1
|
Trusova VM, Tarabara UK, Thomsen MH, Gorbenko GP. Structural modification of lipid membranes by polyphenols: A fluorescence spectroscopy study. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184411. [PMID: 39855323 DOI: 10.1016/j.bbamem.2025.184411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/09/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
The present study investigates the molecular mechanisms of polyphenol-lipid interactions and their impact on membrane properties. Using pyrene and DPH as reporter molecules, we examined the impact of quercetin, curcumin, gallic, and salicylic acids on membranes composed of phosphatidylcholine (PC) and its mixtures with phosphatidylglycerol (PG), cardiolipin (CL), and cholesterol (Chol). Quercetin was found to increase the lipid order without affecting the lipid bilayer free volume, indicating interactions near the membrane surface. In turn, curcumin exhibited more complex effects, reducing free volume in PC but increasing it in PG vesicles, reflecting its amphiphilic structure and variable penetration depth. Gallic and salicylic acids selectively increased free volume at the membrane core without influencing lipid order at the upper regions of lipid bilayer. The results obtained demonstrate that polyphenol structure and lipid composition dictate the resultant pattern of polyphenol-membranes interactions, which may have implications for drug delivery and nutraceutical design.
Collapse
Affiliation(s)
- Valeriya M Trusova
- Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine.
| | - Uliana K Tarabara
- Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Mette H Thomsen
- AAU Energy, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| | - Galyna P Gorbenko
- Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| |
Collapse
|
2
|
Li D, Liu X, Dong F, Li W. Advancements in phasor-based FLIM: multi-component analysis and lifetime probes in biological imaging. J Mater Chem B 2025; 13:472-484. [PMID: 39601095 DOI: 10.1039/d4tb01669f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a reliable method that achieves imaging by detecting fluorescence lifetimes within samples. Owing to its unique temporal characteristic, it can complement fluorescence intensity measurement. Technological and methodological advancements in FLIM have broadened its applications across various domains. The processing of fluorescence lifetime data is crucial for enhancing the speed and accuracy of imaging. Thus, various lifetime fitting algorithms have been developed to improve the imaging speed. The phasor analysis (PA) method is an approach for processing fluorescence lifetime data, capable of directly converting lifetime signals into visual graphics without fitting, which outperforms traditional approaches in speed. Furthermore, lifetime probes with distinct lifetimes are readily implemented for visualization and cluster analysis combined with PA, facilitating the prediction of specific biological states or functions. This review examines various lifetime probes employed in phasor-based FLIM and discusses their roles in the PA method. The methods for multi-component PA within complex biological environments were also described. Additionally, we focused on the advantages of the phasor vector rule and the unmixing of multi-component analysis based on PA. The integration of lifetime probes with phasor-based FLIM facilitates rapid and intuitive detection methods for analyzing complex biological environments.
Collapse
Affiliation(s)
- Dan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Fanli Dong
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Huhehot 010030, P. R. China
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Huhehot 010030, P. R. China
| |
Collapse
|
3
|
Filipe HAL, Loura LMS, Moreno MJ. Permeation of a Homologous Series of NBD-Labeled Fatty Amines through Lipid Bilayers: A Molecular Dynamics Study. MEMBRANES 2023; 13:551. [PMID: 37367755 DOI: 10.3390/membranes13060551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
Abstract
Permeation through biomembranes is ubiquitous for drugs to reach their active sites. Asymmetry of the cell plasma membrane (PM) has been described as having an important role in this process. Here we describe the interaction of a homologous series of 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-labeled amphiphiles (NBD-Cn, n = 4 to 16) with lipid bilayers of different compositions (1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC):cholesterol (1:1) and palmitoylated sphingomyelin (SpM):cholesterol (6:4)), including an asymmetric bilayer. Both unrestrained and umbrella sampling (US) simulations (at varying distances to the bilayer center) were carried out. The free energy profile of NBD-Cn at different depths in the membrane was obtained from the US simulations. The behavior of the amphiphiles during the permeation process was described regarding their orientation, chain elongation, and H-bonding to lipid and water molecules. Permeability coefficients were also calculated for the different amphiphiles of the series, using the inhomogeneous solubility-diffusion model (ISDM). Quantitative agreement with values obtained from kinetic modeling of the permeation process could not be obtained. However, for the longer, and more hydrophobic amphiphiles, the variation trend along the homologous series was qualitatively better matched by the ISDM when the equilibrium location of each amphiphile was taken as reference (ΔG = 0), compared to the usual choice of bulk water.
Collapse
Affiliation(s)
- Hugo A L Filipe
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- CPIRN-IPG-Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| | - Luís M S Loura
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria João Moreno
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
4
|
Fluorescent Probes cis- and trans-Parinaric Acids in Fluid and Gel Lipid Bilayers: A Molecular Dynamics Study. Molecules 2023; 28:molecules28052241. [PMID: 36903487 PMCID: PMC10005308 DOI: 10.3390/molecules28052241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Fluorescence probes are indispensable tools in biochemical and biophysical membrane studies. Most of them possess extrinsic fluorophores, which often constitute a source of uncertainty and potential perturbation to the host system. In this regard, the few available intrinsically fluorescent membrane probes acquire increased importance. Among them, cis- and trans-parinaric acids (c-PnA and t-PnA, respectively) stand out as probes of membrane order and dynamics. These two compounds are long-chained fatty acids, differing solely in the configurations of two double bonds of their conjugated tetraene fluorophore. In this work, we employed all-atom and coarse-grained molecular dynamics simulations to study the behavior of c-PnA and t-PnA in lipid bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), representative of the liquid disordered and solid ordered lipid phases, respectively. All-atom simulations indicate that the two probes show similar location and orientation in the simulated systems, with the carboxylate facing the water/lipid interface and the tail spanning the membrane leaflet. The two probes establish interactions with the solvent and lipids to a similar degree in POPC. However, the almost linear t-PnA molecules have tighter lipid packing around them, especially in DPPC, where they also interact more with positively charged lipid choline groups. Probably for these reasons, while both probes show similar partition (assessed from computed free energy profiles across bilayers) to POPC, t-PnA clearly partitions more extensively than c-PnA to the gel phase. t-PnA also displays more hindered fluorophore rotation, especially in DPPC. Our results agree very well with experimental fluorescence data from the literature and allow deeper understanding of the behavior of these two reporters of membrane organization.
Collapse
|
5
|
Mirnejad R, Fasihi-Ramandi M, Behmard E, Najafi A, Moosazadeh Moghaddam M. Interaction of antibacterial CM11 peptide with the gram-positive and gram-negative bacterial membrane models: a molecular dynamics simulations study. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
6
|
Zhou M, Yang H, Li H, Gu L, Zhou Y, Li M. The effects of molecular weight and orientation on the membrane permeation and partitioning of polycyclic aromatic hydrocarbons: a computational study. Phys Chem Chem Phys 2022; 24:2158-2166. [PMID: 35005759 DOI: 10.1039/d1cp04777a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Membrane permeation and the partitioning of polycyclic aromatic hydrocarbons (PAHs) are crucial aspects affecting their carcinogenicity and mutagenicity. However, a clear understanding of these processes is still rare due to the difficulty of determining the details experimentally. Here, the interactions between PAHs and lipid bilayers were studied by molecular simulations, mainly to check the influence of molecular weight and orientation. The liposome-water partition coefficient (KLW), transmembrane time (τ), and permeability coefficient (P) of the PAHs were calculated by integrating free energy profiles from umbrella sampling. For selected PAHs, the membrane adsorption is a spontaneous process. The preferred location is near the CC bond and the orientation is related to the molecular structure. The P values of all the PAHs are basically the same order of magnitude, which means that the molecular weight contributes little to the process. As for KLW and τ, they show obvious increases with different molecular weights. Unconstrained simulations showed that a flat orientation on the membrane surface would prevent PAHs from being transported through the membrane. Highly hydrophobic driving forces are not always good for the absorption of PAHs, especially the formation of aggregates. In addition, the orientations and energetic barriers of PAHs near the midplane of the lipid bilayer explain the different transitions of high- and low-weight PAHs. This work provides molecular level details relating to the interactions of PAHs with lipid membranes, with significance for understanding the health effects of PAHs.
