirety. Here, we have established a cell-free assay utilizing rat liver microsomes containing all the enzymes necessary for bottom-up synthesis of ceramides. Following lipid extraction, we were able to track the different intermediates of the sphingolipid metabolism pathway, namely 3-ketosphinganine, sphinganine, dihydroceramide, and ceramide. This was achieved by chromatographic separation of sphingolipid metabolites followed by detection of their accurate mass and characteristic fragmentations through high-resolution mass spectrometry and tandem-mass spectrometry. We were able to distinguish, unequivocally, between de novo synthesized sphingolipids and intrinsic species, inevitably present in the microsome preparations, through the addition of stable isotope-labeled palmitate-d3 and L-serine-d3. To the best of our knowledge, this is the first demonstration of a method monitoring the entirety of ER-associated sphingolipid biosynthesis. Proof-of-concept data was provided by modulating the levels of supplied cofactors (e.g., NADPH) or the addition of specific enzyme inhibitors (e.g., fumonisin B1). The presented microsomal assay may serve as a useful tool for monitoring alterations in sphingolipid de novo synthesis in cells or tissues. Additionally, our methodology may be used for metabolism studies of atypical substrates - naturally occurring or chemically tailored - as well as novel inhibitors of enzymes involved in sphingolipid de novo synthesis.
Collapse
Affiliation(s)
- Dominik Wigger
- Department of Toxicology, University of Potsdam, Nuthetal, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany.,Department of Surgery, University of Cincinnati, Cincinnati, OH, United States
| | - Burkhard Kleuser
- Department of Toxicology, University of Potsdam, Nuthetal, Germany
| | - Fabian Schumacher
- Department of Toxicology, University of Potsdam, Nuthetal, Germany.,Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
22
|
Alrbyawi H, Poudel I, Dash RP, Srinivas NR, Tiwari AK, Arnold RD, Babu RJ. Role of Ceramides in Drug Delivery. AAPS PharmSciTech 2019; 20:287. [PMID: 31410612 DOI: 10.1208/s12249-019-1497-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022] Open
Abstract
Ceramides belong to the sphingolipid group of lipids, which serve as both intracellular and intercellular messengers and as regulatory molecules that play essential roles in signal transduction, inflammation, angiogenesis, and metabolic disorders such as diabetes, neurodegenerative diseases, and cancer cell degeneration. Ceramides also play an important structural role in cell membranes by increasing their rigidity, creating micro-domains (rafts and caveolae), and altering membrane permeability; all these events are involved in the cell signaling. Ceramides constitute approximately half of the lipid composition in the human skin contributing to barrier function as well as epidermal signaling as they affect both proliferation and apoptosis of keratinocytes. Incorporation of ceramides in topical preparations as functional lipids appears to alter skin barrier functions. Ceramides also appear to enhance the bioavailability of drugs by acting as lipid delivery systems. They appear to regulate the ocular inflammation signaling, and external ceramides have shown relief in the anterior and posterior eye disorders. Ceramides play a structural role in liposome formulations and enhance the cellular uptake of amphiphilic drugs, such as chemotherapies. This review presents an overview of the various biological functions of ceramides, and their utility in topical, oral, ocular, and chemotherapeutic drug delivery.
Collapse
|
23
|
Chaurasia B, Tippetts TS, Mayoral Monibas R, Liu J, Li Y, Wang L, Wilkerson JL, Sweeney CR, Pereira RF, Sumida DH, Maschek JA, Cox JE, Kaddai V, Lancaster GI, Siddique MM, Poss A, Pearson M, Satapati S, Zhou H, McLaren DG, Previs SF, Chen Y, Qian Y, Petrov A, Wu M, Shen X, Yao J, Nunes CN, Howard AD, Wang L, Erion MD, Rutter J, Holland WL, Kelley DE, Summers SA. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science 2019; 365:386-392. [PMID: 31273070 DOI: 10.1126/science.aav3722] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Ceramides contribute to the lipotoxicity that underlies diabetes, hepatic steatosis, and heart disease. By genetically engineering mice, we deleted the enzyme dihydroceramide desaturase 1 (DES1), which normally inserts a conserved double bond into the backbone of ceramides and other predominant sphingolipids. Ablation of DES1 from whole animals or tissue-specific deletion in the liver and/or adipose tissue resolved hepatic steatosis and insulin resistance in mice caused by leptin deficiency or obesogenic diets. Mechanistic studies revealed ceramide actions that promoted lipid uptake and storage and impaired glucose utilization, none of which could be recapitulated by (dihydro)ceramides that lacked the critical double bond. These studies suggest that inhibition of DES1 may provide a means of treating hepatic steatosis and metabolic disorders.
Collapse
Affiliation(s)
- Bhagirath Chaurasia
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Trevor S Tippetts
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Jinqi Liu
- Merck Research Laboratories, Merck, Kenilworth, NJ 07033, USA
| | - Ying Li
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Liping Wang
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - C Rufus Sweeney
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Doris Hissako Sumida
- School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015, Brazil
| | - J Alan Maschek
- Department of Biochemistry and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - James E Cox
- Department of Biochemistry and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Vincent Kaddai
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | - Annelise Poss
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | - Heather Zhou
- Merck Research Laboratories, Merck, Kenilworth, NJ 07033, USA
| | - David G McLaren
- Merck Research Laboratories, Merck, Kenilworth, NJ 07033, USA
| | | | - Ying Chen
- Merck Research Laboratories, Merck, Kenilworth, NJ 07033, USA
| | - Ying Qian
- Merck Research Laboratories, Merck, Kenilworth, NJ 07033, USA
| | | | - Margaret Wu
- Merck Research Laboratories, Merck, Kenilworth, NJ 07033, USA
| | - Xiaolan Shen
- Merck Research Laboratories, Merck, Kenilworth, NJ 07033, USA
| | - Jun Yao
- Merck Research Laboratories, Merck, Kenilworth, NJ 07033, USA
| | | | - Andrew D Howard
- Merck Research Laboratories, Merck, Kenilworth, NJ 07033, USA
| | - Liangsu Wang
- Merck Research Laboratories, Merck, Kenilworth, NJ 07033, USA
| | - Mark D Erion
- Merck Research Laboratories, Merck, Kenilworth, NJ 07033, USA
| | - Jared Rutter
- Department of Biochemistry and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA.,Howard Hughes Medical Institute, Salt Lake City, UT 84112, USA
| | - William L Holland
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - David E Kelley
- Merck Research Laboratories, Merck, Kenilworth, NJ 07033, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
24
|
Hirano Y, Gao YG, Stephenson DJ, Vu NT, Malinina L, Simanshu DK, Chalfant CE, Patel DJ, Brown RE. Structural basis of phosphatidylcholine recognition by the C2-domain of cytosolic phospholipase A 2α. eLife 2019; 8:e44760. [PMID: 31050338 PMCID: PMC6550875 DOI: 10.7554/elife.44760] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/03/2019] [Indexed: 01/19/2023] Open
Abstract
Ca2+-stimulated translocation of cytosolic phospholipase A2α (cPLA2α) to the Golgi induces arachidonic acid production, the rate-limiting step in pro-inflammatory eicosanoid synthesis. Structural insights into the cPLA2α preference for phosphatidylcholine (PC)-enriched membranes have remained elusive. Here, we report the structure of the cPLA2α C2-domain (at 2.2 Å resolution), which contains bound 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) and Ca2+ ions. Two Ca2+ are complexed at previously reported locations in the lipid-free C2-domain. One of these Ca2+ions, along with a third Ca2+, bridges the C2-domain to the DHPC phosphate group, which also interacts with Asn65. Tyr96 plays a key role in lipid headgroup recognition via cation-π interaction with the PC trimethylammonium group. Mutagenesis analyses confirm that Tyr96 and Asn65 function in PC binding selectivity by the C2-domain and in the regulation of cPLA2α activity. The DHPC-binding mode of the cPLA2α C2-domain, which differs from phosphatidylserine or phosphatidylinositol 4,5-bisphosphate binding by other C2-domains, expands and deepens knowledge of the lipid-binding mechanisms mediated by C2-domains.
