1
|
Makino T, Kanada R, Mori T, Miyazono KI, Komori Y, Yanagisawa H, Takada S, Tanokura M, Kikkawa M, Tomishige M. Tension-induced suppression of allosteric conformational changes coordinates kinesin-1 stepping. J Cell Biol 2025; 224:e202501253. [PMID: 40298806 PMCID: PMC12039583 DOI: 10.1083/jcb.202501253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/18/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Kinesin-1 walks along microtubules by alternating ATP hydrolysis and movement of its two motor domains ("head"). The detached head preferentially binds to the forward tubulin-binding site after ATP binds to the microtubule-bound head, but the mechanism preventing premature microtubule binding while the partner head awaits ATP remains unknown. Here, we examined the role of the neck linker, the segment connecting two heads, in this mechanism. Structural analyses of the nucleotide-free head revealed a bulge just ahead of the neck linker's base, creating an asymmetric constraint on its mobility. While the neck linker can stretch freely backward, it must navigate around this bulge to extend forward. We hypothesized that increased neck linker tension suppresses premature binding of the tethered head, which was supported by molecular dynamics simulations and single-molecule fluorescence assays. These findings demonstrate a tension-dependent allosteric mechanism that coordinates the movement of two heads, where neck linker tension modulates the allosteric conformational changes rather than directly affecting the nucleotide state.
Collapse
Affiliation(s)
- Tsukasa Makino
- Department of Applied Physics, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Kanada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Teppei Mori
- Department of Applied Physics, The University of Tokyo, Tokyo, Japan
| | - Ken-ichi Miyazono
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuta Komori
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruaki Yanagisawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Michio Tomishige
- Department of Applied Physics, The University of Tokyo, Tokyo, Japan
- Department of Physical Sciences, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| |
Collapse
|
2
|
Muthukumar VC. The dynamics of Escherichia coli FtsZ dimer. J Biomol Struct Dyn 2025; 43:903-916. [PMID: 38014448 DOI: 10.1080/07391102.2023.2287486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
The E. coli FtsZ dimer was studied to gain insights into FtsZ protofilament formation. In the simulation study of the M. janaschii dimer it was found that the monomer-monomer contacts in the GDP bound dimer is lower which results in the high curvature of the GDP bound protofilaments. In this study, the E. coli FtsZ dimer was simulated. The initial structure was obtained from our previous study in which we had simulated the E. coli FtsZ monomer with its C-terminal IDR (Intrinsically Disordered Region). The M. janaschii FtsZ dimer subunit contacts were used as the starting configuration. Simulations of the dimer were performed with GTP and with GDP. It is found that the central helix H5 closes by about 15 degrees in the simulation with GTP than in the simulation with GDP. The C-terminal IDR and the C-terminal domain region between SC2 and HC2 are found to have much high flexibility and hence exhibit domain motion.Communicated by Ramaswamy H. Sarma.
Collapse
|
3
|
Yousefbeigi S, Marsusi F. Structural insights into ACE2 interactions and immune activation of SARS-CoV-2 and its variants: an in-silico study. J Biomol Struct Dyn 2025; 43:665-678. [PMID: 37982275 DOI: 10.1080/07391102.2023.2283158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
The initial interaction between COVID-19 and the human body involves the receptor-binding domain (RBD) of the viral spike protein with the angiotensin-converting enzyme 2 (ACE2) receptor. Likewise, the spike protein can engage with immune-related proteins, such as toll-like receptors (TLRs) and pulmonary surfactant proteins A (SP-A) and D (SP-D), thereby triggering immune responses. In this study, we utilize computational methods to investigate the interactions between the spike protein and TLRs (specifically TLR2 and TLR4), as well as (SP-A) and (SP-D). The study is conducted on four variants of concern (VOC) to differentiate and identify common virus behaviours. An assessment of the structural stability of various variants indicates slight changes attributed to mutations, yet overall structural integrity remains preserved. Our findings reveal the spike protein's ability to bind with TLR4 and TLR2, prompting immune activation. In addition, our in-silico results reveal almost similar docking scores and therefore affinity for both ACE2-spike and TLR4-spike complexes. We demonstrate that even minor changes due to mutations in all variants, surfactant A and D proteins can function as inhibitors against the spike in all variants, hindering the ACE2-RBD interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sarina Yousefbeigi
- Department of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Farah Marsusi
- Department of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
4
|
Wang X, Xiong D, Zhang Y, Zhai J, Gu YC, He X. The evolution of the Amber additive protein force field: History, current status, and future. J Chem Phys 2025; 162:030901. [PMID: 39817575 DOI: 10.1063/5.0227517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025] Open
Abstract
Molecular dynamics simulations are pivotal in elucidating the intricate properties of biological molecules. Nonetheless, the reliability of their outcomes hinges on the precision of the molecular force field utilized. In this perspective, we present a comprehensive review of the developmental trajectory of the Amber additive protein force field, delving into researchers' persistent quest for higher precision force fields and the prevailing challenges. We detail the parameterization process of the Amber protein force fields, emphasizing the specific improvements and retained features in each version compared to their predecessors. Furthermore, we discuss the challenges that current force fields encounter in balancing the interactions of protein-protein, protein-water, and water-water in molecular dynamics simulations, as well as potential solutions to overcome these issues.
Collapse
Affiliation(s)
- Xianwei Wang
- School of Physics, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Danyang Xiong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yueqing Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jihang Zhai
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| |
Collapse
|
5
|
Sahu AK, Shah RA, Nashier D, Sharma P, Varada R, Lahry K, Singh S, Shetty S, Hussain T, Varshney U. Physiological significance of the two isoforms of initiator tRNAs in Escherichia coli. J Bacteriol 2024; 206:e0025124. [PMID: 39171914 PMCID: PMC11411947 DOI: 10.1128/jb.00251-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Escherichia coli possesses four initiator tRNA (i-tRNA) genes, three of which are present together as metZWV and the fourth one as metY. In E. coli B, all four genes (metZWV and metY) encode i-tRNAfMet1, in which the G at position 46 is modified to m7G46 by TrmB (m7G methyltransferase). However, in E. coli K, because of a single-nucleotide polymorphism, metY encodes a variant, i-tRNAfMet2, having an A in place of m7G46. We generated E. coli strains to explore the importance of this polymorphism in i-tRNAs. The strains were sustained either on metYA46 (metY of E. coli K origin encoding i-tRNAfMet2) or its derivative metYG46 (encoding i-tRNAfMet1) in single (chromosomal) or plasmid-borne copies. We show that the strains sustained on i-tRNAfMet1 have a growth fitness advantage over those sustained on i-tRNAfMet2. The growth fitness advantages are more pronounced for the strains sustained on i-tRNAfMet1 in nutrient-rich media than in nutrient-poor media. The growth fitness of the strains correlates well with the relative stabilities of the i-tRNAs in vivo. Furthermore, the atomistic molecular dynamics simulations support the higher stability of i-tRNAfMet1 than that of i-tRNAfMet2. The stability of i-tRNAfMet1 remains unaffected upon the deletion of TrmB. These studies highlight how metYG46 and metYA46 alleles might influence the growth fitness of E. coli under certain nutrient-limiting conditions. IMPORTANCE Escherichia coli harbors four initiator tRNA (i-tRNA) genes: three of these at metZWV and the fourth one at metY loci. In E. coli B, all four genes encode i-tRNAfMet1. In E. coli K, because of a single-nucleotide polymorphism, metY encodes a variant, i-tRNAfMet2, having an A in place of G at position 46 of i-tRNA sequence in metY. We show that G46 confers stability to i-tRNAfMet1. The strains sustained on i-tRNAfMet1 have a growth fitness advantage over those sustained on i-tRNAfMet2. Strains harboring metYG46 (B mimic) or metYA46 (K mimic) show that while in the nutrient-rich media, the K mimic is outcompeted rapidly; in the nutrient-poor medium, the K mimic is outcompeted less rapidly.
Collapse
Affiliation(s)
- Amit Kumar Sahu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Riyaz Ahmad Shah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Divya Nashier
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Prafful Sharma
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Rajagopal Varada
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Kuldeep Lahry
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sudhir Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sunil Shetty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Tanweer Hussain
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
6
|
Dourado DFAR, Rowan AS, Maciuk S, Brown G, Gray D, Spratt J, Carvalho ATP, Pavlović D, Tur F, Caswell J, Quinn DJ, Moody TS, Mix S. Application of rational enzyme engineering in a new route to etonogestrel and levonorgestrel: carbonyl reductase bioreduction of ethyl secodione. Faraday Discuss 2024; 252:450-467. [PMID: 38864241 DOI: 10.1039/d4fd00011k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Women in developing countries still face enormous challenges when accessing reproductive health care. Access to voluntary family planning empowers women allowing them to complete their education and join the paid workforce. This effectively helps to end poverty, hunger and promotes good health for all. According to the United Nations (UN) organization, in 2022, an estimated 257 million women still lacked access to safe and effective family planning methods globally. One of the main barriers is the associated cost of modern contraceptive methods. Funded by the Bill & Melinda Gates Foundation, Almac Group worked on the development of a novel biocatalytic route to etonogestrel and levonorgestrel, two modern contraceptive APIs, with the goal of substantially decreasing the cost of production and so enabling their use in developing nations. This present work combines the selection and engineering of a carbonyl reductase (CRED) enzyme from Almac's selectAZyme™ panel, with process development, to enable efficient and economically viable bioreduction of ethyl secodione to (13R,17S)-secol, the key chirality introducing intermediate en route to etonogestrel and levonorgestrel API. CRED library screening returned a good hit with an Almac CRED from Bacillus weidmannii, which allowed for highly stereoselective bioreduction at low enzyme loading of less than 1% w/w under screening assay conditions. However, the only co-solvent tolerated was DMSO up to ∼30% v/v, and it was impossible to achieve reaction completion with any enzyme loading at substrate titres of 20 g L-1 and above, due to the insolubility of the secodione. This triggered a rapid enzyme engineering program fully based on computational mutant selection. A small panel of 93 CRED mutants was rationally designed to increase the catalytic activity as well as thermal and solvent stability. The best mutant, Mutant-75, enabled a reaction at 45 °C to go to completion at 90 g L-1 substrate titre in a buffer/DMSO/heptane reaction medium fed over 6 h with substrate DMSO stock solution, with a low enzyme loading of 3.5% w/w wrt substrate. In screening assay conditions, Mutant-75 also showed a 2.2-fold activity increase. Our paper shows which computations and rational decisions enabled this outcome.