Collapse
Affiliation(s)
- Mi Zhou
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.,Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| | - Hong Yang
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| | - Huarong Li
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| | - Lingzhi Gu
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| | - Yang Zhou
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| | - Ming Li
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| |
Collapse
|
7
|
Rujas E, Insausti S, Leaman DP, Carravilla P, González-Resines S, Monceaux V, Sánchez-Eugenia R, García-Porras M, Iloro I, Zhang L, Elortza F, Julien JP, Saéz-Cirión A, Zwick MB, Eggeling C, Ojida A, Domene C, Caaveiro JMM, Nieva JL. Affinity for the Interface Underpins Potency of Antibodies Operating In Membrane Environments. Cell Rep 2020; 32:108037. [PMID: 32814041 PMCID: PMC7861656 DOI: 10.1016/j.celrep.2020.108037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/02/2020] [Accepted: 07/23/2020] [Indexed: 11/29/2022] Open
Abstract
The contribution of membrane interfacial interactions to recognition of membrane-embedded antigens by antibodies is currently unclear. This report demonstrates the optimization of this type of antibodies via chemical modification of regions near the membrane but not directly involved in the recognition of the epitope. Using the HIV-1 antibody 10E8 as a model, linear and polycyclic synthetic aromatic compounds are introduced at selected sites. Molecular dynamics simulations predict the favorable interactions of these synthetic compounds with the viral lipid membrane, where the epitope of the HIV-1 glycoprotein Env is located. Chemical modification of 10E8 with aromatic acetamides facilitates the productive and specific recognition of the native antigen, partially buried in the crowded environment of the viral membrane, resulting in a dramatic increase of its capacity to block viral infection. These observations support the harnessing of interfacial affinity through site-selective chemical modification to optimize the function of antibodies that target membrane-proximal epitopes.
Collapse
Affiliation(s)
- Edurne Rujas
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain; Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Sara Insausti
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Daniel P Leaman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pablo Carravilla
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain; Institute of Applied Optics and Biophysics Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany; Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | | | - Valérie Monceaux
- Institut Pasteur, Unité HIV Inflammation et Persistance, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Rubén Sánchez-Eugenia
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Miguel García-Porras
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Ibon Iloro
- Proteomics Platform, CIC bioGUNE, Parque Tecnológico de Vizcaya, 48160 Derio, Spain
| | - Lei Zhang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Parque Tecnológico de Vizcaya, 48160 Derio, Spain
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Asier Saéz-Cirión
- Institut Pasteur, Unité HIV Inflammation et Persistance, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Michael B Zwick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christian Eggeling
- Institute of Applied Optics and Biophysics Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany; Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Akio Ojida
- Department of Chemical Biology, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, UK; Department of Chemistry, University of Oxford, Oxford OX1 3TF, UK
| | - Jose M M Caaveiro
- Laboratory of Global Health Care, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan.
| | - José L Nieva
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
8
|
Filipe HAL, Moreno MJ, Loura LMS. The Secret Lives of Fluorescent Membrane Probes as Revealed by Molecular Dynamics Simulations. Molecules 2020; 25:E3424. [PMID: 32731549 PMCID: PMC7435664 DOI: 10.3390/molecules25153424] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022] Open
Abstract
Fluorescent probes have been employed for more than half a century to study the structure and dynamics of model and biological membranes, using spectroscopic and/or microscopic experimental approaches. While their utilization has led to tremendous progress in our knowledge of membrane biophysics and physiology, in some respects the behavior of bilayer-inserted membrane probes has long remained inscrutable. The location, orientation and interaction of fluorophores with lipid and/or water molecules are often not well known, and they are crucial for understanding what the probe is actually reporting. Moreover, because the probe is an extraneous inclusion, it may perturb the properties of the host membrane system, altering the very properties it is supposed to measure. For these reasons, the need for independent methodologies to assess the behavior of bilayer-inserted fluorescence probes has been recognized for a long time. Because of recent improvements in computational tools, molecular dynamics (MD) simulations have become a popular means of obtaining this important information. The present review addresses MD studies of all major classes of fluorescent membrane probes, focusing in the period between 2011 and 2020, during which such work has undergone a dramatic surge in both the number of studies and the variety of probes and properties accessed.
Collapse
Affiliation(s)
- Hugo A. L. Filipe
- Chemistry Department, Coimbra Chemistry Center, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Maria João Moreno
- Coimbra Chemistry Center and CNC—Center for Neuroscience and Cell Biology, Chemistry Department, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Luís M. S. Loura
- Coimbra Chemistry Center and CNC—Center for Neuroscience and Cell Biology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
9
|
Agarwal R, Smith MD, Smith JC. Capturing Deuteration Effects in a Molecular Mechanics Force Field: Deuterated THF and the THF-Water Miscibility Gap. J Chem Theory Comput 2020; 16:2529-2540. [PMID: 32175738 DOI: 10.1021/acs.jctc.9b01138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deuteration is a common chemical modification used in conjunction with experiments such as neutron scattering, NMR, and Fourier-transform infrared for the study of molecular systems. Under the Born-Oppenheimer (BO) approximation, while the underlying potential energy surface remains unchanged by isotopic substitutions, isotopic substitution still alters intramolecular vibrations, which in turn may alter intermolecular interactions. Molecular mechanics (MM) force fields used in classical molecular dynamics simulations are assumed to represent local approximations of the BO potential energy surfaces, and hence, MD simulations using simple isotopic mass substitutions should capture BO-compatible isotope effects. However, standard MM force-field parameterizations do not directly fit to the local harmonic quantum mechanical (QM) Hessian that describes the BO surface, but rather to QM normal-modes and/or mass-dependent internal-coordinate derived distortion energies. Here, using tetrahydrofuran (THF)-water mixtures as our model system, we show that not only does a simple mass-substitution approach fail to capture an experimentally characterized deuteration effect (the loss of the closed-loop miscibility gap associated with the complete deuteration of THF) but also it is necessary to generate new MM force-field parameters that correctly describe isotopic dependent vibrations to capture the experimental deuteration effect. We show that the origin of this failure is a result of using mass-dependent features to fit the THF MM force field, which unintentionally biases the bonded terms of the force field to represent only the isotopologue used during the original force-field parameterization. In addition, we make use of our isotopologue-corrected force field for D8THF to examine the molecular origins of the isotope-dependent loss of the THF-water miscibility gap.
Collapse
Affiliation(s)
- Rupesh Agarwal
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States.,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Micholas Dean Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
10
|
Wood I, Fabian L, Moglioni A, Cabeça LF, de Paula E, Pickholz M. Combining nuclear magnetic resonance with molecular dynamics simulations to address sumatriptan interaction with model membranes. Chem Phys Lipids 2019; 225:104792. [DOI: 10.1016/j.chemphyslip.2019.104792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/21/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
|
11
|
Entova S, Guan Z, Imperiali B. Investigation of the conserved reentrant membrane helix in the monotopic phosphoglycosyl transferase superfamily supports key molecular interactions with polyprenol phosphate substrates. Arch Biochem Biophys 2019; 675:108111. [PMID: 31563509 PMCID: PMC6909930 DOI: 10.1016/j.abb.2019.108111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/10/2023]
Abstract
Long-chain polyprenol phosphates feature in membrane-associated glycoconjugate biosynthesis pathways across domains of life. These unique amphiphilic molecules are best known as substrates of polytopic membrane proteins, including polyprenol-phosphate phosphoglycosyl and glycosyl transferases, and as components of more complex substrates. The linear polyprenols are constrained by double bond geometry and lend themselves well to interactions with polytopic membrane proteins, in which multiple transmembrane helices form a rich landscape for interactions. Recently, a new superfamily of monotopic phosphoglycosyl transferase enzymes has been identified that interacts with polyprenol phosphate substrates via a single reentrant membrane helix. Intriguingly, despite the dramatic differences in their membrane-interaction domains, both polytopic and monotopic enzymes similarly favor a unique cis/trans geometry in their polyprenol phosphate substrates. Herein, we present a multipronged biochemical and biophysical study of PglC, a monotopic phosphoglycosyl transferase that catalyzes the first membrane-committed step in N-linked glycoprotein biosynthesis in Campylobacter jejuni. We probe the significance of polyprenol phosphate geometry both in mediating substrate binding to PglC and in modulating the local membrane environment. Geometry is found to be important for binding to PglC; a conserved proline residue in the reentrant membrane helix is determined to drive polyprenol phosphate recognition and specificity. Pyrene fluorescence studies show that polyprenol phosphates at physiologically-relevant levels increase the disorder of the local lipid bilayer; however, this effect is confined to polyprenol phosphates with specific isoprene geometries. The molecular insights from this study may shed new light on the interactions of polyprenol phosphates with diverse membrane-associated proteins in glycoconjugate biosynthesis.