Collapse
Affiliation(s)
- Yoshinori Hirano
- Structural Biology ProgramMemorial Sloan-Kettering Cancer CenterNew YorkUnited States
- Graduate School of Biological SciencesNara Institute of Science and Technology (NAIST)TakayamaJapan
| | - Yong-Guang Gao
- Hormel InstituteUniversity of MinnesotaAustinUnited States
| | - Daniel J Stephenson
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University Medical CenterRichmondUnited States
- Department of Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaUnited States
| | - Ngoc T Vu
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University Medical CenterRichmondUnited States
| | - Lucy Malinina
- Hormel InstituteUniversity of MinnesotaAustinUnited States
| | - Dhirendra K Simanshu
- Structural Biology ProgramMemorial Sloan-Kettering Cancer CenterNew YorkUnited States
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaUnited States
- Research ServiceJames A. Haley Veterans HospitalTampaUnited States
- The Moffitt Cancer CenterTampaUnited States
| | - Dinshaw J Patel
- Structural Biology ProgramMemorial Sloan-Kettering Cancer CenterNew YorkUnited States
| | | |
Collapse
|
25
|
Structural and barrier properties of the skin ceramide lipid bilayer: a molecular dynamics simulation study. J Mol Model 2019; 25:140. [PMID: 31041534 DOI: 10.1007/s00894-019-4008-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/29/2019] [Indexed: 10/26/2022]
Abstract
Skin provides excellent protection against the harsh external environment and foreign substances. The lipid matrix of the stratum corneum, which contains various kinds of ceramides, plays a major role in the barrier function of the skin. Here we report a study of the effects of ceramide type on the structural and transport properties of ceramide bilayers using molecular dynamics (MD) simulations. Specifically, the effects of headgroup chemistry (number and positions of hydroxyl groups) and tail structure (unsaturation of the sphingoid moiety) on the structural and transport properties of various ceramide bilayers at 310 K were analyzed. Theoretical results for structural properties such as area per lipid, bilayer thickness, lateral arrangement, order parameter, and hydrogen bonding are reported here and compared with corresponding experimental data. Our study revealed that the presence of a double bond disrupts the bilayer packing, which leads to a low area compressibility modulus, a large area per lipid, and low bilayer thickness. Furthermore, the effect of structural changes on water permeation was studied using steered MD simulations. Water permeation was found to be influenced by headgroup polarity, chain packing, and the ability of the water to hydrogen bond with the ceramides. The molecular-level information obtained from the current study should aid the design of mixed bilayer systems with desired properties and provide the basis for the development of higher order coarse-grained models.
Collapse
|
26
|
Martins LS, Nomura DA, Duarte EL, Riske KA, Lamy MT, Rozenfeld JHK. Structural characterization of cationic DODAB bilayers containing C24:1 β-glucosylceramide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:643-650. [PMID: 30611744 DOI: 10.1016/j.bbamem.2018.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/09/2018] [Accepted: 12/28/2018] [Indexed: 01/13/2023]
Abstract
The effect of 5 mol%, 9 mol%, and 16 mol% of C24:1 β-glucosylceramide (βGlcCer) on the structure of cationic DODAB bilayers was investigated by means of differential scanning calorimetry (DSC), electron spin resonance (ESR) spectroscopy and fluorescence microscopy. βGlcCer is completely miscible with DODAB at all fractions tested, since no domains were observed in fluorescence microscopy or ESR spectra. The latter showed that βGlcCer destabilized the gel phase of DODAB bilayers by decreasing the gel phase packing. As a consequence, βGlcCer induced a decrease in the phase transition temperature and cooperativity of DODAB bilayers, as seen in DSC thermograms. ESR spectra also showed that βGlcCer induced an increase in DODAB fluid phase order and/or rigidity. Despite their different structures, a similar effect of loosening the gel phase packing and turning the fluid phase more rigid/organized has also been observed when low molar fractions of cholesterol were incorporated in DODAB bilayers. The structural characterization of mixed membranes made of cationic lipids and glucosylceramides may be important for developing novel immunotherapeutic tools such as vaccine adjuvants.