Collapse
Affiliation(s)
| | - Andrew S Rowan
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, UK.
| | - Sergej Maciuk
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, UK.
| | - Gareth Brown
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, UK.
| | - Darren Gray
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, UK.
| | - Jenny Spratt
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, UK.
| | | | - Dražen Pavlović
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, UK.
| | - Fernando Tur
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, UK.
| | - Jill Caswell
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, UK.
| | - Derek J Quinn
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, UK.
| | - Thomas S Moody
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, UK.
| | - Stefan Mix
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, UK.
| |
Collapse
|
7
|
Chandrika KVSM, V P. An in silico molecular docking, ADMET and molecular dynamics simulations studies of azolyl-2H-chroman-4-ones as potential inhibitors against pathogenic fungi and bacteria. J Biomol Struct Dyn 2024; 42:7667-7685. [PMID: 37526222 DOI: 10.1080/07391102.2023.2241102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
Antimicrobial resistance is a major global threat. In an attempt to discover new compounds with improved efficiency and to overcome drug resistance, a library of 3960 compounds was designed as conformationally rigid analogues of oxiconazole with 2H-chroman-4-one, azole and substituted phenyl fragments. The antifungal and antibacterial activity of the compounds was evaluated using molecular docking studies in the active site of six fungal and four bacterial proteins to establish the binding affinity of the designed ligands. In-silico ADME and Lipinski's rule were used to establish the drug-likeness properties of the compounds. This study revealed that all the designed compounds had a high binding affinity with the target proteins and formed H-bond and π-π interactions. The identified hits have been subjected to molecular dynamics simulations to study protein-ligand complex stability. This study has led to the identification of important compounds that can be developed further as therapeutic agents against pathogenic fungi and bacteria.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- K V S Mani Chandrika
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Anantapur Campus, Anantapur, Andhra Pradesh, India
| | - Prathyusha V
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Anantapur Campus, Anantapur, Andhra Pradesh, India
| |
Collapse
|
8
|
Mathez G, Brancale A, Cagno V. Novel Inhibitors of SARS-CoV-2 RNA Identified through Virtual Screening. J Chem Inf Model 2024; 64:6190-6196. [PMID: 39037082 PMCID: PMC11323243 DOI: 10.1021/acs.jcim.4c00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
We currently lack antivirals for most human viruses. In a quest for new molecules, focusing on viral RNA, instead of viral proteins, can represent a promising strategy. In this study, new inhibitors were identified starting from a published crystal structure of the tertiary SARS-CoV-2 RNA involved in the -1 programmed ribosomal frameshift. The pseudoknot structure was refined, and a virtual screening was performed using the repository of binders to the nucleic acid library, taking into consideration RNA flexibility. Hit compounds were validated against the wild-type virus and with a dual-luciferase assay measuring the frameshift efficiency. Several active molecules were identified. Our study reveals new inhibitors of SARS-CoV-2 but also highlights the feasibility of targeting RNA starting from virtual screening, a strategy that could be broadly applied to drug development.
Collapse
Affiliation(s)
- Gregory Mathez
- Institute
of Microbiology, University Hospital of
Lausanne, University of Lausanne, 1011 Lausanne, Switzerland
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague, 16628 Prague 6, Czech Republic
| | - Andrea Brancale
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague, 16628 Prague 6, Czech Republic
| | - Valeria Cagno
- Institute
of Microbiology, University Hospital of
Lausanne, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
9
|
Morales-Camilo N, Liu J, Ramírez MJ, Canales-Salgado P, Alegría JJ, Liu X, Ong HT, Barrera NP, Fierro A, Toyama Y, Goult BT, Wang Y, Meng Y, Nishimura R, Fong-Ngern K, Low CSL, Kanchanawong P, Yan J, Ravasio A, Bertocchi C. Alternative molecular mechanisms for force transmission at adherens junctions via β-catenin-vinculin interaction. Nat Commun 2024; 15:5608. [PMID: 38969637 PMCID: PMC11226457 DOI: 10.1038/s41467-024-49850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/21/2024] [Indexed: 07/07/2024] Open
Abstract
Force transmission through adherens junctions (AJs) is crucial for multicellular organization, wound healing and tissue regeneration. Recent studies shed light on the molecular mechanisms of mechanotransduction at the AJs. However, the canonical model fails to explain force transmission when essential proteins of the mechanotransduction module are mutated or missing. Here, we demonstrate that, in absence of α-catenin, β-catenin can directly and functionally interact with vinculin in its open conformation, bearing physiological forces. Furthermore, we found that β-catenin can prevent vinculin autoinhibition in the presence of α-catenin by occupying vinculin´s head-tail interaction site, thus preserving force transmission capability. Taken together, our findings suggest a multi-step force transmission process at AJs, where α-catenin and β-catenin can alternatively and cooperatively interact with vinculin. This can explain the graded responses needed to maintain tissue mechanical homeostasis and, importantly, unveils a force-bearing mechanism involving β-catenin and extended vinculin that can potentially explain the underlying process enabling collective invasion of metastatic cells lacking α-catenin.
Collapse
Affiliation(s)
- Nicole Morales-Camilo
- Laboratory for Molecular Mechanics of Cell Adhesion, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Jingzhun Liu
- Department of Physics, National University of Singapore, 117542, Singapore, Singapore
| | - Manuel J Ramírez
- Laboratory for Molecular Mechanics of Cell Adhesion, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricio Canales-Salgado
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Medical Sciences, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan José Alegría
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Foundational Research on Data (IMFD), Santiago, Chile
| | - Xuyao Liu
- Department of Physics, National University of Singapore, 117542, Singapore, Singapore
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Nelson P Barrera
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angélica Fierro
- Department of Organic Chemistry, School of Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yusuke Toyama
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Kent, Canterbury, CT2 7NJ, UK
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Yilin Wang
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Yue Meng
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Ryosuke Nishimura
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Kedsarin Fong-Ngern
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Christine Siok Lan Low
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117543, Singapore, Singapore
| | - Jie Yan
- Department of Physics, National University of Singapore, 117542, Singapore, Singapore
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Andrea Ravasio
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile.
- Graduate School of Engineering Science, Osaka University, Osaka, Japan.
| |
Collapse
|
10
|
Bavadi M, Zhu Z, Zhang B. Evaluation of surfactant-aided polycyclic aromatic hydrocarbon biodegradation by molecular docking and molecular dynamic simulation in the marine environment. CHEMOSPHERE 2024; 358:142171. [PMID: 38714247 DOI: 10.1016/j.chemosphere.2024.142171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/27/2024] [Accepted: 04/26/2024] [Indexed: 05/09/2024]
Abstract
Marine oil spills directly cause polycyclic aromatic hydrocarbons (PAHs) pollution and affect marine organisms due to their toxic property. Chemical and bio-based dispersants composed of surfactants and solvents are considered effective oil spill-treating agents. Dispersants enhance oil biodegradation in the marine environment by rapidly increasing their solubility in the water column. However, the effect of dispersants, especially surfactants, on PAHs degradation by enzymes produced by microorganisms has not been studied at the molecular level. The role of the cytochrome P450 (CYP) enzyme in converting contaminants into reactive metabolites during the biodegradation process has been evidenced, but the activity in the presence of surfactants is still ambiguous. Thus, this study focused on the evaluation of the impact of chemical and bio-surfactants (i.e., Tween 80 (TWE) and Surfactin (SUC)) on the biodegradation of naphthalene (NAP), chrysene (CHR), and pyrene (PYR), the representative components of PAHs, with CYP enzyme from microalgae Parachlorella kessleri using molecular docking and molecular dynamics (MD) simulation. The molecular docking analysis revealed that PAHs bound to residues at the CYP active site through hydrophobic interactions for biodegradation. The MD simulation showed that the surfactant addition changed the enzyme conformation in the CYP-PAH complexes to provide more interactions between the enzyme and PAHs. This led to an increase in the enzyme's capability to degrade PAHs. Binding free energy (ΔGBind) calculations confirmed that surfactant treatment could enhance PAHs degradation by the enzyme. The SUC gave a better result on NAP and PYR biodegradation based on ΔGBind, while TWE facilitated the biodegradation of CHR. The research outputs could greatly facilitate evaluating the behaviors of oil spill-treating agents and oil spill response operations in the marine environment.
Collapse
Affiliation(s)
- Masoumeh Bavadi
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Zhiwen Zhu
- Oceans Science, Fisheries and Oceans Canada, Ottawa, ON, K1A 0E6, Canada
| | - Baiyu Zhang
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, A1B 3X5, Canada.
| |
Collapse
|
11
|
Buslaev P, Groenhof G. gmXtal: Cooking Crystals with GROMACS. Protein J 2024; 43:200-206. [PMID: 37620609 PMCID: PMC11058868 DOI: 10.1007/s10930-023-10141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2023] [Indexed: 08/26/2023]
Abstract
Molecular dynamics (MD) simulations are routinely performed of biomolecules in solution, because this is their native environment. However, the structures used in such simulations are often obtained with X-ray crystallography, which provides the atomic coordinates of the biomolecule in a crystal environment. With the advent of free electron lasers and time-resolved techniques, X-ray crystallography can now also access metastable states that are intermediates in a biochemical process. Such experiments provide additional data, which can be used, for example, to optimize MD force fields. Doing so requires that the simulation of the biomolecule is also performed in the crystal environment. However, in contrast to simulations of biomolecules in solution, setting up a crystal is challenging. In particular, because not all solvent molecules are resolved in X-ray crystallography, adding a suitable number of solvent molecules, such that the properties of the crystallographic unit cell are preserved in the simulation, can be difficult and typically is a trial-and-error based procedure requiring manual interventions. Such interventions preclude high throughput applications. To overcome this bottleneck, we introduce gmXtal, a tool for setting up crystal simulations for MD simulations with GROMACS. With the information from the protein data bank (rcsb.org) gmXtal automatically (i) builds the crystallographic unit cell; (ii) sets the protonation of titratable residues; (iii) builds missing residues that were not resolved experimentally; and (iv) adds an appropriate number of solvent molecules to the system. gmXtal is available as a standalone tool https://gitlab.com/pbuslaev/gmxtal .
Collapse
Affiliation(s)
- Pavel Buslaev
- Department of Chemistry and Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland.
| | - Gerrit Groenhof
- Department of Chemistry and Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland.
| |
Collapse
|
12
|
Muthukumar VC. Escherichia coli FtsZ molecular dynamics simulations. J Biomol Struct Dyn 2024; 42:2653-2666. [PMID: 37158088 DOI: 10.1080/07391102.2023.2206917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023]
Abstract
Earlier molecular dynamics studies of the FtsZ protein revealed that the protein has high intrinsic flexibility which the crystal structures cannot reveal. However, the input structure in these simulation studies was based on the available crystal structure data and therefore, the effect of the C-terminal Intrinsically Disordered Region (IDR) of FtsZ could not be observed in any of these studies. Recent investigations have revealed that the C-terminal IDR is crucial for FtsZ assembly in vitro and Z ring formation in vivo. Therefore, in this study, we simulated FtsZ with the IDR. Simulations of the FtsZ monomer in different nucleotide bound forms (without nucleotide, GTP, GDP) were performed. In the conformations of FtsZ monomer with GTP, GTP binds variably with the protein. Such a variable interaction with the monomer has not been observed in any previous simulation studies of FtsZ and not observed in crystal structures. We found that central helix bends towards the C-terminal domain in the GTP bound form, hence, making way for polymerization. A nucleotide dependent shift/rotation of the C-terminal domain was observed in simulation time averaged structures.Communicated by Ramaswamy H. Sarma.