Collapse
Affiliation(s)
- Sonya Entova
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA.
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, 10 Duke Medicine Circle, Durham, NC, 27710, USA.
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
12
|
Zahid NI, Ji L, Khyasudeen MF, Friedrich A, Hashim R, Marder TB, Abou-Zied OK. Evidence of Increased Hydrophobicity and Dynamics inside the Tail Region of Glycolipid Self-Assemblies Using 2- n-Alkyl-Pyrene Derivatives to Probe Different Locations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9584-9592. [PMID: 31287700 DOI: 10.1021/acs.langmuir.9b01767] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
New designer biofluorophores are being increasingly used in the investigation of complex cellular processes. In this study, we utilized new derivatives of pyrene (Py), i.e., 2-n-alkyl-pyrenes (Py-C4 and Py-C8), in order to probe different regions inside the hydrophobic tail of n-dodecyl β-d-maltoside (βMal-C12) in two different phases (cubic ↔ lamellar). Although the sensitivity to the local environment is reduced compared to that of Py, attaching C4 and C8 at the 2-position of Py can provide a possible means to probe the local hydrophobicity in different parts of the tail region. The absence of excimer fluorescence and the ratio of the vibronic fluorescence peak intensities (I1/I3) in a lipid environment indicate the existence of Py as monomers in the hydrophobic region, similar to hydrophobic solvation, yet close to the headgroup region. When Py is replaced by Py-C4 and Py-C8, there is a small increase in hydrophobicity (reduction in I1/I3) as the Py moiety is pulled deeper inside the tail region of both cubic and lamellar phases. The larger space of the tail region in the lamellar phase is reflected as more local hydrophobicity measured by the probes which can penetrate deep inside, whereas the curved structure of the cubic phase limits the available space for the probes. Three fluorescence lifetime components were measured in lipid, indicating the heterogeneous nature of the hydrophobic region. In the lamellar phase, a large reduction in the average lifetime value, led by the long decay component, was measured for Py-C4 (reduction by 25%) and Py-C8 (45%) compared to that of the parent Py. This observation suggests the presence of a mechanism of interaction more collisional than static between the Py moiety and the tail region of the bilayer unit due to the ample space provided by the lamellar phase as the probe is buried deeper inside the hydrophobic region. A much smaller effect was observed in the cubic phase and was correlated with the tight environment around the probes, which stems from the increased curvature of the cubic phase. The current results provide a deeper understanding of the hydrophobic region during phase transition of lipid self-assembly which is important for better control during the process of membrane-protein crystallization.
Collapse
Affiliation(s)
- N Idayu Zahid
- Department of Chemistry, Faculty of Science , Sultan Qaboos University , P.O. Box 36, Postal Code 123 , Muscat , Sultanate of Oman
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Lei Ji
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron , Julius-Maximilians-Universität Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - M Faisal Khyasudeen
- Department of Chemistry, Faculty of Science , Sultan Qaboos University , P.O. Box 36, Postal Code 123 , Muscat , Sultanate of Oman
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron , Julius-Maximilians-Universität Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Rauzah Hashim
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Todd B Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron , Julius-Maximilians-Universität Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Osama K Abou-Zied
- Department of Chemistry, Faculty of Science , Sultan Qaboos University , P.O. Box 36, Postal Code 123 , Muscat , Sultanate of Oman
| |
Collapse
|
13
|
Rao BD, Shrivastava S, Pal S, Chattopadhyay A. Effect of Local Anesthetics on the Organization and Dynamics of Hippocampal Membranes: A Fluorescence Approach. J Phys Chem B 2018; 123:639-647. [DOI: 10.1021/acs.jpcb.8b10232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bhagyashree D. Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| | - Sandeep Shrivastava
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Sreetama Pal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| |
Collapse
|
14
|
Liu X, Li Y, Tian S, Yan H. Reversible Solubilization of Pyrene by a Gas Switchable Surfactant Investigated by Molecular Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15445-15454. [PMID: 30475632 DOI: 10.1021/acs.langmuir.8b03310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The reversible solubilization behavior of pyrene by a CO2/N2 switchable surfactant (named N'-dodecyl- N, N-dimethylacetamidinium bicarbonate (DDAB)) was investigated with molecular dynamics (MD) simulations. We first individually simulated the aggregation of the inactive surfactant N'-dodecyl- N, N-dimethylacetamidines (DDA) and effective surfactant DDAB in water. Detailed structural properties analysis showed that DDAB molecules aggregated into a micelle, while the aggregation of DDA molecules was considered to be an oil droplet that was separated from the water phase. MD simulations revealed that pyrene molecule was solubilized in the interior hydrophobic region of the micelle as expected. Pyrene was adsorbed on the surface of the oil droplet which is due to the dense packing of DDA molecules inside the oil droplet. The simulated release process showed that the solubilized pyrene in the interior was squeezed out when the micelle was changed to an oil droplet. Reduced density gradient (RDG) function was used to study the weak interactions and explore the molecular driving force behind the reversible solubilization. The results demonstrated that repulsion effects of water molecules on the DDA headgroups play an important role on the pyrene release. Because of the persistent molecular motion of DDA molecules into the droplet center, pyrene was finally repelled out of the oil droplet. Our study provided a molecular mechanism into the reversible solubilization of a gas-controlled switchable surfactant. This is expected to be useful for surfactant-enhanced remediation (SER) experiments.
Collapse
Affiliation(s)
- Xiangliang Liu
- Faculty of Environmental Science and Engineering , Kunming University of Science and Technology , Kunming 650500 , China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering , Kunming University of Science and Technology , Kunming 650500 , China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering , Kunming University of Science and Technology , Kunming 650500 , China
| | - Hui Yan
- School of Pharmacy , Liaocheng University , Liaocheng 252059 , China
| |
Collapse
|
15
|
Zhao F, Lu J, Jin X, Wang Z, Sun Y, Gao D, Li X, Liu R. Comparison of response surface methodology and artificial neural network to optimize novel ophthalmic flexible nano-liposomes: Characterization, evaluation, in vivo pharmacokinetics and molecular dynamics simulation. Colloids Surf B Biointerfaces 2018; 172:288-297. [DOI: 10.1016/j.colsurfb.2018.08.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/19/2018] [Accepted: 08/21/2018] [Indexed: 11/24/2022]
|
16
|
Li AJ, Xie W, Wang M, Xu SC. Molecular Mechanism and Dynamics of S-Deoxyephedrine Moving through Molecular Channels within D 3R. ACS OMEGA 2017; 2:8896-8910. [PMID: 31457418 PMCID: PMC6645573 DOI: 10.1021/acsomega.7b01161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/17/2017] [Indexed: 06/10/2023]
Abstract
In this article, the trajectories of S-deoxyephedrine (SBD) along molecular channels within the complex protein structure of third dopamine receptor (D3R) are analyzed via molecular dynamic techniques, including potential mean force calculations of umbrella samplings from the 4.5 version of the GROMACS program. Changes in free energy due to the movement of SBD within D3R are determined, and the molecular dynamic mechanisms of SBD transmitting along molecular channels are probed. Molecular simulated results show that the change in free energy is calculated as 171.7 kJ·mol-1 for the transmission of SBD toward the outside of the cell along the y+ axis functional molecular channel and is 275.0 kJ·mol-1 for movement toward the intracellular structure along the y- axis. Within the internal structure of D3R, the changes in free energy are determined to be 103.6, 242.1, 459.7, and 127.8 kJ·mol-1 for transmission of SBD along the x+, x-, z+, and z- axes, respectively, toward the cell bilayer membrane, which indicates that SBD leaves much more easily along the x+ axis through the gap between the TM5 (the fifth transmembrane helix) and TM6 (the sixth transmembrane helix) from the internal structure of D3R. The values of free-energy changes indicate that SBD molecules can clear the protective channel within D3R, which helps dopamine molecules to leave the D3R internal structure along the x+ axis and to prevent them for exerting excessive neurotransmitter function. Therefore, our results suggest that SBD is effective for development as a drug for treating schizophrenia and its pharmacology is closely related to its dynamics and mechanisms within the molecular pathway of dopamine receptors.