Collapse
Affiliation(s)
- Letícia S Martins
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Botucatu 862, 04023-062 São Paulo, SP, Brazil
| | - Daniela A Nomura
- Instituto de Física, Universidade de São Paulo, CP 66318, CEP 05315-970 São Paulo, SP, Brazil
| | - Evandro L Duarte
- Instituto de Física, Universidade de São Paulo, CP 66318, CEP 05315-970 São Paulo, SP, Brazil
| | - Karin A Riske
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Botucatu 862, 04023-062 São Paulo, SP, Brazil
| | - M Teresa Lamy
- Instituto de Física, Universidade de São Paulo, CP 66318, CEP 05315-970 São Paulo, SP, Brazil
| | - Julio H K Rozenfeld
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Botucatu 862, 04023-062 São Paulo, SP, Brazil.
| |
Collapse
|
27
|
Fanani ML, Busto JV, Sot J, Abad JL, Fabrías G, Saiz L, Vilar JMG, Goñi FM, Maggio B, Alonso A. Clearly Detectable, Kinetically Restricted Solid-Solid Phase Transition in cis-Ceramide Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11749-11758. [PMID: 30183303 DOI: 10.1021/acs.langmuir.8b02198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sphingosine [(2 S,3 R,4 E)-2-amino-4-octadecene-1,3-diol] is the most common sphingoid base in mammals. Ceramides are N-acyl sphingosines. Numerous small variations on this canonical structure are known, including the 1-deoxy, the 4,5-dihydro, and many others. However, whenever there is a Δ4 double bond, it adopts the trans (or E) configuration. We synthesized a ceramide containing 4 Z-sphingosine and palmitic acid ( cis-pCer) and studied its behavior in the form of monolayers extended on an air-water interface. cis-pCer acted very differently from the trans isomer in that, upon lateral compression of the monolayer, a solid-solid transition was clearly observed at a mean molecular area ≤44 Å2·molecule-1, whose characteristics depended on the rate of compression. The solid-solid transition, as well as states of domain coexistence, could be imaged by atomic force microscopy and by Brewster-angle microscopy. Atomistic molecular dynamics simulations provided results compatible with the experimentally observed differences between the cis and trans isomers. The data can help in the exploration of other solid-solid transitions in lipids, both in vitro and in vivo, that have gone up to now undetected because of their less obvious change in surface properties along the transition, as compared to cis-pCer.
Collapse
Affiliation(s)
| | - Jon V Busto
- Instituto Biofisika (CSIC, UPV/EHU) , B. Sarriena s/n , 48940 Leioa , Spain
- Departamento de Bioquímica , Universidad del País Vasco , B. Sarriena s/n , 48940 Leioa , Spain
| | - Jesús Sot
- Instituto Biofisika (CSIC, UPV/EHU) , B. Sarriena s/n , 48940 Leioa , Spain
| | - José L Abad
- Research Unit on Bioactive Molecules (RUBAM), Departamento de Química Biológica , Instituto de Química Avanzada de Catalunya (IQAC-CSIC) , Barcelona 08034 , Spain
| | - Gemma Fabrías
- Research Unit on Bioactive Molecules (RUBAM), Departamento de Química Biológica , Instituto de Química Avanzada de Catalunya (IQAC-CSIC) , Barcelona 08034 , Spain
- Centro de Investigación Biomédica en Red (CIBERehd) , 28029 Madrid , Spain
| | - Leonor Saiz
- Modeling of Biological Networks and Systems Therapeutics Laboratory, Department of Biomedical Engineering , University of California , 451 East Health Sciences Drive , Davis , California 95616 , United States
- Institute for Medical Engineering & Science , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Jose M G Vilar
- Instituto Biofisika (CSIC, UPV/EHU) , B. Sarriena s/n , 48940 Leioa , Spain
- Departamento de Bioquímica , Universidad del País Vasco , B. Sarriena s/n , 48940 Leioa , Spain
- IKERBASQUE, Basque Foundation for Science , 48011 Bilbao , Spain
| | - Félix M Goñi
- Instituto Biofisika (CSIC, UPV/EHU) , B. Sarriena s/n , 48940 Leioa , Spain
- Departamento de Bioquímica , Universidad del País Vasco , B. Sarriena s/n , 48940 Leioa , Spain
| | | | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU) , B. Sarriena s/n , 48940 Leioa , Spain
- Departamento de Bioquímica , Universidad del País Vasco , B. Sarriena s/n , 48940 Leioa , Spain
| |
Collapse
|
28
|
Abstract
Ceramides are sphingolipids containing a sphingosine or a related base, to which a fatty acid is linked through an amide bond. When incorporated into a lipid bilayer, ceramides exhibit a number of properties not shared by almost any other membrane lipid: Ceramides ( a) are extremely hydrophobic and thus cannot exist in suspension in aqueous media; ( b) increase the molecular order (rigidity) of phospholipids in membranes; ( c) give rise to lateral phase separation and domain formation in phospholipid bilayers; ( d) possess a marked intrinsic negative curvature that facilitates formation of inverted hexagonal phases; ( e) make bilayers and cell membranes permeable to small and large (i.e., protein-size) solutes; and ( f) promote transmembrane (flip-flop) lipid motion. Unfortunately, there is hardly any link between the physical studies reviewed here and the mass of biological and clinical studies on the effects of ceramides in health and disease.
Collapse
Affiliation(s)
- Alicia Alonso
- Instituto Biofisika [University of the Basque Country and Spanish National Research Council (CSIC)], 48940 Leioa, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain;,
| | - Félix M. Goñi
- Instituto Biofisika [University of the Basque Country and Spanish National Research Council (CSIC)], 48940 Leioa, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain;,
| |
Collapse
|
29
|
Gupta R, Dwadasi BS, Rai B. Molecular Dynamics Simulation of Skin Lipids: Effect of Ceramide Chain Lengths on Bilayer Properties. J Phys Chem B 2016; 120:12536-12546. [DOI: 10.1021/acs.jpcb.6b08059] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rakesh Gupta
- Engineering & Physical Sciences, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune 411013, India
| | - Balarama Sridhar Dwadasi
- Engineering & Physical Sciences, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune 411013, India
| | - Beena Rai
- Engineering & Physical Sciences, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune 411013, India
| |
Collapse
|
30
|
Moore TC, Iacovella CR, Hartkamp R, Bunge AL, McCabe C. A Coarse-Grained Model of Stratum Corneum Lipids: Free Fatty Acids and Ceramide NS. J Phys Chem B 2016; 120:9944-58. [PMID: 27564869 PMCID: PMC5287476 DOI: 10.1021/acs.jpcb.6b08046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ceramide (CER)-based biological membranes are used both experimentally and in simulations as simplified model systems of the skin barrier. Molecular dynamics studies have generally focused on simulating preassembled structures using atomistically detailed models of CERs, which limit the system sizes and time scales that can practically be probed, rendering them ineffective for studying particular phenomena, including self-assembly into bilayer and lamellar superstructures. Here, we report on the development of a coarse-grained (CG) model for CER NS, the most abundant CER in human stratum corneum. Multistate iterative Boltzmann inversion is used to derive the intermolecular pair potentials, resulting in a force field that is applicable over a range of state points and suitable for studying ceramide self-assembly. The chosen CG mapping, which includes explicit interaction sites for hydroxyl groups, captures the directional nature of hydrogen bonding and allows for accurate predictions of several key structural properties of CER NS bilayers. Simulated wetting experiments allow the hydrophobicity of CG beads to be accurately tuned to match atomistic wetting behavior, which affects the whole system, since inaccurate hydrophobic character is found to unphysically alter the lipid packing in hydrated lamellar states. We find that CER NS can self-assemble into multilamellar structures, enabling the study of lipid systems more representative of the multilamellar lipid structures present in the skin barrier. The coarse-grained force field derived herein represents an important step in using molecular dynamics to study the human skin barrier, which gives a resolution not available through experiment alone.