Collapse
|
13
|
He W, Qiu X, Kirmizialtin S. Sequence-Dependent Orientational Coupling and Electrostatic Attraction in Cation-Mediated DNA-DNA Interactions. J Chem Theory Comput 2023; 19:6827-6838. [PMID: 37728274 PMCID: PMC10569048 DOI: 10.1021/acs.jctc.3c00520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 09/21/2023]
Abstract
Condensation of DNA is vital for its biological functions and controlled nucleic acid assemblies. However, the mechanisms of DNA condensation are not fully understood due to the inability of experiments to access cation distributions and the complex interplay of energetic and entropic forces during assembly. By constructing free energy surfaces using exhaustive sampling and detailed analysis of cation distributions, we elucidate the mechanism of DNA condensation in different salt conditions and with different DNA sequences. We found that DNA condensation is facilitated by the correlated dynamics of the localized cations at the grooves of DNA helices. These dynamics are strongly dependent on the salt conditions and DNA sequences. In the presence of magnesium ions, major groove binding facilitates attraction. In contrast, in the presence of polyvalent cations, minor groove binding serves to create charge patterns, leading to condensation. Our findings present a novel advancement in the field and have broad implications for understanding and controlling nucleic acid complexes in vivo and in vitro.
Collapse
Affiliation(s)
- Weiwei He
- Chemistry
Program, Science Division, New York University
Abu Dhabi, Abu Dhabi 129188, United
Arab Emirates
- Department
of Chemistry, New York University, New York, New York 10012, United States
| | - Xiangyun Qiu
- Department
of Physics, George Washington University, Washington, District of
Columbia 20052, United States
| | - Serdal Kirmizialtin
- Chemistry
Program, Science Division, New York University
Abu Dhabi, Abu Dhabi 129188, United
Arab Emirates
- Department
of Chemistry, New York University, New York, New York 10012, United States
| |
Collapse
|
14
|
Lin YC, Ren P, Webb LJ. AMOEBA Force Field Predicts Accurate Hydrogen Bond Counts of Nitriles in SNase by Revealing Water-Protein Interaction in Vibrational Absorption Frequencies. J Phys Chem B 2023; 127:5609-5619. [PMID: 37339399 PMCID: PMC10851345 DOI: 10.1021/acs.jpcb.3c02060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Precisely quantifying the magnitude and direction of electric fields in proteins has long been an outstanding challenge in understanding biological functions. Nitrile vibrational Stark effect probes have been shown to be minimally disruptive to the protein structure and can be better direct reporters of local electrostatic field in the native state of a protein than other measures such as pKa shifts of titratable residues. However, interpretations of the connection between measured vibrational energy and electric field rely on the accurate molecular understanding of interactions of the nitrile group and its environment, particularly from hydrogen bonding. In this work, we compared the extent of hydrogen bonding calculated in two common force fields, the fixed charge force field Amber03 and polarizable force field AMOEBA, at 10 locations of cyanocysteine (CNC) in staphylococcal nuclease (SNase) against the experimental nitrile absorption frequency in terms of full width at half-maximum (FWHM) and frequency temperature line slope (FTLS). We observed that the number of hydrogen bonds correlated well in AMOEBA trajectories with respect to both the FWHM (r = 0.88) and the FTLS (r = -0.85), whereas the correlation of Amber03 trajectories was less reliable because the Amber03 force field predicted more hydrogen bonds in some mutants. Moreover, we demonstrated that contributions from the interactions between CNC and nearby water molecules were significant in AMOEBA trajectories but were not predicted by Amber03. We conclude that although the nitrile absorption peak shape could be qualitatively predicted by the fixed charge Amber03 force field, the detailed electrostatic environment measured by the nitrile probe in terms of the extent of hydrogen bonding could only be accurately observed in the AMOEBA trajectories, where the permanent dipole, quadrupole, and dipole-induced-dipole polarizable interactions were all taken into account. The significance of this finding to the goal of accurately predicting electric fields in complex biomolecular environments is discussed.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Program, The University of Texas at Austin, 105 E 24th St. STOP A5300, Austin, TX, 78712, USA
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Lauren J. Webb
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Program, The University of Texas at Austin, 105 E 24th St. STOP A5300, Austin, TX, 78712, USA
| |
Collapse
|
15
|
Giovannini T, Marrazzini G, Scavino M, Koch H, Cappelli C. Integrated Multiscale Multilevel Approach to Open Shell Molecular Systems. J Chem Theory Comput 2023; 19:1446-1456. [PMID: 36780359 PMCID: PMC10018740 DOI: 10.1021/acs.jctc.2c00805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
We present a novel multiscale approach to study the electronic structure of open shell molecular systems embedded in an external environment. The method is based on the coupling of multilevel Hartree-Fock (MLHF) and Density Functional Theory (MLDFT), suitably extended to the unrestricted formalism, to Molecular Mechanics (MM) force fields (FF). Within the ML region, the system is divided into active and inactive parts, thus describing the most relevant interactions (electrostatic, polarization, and Pauli repulsion) at the quantum level. The surrounding MM part, which is formulated in terms of nonpolarizable or polarizable FFs, permits a physically consistent treatment of long-range electrostatics and polarization effects. The approach is extended to the calculation of hyperfine coupling constants and applied to selected nitroxyl radicals in an aqueous solution.
Collapse
Affiliation(s)
| | - Gioia Marrazzini
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Marco Scavino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Henrik Koch
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.,Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
16
|
Chapman J, Zoica Dinu C. Assessment of Enzyme Functionality at Metal-Organic Framework Interfaces Developed through Molecular Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1750-1763. [PMID: 36692448 DOI: 10.1021/acs.langmuir.2c02347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The catalytic efficiency and unrivaled selectivity with which enzymes convert substrates to products have been tapped for widespread chemical transformations within biomedical technology, biofuel production, gas sensing, and the upgrading of commodity chemicals, just to name a few. However, the feasibility of enzymes implementation is challenged by the lack of reusability and loss of native catalytic activity due to the irreversible biocatalyst denaturation at high temperatures and in the presence of industrial solvents. Enzyme immobilization, a prerequisite for enzyme reusability, offers controllable strategies for increased functional viability of the biocatalyst in a synthetic environment. Herein we used molecular dynamics (MD) simulations and probed the noncovalent interactions between model enzymes of technological interest, i.e., carbonic anhydrase (CA) and myeloperoxidase (MPO), with selected metal-organic frameworks (MOFs; MIL-160 and ZIF-8) of proven industrial implementation. We found that the CA and MPO can bind to MIL-160 at optimal binding energies of 201 and 501 kJ mol-1, respectively, that are strongly influenced by the increased incidence of hydrogen bonding between enzymes and the frameworks. The free energy of binding of enzymes to ZIF-8, on the other hand, was found to be less strongly influenced by hydrogen bonding networks relative to the occurrence of hydrophobic-hydrophobic interactions that yielded 106 kJ mol-1 for CA and 201 kJ mol-1 for MPO.
Collapse
Affiliation(s)
- Jordan Chapman
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26506-6070, United States
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26506-6070, United States
| |
Collapse
|
17
|
Zuo K, Capelli R, Rossetti G, Nechushtai R, Carloni P. Predictions of the Poses and Affinity of a Ligand over the Entire Surface of a NEET Protein: The Case of Human MitoNEET. J Chem Inf Model 2023; 63:643-654. [PMID: 36623826 PMCID: PMC9875805 DOI: 10.1021/acs.jcim.2c01280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Indexed: 01/11/2023]
Abstract
Human NEET proteins contain two [2Fe-2S] iron-sulfur clusters, bound to three Cys residues and one His residue. They exist in two redox states. Recently, these proteins have revealed themselves as attractive drug targets for mitochondrial dysfunction-related diseases, such as type 2 diabetes, Wolfram syndrome 2, and cancers. Unfortunately, the lack of information and mechanistic understanding of ligands binding to the whole functional, cytoplasmatic domain has limited rational drug design approaches. Here, we use an enhanced sampling technique, volume-based metadynamics, recently developed by a team involving some of us, to predict the poses and affinity of the 2-benzamido-4-(1,2,3,4-tetrahydronaphthalen-2-yl)-thiophene-3-carboxylate ligand to the entire surface of the cytoplasmatic domain of the human NEET protein mitoNEET (mNT) in an aqueous solution. The calculations, based on the recently published X-ray structure of the complex, are consistent with the measured affinity. The calculated free energy landscape revealed that the ligand can bind in multiple sites and with poses other than the one found in the X-ray. This difference is likely to be caused by crystal packing effects that allow the ligand to interact with multiple adjacent NEET protein copies. Such extra contacts are of course absent in the solution; therefore, the X-ray pose is only transient in our calculations, where the binding free energy correlates with the number of contacts. We further evaluated how the reduction and protonation of the Fe-bound histidine, as well as temperature, can affect ligand binding. Both such modifications introduce the possibility for the ligand to bind in an area of the protein other than the one observed in the X-ray, with no or little impact on affinity. Overall, our study can provide insights on the molecular recognition mechanisms of ligand binding to mNT in different oxidative conditions, possibly helping rational drug design of NEET ligands.
Collapse
Affiliation(s)
- Ke Zuo
- The
Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904 Jerusalem, Israel
- Department
of Physics, RWTH Aachen University, 52074 Aachen, Germany
- Computational
Biomedicine, Institute of Advanced Simulation IAS-5 and Institute
of Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Department
of Physics, Università di Ferrara, 44121 Ferrara, Italy
| | - Riccardo Capelli
- Department
of Biosciences, Università degli
Studi di Milano, Via
Celoria 26, 20133 Milan, Italy
| | - Giulia Rossetti
- Computational
Biomedicine, Institute of Advanced Simulation IAS-5 and Institute
of Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Jülich
Supercomputing Center (JSC), Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Department
of Neurology, Faculty of Medicine, RWTH
Aachen University, 52074 Aachen, Germany
| | - Rachel Nechushtai
- The
Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904 Jerusalem, Israel
| | - Paolo Carloni
- Department
of Physics, RWTH Aachen University, 52074 Aachen, Germany
- Computational
Biomedicine, Institute of Advanced Simulation IAS-5 and Institute
of Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- JARA
Institute: Molecular Neuroscience and Imaging, Institute of Neuroscience
and Medicine INM-11, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
| |
Collapse
|
18
|
Peonidin-3-O-Glucoside from Purple Corncob Ameliorates Nonalcoholic Fatty Liver Disease by Regulating Mitochondrial and Lysosome Functions to Reduce Oxidative Stress and Inflammation. Nutrients 2023; 15:nu15020372. [PMID: 36678243 PMCID: PMC9866220 DOI: 10.3390/nu15020372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
A frequent chronic liver condition across the world is nonalcoholic fatty liver disease (NAFLD). Oxidative stress caused by lipid accumulation is generally considered to be the main cause of NAFLD. Anthocyanins can effectively inhibit the production of reactive oxygen species and improve oxidative stress. In this work, six major anthocyanins were separated from purple corncob by semi-preparative liquid chromatography. The effects of the 6 kinds of anthocyanins against NAFLD were investigated using a free fatty acid (FFA)-induced cell model. The results showed that peonidin 3-O-glucoside (P3G) can significantly reduce lipid accumulation in the NAFLD cell model. The treatment with P3G also inhibited oxidative stress via inhibiting the excessive production of reactive oxygen species and superoxide anion, increasing glutathione levels, and enhancing the activities of SOD, GPX, and CAT. Further studies unveiled that treatment with P3G not only alleviated inflammation but also improved the depletion of mitochondrial content and damage of the mitochondrial electron transfer chain developed concomitantly in the cell model. P3G upregulated transcription factor EB (TFEB)-mediated lysosomal function and activated the peroxisome proliferator-activated receptor alpha (PPARα)-mediated peroxisomal lipid oxidation by interacting with PPARα possibly. Overall, this study added to our understanding of the protective effects of purple corn anthocyanins against NAFLD and offered suggestions for developing functional foods containing these anthocyanins.