Collapse
Affiliation(s)
- Ai Jing Li
- College
of Chemical Science and Technology and Pharmacy and Key Laboratory
of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, P. R.
China
| | - Wei Xie
- College
of Chemical Science and Technology and Pharmacy and Key Laboratory
of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, P. R.
China
| | - Ming Wang
- College
of Chemical Science and Technology and Pharmacy and Key Laboratory
of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, P. R.
China
| | - Si Chuan Xu
- College
of Chemical Science and Technology and Pharmacy and Key Laboratory
of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, P. R.
China
| |
Collapse
|
17
|
Bartelds R, Barnoud J, J. Boersma A, J. Marrink S, Poolman B. Lipid phase separation in the presence of hydrocarbons in giant unilamellar vesicles. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.4.528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Moussa Z, Chebl M, Patra D. Interaction of curcumin with 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine liposomes: Intercalation of rhamnolipids enhances membrane fluidity, permeability and stability of drug molecule. Colloids Surf B Biointerfaces 2016; 149:30-37. [PMID: 27716529 DOI: 10.1016/j.colsurfb.2016.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/31/2016] [Accepted: 10/03/2016] [Indexed: 11/18/2022]
Abstract
Stability of curcumin in neutral and alkaline buffer conditions has been a serious concern for its medicinal applications. We demonstrate that the stability of curucmin can be improved in 1,2-Dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC) liposomes. Curcumin strongly partition into liquid crystalline phase compared to solid gel phase of DSPC liposomes. Variation of fluorescence intensity of curcumin associated with liposomes with temperature successfully determines phase transition temperature of DSPC liposomes. However, at higher molar ratio curcumin can influence phase transition temperature by intercalating into deep hydrophobic layer of liposomes and facilitating fusion of two membrane phases. Rhamnolipids (RLs) are recently being applied for various biomedical applications. Here, we have explored new insight on intercalation of rhamnolipids with DSPC liposomes. Intercalation of rhamnolipids exceptionally increases partition of curcumin into solid gel phase of DSPC liposomes, whereas this increase is moderate in liquid crystalline phase. Fluorescence quenching study establishes that permeability and fluidity of the DSPC liposomes are enhanced in the presence of RLs. Membrane permeability and fluidity can be improved further by increasing the percentage of RLs in DSPC liposomes. The phase transition temperature of DSPC liposomes decreases with increase in percentage of RLs in DSPC liposomes by encouraging fusion between solid gel and liquid crystalline phases. Intercalation of RLs is found to further boost stability of drug, curcumin, in DSPC liposomes. Thus, mixing RLs with DSPC liposomes could potentially serve as a good candidate for drug delivery application.
Collapse
Affiliation(s)
- Zeinab Moussa
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Mazhar Chebl
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Digambara Patra
- Department of Chemistry, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
19
|
Wang M, Xie W, Li A, Xu S. Structural Basis and Mechanism of Chiral Benzedrine Molecules Interacting With Third Dopamine Receptor. Chirality 2016; 28:674-85. [PMID: 27581600 DOI: 10.1002/chir.22630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 11/09/2022]
Abstract
In order to investigate the chiral benzedrine molecules corresponding to their different characteristics in biochemical systems, we studied their interaction with D3 R using the docking method, molecular dynamic simulation, and quantum chemistry. The obtained results indicate that the active residues for R-benzedrine (RAT) bound with D3 R are Ala132, Asp133, and Tyr55, while Asn57, Asp133, Asp168, Cys172, Gly54, Trp24, and Vall136 act as the active residues for S-benzedrine (SAT). The different active pockets are observed for ART or SAT because they possess different active residues. The binding energies between RAT and SAT with D3 R were determined to be -44.0 kJ.mol(-1) and -71.2 kJ.mol(-1) , respectively. These results demonstrate that SAT within the studied pocket of D3 R has a stronger capability of binding with D3 R, while it is more feasible for RAT to leave from the interior positions of D3 R. In addition, the results suggest that the D3 R protein can recognize chiral benzedrine molecules and influence their different addictive and pharmacological effects in biochemical systems. Chirality 28:674-685, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ming Wang
- Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Wei Xie
- Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Aijing Li
- Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Sichuan Xu
- Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology, Yunnan University, Kunming, China.
| |
Collapse
|
20
|
Xie W, Wang M, Li A, Xu SC. Molecular dynamics simulation of d-Benzedrine transmitting through molecular channels within D 3R. J Biomol Struct Dyn 2016; 35:1672-1684. [PMID: 27191827 DOI: 10.1080/07391102.2016.1190947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dex-Benzedrine (known as d-Benzedrine or SAT) acts in dopamine receptors of central nerve cell system. In clinic, SAT is used to treat a variety of diseases; meanwhile, it has dependence and addiction. In order to investigate the pharmacology and addiction mechanisms of SAT as a medicine, in this paper, we have studied the structure of D3R complex protein with SAT, and based on which, using potential mean force with umbrella samplings and the simulated phospholipid bilayer membrane (or POPC bilayer membrane), the molecular dynamics simulation was performed to obtain free energy changes upon the trajectories for SAT moving along the molecular channels within D3R. The free energy change for SAT transmitting toward the outside of cell along the functional molecular channel within D3R is 83.5 kJ mol-1. The change of free energy for SAT to permeate into the POPC bilayer membrane along the protective molecular channel within D3R is 87.7 kJ mol-1. Our previous work gave that the free energy for Levo-Benzedrine (RAT) transmitting toward the outside of cell along the functional molecular channel within D3R is 91.4 kJ mol-1, while it is 117.7 kJ mol-1 for RAT to permeate into the POPC bilayer membrane along the protective molecular channel within D3R. The values of free energy suggest that SAT relatively prefers likely to pass through the functional molecular channel within D3R for increasing the release of dopamine molecules resulting in a variety of functional effects for SAT. The obtained results show that the pharmacology and addiction mechanisms of SAT as a drug are closely related to the molecular dynamics and mechanism for SAT transmitting along molecular channels within D3R.