Collapse
Affiliation(s)
- Timothy C. Moore
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
- Vanderbilt University Multiscale Modeling and Simulation (MuMS) Facility, Nashville, TN 37235
| | - Christopher R. Iacovella
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
- Vanderbilt University Multiscale Modeling and Simulation (MuMS) Facility, Nashville, TN 37235
| | - Remco Hartkamp
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
- Vanderbilt University Multiscale Modeling and Simulation (MuMS) Facility, Nashville, TN 37235
| | - Annette L. Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
- Vanderbilt University Multiscale Modeling and Simulation (MuMS) Facility, Nashville, TN 37235
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
31
|
Maula T, Al Sazzad MA, Slotte JP. Influence of Hydroxylation, Chain Length, and Chain Unsaturation on Bilayer Properties of Ceramides. Biophys J 2016; 109:1639-51. [PMID: 26488655 DOI: 10.1016/j.bpj.2015.08.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 11/29/2022] Open
Abstract
Mammalian ceramides constitute a family of at least a few hundred closely related molecules distinguished by small structural differences, giving rise to individual molecular species that are expressed in distinct cellular compartments, or tissue types, in which they are believed to execute distinct functions. We have examined how specific structural details influence the bilayer properties of a selection of biologically relevant ceramides in mixed bilayers together with sphingomyelin, phosphatidylcholine, and cholesterol. The ceramide structure varied with regard to interfacial hydroxylation, the identity of the headgroup, the length of the N-acyl chain, and the position of cis-double bonds in the acyl chains. The interactions of the ceramides with sphingomyelin, their lateral segregation into ceramide-rich domains in phosphatidylcholine bilayers, and the effect of cholesterol on such domains were studied with DSC and various fluorescence-based approaches. The largest differences arose from the presence and relative position of cis-double bonds, causing destabilization of the ceramide's interactions and lateral packing relative to common saturated and hydroxylated species. Less variation was observed as a consequence of interfacial hydroxylation and the N-acyl chain length, although an additional hydroxyl in the sphingoid long-chain base slightly destabilized the ceramide's interactions and packing relative to a nonhydroxyceramide, whereas an additional hydroxyl in the N-acyl chain had the opposite effect. In conclusion, small structural details conferred variance in the bilayer behavior of ceramides, some causing more dramatic changes in the bilayer properties, whereas others imposed only fine adjustments in the interactions of ceramides with other membrane lipids, reflecting possible functional implications in distinct cell or tissue types.
Collapse
Affiliation(s)
- Terhi Maula
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| | - Md Abdullah Al Sazzad
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
32
|
Akinshina A, Das C, Noro MG. Effect of monoglycerides and fatty acids on a ceramide bilayer. Phys Chem Chem Phys 2016; 18:17446-60. [PMID: 27302426 DOI: 10.1039/c6cp01238h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Monoglycerides and unsaturated fatty acids, naturally present in trace amounts in the stratum corneum (top layer of skin) lipid matrix, are commonly used in pharmaceutical, cosmetic and health care formulations. However, a detailed molecular understanding of how the oil additives get incorporated into the skin lipids from topical application and, once incorporated, how they affect the properties and integrity of the lipid matrix remains unexplored. Using ceramide 2 bilayers as skin lipid surrogates, we use a series of molecular dynamics simulations with six different natural oil ingredients at multiple concentrations to investigate the effect of the oils on the properties and stability of the bilayers. The six oils: monoolein, monostearin, monoelaidin, oleic acid, stearic acid and linoleic acid - all having the same length of the alkyl chain, C18, but a varying degree of saturation, allow us to systematically address the effect of unsaturation in the additives. Our results show that at low oil concentration (∼5%) the mixed bilayers containing any of the oils and ceramide 2 (CER2) become more rigid than pure CER2 bilayers due to more efficient lipid packing. Better packing also results in the formation of larger numbers of hydrogen bonds between the lipids, which occurs at the expense of the hydrogen bonds between lipids and water. The mixed bilayers with saturated or trans-unsaturated oils remain stable over the whole range of oil concentration. In contrast, the presence of the oils with at least one cis-double bond leads to bilayer instability and complete loss of bilayer structure at the oil content of about 50-65%. Two cis-double bonds in the lipid tail induce bilayer disruption at even lower concentration (∼30%). The mixed bilayers remain in the gel phase (without melting to a fluid phase) until the phase transition to a non-bilayer phase occurs. We also demonstrate that the stability of the bilayer strongly correlates with the order parameter of the lipid tails.
Collapse
Affiliation(s)
- Anna Akinshina
- Institute of Skin Integrity and Infection Prevention, School of Human and Health Sciences, University of Huddersfield, HD1 3DH, Huddersfield, UK.
| | | | | |
Collapse
|
33
|
Al Sazzad MA, Slotte JP. Effect of Phosphatidylcholine Unsaturation on the Lateral Segregation of Palmitoyl Ceramide and Palmitoyl Dihydroceramide in Bilayer Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5973-5980. [PMID: 27218704 DOI: 10.1021/acs.langmuir.6b00859] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To better understand the interactions of saturated ceramides with unsaturated glycerophospholipids in bilayer membranes, we measured how palmitoyl ceramide (PCer) and dihydroceramide (dihydro-PCer, lacking the trans 4 double bond of the sphingoid base of ceramide) can interact with phosphatidylcholines (PCs) with palmitic acid in the sn-1 position and increasingly unsaturated acyl chains in the sn-2 position. The PCs were 16:0/18:1 (POPC), 16:0/18:2 (PLPC), 16:0/20:4 (PAPC), and 16:0(22:6 (PDPC). We also included di-18:1-PC (DOPC) to compare it with POPC. Because the ceramides were expected to segregate laterally to an ordered ceramide-rich phase, we determined the formation of the ordered phase using lifetime analysis of trans-parinaric acid (tPA) fluorescence. The presence of ordered domains, as indicated by tPA lifetime analysis, was verified by an analysis of tPA anisotropy as a function of temperature. The interaction between PCer and POPC was clearly more favored than interactions with DOPC, as seen from a more thermostable gel phase in POPC than in DOPC at equal ceramide content. The concentration needed for PCer gel phase formation was also lower in POPC than in the DOPC bilayers, suggesting that POPC had better miscibility in the ordered phase. The increased unsaturation of the sn-2 acyl chains of the PCs had more clear effects of dihydro-PCer segregation than on PCer segregation, and the dihydro-PCer gel phase became more thermostable as the unsaturation in the PC increased. We conclude that the interactions between ceramides and PCs were complex and affected both by the trans 4 double bond of PCer by the palmitoyl acyl in the sn-1 position and by the overall degree of unsaturation of the sn-2 acyl chain of the PCs.