Collapse
|
19
|
Krah A, Vogelaar T, de Jong SI, Claridge JK, Bond PJ, McMillan DGG. ATP binding by an F 1F o ATP synthase ε subunit is pH dependent, suggesting a diversity of ε subunit functional regulation in bacteria. Front Mol Biosci 2023; 10:1059673. [PMID: 36923639 PMCID: PMC10010621 DOI: 10.3389/fmolb.2023.1059673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2023] [Indexed: 03/03/2023] Open
Abstract
It is a conjecture that the ε subunit regulates ATP hydrolytic function of the F1Fo ATP synthase in bacteria. This has been proposed by the ε subunit taking an extended conformation, with a terminal helix probing into the central architecture of the hexameric catalytic domain, preventing ATP hydrolysis. The ε subunit takes a contracted conformation when bound to ATP, thus would not interfere with catalysis. A recent crystallographic study has disputed this; the Caldalkalibacillus thermarum TA2.A1 F1Fo ATP synthase cannot natively hydrolyse ATP, yet studies have demonstrated that the loss of the ε subunit terminal helix results in an ATP synthase capable of ATP hydrolysis, supporting ε subunit function. Analysis of sequence and crystallographic data of the C. thermarum F1Fo ATP synthase revealed two unique histidine residues. Molecular dynamics simulations suggested that the protonation state of these residues may influence ATP binding site stability. Yet these residues lie outside the ATP/Mg2+ binding site of the ε subunit. We then probed the effect of pH on the ATP binding affinity of the ε subunit from the C. thermarum F1Fo ATP synthase at various physiologically relevant pH values. We show that binding affinity changes 5.9 fold between pH 7.0, where binding is weakest, to pH 8.5 where it is strongest. Since the C. thermarum cytoplasm is pH 8.0 when it grows optimally, this correlates to the ε subunit being down due to ATP/Mg2+ affinity, and not being involved in blocking ATP hydrolysis. Here, we have experimentally correlated that the pH of the bacterial cytoplasm is of critical importance for ε subunit ATP affinity regulated by second-shell residues thus the function of the ε subunit changes with growth conditions.
Collapse
Affiliation(s)
- Alexander Krah
- Korea Institute for Advanced Study, School of Computational Sciences, Seoul, South Korea.,Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Timothy Vogelaar
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Sam I de Jong
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Jolyon K Claridge
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Duncan G G McMillan
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands.,School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
20
|
Chen Y, Li A, Xiong P, Xiao S, Sheng Z, Peng S, He Q. Three birds with one stone: Microphase separation induced by densely grafted short chains in ion conducting membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Lu Y, Zhao R, Wang C, Zhang X, Wang C. Deciphering the non-covalent binding patterns of three whey proteins with rosmarinic acid by multi-spectroscopic, molecular docking and molecular dynamics simulation approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Lin YC, Ren P, Webb LJ. AMOEBA Force Field Trajectories Improve Predictions of Accurate p Ka Values of the GFP Fluorophore: The Importance of Polarizability and Water Interactions. J Phys Chem B 2022; 126:7806-7817. [PMID: 36194474 PMCID: PMC10851343 DOI: 10.1021/acs.jpcb.2c03642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Precisely quantifying the magnitude, direction, and biological functions of electric fields in proteins has long been an outstanding challenge in the field. The most widely implemented experimental method to measure such electric fields at a particular residue in a protein has been through changes in pKa of titratable residues. While many computational strategies exist to predict these values, it has been difficult to do this accurately or connect predicted results to key structural or mechanistic features of the molecule. Here, we used experimentally determined pKa values of the fluorophore in superfolder green fluorescent protein (GFP) with amino acid mutations made at position Thr 203 to evaluate the pKa prediction ability of molecular dynamics (MD) simulations using a polarizable force field, AMOEBA. Structure ensembles from AMOEBA were used to calculate pKa values of the GFP fluorophore. The calculated pKa values were then compared to trajectories using a conventional fixed charge force field (Amber03 ff). We found that the position of water molecules included in the pKa calculation had opposite effects on the pKa values between the trajectories from AMOEBA and Amber03 force fields. In AMOEBA trajectories, the inclusion of water molecules within 35 Å of the fluorophore decreased the difference between the predicted and experimental values, resulting in calculated pKa values that were within an average of 0.8 pKa unit from the experimental results. On the other hand, in Amber03 trajectories, including water molecules that were more than 5 Å from the fluorophore increased the differences between the calculated and experimental pKa values. The inaccuracy of pKa predictions determined from Amber03 trajectories was caused by a significant stabilization of the deprotonated chromophore's free energy compared to the result in AMOEBA. We rationalize the cutoffs for explicit water molecules when calculating pKa to better predict the electrostatic environment surrounding the fluorophore buried in GFP. We discuss how the results from this work will assist the prospective prediction of pKa values or other electrostatic effects in a wide variety of folded proteins.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Program, The University of Texas at Austin, 105 E 24th St. STOP A5300, Austin, TX 78712-1224
| | - Pengyu Ren
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Program, The University of Texas at Austin, 105 E 24th St. STOP A5300, Austin, TX 78712-1224
| | - Lauren J. Webb
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Program, The University of Texas at Austin, 105 E 24th St. STOP A5300, Austin, TX 78712-1224
| |
Collapse
|
23
|
Banerjee P, Silva DV, Lipowsky R, Santer M. The importance of side branches of glycosylphosphatidylinositol anchors: a molecular dynamics perspective. Glycobiology 2022; 32:933-948. [PMID: 36197124 PMCID: PMC9620968 DOI: 10.1093/glycob/cwac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Many proteins are anchored to the cell surface of eukaryotes using a unique family of glycolipids called glycosylphosphatidylinositol (GPI) anchors. These glycolipids also exist without a covalently bound protein, in particular on the cell surfaces of protozoan parasites where they are densely populated. GPIs and GPI-anchored proteins participate in multiple cellular processes such as signal transduction, cell adhesion, protein trafficking and pathogenesis of Malaria, Toxoplasmosis, Trypanosomiasis and prion diseases, among others. All GPIs share a common conserved glycan core modified in a cell-dependent manner with additional side glycans or phosphoethanolamine residues. Here, we use atomistic molecular dynamic simulations and perform a systematic study to evaluate the structural properties of GPIs with different side chains inserted in lipid bilayers. Our results show a flop-down orientation of GPIs with respect to the membrane surface and the presentation of the side chain residues to the solvent. This finding agrees well with experiments showing the role of the side residues as active epitopes for recognition of GPIs by macrophages and induction of GPI-glycan-specific immune responses. Protein-GPI interactions were investigated by attaching parasitic GPIs to Green Fluorescent Protein. GPIs are observed to recline on the membrane surface and pull down the attached protein close to the membrane facilitating mutual contacts between protein, GPI and the lipid bilayer. This model is efficient in evaluating the interaction of GPIs and GPI-anchored proteins with membranes and can be extended to study other parasitic GPIs and proteins and develop GPI-based immunoprophylaxis to treat infectious diseases.
Collapse
Affiliation(s)
- Pallavi Banerjee
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany.,Mathematisch-Naturwissenschaftlichen Fakultät, University of Potsdam, Potsdam 14476, Germany
| | - Daniel Varon Silva
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| | - Reinhard Lipowsky
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany.,Mathematisch-Naturwissenschaftlichen Fakultät, University of Potsdam, Potsdam 14476, Germany
| | - Mark Santer
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| |
Collapse
|
24
|
Abstract
Relatively small mimics of interface secondary structures can be used to disrupt protein-protein interactions (PPIs). This strategy is valuable because many PPIs are pivotal in cell biology and contemporary medicinal chemistry. Small peptides tend to have random coil conformations in solution, so the entropy costs are high for them to order into states binding protein receptors. Consequently, peptides constrained in conformations resembling interface secondary structures are favored for enhanced affinities to PPI components. Helices are commonly found at PPI interfaces. The two general strategies that have emerged for imposing helical constraints in probes, capping and stapling, are often confused because both involve formation of macrocyclic rings. This review considers parameters that distinguish capping from stapling. Capping motifs terminate helices and project the adjacent peptide units in non-helical orientations, but stapling enforces helical motifs in ways that enable adjacent peptide fragments to extend helices. There is no evidence that stapling is more effective than capping for helix mimicry, but stapling is used more frequently. This imbalance may be because no strategies have emerged for synthetic C-capping with compact unit; if convenient and effective C-capping strategies were available then capping strategies should be more widely used.
Collapse
Affiliation(s)
- Jonathan Whisenant
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, USA.
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, USA.
| |
Collapse
|
25
|
Ishii Y, Matubayasi N, Washizu H. Nonpolarizable Force Fields through the Self-Consistent Modeling Scheme with MD and DFT Methods: From Ionic Liquids to Self-Assembled Ionic Liquid Crystals. J Phys Chem B 2022; 126:4611-4622. [PMID: 35698025 DOI: 10.1021/acs.jpcb.2c02782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A key to achieve the accuracy of molecular dynamics (MD) simulation is the set of force fields used to express the atomistic interactions. In particular, the electrostatic interaction remains the main issue for the precise simulation of various ionic soft materials from ionic liquids to their supramolecular compounds. In this study, we test the nonpolarizable force fields of ionic liquids (ILs) and self-assembled ionic liquid crystals (ILCs) for which the intermolecular charge transfer and intramolecular polarization are significant. The self-consistent modeling scheme is adopted to refine the atomic charges of ionic species in a condensed state through the use of density functional theory (DFT) under the periodic boundary condition. The atomic charges of the generalized amber force field (GAFF) are effectively updated to express the electrostatic properties of ionic molecules obtained by the DFT calculation in condensed phase, which improves the prediction accuracy of ionic conductivity with the obtained force field (GAFF-DFT). The derived DFT charges then suggest that the substitution of a hydrophobic liquid-crystalline moiety into IL-based cations enhances the charge localization of ionic groups in the amphiphilic molecules, leading to the amplification of the electrostatic interactions among the hydrophilic/ionic groups in the presence of hydrophobic moieties. In addition, we focus on an ion-conductive pathway hidden in the self-assembled nanostructure. The MD results indicate that the ionic groups of cation and anion interact strongly for keeping the bicontinuous nanosegregation of ionic nanochannel. The partial fractions of hydrophilic/ionic and hydrophobic nanodomains are then quantified with the volume difference from referenced IL systems, while the calculated ionic conductivity decreases in the self-assembled ILCs more than the occupied volume of ionic nanodomains. These analyses suggest that the mobility of ions in the self-assembled ILCs remains quite restricted even with small tetrafluoroborate anions because of strong attractive interaction among ionic moieties.