Collapse
Affiliation(s)
- Wei Xie
- a Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology and Pharmacy Academy , Yunnan University , Kunming 650091 , China
| | - Ming Wang
- a Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology and Pharmacy Academy , Yunnan University , Kunming 650091 , China
| | - Aijing Li
- a Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology and Pharmacy Academy , Yunnan University , Kunming 650091 , China
| | - Si-Chuan Xu
- a Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology and Pharmacy Academy , Yunnan University , Kunming 650091 , China
| |
Collapse
|
21
|
Non-Enveloped Virus Entry: Structural Determinants and Mechanism of Functioning of a Viral Lytic Peptide. J Mol Biol 2016; 428:3540-56. [DOI: 10.1016/j.jmb.2016.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 11/20/2022]
|
22
|
Filipe HAL, Bowman D, Palmeira T, Cardoso RMS, Loura LMS, Moreno MJ. Interaction of NBD-labelled fatty amines with liquid-ordered membranes: a combined molecular dynamics simulation and fluorescence spectroscopy study. Phys Chem Chem Phys 2016; 17:27534-47. [PMID: 26426766 DOI: 10.1039/c5cp04191k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A complete homologous series of fluorescent 7-nitrobenz-2-oxa-1,3-diazol-4-yl-(NBD) labelled fatty amines of varying alkyl chain lengths, NBD-Cn, inserted in 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC) or N-palmitoyl sphingomyelin (SpM) bilayers, with 50 mol% and 40 mol% cholesterol (Chol), respectively, was studied using atomistic molecular dynamics simulations. For all amphiphiles in both bilayers, the NBD fluorophore locates at the interface, in a more external position than that previously observed for pure POPC bilayers. This shallower location of the NBD group agrees with the lower fluorescent quantum yield, shorter fluorescence lifetime, and higher ionisation constants (smaller pKa) determined experimentally. The more external location is also consistent with the changes measured in steady-state fluorescence anisotropy from POPC to POPC/Chol (1 : 1) vesicles. Accordingly, the equilibrium location of the NBD group within the various bilayers is mainly dictated by bilayer compositions, and is mostly unaffected by the length of the attached alkyl chain. Similarly to the behaviour observed in POPC bilayers, the longer-chained NBD-Cn amphiphiles show significant mass density near the mixed bilayers' midplanes, and the alkyl chains of the longer derivatives, mainly NBD-C16, penetrate the opposite bilayer leaflet to some extent. However, this effect is quantitatively less pronounced in these ordered bilayers than in POPC. Similarly to POPC bilayers, the effects of these amphiphiles on the structure and dynamics of the host lipid were found to be relatively mild, in comparison with acyl-chain phospholipid analogues.
Collapse
Affiliation(s)
- Hugo A L Filipe
- Centro de Química de Coimbra, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
23
|
Liang X, Marchi M, Guo C, Dang Z, Abel S. Atomistic Simulation of Solubilization of Polycyclic Aromatic Hydrocarbons in a Sodium Dodecyl Sulfate Micelle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3645-3654. [PMID: 27049522 DOI: 10.1021/acs.langmuir.6b00182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Solubilization of two polycyclic aromatic hydrocarbons (PAHs), naphthalene (NAP, 2-benzene-ring PAH) and pyrene (PYR, 4-benzene-ring PAH), into a sodium dodecyl sulfate (SDS) micelle was studied through all-atom molecular dynamics (MD) simulations. We find that NAP as well as PYR could move between the micelle shell and core regions, contributing to their distribution in both regions of the micelle at any PAH concentration. Moreover, both NAP and PYR prefer to stay in the micelle shell region, which may arise from the greater volume of the micelle shell, the formation of hydrogen bonds between NAP and water, and the larger molecular volume of PYR. The PAHs are able to form occasional clusters (from dimer to octamer) inside the micelle during the simulation time depending on the PAH concentration in the solubilization systems. Furthermore, the micelle properties (i.e., size, shape, micelle internal structure, alkyl chain conformation and orientation, and micelle internal dynamics) are found to be nearly unaffected by the solubilized PAHs, which is irrespective of the properties and concentrations of PAHs.
Collapse
Affiliation(s)
- Xujun Liang
- School of Environment and Energy, South China University of Technology , Guangzhou 510006, China
- Commissariat à l'Energie Atomique et aux Energies Alternatives, DRF/IBITECS/SB2SM/LBMS & CNRS UMR 9198, Saclay, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay , 91198 Gif-sur-Yvette cedex, France
| | - Massimo Marchi
- Commissariat à l'Energie Atomique et aux Energies Alternatives, DRF/IBITECS/SB2SM/LBMS & CNRS UMR 9198, Saclay, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay , 91198 Gif-sur-Yvette cedex, France
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology , Guangzhou 510006, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education , Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology , Guangzhou 510006, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education , Guangzhou 510006, China
| | - Stéphane Abel
- Commissariat à l'Energie Atomique et aux Energies Alternatives, DRF/IBITECS/SB2SM/LBMS & CNRS UMR 9198, Saclay, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay , 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
24
|
Faller R. Molecular modeling of lipid probes and their influence on the membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2353-2361. [PMID: 26891817 DOI: 10.1016/j.bbamem.2016.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 01/03/2023]
Abstract
In this review a number of Molecular Dynamics simulation studies are discussed which focus on the understanding of the behavior of lipid probes in biomembranes. Experiments often use specialized probe moieties or molecules to report on the behavior of a membrane and try to gain information on the membrane as a whole from the probe lipids as these probes are the only things an experiment sees. Probes can be used to make NMR, EPR and fluorescence accessible to the membrane and use fluorescent or spin-active moieties for this purpose. Clearly membranes with and without probes are not identical which makes it worthwhile to elucidate the differences between them with detailed atomistic simulations. In almost all cases these differences are confined to the local neighborhood of the probe molecules which are sparsely used and generally present as single molecules. In general, the behavior of the bulk membrane lipids can be qualitatively understood from the probes but in most cases their properties cannot be directly quantitatively deduced from the probe behavior. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Roland Faller
- Department of Chemical Engineering & Materials Science, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
25
|
Gradella Villalva D, Diociaiuti M, Giansanti L, Petaccia M, Bešker N, Mancini G. Molecular Packing in Langmuir Monolayers Composed of a Phosphatidylcholine and a Pyrene Lipid. J Phys Chem B 2016; 120:1126-33. [DOI: 10.1021/acs.jpcb.5b11836] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Denise Gradella Villalva
- Dipartimento
di Chimica, Università degli Studi di Roma “Sapienza”, P.le Aldo Moro 5, 00185 Roma, Italy
| | - Marco Diociaiuti
- Dipartimento
di Tecnologia e Salute, Istituto Superiore di Sanità, Viale
Regina Elena 299, 00161 Roma, Italy
| | - Luisa Giansanti
- Dipartimento
di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, AQ, Italy
| | - Manuela Petaccia
- Dipartimento
di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, AQ, Italy
| | - Neva Bešker
- CINECA,
SCAI—Super
Computing Applications and Innovation Department, Via dei Tizii, 6, 00185, Rome, Italy
| | - Giovanna Mancini
- CNR—Istituto di
Metodologie Chimiche, Via Salaria km
29.300, 00016 Monterotondo
Scalo, Roma, Italy
| |
Collapse
|
26
|
Interactions between pyrene and pyridinium ionic liquids studied by ultraviolet–visible spectroscopy. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Awoonor-Williams E, Rowley CN. Molecular simulation of nonfacilitated membrane permeation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:1672-87. [PMID: 26706099 DOI: 10.1016/j.bbamem.2015.12.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/05/2015] [Accepted: 12/09/2015] [Indexed: 12/29/2022]
Abstract
This is a review. Non-electrolytic compounds typically cross cell membranes by passive diffusion. The rate of permeation is dependent on the chemical properties of the solute and the composition of the lipid bilayer membrane. Predicting the permeability coefficient of a solute is important in pharmaceutical chemistry and toxicology. Molecular simulation has proven to be a valuable tool for modeling permeation of solutes through a lipid bilayer. In particular, the solubility-diffusion model has allowed for the quantitative calculation of permeability coefficients. The underlying theory and computational methods used to calculate membrane permeability are reviewed. We also discuss applications of these methods to examine the permeability of solutes and the effect of membrane composition on permeability. The application of coarse grain and polarizable models is discussed. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Ernest Awoonor-Williams
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X7 Canada
| | - Christopher N Rowley
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X7 Canada.