Collapse
Affiliation(s)
- Md Abdullah Al Sazzad
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University , Turku, Finland
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University , Turku, Finland
| |
Collapse
|
34
|
Reprint of: “Synthetic lipids and their role in defining macromolecular assemblies”. Chem Phys Lipids 2016; 194:149-57. [DOI: 10.1016/j.chemphyslip.2015.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 11/23/2022]
|
35
|
Two types of syringomycin E channels in sphingomyelin-containing bilayers. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:91-8. [DOI: 10.1007/s00249-015-1101-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 10/19/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
|
36
|
Efimova SS, Malev VV, Ostroumova OS. Effects of Dipole Potential Modifiers on Heterogenic Lipid Bilayers. J Membr Biol 2015; 249:97-106. [PMID: 26454655 DOI: 10.1007/s00232-015-9852-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/29/2015] [Indexed: 01/29/2023]
Abstract
In this work, we examine the ability of dipole modifiers, flavonoids, and RH dyes to affect the dipole potential (φ d) and phase separation in membranes composed of ternary mixtures of POPC with different sphingolipids and sterols. Changes in the steady-state conductance induced by cation-ionophore complexes have been measured to evaluate the changes in dipole potential of planar lipid bilayers. Confocal fluorescence microscopy has been employed to investigate lipid segregation in giant unilamellar vesicles. The effects of flavonoids on φ d depend on lipid composition and dipole modifier type. The effectiveness of RH dyes to increase φ d depends on sphingolipid type but is not influenced by sterol content. Tested modifiers lead to partial or complete disruption of gel domains in bilayers composed of POPC, sphingomyelin, and cholesterol. Substitution of cholesterol to ergosterol or 7-dehydrocholesterol leads to a loss of fluidizing effects of modifiers except phloretin. This may be due to various compositions of gel domains. The lack of influence of modifiers on phase scenario in vesicles composed of ternary mixtures of POPC, cholesterol, and phytosphingosine or sphinganine is related to an absence of gel-like phase. It was concluded that the membrane lateral heterogeneity affects the dipole-modifying abilities of the agents that influence the magnitude of φ d by intercalation into the bilayer and orientation of its own large dipole moments (phloretin and RH dyes). The efficacy of modifiers that do not penetrate deeply and affect φ d through water adsorption (phlorizin, quercetin, and myricetin) is not influenced by lateral heterogeneity of membrane.
Collapse
Affiliation(s)
- Svetlana S Efimova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky ave. 4, St. Petersburg, Russia, 194064.
| | - Valery V Malev
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky ave. 4, St. Petersburg, Russia, 194064.,St. Petersburg State University, Petergof, Russia, 198504
| | - Olga S Ostroumova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky ave. 4, St. Petersburg, Russia, 194064
| |
Collapse
|
37
|
Parrill AL. Synthetic lipids and their role in defining macromolecular assemblies. Chem Phys Lipids 2015; 191:38-47. [DOI: 10.1016/j.chemphyslip.2015.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
|
38
|
Perera MN, Ganesan V, Siskind LJ, Szulc ZM, Bielawska A, Bittman R, Colombini M. Ceramide channel: Structural basis for selective membrane targeting. Chem Phys Lipids 2015; 194:110-116. [PMID: 26408265 DOI: 10.1016/j.chemphyslip.2015.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022]
Abstract
A ceramide commonly found in mammalian cells, C16-ceramide (N-palmitoyl-d-erythro-sphingosine), is capable of forming large, protein-permeable channels in the mitochondrial outer membrane (MOM). However, C16-ceramide is unable to permeabilize the plasma membrane of erythrocytes. This specificity is unexpected considering that ceramide forms channels in simple phosphoglycerolipid membranes. Synthetic analogs of C16-ceramide with targeted changes at each of the functional regions of the molecule including methylation, altered hydrocarbon chain length, and changes in the stereochemistry, were tested to probe the role of ceramide's molecular features on its ability to form channels in these two different membrane types. The ability to permeabilize the MOM was relatively insensitive to modifications of the various functional groups of ceramide whereas the same modifications resulted in plasma membrane permeabilization (a gain of function rather than a loss of function). Some analogs (ceramine, NBD-labeled ceramide, C18,1 ceramide) gained another function, the ability to inhibit cytochrome oxidase. The gain of deleterious functions indicates that constraints on the structure of ceramide that is formed by the cell's synthetic machinery includes the avoidance of deleterious interactions. We propose that the specific structure of ceramide limits the size of its interactome (both proteins and lipids) thus reducing the likelihood of unwanted side effects.