Collapse
Affiliation(s)
- Yoshiki Ishii
- Graduate School of Information Science, University of Hyogo, 7-1-28 minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Nobuyuki Matubayasi
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan.,Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hitoshi Washizu
- Graduate School of Information Science, University of Hyogo, 7-1-28 minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
26
|
Campo MG, Corral GM. Structural, dynamic, and hydration properties of quercetin and its aggregates in solution. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:294001. [PMID: 35472688 DOI: 10.1088/1361-648x/ac6a99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Quercetin is a flavonoid present in the human diet with multiple health benefits. Quercetin solutions are inhomogeneous even at very low concentrations due to quercetin's tendency to aggregate. We simulate, using molecular dynamics, three systems of quercetin solutions: infinite dilution, 0.22 M, and 0.46 M. The systems at the two highest concentrations represent regions of the quercetin aggregates, in which the concentration of this molecule is unusually high. We study the behavior of this molecule, its aggregates, and the modifications in the surrounding water. In the first three successive layers of quercetin hydration, the density of water and the hydrogen bonds formations between water molecules are smaller than that of bulk. Quercetin has a hydrophilic surface region that preferentially establishes donor hydrogen bonds with water molecules with relative frequencies from 0.12 to 0.46 at infinite dilution. Also, it has two hydrophobic regions above and below the planes of its rings, whose first hydration layers are further out from quercetin (≈0.3 Å) and their water molecules do not establish hydrogen bonds with it. Water density around the hydrophobic regions is smaller than that of the hydrophilic. Quercetin molecules aggregate inπ-stacking configurations, with a distance of ≈0.37 nm between the planes of their rings, and form bonds between their hydroxyl groups. The formation of quercetin aggregates decreases the hydrogen bonds between quercetin and the surrounding water and produces a subdiffusive behavior in water molecules. Quercetin has a subdiffusive behavior even at infinite dilution, which increases with the number of molecules within the aggregates and the time they remain within them.
Collapse
Affiliation(s)
- M G Campo
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Uruguay 151, (6300) Santa Rosa, Argentina
| | - G M Corral
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Uruguay 151, (6300) Santa Rosa, Argentina
| |
Collapse
|
27
|
Alvarado O, Quezada GR, Saavedra JH, Rozas RE, Toledo PG. Species Surface Distribution and Surface Tension of Aqueous Solutions of MIBC and NaCl Using Molecular Dynamics Simulations. Polymers (Basel) 2022; 14:polym14101967. [PMID: 35631850 PMCID: PMC9144742 DOI: 10.3390/polym14101967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Methyl isobutyl carbinol (MIBC) is a high-performance surfactant with unusual interfacial properties much appreciated in industrial applications, particularly in mineral flotation. In this study, the structure of air–liquid interfaces of aqueous solutions of MIBC-NaCl is determined by using molecular dynamics simulations employing polarizable and nonpolarizable force fields. Density profiles at the interfaces and surface tension for a wide range of MIBC concentrations reveal the key role of polarizability in determining the surface solvation of Cl− ions and the expulsion of non-polarizable Na+ ions from the interface to the liquid bulk, in agreement with spectroscopic experiments. The orientation of MIBC molecules at the water liquid–vapor interface changes as the concentration of MIBC increases, from parallel to the interface to perpendicular, leading to a well-packed monolayer. Surface tension curves of fresh water and aqueous NaCl solutions in the presence of MIBC intersect at a reproducible surfactant concentration for a wide range of salt concentrations. The simulation results for a 1 M NaCl aqueous solution with polarizable water and ions closely capture the MIBC concentration at the intercept. The increase in surface tension of the aqueous MIBC/NaCl mixture below the concentration of MIBC at the intersection seems to originate in a disturbance of the interfacial hydrogen bonding structure of the surface liquid water caused by Na+ ions acting at a distance and not by its presence on the interface.
Collapse
Affiliation(s)
- Omar Alvarado
- Departamento de Química, Facultad de Ciencias, Universidad del Bío-Bío, Av. Collao 1202, Concepción 4030000, Chile;
| | - Gonzalo R. Quezada
- Departamento de Ingeniería Química, Universidad de Concepción, Concepción 4030000, Chile
- Correspondence: (G.R.Q.); (P.G.T.)
| | - Jorge H. Saavedra
- Department of Wood Engineering, Universidad del Bío-Bío, Av. Collao 1202, Concepción 4030000, Chile;
| | - Roberto E. Rozas
- Department of Physics, Universidad del Bío-Bío, Av. Collao 1202, Concepción 4030000, Chile;
| | - Pedro G. Toledo
- Department of Chemical Engineering and Laboratory of Surface Analysis (ASIF), Universidad de -Concepción, Concepción 4030000, Chile
- Correspondence: (G.R.Q.); (P.G.T.)
| |
Collapse
|
28
|
Gomes IDS, Santana CA, Marcolino LS, de Lima LHF, de Melo-Minardi RC, Dias RS, de Paula SO, Silveira SDA. Computational prediction of potential inhibitors for SARS-COV-2 main protease based on machine learning, docking, MM-PBSA calculations, and metadynamics. PLoS One 2022; 17:e0267471. [PMID: 35452494 PMCID: PMC9032443 DOI: 10.1371/journal.pone.0267471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
The development of new drugs is a very complex and time-consuming process, and for this reason, researchers have been resorting heavily to drug repurposing techniques as an alternative for the treatment of various diseases. This approach is especially interesting when it comes to emerging diseases with high rates of infection, because the lack of a quickly cure brings many human losses until the mitigation of the epidemic, as is the case of COVID-19. In this work, we combine an in-house developed machine learning strategy with docking, MM-PBSA calculations, and metadynamics to detect potential inhibitors for SARS-COV-2 main protease among FDA approved compounds. To assess the ability of our machine learning strategy to retrieve potential compounds we calculated the Enrichment Factor of compound datasets for three well known protein targets: HIV-1 reverse transcriptase (PDB 4B3P), 5-HT2A serotonin receptor (PDB 6A94), and H1 histamine receptor (PDB 3RZE). The Enrichment Factor for each target was, respectively, 102.5, 12.4, 10.6, which are considered significant values. Regarding the identification of molecules that can potentially inhibit the main protease of SARS-COV-2, compounds output by the machine learning step went through a docking experiment against SARS-COV-2 Mpro. The best scored poses were the input for MM-PBSA calculations and metadynamics using CHARMM and AMBER force fields to predict the binding energy for each complex. Our work points out six molecules, highlighting the strong interaction obtained for Mpro-mirabegron complex. Among these six, to the best of our knowledge, ambenonium has not yet been described in the literature as a candidate inhibitor for the SARS-COV-2 main protease in its active pocket.
Collapse
Affiliation(s)
- Isabela de Souza Gomes
- Department of Computer Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Charles Abreu Santana
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Leonardo Henrique França de Lima
- Department of Exact and Biological Sciences, Universidade Federal de São João del-Rei, Sete Lagoas Campus, Sete Lagoas, Minas Gerais, Brazil
| | - Raquel Cardoso de Melo-Minardi
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Roberto Sousa Dias
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | |
Collapse
|
29
|
Cheng M, Shu H, Yang M, Yan G, Zhang L, Wang L, Wang W, Lu H. Fast Discrimination of Sialylated N-Glycan Linkage Isomers with One-Step Derivatization by Microfluidic Capillary Electrophoresis-Mass Spectrometry. Anal Chem 2022; 94:4666-4676. [PMID: 35258917 DOI: 10.1021/acs.analchem.1c04760] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Linkage isomers (α-2,3- or α-2,6-linkage) of sialylated N-glycans are involved in the emergence and progression of some diseases, so they are of great significance for diagnosing and monitoring diseases. However, the qualitative and quantitative analysis of sialylated N-glycan linkage isomers remains challenging due to their low abundance and limited isomeric separation techniques. Herein, we developed a novel strategy integrating one-step sialic acid derivatization, positive charge-sensitive separation and highly sensitive detection based on microfluidic capillary electrophoresis-mass spectrometry (MCE-MS) for fast and specific analysis of α-2,3- and α-2,6-linked sialylated N-glycan isomers. A kind of easily charged long-chain amino compound was screened first for one-step sialic acid derivatization so that only α-2,3- and α-2,6-linked isomers can be quickly and efficiently separated within 10 min by MCE due to the difference in structural conformation, whose separation mechanism was further theoretically supported by molecular dynamic simulation. In addition, different sialylated N-glycans were separated in order according to the number of sialic acids, so that a migration time-based prediction of the number of sialic acids was achieved. Finally, the sialylated N-glycome of human serum was profiled within 10 min and 6 of the 52 detected sialylated N-glycans could be potential diagnostic biomarkers of cervical cancer (CC), whose α-2,3- and α-2,6-linked isomers were distinguished by α-2,3Neuraminidase S.
Collapse
Affiliation(s)
- Mengxia Cheng
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.,Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, People's Republic of China
| | - Hong Shu
- Department of Clinical Laboratory, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Maohua Yang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, People's Republic of China
| | - Guoquan Yan
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, People's Republic of China
| | - Lei Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, People's Republic of China
| | - Liang Wang
- 908 Device Inc., Boston, Massachusetts 02210, United States
| | - Wenning Wang
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Haojie Lu
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.,Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
30
|
Zhang X, Lu Y, Zhao R, Wang C, Wang C, Zhang T. Study on simultaneous binding of resveratrol and curcumin to β-lactoglobulin: Multi-spectroscopic, molecular docking and molecular dynamics simulation approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107331] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Folberth A, Bharadwaj S, van der Vegt NFA. Small-to-large length scale transition of TMAO interaction with hydrophobic solutes. Phys Chem Chem Phys 2022; 24:2080-2087. [PMID: 35018925 DOI: 10.1039/d1cp05167a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report the effect of trimethylamine N-oxide (TMAO) on the solvation of nonpolar solutes in water studied with molecular dynamics (MD) simulations and free-energy calculations. The simulation data indicate the occurrence of a length scale crossover in the TMAO interaction with repulsive Weeks-Chandler-Andersen (WCA) solutes: while TMAO is depleted from the hydration shell of a small WCA solute (methane) and increases the free-energy cost of solute-cavity formation, it preferentially binds to a large WCA solute (α-helical polyalanine), reducing the free-energy cost of solute-cavity formation via a surfactant-like mechanism. Significantly, we show that this surfactant-like behaviour of TMAO reinforces the solvent-mediated attraction between large WCA solutes by means of an entropic force linked to the interfacial accumulation of TMAO. Specifically, this entropic force arises from the natural tendency of adsorbed TMAO molecules to mix back into the bulk. It therefore favours solute-solute contact states that minimise the surface area exposed to the solvent and have a small overall number of TMAO molecules adsorbed. In contrast to the well-known depletion force, its effect is compensated by enthalpic solute-solvent interactions. Correspondingly, the hydrophobic association free energy of the large α-helical solutes passes through a minimum at low TMAO concentration when cohesive solute-solvent van der Waals interactions are considered. The observations reported herein are reminiscent to cosolvent effects on hydrophobic polymer coil-globule collapse free energies (Bharadwaj et al., Commun. Chem. 2020, 3, 165) and may be of general significance in systems whose properties are determined by hydrophobic self-assembly.