| |
Collapse
|
28
|
Singh G, Chamberlin AC, Zhekova HR, Noskov SY, Tieleman DP. Two-Dimensional Potentials of Mean Force of Nile Red in Intact and Damaged Model Bilayers. Application to Calculations of Fluorescence Spectra. J Chem Theory Comput 2015; 12:364-71. [PMID: 26579726 DOI: 10.1021/acs.jctc.5b00520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fluorescent dyes revolutionized and expanded our understanding of biological membranes. The interpretation of experimental fluorescence data in terms of membrane structure, however, requires detailed information about the molecular environment of the dyes. Nile red is a fluorescent molecule whose excitation and emission maxima depend on the polarity of the solvent. It is mainly used as a probe to study lipid microenvironments, for example in imaging the progression of damage to the myelin sheath in multiple sclerosis. In this study, we determine the position and orientation of Nile red in lipid bilayers by calculating two-dimensional Potential of Mean Force (2D-PMF) profiles in a defect-free 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer and in damaged bilayers containing two mixtures of the oxidized lipid 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine and POPC. From 2D-PMF simulations we obtain positions and orientations of Nile Red corresponding to the minimum on the binding free energy surface in three different membrane environments with increasing amounts of water, mimicking damage in biological tissue. Using representative snapshots from the simulations, we use combined quantum mechanical/molecular mechanical (QM/MM) models to calculate the emission spectrum of Nile red as a function of its local solvation environment. The results of QM and QM/MM computations are in qualitative agreement with the experimentally observed shift in fluorescence for the dye moving from aqueous solution to the more hydrophobic environment of the lipid interiors. The range of the conformation dependent values of the computed absorption-emission spectra and the lack of solvent relaxation effects in the QM/MM calculations made it challenging to delineate specific differences between the intact and damaged bilayers.
Collapse
Affiliation(s)
- Gurpreet Singh
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary , 2500 University Drive N.W., Calgary, Alberta T2N1N4, Canada
| | - Adam C Chamberlin
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary , 2500 University Drive N.W., Calgary, Alberta T2N1N4, Canada
| | - Hristina R Zhekova
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary , 2500 University Drive N.W., Calgary, Alberta T2N1N4, Canada
| | - Sergei Y Noskov
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary , 2500 University Drive N.W., Calgary, Alberta T2N1N4, Canada
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary , 2500 University Drive N.W., Calgary, Alberta T2N1N4, Canada
| |
Collapse
|
29
|
Lecompte MF, Gaibelet G, Lebrun C, Tercé F, Collet X, Orlowski S. Cholesterol and Sphingomyelin-Containing Model Condensed Lipid Monolayers: Heterogeneities Involving Ordered Microdomains Assessed by Two Cholesterol Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11921-11931. [PMID: 26466013 DOI: 10.1021/acs.langmuir.5b02646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lipid monolayers are often considered as model membranes, but they are also the physiologic lipid part of the peripheral envelope of lipoproteins and cytosolic lipid bodies. However, their structural organization is still rather elusive, in particular when both cholesterol and sphingomyelin are present. To investigate such structural organization of hemimembranes, we measured, using alternative current voltammetry, the differential capacitance of condensed phosphatidylcholine-based monolayers as a function of applied potential, which is sensitive to their lipid composition and molecular arrangement. Especially, monolayers containing both sphingomyelin and cholesterol, at 15% w/w, presented specific characteristics of the differential capacitance versus potential curves recorded, which was indicative of specific interactions between these two lipid components. We then compared the behavior of two cholesterol derivatives (at 15% w/w), 21-methylpyrenyl-cholesterol (Pyr-met-Chol) and 22-nitrobenzoxadiazole-cholesterol (NBD-Chol), with that of cholesterol when present in model monolayers. Indeed, these two probes were chosen because of previous findings reporting opposite behaviors within bilayer membranes regarding their interaction with ordered lipids, with only Pyr-met-Chol mimicking cholesterol well. Remarkably, in monolayers containing sphingomyelin or not, Pyr-met-Chol and NBD-Chol presented contrasting behaviors, and Pyr-met-Chol mimicked cholesterol only in the presence of sphingomyelin. These two observations (i.e., optimal amounts of sphingomyelin and cholesterol, and the ability to discriminate between Pyr-met-Chol and NBD-Chol) can be interpreted by the existence of heterogeneities including ordered patches in sphingomyelin- and cholesterol-containing monolayers. Since such monolayer lipid arrangement shares some properties with the raft-type lipid microdomains well-described in sphingomyelin- and cholesterol-containing bilayer membranes, our data thus strongly suggest the existence of compact and ordered microdomains in model lipid monolayers.
Collapse
Affiliation(s)
| | - Gérald Gaibelet
- INSERM U563, CHU Purpan, 31024 Toulouse cedex 3, France
- SB2SM and UMR8221/9198 CNRS, IBiTec-Saclay, CEA, 91191 Gif-sur-Yvette cedex, France
| | | | - François Tercé
- INSERM U1048, Université Toulouse III, UMR 1048, 31400 Toulouse, France
| | - Xavier Collet
- INSERM U1048, Université Toulouse III, UMR 1048, 31400 Toulouse, France
| | - Stéphane Orlowski
- INSERM U563, CHU Purpan, 31024 Toulouse cedex 3, France
- SB2SM and UMR8221/9198 CNRS, IBiTec-Saclay, CEA, 91191 Gif-sur-Yvette cedex, France
| |
Collapse
|
30
|
The C-terminal region of the non-structural protein 2B from Hepatitis A Virus demonstrates lipid-specific viroporin-like activity. Sci Rep 2015; 5:15884. [PMID: 26515753 PMCID: PMC4626808 DOI: 10.1038/srep15884] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
Viroporins are virally encoded, membrane-active proteins, which enhance viral replication and assist in egress of viruses from host cells. The 2B proteins in the picornaviridae family are known to have viroporin-like properties, and play critical roles during virus replication. The 2B protein of Hepatitis A Virus (2B), an unusual picornavirus, is somewhat dissimilar from its analogues in several respects. HAV 2B is approximately 2.5 times the length of other 2B proteins, and does not disrupt calcium homeostasis or glycoprotein trafficking. Additionally, its membrane penetrating properties are not yet clearly established. Here we show that the membrane interacting activity of HAV 2B is localized in its C-terminal region, which contains an alpha-helical hairpin motif. We show that this region is capable of forming small pores in membranes and demonstrates lipid specific activity, which partially rationalizes the intracellular localization of full-length 2B. Using a combination of biochemical assays and molecular dynamics simulation studies, we also show that HAV 2B demonstrates a marked propensity to dimerize in a crowded environment, and probably interacts with membranes in a multimeric form, a hallmark of other picornavirus viroporins. In sum, our study clearly establishes HAV 2B as a bona fide viroporin in the picornaviridae family.
Collapse
|
31
|
do Canto AM, Santos PD, Martins J, Loura LM. Behavior of pyrene as a polarity probe in palmitoylsphingomyelin and palmitoylsphingomyelin/cholesterol bilayers: A molecular dynamics simulation study. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
32
|
Padilla-Chavarría HI, Guizado TRC, Pimentel AS. Molecular dynamics of dibenz[a,h]anthracene and its metabolite interacting with lung surfactant phospholipid bilayers. Phys Chem Chem Phys 2015. [DOI: 10.1039/c5cp01443c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dibenz[a,h]anthracene and its metabolite may form aggregates, which have implications in the clearance process of the lung surfactant phospholipid bilayers.
Collapse
Affiliation(s)
- Helmut I. Padilla-Chavarría
- Departamento de Química
- Pontifícia Universidade Católica do Rio de Janeiro
- Rua Marques de São Vicente
- Rio de Janeiro
- Brazil
| | - Teobaldo R. C. Guizado
- Departamento de Química
- Pontifícia Universidade Católica do Rio de Janeiro
- Rua Marques de São Vicente
- Rio de Janeiro
- Brazil
| | - Andre S. Pimentel
- Departamento de Química
- Pontifícia Universidade Católica do Rio de Janeiro
- Rua Marques de São Vicente
- Rio de Janeiro
- Brazil
| |
Collapse
|
33
|
Casalegno M, Raos G, Sello G. Hydrophobic aggregation and collective absorption of dioxin into lipid membranes: insights from atomistic simulations. Phys Chem Chem Phys 2014; 17:2344-8. [PMID: 25503360 DOI: 10.1039/c4cp05466k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dioxins are a highly toxic class of chlorinated aromatic chemicals. They have been extensively studied, but several molecular-level details of their action are still missing. Here we present molecular dynamics simulations of their absorption and diffusion through cell membranes. We show that, due to their hydrophobic character, dioxins can quickly penetrate into a lipid membrane, both as single molecules and as aggregates. We find clear evidence for their ability to accumulate in cell membranes. Our free energy calculations indicate that subsequent transport into the cell is unlikely to be a simple diffusive process.