Collapse
Affiliation(s)
| | | | - Leah J Siskind
- Department of Pharmacology and Toxicology, University of Louisville
| | - Zdzislaw M Szulc
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina
| | - Alicja Bielawska
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina
| | - Robert Bittman
- Department of Chemistry and Biochemistry, City University of New York, Queens College
| | | |
Collapse
|
39
|
Marquês JT, Cordeiro AM, Viana AS, Herrmann A, Marinho HS, de Almeida RFM. Formation and Properties of Membrane-Ordered Domains by Phytoceramide: Role of Sphingoid Base Hydroxylation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9410-9421. [PMID: 26262576 DOI: 10.1021/acs.langmuir.5b02550] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Phytoceramide is the backbone of major sphingolipids in fungi and plants and is essential in several tissues of animal organisms, such as human skin. Its sphingoid base, phytosphingosine, differs from that usually found in mammals by the addition of a hydroxyl group to the 4-ene, which may be a crucial factor for the different properties of membrane microdomains among those organisms and tissues. Recently, sphingolipid hydroxylation in animal cells emerged as a key feature in several physiopathological processes. Hence, the study of the biophysical properties of phytosphingolipids is also relevant in that context since it helps us to understand the effects of sphingolipid hydroxylation. In this work, binary mixtures of N-stearoyl-phytoceramide (PhyCer) with palmitoyloleoylphosphatidylcholine (POPC) were studied. Steady-state and time-resolved fluorescence of membrane probes, X-ray diffraction, atomic force microscopy, and confocal microscopy were employed. As for other saturated ceramides, highly rigid gel domains start to form with just ∼5 mol % PhyCer at 24 °C. However, PhyCer gel-enriched domains in coexistence with POPC-enriched fluid present additional complexity since their properties (maximal order, shape, and thickness) change at specific POPC/PhyCer molar ratios, suggesting the formation of highly stable stoichiometric complexes with their own properties, distinct from both POPC and PhyCer. A POPC/PhyCer binary phase diagram, supported by the different experimental approaches employed, is proposed with complexes of 3:1 and 1:2 stoichiometries which are stable at least from ∼15 to ∼55 °C. Thus, it provides mechanisms for the in vivo formation of sphingolipid-enriched gel domains that may account for stable membrane compartments and diffusion barriers in eukaryotic cell membranes.
Collapse
Affiliation(s)
- Joaquim T Marquês
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - André M Cordeiro
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana S Viana
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - Andreas Herrmann
- Department of Biology, Molecular Biophysics, Humboldt University , Berlin, Germany
| | - H Susana Marinho
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rodrigo F M de Almeida
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
40
|
Casasampere M, Ordoñez YF, Pou A, Casas J. Inhibitors of dihydroceramide desaturase 1: Therapeutic agents and pharmacological tools to decipher the role of dihydroceramides in cell biology. Chem Phys Lipids 2015; 197:33-44. [PMID: 26248324 DOI: 10.1016/j.chemphyslip.2015.07.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
Dihydroceramide desaturase (Des1) is the last enzyme in the de novo synthesis of ceramides (Cer). It catalyzes the insertion of a double bond into dihydroceramides (dhCer) to convert them to Cer, both of which are further metabolized to more complex (dihydro) sphingolipids. For many years dhCer have received poor attention, mainly due to their supposed lack of biological activity. It was not until about ten years ago that the concept that dhCer might have regulatory roles in biology emerged for the first time. Since then, multiple publications have established that dhCer are implicated in a wide spectrum of biological processes. Physiological and pathophysiological functions of dhCer have been recently reviewed. In this review we will focus on the biochemical features of Des1 and on its inhibition by different compounds with presumably different modes of action.
Collapse
Affiliation(s)
- Mireia Casasampere
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Yadira F Ordoñez
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Ana Pou
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| |
Collapse
|
41
|
Wan G, Dai X, Yin Q, Shi X, Qiao Y. Interaction of menthol with mixed-lipid bilayer of stratum corneum: A coarse-grained simulation study. J Mol Graph Model 2015; 60:98-107. [PMID: 26125116 DOI: 10.1016/j.jmgm.2015.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/25/2022]
Abstract
Menthol is a widely used penetration enhancer in clinical medicine due to its high efficiency and relative safety. Although there are many studies focused on the penetration-enhancing activity of menthol, the details of molecular mechanism are rarely involved in the discussion. In this study, we present a series of coarse-grained molecular dynamics simulations to investigate the interaction of menthol with a mixed-lipid bilayer model consisting of ceramides, cholesterol and free fatty acids in a 2:2:1 molar ratio. Taking both the concentration of menthol and temperature into consideration, it was found that a rise in temperature and concentration within a specific range (1-20%) could improve the penetration-enhancing property of menthol and the floppiness of the bilayer. However, at high concentrations (30% and more), menthol completely mixed with the lipids and the membrane can no longer maintain a bilayer structure. Our results elucidates some of the molecular basis for menthol's penetration enhancing effects and may provide some assistance for the development and applications of menthol as a penetration enhancer. Furthermore, we establish a method to investigate the penetration enhancement mechanism of traditional Chinese medicine using the mixed-lipid bilayer model of stratum corneum by molecular dynamics simulations.
Collapse
Affiliation(s)
- Guang Wan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Xingxing Dai
- Beijing University of Chinese Medicine, Beijing 100102, China; Key Laboratory of TCM-information Engineer of State Administration of TCM, Beijing 100102, China.
| | - Qianqian Yin
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| | - Xinyuan Shi
- Beijing University of Chinese Medicine, Beijing 100102, China; Key Laboratory of TCM-information Engineer of State Administration of TCM, Beijing 100102, China.
| | - Yanjiang Qiao
- Beijing University of Chinese Medicine, Beijing 100102, China; Key Laboratory of TCM-information Engineer of State Administration of TCM, Beijing 100102, China.
| |
Collapse
|
42
|
Siddique MM, Li Y, Chaurasia B, Kaddai VA, Summers SA. Dihydroceramides: From Bit Players to Lead Actors. J Biol Chem 2015; 290:15371-15379. [PMID: 25947377 DOI: 10.1074/jbc.r115.653204] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingolipid synthesis involves a highly conserved biosynthetic pathway that produces fundamental precursors of complex sphingolipids. The final reaction involves the insertion of a double bond into dihydroceramides to generate the more abundant ceramides, which are converted to sphingomyelins and glucosylceramides/gangliosides by the addition of polar head groups. Although ceramides have long been known to mediate cellular stress responses, the dihydroceramides that are transiently produced during de novo sphingolipid synthesis were deemed inert. Evidence published in the last few years suggests that these dihydroceramides accumulate to a far greater extent in tissues than previously thought. Moreover, they have biological functions that are distinct and non-overlapping with those of the more prevalent ceramides. Roles are being uncovered in autophagy, hypoxia, and cellular proliferation, and the lipids are now implicated in the etiology, treatment, and/or diagnosis of diabetes, cancer, ischemia/reperfusion injury, and neurodegenerative diseases. This minireview summarizes recent findings on this emerging class of bioactive lipids.