Collapse
Affiliation(s)
- Angelina Folberth
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 10, 64287 Darmstadt, Germany.
| | - Swaminath Bharadwaj
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 10, 64287 Darmstadt, Germany.
| | - Nico F A van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 10, 64287 Darmstadt, Germany.
| |
Collapse
|
32
|
Wu H, Ghaani MR, Futera Z, English NJ. Effects of Externally Applied Electric Fields on the Manipulation of Solvated-Chignolin Folding: Static- versus Alternating-Field Dichotomy at Play. J Phys Chem B 2022; 126:376-386. [PMID: 35001614 PMCID: PMC8785190 DOI: 10.1021/acs.jpcb.1c06857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/06/2021] [Indexed: 12/20/2022]
Abstract
The interaction between a protein and external electric field (EF) can alter its structure and dynamical behavior, which has a potential impact on the biological function of proteins and cause uncertain health consequences. Conversely, the application of EFs of judiciously selected intensity and frequency can help to treat disease, and optimization of this requires a greater understanding of EF-induced effects underpinning basic protein biophysics. In the present study, chignolin─an artificial protein sufficiently small to undergo fast-folding events and transitions─was selected as an ideal prototype to investigate how, and to what extent, externally applied electric fields may manipulate or influence protein-folding phenomena. Nonequilibrium molecular dynamics (NEMD) simulations have been performed of solvated chignolin to determine the distribution of folding states and their underlying transition dynamics, in the absence and presence of externally applied electric fields (both static and alternating); a key focus has been to ascertain how folding pathways are altered in an athermal sense by external fields. Compared to zero-field conditions, a dramatically different─indeed, bifurcated─behavior of chignolin-folding processes emerges between static- and alternating-field scenarios, especially vis-à-vis incipient stages of hydrophobic-core formation: in alternating fields, fold-state populations diversified, with an attendant acceleration of state-hopping folding kinetics, featuring the concomitant emergence of a new, quasi-stable structure compared to the native structure, in field-shifted energy landscapes.
Collapse
Affiliation(s)
- HaoLun Wu
- School
of Chemical & Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mohammad Reza Ghaani
- School
of Chemical & Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zdeněk Futera
- Faculty
of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Niall J. English
- School
of Chemical & Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
33
|
Dong W, Zhou R, Chen J, Shu Z, Duan M. Phosphorylation Regulation on the Homo-Dimeric Binding of Transactive Response DNA-Binding Protein. J Chem Inf Model 2022; 62:5267-5275. [PMID: 35040651 DOI: 10.1021/acs.jcim.1c01224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The dimerization of transactive response DNA-binding protein of 43 kDa (TDP-43) is crucial for the RNA metabolism, and the higher-order aggregation of TDP-43 would induce several neurodegenerative diseases. The dimerization and aggregation of TDP-43 are regulated by the phosphorylation on its N-terminal domain (NTD). Understanding the regulation mechanism of TDP-43 NTD dimerization is crucial for the preventing of harmful aggregation and the associated diseases. In this study, the dimerization processes of wild-type (WT), phosphorylated S48 (pS48), and phosphomimic S48E mutation (S48E) of TDP-43 NTD are characterized by the enhanced sampling technology. Our results show that the phosphorylation not only shift the conformation population of bound and unbound state of TDP-43 NTD, but also would regulate the dimerization processes, including increase the binding free-energy barrier. The phosphomimic mutation would also shift the conformational space of TDP-43 NTD dimer to the unbound structures; however, the thermodynamic and kinetic properties of the dimerization processes between the phosphorylated and phosphomimic mutant systems are distinct, which reminds us to carefully study the phosphorylation regulation by using the phosphomimic mutations.
Collapse
Affiliation(s)
- Wanqian Dong
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technoloy, College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou 350117, Fujian, China.,National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Rui Zhou
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Jiawen Chen
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Zhengyu Shu
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technoloy, College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou 350117, Fujian, China
| | - Mojie Duan
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| |
Collapse
|
34
|
Felline A, Raimondi F, Gentile S, Fanelli F. Structural communication between the GTPase Sec4p and its activator Sec2p: Determinants of GEF activity and early deformations to nucleotide release. Comput Struct Biotechnol J 2022; 20:5162-5180. [PMID: 36187918 PMCID: PMC9508438 DOI: 10.1016/j.csbj.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Ras GTPases are molecular switches that cycle between OFF and ON states depending on the bound nucleotide (i.e. GDP-bound and GTP-bound, respectively). The Rab GTPase, Sec4p, plays regulatory roles in multiple steps of intracellular vesicle trafficking. Nucleotide release is catalyzed by the Guanine Nucleotide Exchange Factor (GEF) Sec2p. Here, the integration of structural information with molecular dynamics (MD) simulations addressed a number of questions concerning the intrinsic and stimulated dynamics of Sec2p and Sec4p as well as the chain of structural deformations leading to GEF-assisted activation of the Rab GTPase. Sec2p holds an intrinsic ability to adopt the conformation found in the crystallographic complexes with Sec4p, thus suggesting that the latter selects and shifts the conformational equilibrium towards a pre-existing bound-like conformation of Sec2p. The anchoring of Sec4p to a suitable conformation of Sec2p favors the Sec2p-assisted pulling on itself of the α1/switch 1 (SWI) loop and of SWI, which loose any contact with GDP. Those deformations of Sec4p would occur earlier. Formation of the final Sec2p-Sec4p hydrophobic interface, accomplishes later. Disruption of the nucleotide cage would cause firstly loss of interactions with the guanine ring and secondly loss of interactions with the phosphates. The ease in sampling the energy landscape and adopting a bound-like conformation likely favors the catalyzing ability of GEFs for Ras GTPases.
Collapse
|
35
|
Pal S, Banerjee S, Prabhakaran EN. α-Helices propagating from stable nucleators exhibit unconventional thermal folding. FEBS Lett 2021; 595:2942-2949. [PMID: 34716991 DOI: 10.1002/1873-3468.14216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/07/2022]
Abstract
Although the effect of thermal perturbations on protein structure has long been modeled in helical peptides, several details, such as the relation between the thermal stabilities of the propagating and nucleating segments of helices, remain elusive. We had earlier reported on the helix-nucleating propensities of covalent H-bond surrogate-constrained α-turns. Here, we analyze the thermal stabilities of helices that propagate along peptides appended to these α-helix nucleators using their NMR and far-UV CD spectra. Unconventional thermal folding of these helix models reveals that the helical fold in propagating backbones resists thermal perturbations as long as their nucleating template is intact. The threshold temperature of such resistance is also influenced by the extent of similarity between the natures of helical folds in the nucleating and propagating segments. Correlations between helicities and rigidities of helix-nucleating and helix-propagating segments reveal subtle interdependence, which explains cooperativity and residual helix formation during protein folding.
Collapse
Affiliation(s)
- Sunit Pal
- Department of Chemistry, Indian Institute of Science, Bangalore, India
| | - Shreya Banerjee
- Department of Chemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
36
|
Tam B, Sinha S, Qin Z, Wang SM. Comprehensive Identification of Deleterious TP53 Missense VUS Variants Based on Their Impact on TP53 Structural Stability. Int J Mol Sci 2021; 22:11345. [PMID: 34768775 PMCID: PMC8583684 DOI: 10.3390/ijms222111345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
TP53 plays critical roles in maintaining genome stability. Deleterious genetic variants damage the function of TP53, causing genome instability and increased cancer risk. Of the large quantity of genetic variants identified in TP53, however, many remain functionally unclassified as variants of unknown significance (VUS) due to the lack of evidence. This is reflected by the presence of 749 (42%) VUS of the 1785 germline variants collected in the ClinVar database. In this study, we addressed the deleteriousness of TP53 missense VUS. Utilizing the protein structure-based Ramachandran Plot-Molecular Dynamics Simulation (RPMDS) method that we developed, we measured the effects of missense VUS on TP53 structural stability. Of the 340 missense VUS tested, we observed deleterious evidence for 193 VUS, as reflected by the TP53 structural changes caused by the VUS-substituted residues. We compared the results from RPMDS with those from other in silico methods and observed higher specificity of RPMDS in classification of TP53 missense VUS than these methods. Data from our current study address a long-standing challenge in classifying the missense VUS in TP53, one of the most important tumor suppressor genes.
Collapse
Affiliation(s)
| | | | | | - San Ming Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China; (B.T.); (S.S.); (Z.Q.)
| |
Collapse
|
37
|
Balamurugan K, Pisabarro MT. Stabilizing Role of Water Solvation on Anion-π Interactions in Proteins. ACS OMEGA 2021; 6:25350-25360. [PMID: 34632193 PMCID: PMC8495695 DOI: 10.1021/acsomega.1c03264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/20/2021] [Indexed: 05/31/2023]
Abstract
In this work, anion-π interactions between sulfate groups (SO4 2-) and protein aromatic amino acids (AAs) (histidine protonated (HisP), histidine neutral (HisN), tyrosine (Tyr), tryptophan (Trp), and phenylalanine (Phe)) in an aqueous environment have been analyzed using quantum chemical (QC) calculations and molecular dynamics (MD) simulations. Sulfates can occur naturally in solution and can be contained in biomolecules playing relevant roles in their biological function. In particular, the presence of sulfate groups in glycosaminoglycans such as heparin and heparan sulfate has been shown to be relevant for protein and cellular communication and, consequently, for tissue regeneration. Therefore, anion-π interactions between sulfate groups and aromatic residues represent a relevant aspect to investigate. QC results show that such an anion-π mode of interaction between SO4 2- and aromatic AAs is only possible in the presence of water molecules, in the absence of any other cooperative non-covalent interactions. Protonated histidine stands out in terms of its enhancement in the magnitude of interaction strength on solvation. Other AAs such as non-protonated histidine, tyrosine, and phenylalanine can stabilize anion-π interactions on solvation, albeit with weak interaction energy. Tryptophan does not exhibit any anion-π mode of interaction with SO4 2-. The order of magnitude of the interaction of aromatic AAs with SO4 2- on microsolvation is HisP > HisN > Tyr > Trp > Phe. Atoms in molecules (AIM) analysis illustrates the significance of water molecules in stabilizing the divalent SO4 2- anion over the π surface of the aromatic AAs. MD simulation analysis shows that the order of magnitude of the interaction of SO4 2- with aromatic AAs in macroscopic solvation is HisP > HisN, Tyr, Trp > Phe, which is very much in line with the QC results. Spatial distribution function analysis illustrates that protonated histidine alone is capable of establishing the anion-π interaction with SO4 2- in the solution phase. This study sheds light on the understanding of anion-π interactions between SO4 2- and aromatic AAs such as His and Tyr observed in protein crystal structures and the significance of water molecules in stabilizing such interactions, which is not feasible otherwise.