Collapse
Affiliation(s)
- M Casalegno
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy
| | | | | |
Collapse
|
34
|
Holmstrup M, Bouvrais H, Westh P, Wang C, Slotsbo S, Waagner D, Enggrob K, Ipsen JH. Lipophilic contaminants influence cold tolerance of invertebrates through changes in cell membrane fluidity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9797-9803. [PMID: 25050459 DOI: 10.1021/es502221g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Contaminants taken up by living organisms in the environment as a result of anthropogenic contamination can reduce the tolerance of natural stressors, e.g., low temperatures, but the physiological mechanisms behind these interactions of effects are poorly understood. The tolerance to low temperatures of organisms that cannot regulate their body temperature (ectotherms) depends on their ability to increase the fluidity of their cellular membranes at low temperatures. Our study shows that contaminants accumulating in lipids of organisms alter the physical state of their membranes simply by being present. Contaminants of varying chemical structures can alter the membrane fluidity in either direction and correspondingly modulate the cold tolerance of intact animals.
Collapse
Affiliation(s)
- Martin Holmstrup
- Department of Bioscience, Aarhus University , Vejlsøvej 25, DK-8600 Silkeborg, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Jakobtorweihen S, Zuniga AC, Ingram T, Gerlach T, Keil FJ, Smirnova I. Predicting solute partitioning in lipid bilayers: Free energies and partition coefficients from molecular dynamics simulations and COSMOmic. J Chem Phys 2014; 141:045102. [DOI: 10.1063/1.4890877] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
36
|
Classical protein kinases C are regulated by concerted interaction with lipids: the importance of phosphatidylinositol-4,5-bisphosphate. Biophys Rev 2013; 6:3-14. [PMID: 28509956 DOI: 10.1007/s12551-013-0125-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022] Open
Abstract
Classical protein kinase C (PKC) enzymes are known to be important factors in cell physiology both in terms of health and disease. They are activated by triggering signals that induce their translocation to membranes. The consensus view is that several secondary messengers are involved in this activation, such as cytosolic Ca2+ and diacylglycerol. Cytosolic Ca2+ bridges the C2 domain to anionic phospholipids as phosphatidylserine in the membrane, and diacylglycerol binds to the C1 domain. Both diacylglycerol and the increase in Ca2+ concentration are assumed to arise from the extracellular signal that triggers the hydrolysis of phosphatidylinositol-4,5-bisphosphate. However, results obtained during the last decade indicate that this phosphoinositide itself is also responsible for modulating classical PKC activity and its localization in the plasma membrane.
Collapse
|
37
|
Kemmerer S, Voss JC, Faller R. Molecular dynamics simulation of dipalmitoylphosphatidylcholine modified with a MTSL nitroxide spin label in a lipid membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2770-7. [DOI: 10.1016/j.bbamem.2013.07.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/22/2013] [Accepted: 07/31/2013] [Indexed: 11/16/2022]
|
38
|
Robalo JR, Ramalho JPP, Loura LMS. NBD-Labeled Cholesterol Analogues in Phospholipid Bilayers: Insights from Molecular Dynamics. J Phys Chem B 2013; 117:13731-42. [DOI: 10.1021/jp406135a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- João R. Robalo
- Departamento
de Química, Escola de Ciências e Tecnologia, Universidade de Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
- Centro
de Química de Évora, Universidade de Évora, Rua
Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - J. P. Prates Ramalho
- Departamento
de Química, Escola de Ciências e Tecnologia, Universidade de Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
- Centro
de Química de Évora, Universidade de Évora, Rua
Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Luís M. S. Loura
- Faculdade
de Farmácia, Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Centro
de Química de Coimbra, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal
| |
Collapse
|
39
|
Hsieh CJ, Chen YW, Hwang DW. Effects of cholesterol on membrane molecular dynamics studied by fast field cycling NMR relaxometry. Phys Chem Chem Phys 2013; 15:16634-40. [PMID: 23965762 DOI: 10.1039/c3cp51739j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biological membranes are complex structures composed of various lipids and proteins. Different membrane compositions affect viscoelastic and hydrodynamic properties of membranes, which are critical to their functions. Lipid bilayer vesicles inserted by cholesterol not only enhance membrane surface motional behavior but also strengthen vesicle stability. Cholesterol-rich vesicles are similar to cell membranes in structure and composition. Therefore, cholesterol-rich vesicles can represent a typical model for studying membrane dynamics and functions. In this study, nuclear magnetic relaxation dispersion was used to investigate the detailed molecular dynamics of membrane differences between vesicles and cholesterol vesicles in the temperature range of 278-298 K. Vesicles of two different sizes were prepared. The effect of cholesterol mainly affected the order fluctuation of membranes and the diffusional motion of lipid molecules. In addition, phase variations were also observed in liposomes that contained cholesterol from analyses of the distances between lipid molecules.
Collapse
Affiliation(s)
- Chu-Jung Hsieh
- Department of Chemistry and Biochemistry, National Chung Cheng University, No. 168, Sec. 1, University Rd., Min-Hsiung Township Chiayi, 621, Taiwan.
| | | | | |
Collapse
|
40
|
Deng Y, Qian Z, Luo Y, Zhang Y, Mu Y, Wei G. Membrane binding and insertion of a pHLIP peptide studied by all-atom molecular dynamics simulations. Int J Mol Sci 2013; 14:14532-49. [PMID: 23857053 PMCID: PMC3742258 DOI: 10.3390/ijms140714532] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 11/16/2022] Open
Abstract
Recent experiments in function mechanism study reported that a pH low-insertion peptide (pHLIP) can insert into a zwitterionic palmitoyloleoylphosphatidylcholine (POPC) lipid bilayer at acidic pH while binding to the bilayer surface at basic pH. However, the atomic details of the pH-dependent interaction of pHLIP with a POPC bilayer are not well understood. In this study, we investigate the detailed interactions of pHLIP with a POPC bilayer at acidic and basic pH conditions as those used in function mechanism study, using all-atom molecular dynamics (MD) simulations. Simulations have been performed by employing the initial configurations, where pHLIP is placed in aqueous solution, parallel to bilayer surface (system S), partially-inserted (system P), or fully-inserted (system F) in POPC bilayers. On the basis of multiple 200-ns MD simulations, we found (1) pHLIP in system S can spontaneously insert into a POPC bilayer at acidic pH, while binding to the membrane surface at basic pH; (2) pHLIP in system P can insert deep into a POPC bilayer at acidic pH, while it has a tendency to exit, and stays at bilayer surface at basic pH; (3) pHLIP in system F keeps in an α-helical structure at acidic pH while partially unfolding at basic pH. This study provides at atomic-level the pH-induced insertion of pHLIP into POPC bilayer.
Collapse
Affiliation(s)
- Yonghua Deng
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 220 Handan Road, Shanghai 200433, China; E-Mails: (Y.D.); (Z.Q.); (Y.L.); (Y.Z.)
| | - Zhenyu Qian
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 220 Handan Road, Shanghai 200433, China; E-Mails: (Y.D.); (Z.Q.); (Y.L.); (Y.Z.)
| | - Yin Luo
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 220 Handan Road, Shanghai 200433, China; E-Mails: (Y.D.); (Z.Q.); (Y.L.); (Y.Z.)
| | - Yun Zhang
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 220 Handan Road, Shanghai 200433, China; E-Mails: (Y.D.); (Z.Q.); (Y.L.); (Y.Z.)