Collapse
Affiliation(s)
| | - Ying Li
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | | | - Vincent A Kaddai
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Scott A Summers
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.
| |
Collapse
|
43
|
Stahlberg S, Školová B, Madhu PK, Vogel A, Vávrová K, Huster D. Probing the role of the ceramide acyl chain length and sphingosine unsaturation in model skin barrier lipid mixtures by (2)H solid-state NMR spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4906-4915. [PMID: 25870928 DOI: 10.1021/acs.langmuir.5b00751] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We investigated equimolar mixtures of ceramides with lignoceric acid and cholesterol as models for the human stratum corneum by differential scanning calorimetry and (2)H solid-state NMR spectroscopy. Our reference system consisted of lignoceroyl sphingosine (Cer[NS24]), which represents one of the ceramides in the human stratum corneum. Furthermore, the effect of ceramide acyl chain truncation to 16 carbons as in Cer[NS16] and the loss of the C4 trans double bond as in dihydroceramide Cer[NDS24] were studied. Fully relaxed (2)H NMR spectra were acquired for each deuterated component of each mixture separately, allowing the quantitative determination of the individual lipid phases. At skin temperature, the reference system containing Cer[NS24] is characterized by large portions of each component of the mixture in a crystalline phase, which largely restricts the permeability of the skin lipid barrier. The loss of the C4 trans double bond in Cer[NDS24] leads to the replacement of more than 25% of the crystalline phase by an isotropic phase of the dihydroceramide that shows the importance of dihydroceramide desaturation in the formation of the skin lipid barrier. The truncated Cer[NS16] is mostly found in the gel phase at skin temperature, which may explain its negative effect on the transepidermal water loss in atopic dermatitis patients. These significant alterations in the phase behavior of all lipids are further reflected at elevated temperatures. The molecular insights of our study may help us to understand the importance of the structural parameters of ceramides in healthy and compromised skin barriers.
Collapse
Affiliation(s)
- Sören Stahlberg
- †Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Barbora Školová
- †Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
- ‡Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Perunthiruthy K Madhu
- §Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
- ∥TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - Alexander Vogel
- †Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Kateřina Vávrová
- ‡Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Daniel Huster
- †Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
- §Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| |
Collapse
|
44
|
Sovová Ž, Berka K, Otyepka M, Jurečka P. Coarse-grain simulations of skin ceramide NS with newly derived parameters clarify structure of melted phase. J Phys Chem B 2015; 119:3988-98. [PMID: 25679231 DOI: 10.1021/jp5092366] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ceramides are lipids that are involved in numerous biologically important structures (e.g., the stratum corneum and ceramide-rich platforms) and processes (e.g., signal transduction and membrane fusion), but their behavior is not fully understood. We report coarse-grain force field parameters for N-lignocerylsphingosine (ceramide NS, also known as ceramide 2) that are consistent with the Martini force field. These parameters were optimized for simulations in the gel phase and validated against atomistic simulations. Coarse-grained simulations with our parameters provide areas per lipid, membrane thicknesses, and electron density profiles that are in good agreement with atomistic simulations. Properties of the simulated membranes are compared with available experimental data. The obtained parameters were used to model the phase behavior of ceramide NS as a function of temperature and hydration. At low water content and above the main phase transition temperature, the bilayer melts into an irregular phase, which may correspond to the unstructured melted-chain phase observed in X-ray diffraction experiments. The developed parameters also reproduce the extended conformation of ceramide, which may occur in the stratum corneum. The parameters presented herein will facilitate studies on important complex functional structures such as the uppermost layer of the skin and ceramide-rich platforms in phospholipid membranes.
Collapse
Affiliation(s)
- Žofie Sovová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University , 17 Listopadu 12, 77146 Olomouc, Czech Republic
| | | | | | | |
Collapse
|
45
|
Modifiers of membrane dipole potentials as tools for investigating ion channel formation and functioning. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:245-97. [PMID: 25708465 DOI: 10.1016/bs.ircmb.2014.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrostatic fields generated on and within biological membranes play a fundamental role in key processes in cell functions. The role of the membrane dipole potential is of particular interest because of its powerful impact on membrane permeability and lipid-protein interactions, including protein insertion, oligomerization, and function. The membrane dipole potential is defined by the orientation of electric dipoles of lipid headgroups, fatty acid carbonyl groups, and membrane-adsorbed water. As a result, the membrane interior is several hundred millivolts more positive than the external aqueous phase. This potential decrease depends on the lipid, and especially sterol, composition of the membrane. The adsorption of certain electroneutral molecules known as dipole modifiers may also lead to significant changes in the magnitude of the potential decrease. These agents are widely used to study the effects of the dipole potential on membrane transport. This review presents a critical analysis of a variety of data from studies dedicated to ion channel formation and functioning in membranes with different dipole potentials. The types of ion channels found in cellular membranes and pores formed by antimicrobial agents and toxins in artificial lipid membranes are summarized. The mechanisms underlying the influence of the membrane dipole potential on ion channel activity, including dipole-dipole and charge-dipole interactions in the pores and in membranes, are discussed. A hypothesis, in which lipid rafts in both model and cellular membranes also modulate ion channel activity by virtue of an increased or decreased dipole potential, is also considered.
Collapse
|
46
|
Gillams RJ, Busto JV, Busch S, Goñi FM, Lorenz CD, McLain SE. Solvation and Hydration of the Ceramide Headgroup in a Non-Polar Solution. J Phys Chem B 2014; 119:128-39. [DOI: 10.1021/jp5107789] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Jon V. Busto
- Unidad
de Biofísica (CSIC, UPV-EHU) and Departamento de Bioquímica, Universidad del País Vasco, P.O. Box 644, 48080 Bilbao, Spain
| | - Sebastian Busch
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Félix M. Goñi
- Unidad
de Biofísica (CSIC, UPV-EHU) and Departamento de Bioquímica, Universidad del País Vasco, P.O. Box 644, 48080 Bilbao, Spain
| | | | - Sylvia E. McLain
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| |
Collapse
|
47
|
Skolová B, Jandovská K, Pullmannová P, Tesař O, Roh J, Hrabálek A, Vávrová K. The role of the trans double bond in skin barrier sphingolipids: permeability and infrared spectroscopic study of model ceramide and dihydroceramide membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:5527-5535. [PMID: 24779554 DOI: 10.1021/la500622f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Dihydroceramides (dCer) are members of the sphingolipid family that lack the C4 trans double bond in their sphingoid backbone. In addition to being precursors of ceramides (Cer) and phytoceramides, dCer have also been found in the extracellular lipid membranes of the epidermal barrier, the stratum corneum. However, their role in barrier homeostasis is not known. We studied how the lack of the trans double bond in dCer compared to Cer influences the permeability, lipid chain order, and packing of multilamellar membranes composed of the major skin barrier lipids: (d)Cer, fatty acids, cholesterol, and cholesteryl sulfate. The permeability of the membranes with long-chain dCer was measured using various markers and was either comparable to or only slightly greater than (by up to 35%, not significant) that of the Cer membranes. The dCer were less sensitive to acyl chain shortening than Cer (the short dCer membranes were up to 6-fold less permeable that the corresponding short Cer membranes). Infrared spectroscopy showed that long dCer mixed less with fatty acids but formed more thermally stable ordered domains than Cer. The key parameter explaining the differences in permeability in the short dCer and Cer was the proportion of the orthorhombic phase. Our results suggest that the presence of the trans double bond in Cer is not crucial for the permeability of skin lipid membranes and that dCer may be underappreciated members of the stratum corneum lipid barrier that increase its heterogeneity.