Collapse
|
38
|
Zuo K, Marjault HB, Bren KL, Rossetti G, Nechushtai R, Carloni P. The two redox states of the human NEET proteins' [2Fe-2S] clusters. J Biol Inorg Chem 2021; 26:763-774. [PMID: 34453614 PMCID: PMC8463382 DOI: 10.1007/s00775-021-01890-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/26/2021] [Indexed: 11/04/2022]
Abstract
The NEET proteins constitute a unique class of [2Fe-2S] proteins. The metal ions bind to three cysteines and one histidine. The proteins' clusters exist in two redox states; the oxidized protein (containing two FeIII ions) can transfer the cluster to apo-acceptor protein(s), while the reduced form (containing one ferrous ion) remains bound to the protein frame. Here, we perform in silico and in vitro studies on human NEET proteins in both reduced and oxidized forms. Quantum chemical calculations on all available human NEET proteins structures suggest that reducing the cluster weakens the Fe-NHis and Fe-SCys bonds, similar to what is seen in other Fe-S proteins (e.g., ferredoxin and Rieske protein). We further show that the extra electron in the [2Fe-2S]+ clusters of one of the NEET proteins (mNT) is localized on the His-bound iron ion, consistently with our previous spectroscopic studies. Kinetic measurements demonstrate that the mNT [2Fe-2S]+ is released only by an increase in temperature. Thus, the reduced state of human NEET proteins [2Fe-2S] cluster is kinetically inert. This previously unrecognized kinetic inertness of the reduced state, along with the reactivity of the oxidized state, is unique across all [2Fe-2S] proteins. Finally, using a coevolutionary analysis, along with molecular dynamics simulations, we provide insight on the observed allostery between the loop L2 and the cluster region. Specifically, we show that W75, R76, K78, K79, F82 and G85 in the latter region share similar allosteric characteristics in both redox states.
Collapse
Affiliation(s)
- Ke Zuo
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
- Department of Physics, RWTH Aachen University, 52074, Aachen, Germany
| | - Henri-Baptiste Marjault
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
- Department of Physics, RWTH Aachen University, 52074, Aachen, Germany
| | - Kara L Bren
- Department of Chemistry, University of Rochester, Rochester, NY, 14627-0216, USA
| | - Giulia Rossetti
- Computational Biomedicine, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Jülich Supercomputing Center (JSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Neurology, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel.
| | - Paolo Carloni
- Department of Physics, RWTH Aachen University, 52074, Aachen, Germany.
- Computational Biomedicine, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
- JARA Institute: Molecular Neuroscience and Imaging, Institute of Neuroscience and Medicine INM-11, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
39
|
Glielmo A, Husic BE, Rodriguez A, Clementi C, Noé F, Laio A. Unsupervised Learning Methods for Molecular Simulation Data. Chem Rev 2021; 121:9722-9758. [PMID: 33945269 PMCID: PMC8391792 DOI: 10.1021/acs.chemrev.0c01195] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Indexed: 12/21/2022]
Abstract
Unsupervised learning is becoming an essential tool to analyze the increasingly large amounts of data produced by atomistic and molecular simulations, in material science, solid state physics, biophysics, and biochemistry. In this Review, we provide a comprehensive overview of the methods of unsupervised learning that have been most commonly used to investigate simulation data and indicate likely directions for further developments in the field. In particular, we discuss feature representation of molecular systems and present state-of-the-art algorithms of dimensionality reduction, density estimation, and clustering, and kinetic models. We divide our discussion into self-contained sections, each discussing a specific method. In each section, we briefly touch upon the mathematical and algorithmic foundations of the method, highlight its strengths and limitations, and describe the specific ways in which it has been used-or can be used-to analyze molecular simulation data.
Collapse
Affiliation(s)
- Aldo Glielmo
- International
School for Advanced Studies (SISSA) 34014 Trieste, Italy
| | - Brooke E. Husic
- Freie
Universität Berlin, Department of Mathematics
and Computer Science, 14195 Berlin, Germany
| | - Alex Rodriguez
- International Centre for Theoretical
Physics (ICTP), Condensed Matter and Statistical
Physics Section, 34100 Trieste, Italy
| | - Cecilia Clementi
- Freie
Universität Berlin, Department for
Physics, 14195 Berlin, Germany
- Rice
University Houston, Department of Chemistry, Houston, Texas 77005, United States
| | - Frank Noé
- Freie
Universität Berlin, Department of Mathematics
and Computer Science, 14195 Berlin, Germany
- Freie
Universität Berlin, Department for
Physics, 14195 Berlin, Germany
- Rice
University Houston, Department of Chemistry, Houston, Texas 77005, United States
| | - Alessandro Laio
- International
School for Advanced Studies (SISSA) 34014 Trieste, Italy
- International Centre for Theoretical
Physics (ICTP), Condensed Matter and Statistical
Physics Section, 34100 Trieste, Italy
| |
Collapse
|
40
|
Tohar R, Ansbacher T, Sher I, Afriat-Jurnou L, Weinberg E, Gal M. Screening Collagenase Activity in Bacterial Lysate for Directed Enzyme Applications. Int J Mol Sci 2021; 22:ijms22168552. [PMID: 34445258 PMCID: PMC8395246 DOI: 10.3390/ijms22168552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 01/23/2023] Open
Abstract
Collagenases are essential enzymes capable of digesting triple-helical collagen under physiological conditions. These enzymes play a key role in diverse physiological and pathophysiological processes. Collagenases are used for diverse biotechnological applications, and it is thus of major interest to identify new enzyme variants with improved characteristics such as expression yield, stability, or activity. The engineering of new enzyme variants often relies on either rational protein design or directed enzyme evolution. The latter includes screening of a large randomized or semirational genetic library, both of which require an assay that enables the identification of improved variants. Moreover, the assay should be tailored for microplates to allow the screening of hundreds or thousands of clones. Herein, we repurposed the previously reported fluorogenic assay using 3,4-dihydroxyphenylacetic acid for the quantitation of collagen, and applied it in the detection of bacterial collagenase activity in bacterial lysates. This enabled the screening of hundreds of E. coli colonies expressing an error-prone library of collagenase G from C. histolyticum, in 96-well deep-well plates, by measuring activity directly in lysates with collagen. As a proof-of-concept, a single variant exhibiting higher activity than the starting-point enzyme was expressed, purified, and characterized biochemically and computationally. This showed the feasibility of this method to support medium-high throughput screening based on direct evaluation of collagenase activity.
Collapse
Affiliation(s)
- Ran Tohar
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.T.); (T.A.); (I.S.); (E.W.)
| | - Tamar Ansbacher
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.T.); (T.A.); (I.S.); (E.W.)
- Hadassah Academic College, 7 Hanevi’im Street, Jerusalem 9101001, Israel
| | - Inbal Sher
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.T.); (T.A.); (I.S.); (E.W.)
| | - Livnat Afriat-Jurnou
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee 1220800, Israel
| | - Evgeny Weinberg
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.T.); (T.A.); (I.S.); (E.W.)
| | - Maayan Gal
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (R.T.); (T.A.); (I.S.); (E.W.)
- Correspondence: ; Tel.: +972-50-7987058
| |
Collapse
|
41
|
Rawal A, Rhinehardt KL, Mohan RV, Pendse M. Influence of Hydroxyproline on Mechanical Behavior of Collagen Mimetic Proteins Under Fraying Deformation-Molecular Dynamics Investigations. J Biomech Eng 2021; 143:081009. [PMID: 33764409 DOI: 10.1115/1.4050648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Indexed: 11/08/2022]
Abstract
Molecular dynamics modeling is used to simulate, model, and analyze mechanical deformation behavior and predictive properties of three different synthetic collagen proteins obtained from RSC-PDB, 1BKV, 3A08, and 2CUO, with varying concentrations of hydroxyproline (HYP). Hydroxyproline is credited with providing structural support for the collagen protein molecules. Hydroxyproline's influence on these three synthetic collagen proteins' mechanical deformation behavior and predictive properties is investigated in this paper. A detailed study and inference of the protein's mechanical characteristics associated with HYP content are investigated through fraying deformation behavior. A calculated Gibbs free energy value (ΔG) of each polypeptide α chain that corresponds with a complete unfolding of a single polypeptide α-chain from a triple-helical protein is obtained with umbrella sampling. The force needed for complete separation of the polypeptide α-chain from the triple-helical protein is analyzed for proteins to understand the influence of HYP concentration and is discussed in this paper. Along with a difference in ΔG, different unfolding pathways for the molecule and individual chains are observed. The correlation between the fraying deformation mechanical characteristics and the collagen proteins' hydroxyproline content is provided in this study via the three collagen proteins' resulting binding energies.
Collapse
Affiliation(s)
- Atul Rawal
- Nanoengineering Department, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC 27401
| | - Kristen L Rhinehardt
- Computational Data Science and Engineering Department, North Carolina A&T State University, Greensboro, NC 27401
| | - Ram V Mohan
- Nanoengineering Department, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC 27401
| | - Max Pendse
- Nanoengineering Department, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC 27401
| |
Collapse
|
42
|
Zhao J, Li S, Xi X, Gong C. A quantum mechanics-based framework for knowledge-based innovation. JOURNAL OF KNOWLEDGE MANAGEMENT 2021. [DOI: 10.1108/jkm-12-2020-0920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
Because the discontinuous and uncertain characteristics of knowledge-based innovation cannot be reasonably interpreted by conventional management approaches, quantum mechanics which begins with uncertainty and concerns with a dynamic process of the complex system, has been exploratorily used in the management field. Although the theoretical new insights are provided by pioneering studies, quantitative research is in short supply. This paper aims to propose a quantum mechanics-based framework for quantitative research, thus extending the application of quantum mechanics in the knowledge management area from a dynamic system evolutionary standpoint.
Design/methodology/approach
Based on the similarity comparison between knowledge-based system evolution and atomic motion, the authors construct the atom-like structure of the knowledge-based system and elaborate the evolutionary mechanism of the knowledge-based system, thereby establishing the quantitative model. Apple and Zhongxing Telecom Equipment were selected for an empirical study to demonstrate the usefulness of the models for research on knowledge-based innovation and explore the unique knowledge-based innovation characteristics of the two firms.
Findings
First, the transition force of dynamic knowledge shows an inverted U shape; accumulating dynamic knowledge to a moderate degree not only facilitates transforming dynamic knowledge into static knowledge but also balances the relationship between the influence of knowledge force range and dynamic knowledge transformation. Second, existing knowledge is gradually substituted by new knowledge and knowledge density at a high knowledge energy level distinctly increases with a narrower bandwidth. Third, the investment loss is associated with resource configuration, resource utilization and the amount of accumulative dynamic knowledge before investment. Knowledge loss is negatively correlated with the knowledge compatibility coefficient.
Research limitations/implications
The authors use the advanced method in quantum mechanics to legitimately unveil the emergence mechanism of knowledge-based innovation. Meanwhile, the authors capture the non-linear transformation relationship of heterogeneous knowledge and expose the change in ways of both investment loss and knowledge loss that cannot be quantified by conventional models. In doing so, the authors not only reveal the principle of qualitative knowledge change but also offer practical implications for developing flexible and targeted innovation strategies.
Originality/value
First, by proposing a complete quantum mechanics-based framework, the authors not only supplement the quantitative research contents to knowledge-based innovation literature which proposed calls to conduct research in way of quantum mechanics but also overcome the difficulties of knowledge-based system conceptualization and measurement. Second, the authors reveal the uncertain change of knowledge transformation and measure the loss of investment and knowledge, which contribute to identifying defects of firms in knowledge-based innovation. Third, the authors explore the internal mechanism that led to knowledge-based innovation exhibits non-linear characteristics and capture unique dynamic relationships between different variables which affect the emergence of knowledge-based innovation.
Collapse
|
43
|
Cordina RJ, Smith B, Tuttle T. Reproduction of macroscopic properties of unsaturated triacylglycerides using a modified NERD force field. J Mol Graph Model 2021; 108:107996. [PMID: 34340008 DOI: 10.1016/j.jmgm.2021.107996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/25/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
Unsaturated triacylglycerides are found in many commonly consumed foods, such as cooking oils, nuts and chocolate. There are however very few publications on Molecular Dynamics simulations of such molecules, and, to the best of our knowledge, no such published research on crystalline mono-unsaturated triacylglycerides. The work described in this paper is an evaluation of different force fields (GROMOS96 and NERD) to determine the best force field parameters to reproduce the crystalline and melted macroscopic properties of such molecules accurately. The best results were obtained by modifying the NERD force field, through which we were able to reproduce the crystalline and melted density as well as crystal dimensions of mono-unsaturated triacylglycerides.
Collapse
Affiliation(s)
- Robert J Cordina
- Mondelēz UK R&D Ltd., PO Box 12, Bournville Lane, Birmingham B30 2LU, UK; Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Beccy Smith
- Mondelēz UK R&D Ltd., PO Box 12, Bournville Lane, Birmingham B30 2LU, UK
| | - Tell Tuttle
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| |
Collapse
|
44
|
Zhou L, Wang D, Iftikhar M, Lu Y, Zhou M. Conformational changes and binding property of the periplasmic binding protein BtuF during vitamin B 12 transport revealed by collision-induced unfolding, hydrogen-deuterium exchange mass spectrometry and molecular dynamic simulation. Int J Biol Macromol 2021; 187:350-360. [PMID: 34303738 DOI: 10.1016/j.ijbiomac.2021.07.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
The periplasmic binding protein (PBP) BtuF plays a key role in transporting vitamin B12 from periplasm to the ATP-binding cassette (ABC) transporter BtuCD. Conformational changes of BtuF during transport can hardly be captured by traditional biophysical methods and the exact mechanism regarding B12 and BtuF recognition is still under debate. In the present work, conformational changes of BtuF upon B12 binding and release were investigated using hybrid approaches including collision-induced unfolding (CIU), hydrogen deuterium exchange mass spectrometry (HDX-MS) and molecular dynamics (MD) simulation. It was found that B12 binding increased the stability of BtuF. In addition, fast exchange regions of BtuF were localized. Most importantly, midpoint of hinge helix in BtuF was found highly flexible, and binding of B12 proceed in a manner similar to the Venus flytrap mechanism. Our study therefore delineates a clear view of BtuF delivering B12, and demonstrated a hybrid approach encompassing MS and computer based methods that holds great potential to the probing of conformational dynamics of proteins in action.
Collapse
Affiliation(s)
- Lijun Zhou
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China
| | - Defu Wang
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China
| | - Mehwish Iftikhar
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China
| | - Yinghong Lu
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China.
| | - Min Zhou
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
45
|
Zhu L, Song X, Pan F, Tuersuntuoheti T, Zheng F, Li Q, Hu S, Zhao F, Sun J, Sun B. Interaction mechanism of kafirin with ferulic acid and tetramethyl pyrazine: Multiple spectroscopic and molecular modeling studies. Food Chem 2021; 363:130298. [PMID: 34237557 DOI: 10.1016/j.foodchem.2021.130298] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022]
Abstract
Ferulic acid (FA) and tetramethyl pyrazine (TMP) are intrinsic bioactive compounds in baijiu, and kafirin is the major protein of sorghum, which is the raw material of baijiu. In this study, the interactions of kafirin-FA and kafirin-TMP were investigated by multiple spectroscopic and molecular modeling techniques. Fluorescence spectra showed that intrinsic fluorescence of kafirin drastically quenched because of the formations of kafirin-FA and kafirin-TMP complexes. The CD studies indicated that the combination with FA or TMP decreased the α-helix content of kafirin slightly. The shifts and intensity changes of UV-Vis, FTIR and fluorescence spectra confirmed the formations of complexes. Moreover, the molecular docking and molecular dynamics studies showed that hydrophobic interactions and hydrogen bonds played major roles in the formations of kafirin-FA and kafirin-TMP complexes, and the formations of complexes made kafirin structures more compact. This work is of great importance for further quality improvement in baijiu and alcoholic beverages.
Collapse
Affiliation(s)
- Lin Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xuebo Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Fei Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Tuohetisayipu Tuersuntuoheti
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Fuping Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Qing Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Siqi Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Feifei Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinyuan Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
46
|
Jayaswal A, Pathak E, Mishra H, Shah K. Evaluation of binding of potential ADMET/tox screened saquinavir analogues for inhibition of HIV-protease via molecular dynamics and binding free energy calculations. J Biomol Struct Dyn 2021; 40:6439-6449. [PMID: 33663345 DOI: 10.1080/07391102.2021.1885496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Developing novel drug molecules against HIV is a scientific quest necessitated by development of drug resistance against used drugs. We report comparative results of molecular dynamics simulation studies on 11 structural analogues of Saquinavir (SQV) - against HIV-protease that were earlier examined for pharmacodynamic and pharmacokinetic properties. We reported analogues S1, S5 and S8 to qualify the ADMET criterion and may be considered as potential lead molecules. In this study the designed molecules were successively docked with native HIV-protease at AutoDock. Docking scores established relative goodness of the 11 analogues against the benchmark for Saquinavir. The docked complexes were subjected to molecular dynamics simulation studies using GROMACS 4.6.2. Four parameters viz. H-bonding, RMSD, Binding energy and Protein-Ligand Distance were used for comparative analyses of the analogues relative to Saquinavir. The comparison and analysis of the results are indicative that analogues S8, S9 and S1 are promising candidates among all the analogues studied. From our earlier work and present study it is evident that among the three S8 and S1 qualify the ADMET criterion and between S1 and S8, the analogue S8 shows more target efficacy and specificity over S1 and have better molecular dynamics simulation results. Thus, of the 11 de novo Saquinavir analogues, the S8 appears to be the most promising candidate as lead molecule for HIV-protease inhibitor and is best suited for testing under biological system. Further validation of the proposed lead molecules through wet lab studies involving antiviral assays however is required.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amit Jayaswal
- Department of Bioinformatics, MMV, Banaras Hindu University, Varanasi, India
| | - Ekta Pathak
- Department of Bioinformatics, MMV, Banaras Hindu University, Varanasi, India
| | | | - Kavita Shah
- Institute of Environment and Sustainable Development, BHU, Varanasi, India
| |
Collapse
|
47
|
The concept of protein folding/unfolding and its impacts on human health. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021. [PMID: 34090616 DOI: 10.1016/bs.apcsb.2021.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Proteins have evolved in specific 3D structures and play different functions in cells and determine various reactions and pathways. The newly synthesized amino acid chains once depart ribosome must crumple into three-dimensional structures so can be biologically active. This process of protein that makes a functional molecule is called protein folding. The protein folding is both a biological and a physicochemical process that depends on the sequence of it. In fact, this process occurs more complicated and in some cases and in exposure to some molecules like glucose (glycation), mistaken folding leads to amyloid structures and fatal disorders called conformational diseases. Such conditions are detected by the quality control system of the cell and these abnormal proteins undergo renovation or degradation. This scenario takes place by the chaperones, chaperonins, and Ubiquitin-proteasome complex. Understanding of protein folding mechanisms from different views including experimental and computational approaches has revealed some intermediate ensembles such as molten globule and has been subjected to biophysical and molecular biology attempts to know more about prevalent conformational diseases.
Collapse
|
48
|
Jurásek M, Kumar J, Paclíková P, Kumari A, Tripsianes K, Bryja V, Vácha R. Phosphorylation-induced changes in the PDZ domain of Dishevelled 3. Sci Rep 2021; 11:1484. [PMID: 33452274 PMCID: PMC7810883 DOI: 10.1038/s41598-020-79398-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/04/2020] [Indexed: 01/29/2023] Open
Abstract
The PDZ domain of Dishevelled 3 protein belongs to a highly abundant protein recognition motif which typically binds short C-terminal peptides. The affinity of the PDZ towards the peptides could be fine-tuned by a variety of post-translation modifications including phosphorylation. However, how phosphorylations affect the PDZ structure and its interactions with ligands remains elusive. Combining molecular dynamics simulations, NMR titration, and biological experiments, we explored the role of previously reported phosphorylation sites and their mimetics in the Dishevelled PDZ domain. Our observations suggest three major roles for phosphorylations: (1) acting as an on/off PDZ binding switch, (2) allosterically affecting the binding groove, and (3) influencing the secondary binding site. Our simulations indicated that mimetics had similar but weaker effects, and the effects of distinct sites were non-additive. This study provides insight into the Dishevelled regulation by PDZ phosphorylation. Furthermore, the observed effects could be used to elucidate the regulation mechanisms in other PDZ domains.
Collapse
Affiliation(s)
- Miroslav Jurásek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Jitender Kumar
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Petra Paclíková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Alka Kumari
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Konstantinos Tripsianes
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, 612 65, Czech Republic
| | - Robert Vácha
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
49
|
Yang M, Tang Y, Weng J, Liu Z, Wang W. The Role of Calcium in Regulating the Conformational Dynamics of d-Galactose/d-Glucose-Binding Protein Revealed by Markov State Model Analysis. J Chem Inf Model 2021; 61:891-900. [PMID: 33445873 DOI: 10.1021/acs.jcim.0c01119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The d-glucose/d-galactose-binding protein (GGBP) from Escherichia coli is a substrate-binding protein (SBP) associated with sugar transport and chemotaxis. It is also a calcium-binding protein, which makes it unique in the SBP family. However, the functional importance of Ca2+ binding is not fully understood. Here, the calcium-dependent properties of GGBP were explored by all-atom molecular dynamics simulations and Markov state model (MSM) analysis as well as single-molecule Förster resonance energy transfer (smFRET) measurements. In agreement with previous experimental studies, we observed the structure stabilization effect of Ca2+ binding on the C-terminal domain of GGBP, especially the Ca2+-binding site. Interestingly, the MSMs of calcium-depleted GGBP and calcium-bound GGBP (GGBP/Ca2+) demonstrate that Ca2+ greatly stabilizes the open conformation, and smFRET measurements confirmed this result. Further analysis reveals that Ca2+ binding disturbs the local hydrogen bonding interactions and the conformational dynamics of the hinge region, thereby weakening the long-range interdomain correlations to favor the open conformation. These results suggest an active regulatory role of Ca2+ binding in GGBP, which finely tunes the conformational distribution. The work sheds new light on the study of calcium-binding proteins in prokaryotes.
Collapse
Affiliation(s)
- Maohua Yang
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Yegen Tang
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Jingwei Weng
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Wenning Wang
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
50
|
Quezada GR, Jeldres M, Toro N, Robles P, Toledo PG, Jeldres RI. Understanding the flocculation mechanism of quartz and kaolinite with polyacrylamide in seawater: A molecular dynamics approach. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125576] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|