Collapse
Affiliation(s)
- Barbora Skolová
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University in Prague , Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
48
|
Peñalva DA, Wilke N, Maggio B, Aveldaño MI, Fanani ML. Surface behavior of sphingomyelins with very long chain polyunsaturated fatty acids and effects of their conversion to ceramides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4385-4395. [PMID: 24678907 DOI: 10.1021/la500485x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Molecular species of sphingomyelin (SM) with nonhydroxy (n) and 2-hydroxy (h) very long chain polyunsaturated fatty acids (n- and h-28:4, 30:5, and 32:5) abound in rat spermatogenic cells and spermatozoa. These SMs are located on the sperm head, where they are converted to the corresponding ceramides (Cer) after the completion of the acrosomal reaction, as induced in vitro. The aim of this study was to look into the surface properties of these unique SM species and how these properties change by the SM → Cer conversion. After isolation by HPLC, these SMs were organized in Langmuir films and studied alone, in combination with different proportions of Cer, and during their conversion to Cer by sphingomyelinase. Compression isotherms for all six SMs under study were compatible with a liquid-expanded (LE) state and showed large molecular areas. Only the longest SMs (n-32:5 and h-32:5 SM) underwent a phase transition upon cooling. Interestingly, the abundant h-28:4 Cer exhibited a highly compressible liquid-condensed (LC) phase compatible with a high conformational freedom of Cer molecules but with the characteristic low diffusional properties of the LC phase. In mixed films of h-28:4 SM/h-28:4 Cer, the components showed favorable mixing in the LE phase. The monolayer exhibited h-28:4 Cer-rich domains both in premixed films and when formed by the action of sphingomyelinase on pure h-28:4 SM films. Whereas the SMs from sperm behaved in a way similar to that of shorter acylated SMs, the corresponding Cers showed atypical rheological properties that may be relevant to the membrane structural rearrangements that take place on the sperm head after the completion of the acrosomal reaction.
Collapse
Affiliation(s)
- Daniel A Peñalva
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , 8000 Bahía Blanca, Argentina
| | | | | | | | | |
Collapse
|
49
|
Zhai X, Boldyrev IA, Mizuno N, Momsen MM, Molotkovsky JG, Brockman H, Brown RE. Nanoscale packing differences in sphingomyelin and phosphatidylcholine revealed by BODIPY fluorescence in monolayers: physiological implications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3154-3164. [PMID: 24564829 PMCID: PMC3983355 DOI: 10.1021/la4047098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/24/2014] [Indexed: 06/03/2023]
Abstract
Phosphatidycholines (PC) with two saturated acyl chains (e.g., dipalmitoyl) mimic natural sphingomyelin (SM) by promoting raft formation in model membranes. However, sphingoid-based lipids, such as SM, rather than saturated-chain PCs have been implicated as key components of lipid rafts in biomembranes. These observations raise questions about the physical packing properties of the phase states that can be formed by these two major plasma membrane lipids with identical phosphocholine headgroups. To investigate, we developed a monolayer platform capable of monitoring changes in surface fluorescence by acquiring multiple spectra during measurement of a lipid force-area isotherm. We relied on the concentration-dependent emission changes of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-labeled PC to detect nanoscale alterations in lipid packing and phase state induced by monolayer lateral compression. The BODIPY-PC probe contained an indacene ring with four symmetrically located methyl (Me) substituents to enhance localization to the lipid hydrocarbon region. Surface fluorescence spectra indicated changes in miscibility even when force-area isotherms showed no deviation from ideal mixing behavior in the surface pressure versus cross-sectional molecular area response. We detected slightly better mixing of Me4-BODIPY-8-PC with the fluid-like, liquid expanded phase of 1-palmitoyl-2-oleoyl-PC compared to N-oleoyl-SM. Remarkably, in the gel-like, liquid condensed phase, Me4-BODIPY-8-PC mixed better with N-palmitoyl-SM than dipalmitoyl-PC, suggesting naturally abundant SMs with saturated acyl chains form gel-like lipid phase(s) with enhanced ability to accommodate deeply embedded components compared to dipalmitoyl-PC gel phase. The findings reveal a fundamental difference in the lateral packing properties of SM and PC that occurs even when their acyl chains match.
Collapse
Affiliation(s)
- Xiuhong Zhai
- Hormel
Institute, University of Minnesota, 801 16th Ave NE, Austin, Minnesota 55912, United States
| | - Ivan A. Boldyrev
- Shemyakin-Ovichinnikov
Institute of Bioorganic Chemistry, Russian
Academy of Sciences, Moscow, Russian Federation
| | - Nancy
K. Mizuno
- Hormel
Institute, University of Minnesota, 801 16th Ave NE, Austin, Minnesota 55912, United States
| | - Maureen M. Momsen
- Hormel
Institute, University of Minnesota, 801 16th Ave NE, Austin, Minnesota 55912, United States
| | - Julian G. Molotkovsky
- Shemyakin-Ovichinnikov
Institute of Bioorganic Chemistry, Russian
Academy of Sciences, Moscow, Russian Federation
| | - Howard
L. Brockman
- Hormel
Institute, University of Minnesota, 801 16th Ave NE, Austin, Minnesota 55912, United States
| | - Rhoderick E. Brown
- Hormel
Institute, University of Minnesota, 801 16th Ave NE, Austin, Minnesota 55912, United States
| |
Collapse
|
50
|
Peñalva DA, Oresti GM, Dupuy F, Antollini SS, Maggio B, Aveldaño MI, Fanani ML. Atypical surface behavior of ceramides with nonhydroxy and 2-hydroxy very long-chain (C28–C32) PUFAs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:731-8. [DOI: 10.1016/j.bbamem.2013.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/07/2013] [Accepted: 11/26/2013] [Indexed: 01/13/2023]
|