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; E-Mail:
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 220 Handan Road, Shanghai 200433, China; E-Mails: (Y.D.); (Z.Q.); (Y.L.); (Y.Z.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-21-5566-5231; Fax: +86-21-6510-4949
| |
Collapse
|
41
|
Fluorescence Study of the Membrane Effects of Aggregated Lysozyme. J Fluoresc 2013; 23:1229-37. [DOI: 10.1007/s10895-013-1254-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/17/2013] [Indexed: 11/27/2022]
|
42
|
Robalo JR, do Canto AMTM, Carvalho AJP, Ramalho JPP, Loura LMS. Behavior of Fluorescent Cholesterol Analogues Dehydroergosterol and Cholestatrienol in Lipid Bilayers: A Molecular Dynamics Study. J Phys Chem B 2013; 117:5806-19. [DOI: 10.1021/jp312026u] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Luís M. S. Loura
- Faculdade de Farmácia, Universidade de Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Centro de Química de Coimbra, Largo D. Dinis, Rua Larga, 3004-535 Coimbra,
Portugal
| |
Collapse
|
43
|
Sensing hydration and behavior of pyrene in POPC and POPC/cholesterol bilayers: A molecular dynamics study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1094-101. [DOI: 10.1016/j.bbamem.2012.12.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 12/12/2012] [Accepted: 12/18/2012] [Indexed: 01/24/2023]
|
44
|
Ausili A, Berglin M, Elwing H, Egea-Jiménez AL, Corbalán-García S, Gómez-Fernández JC. Membrane docking mode of the C2 domain of PKCε: An infrared spectroscopy and FRET study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:552-60. [DOI: 10.1016/j.bbamem.2012.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/14/2012] [Accepted: 10/15/2012] [Indexed: 01/31/2023]
|
45
|
Kozma E, Gizewski ET, Tosh DK, Squarcialupi L, Auchampach JA, Jacobson KA. Characterization by flow cytometry of fluorescent, selective agonist probes of the A(3) adenosine receptor. Biochem Pharmacol 2013; 85:1171-81. [PMID: 23376019 DOI: 10.1016/j.bcp.2013.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/16/2013] [Accepted: 01/24/2013] [Indexed: 01/02/2023]
Abstract
Various fluorescent nucleoside agonists of the A3 adenosine receptor (AR) were compared as high affinity probes using radioligands and flow cytometry (FCM). They contained a fluorophore linked through the C2 or N(6) position and rigid A3AR-enhancing (N)-methanocarba modification. A hydrophobic C2-(1-pyrenyl) derivative MRS5704 bound nonselectively. C2-Tethered cyanine5-dye labeled MRS5218 bound selectively to hA3AR expressed in whole CHO cells and membranes. By FCM, binding was A3AR-mediated (blocked by A3AR antagonist, at least half through internalization), with t1/2 for association 38min in mA3AR-HEK293 cells; 26.4min in sucrose-treated hA3AR-CHO cells (Kd 31nM). Membrane binding indicated moderate mA3AR affinity, but not selectivity. Specific accumulation of fluorescence (50nM MRS5218) occurred in cells expressing mA3AR, but not other mouse ARs. Evidence was provided suggesting that MRS5218 detects endogenous expression of the A3AR in the human promyelocytic leukemic HL-60 cell line. Therefore, MRS5218 promises to be a useful tool for characterizing the A3AR.
Collapse
Affiliation(s)
- Eszter Kozma
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | | | | | | | | | | |
Collapse
|
46
|
Ferreira TM, Coreta-Gomes F, Ollila OHS, Moreno MJ, Vaz WLC, Topgaard D. Cholesterol and POPC segmental order parameters in lipid membranes: solid state 1H-13C NMR and MD simulation studies. Phys Chem Chem Phys 2012; 15:1976-89. [PMID: 23258433 DOI: 10.1039/c2cp42738a] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The concentration of cholesterol in cell membranes affects membrane fluidity and thickness, and might regulate different processes such as the formation of lipid rafts. Since interpreting experimental data from biological membranes is rather intricate, investigations on simple models with biological relevance are necessary to understand the natural systems. We study the effect of cholesterol on the molecular structure of multi-lamellar vesicles (MLVs) composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a phospholipid ubiquitous in cell membranes, with compositions in the range 0-60 mol% cholesterol. Order parameters, |S(CH)|, are experimentally determined by using (1)H-(13)C solid-state nuclear magnetic resonance (NMR) spectroscopy with segmental detail for all parts of both the cholesterol and POPC molecules, namely the ring system and alkyl chain of the sterol, as well as the glycerol backbone, choline headgroup and the sn-1 and sn-2 acyl chains of POPC. With increasing cholesterol concentration the acyl chains gradually adopt a more extended conformation while the orientation and dynamics of the polar groups are rather unaffected. Additionally, we perform classical molecular dynamics simulations on virtual bilayers mimicking the POPC-cholesterol MLVs investigated by NMR. Good agreement between experiments and simulations is found for the cholesterol alignment in the bilayer and for the |S(CH)| profiles of acyl chains below 15 mol% cholesterol. Deviations occur for the choline headgroup and glycerol backbone parts of POPC, as well as for the phospholipid and cholesterol alkyl chains at higher cholesterol concentrations. The unprecedented detail of the NMR data enables a more complete comparison between simulations and experiments on POPC-cholesterol bilayers and may aid in developing more realistic model descriptions of biological membranes.
Collapse
|
47
|
Dürr UHN, Afonin S, Hoff B, de Luca G, Emsley JW, Ulrich AS. Alignment of Druglike Compounds in Lipid Bilayers Analyzed by Solid-State 19F-NMR and Molecular Dynamics, Based on Dipolar Couplings of Adjacent CF3 Groups. J Phys Chem B 2012; 116:4769-82. [DOI: 10.1021/jp212339k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ulrich H. N. Dürr
- Institute
of Organic Chemistry
and CFN, Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg
6, 76131 Karlsruhe, Germany
| | - Sergii Afonin
- Institute
of Organic Chemistry
and CFN, Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg
6, 76131 Karlsruhe, Germany
| | - Barbara Hoff
- Bioprocess Engineering, IMVM, Fritz-Haber-Weg
2, 76131 Karlsruhe, Germany
| | - Giuseppina de Luca
- Dipartimento di Chimica, University of Calabria, Campus di Arcavacata, Via Pietro
Bucci Cubo 12C, I-87036 Rende (Cosenza), Italy
| | - James W. Emsley
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Anne S. Ulrich
- Institute
of Organic Chemistry
and CFN, Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg
6, 76131 Karlsruhe, Germany
| |
Collapse
|
48
|
Can pyrene be localized inside lipid bilayers by simultaneously measuring Py values, and fulfilling the excimer formation conditions? Chem Phys Lipids 2012; 165:866-9. [PMID: 22480580 DOI: 10.1016/j.chemphyslip.2012.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/16/2012] [Indexed: 11/20/2022]
|
49
|
Chen HC, Ziemba BP, Landgraf KE, Corbin JA, Falke JJ. Membrane docking geometry of GRP1 PH domain bound to a target lipid bilayer: an EPR site-directed spin-labeling and relaxation study. PLoS One 2012; 7:e33640. [PMID: 22479423 PMCID: PMC3316598 DOI: 10.1371/journal.pone.0033640] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 02/14/2012] [Indexed: 11/18/2022] Open
Abstract
The second messenger lipid PIP3 (phosphatidylinositol-3,4,5-trisphosphate) is generated by the lipid kinase PI3K (phosphoinositide-3-kinase) in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP3-specific pleckstrin homology (PH) domains to the membrane surface. Despite the broad importance of PIP3-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP3 lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP3. The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i) PIP3 target lipid that provides specificity and affinity, and (ii) PS facilitator lipid that enhances the PIP3 on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP3 headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP3 headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP3 headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral diffusion observed for PIP3-bound GRP1 PH domain on supported lipid bilayers.
Collapse
Affiliation(s)
| | | | | | | | - Joseph J. Falke
- Department of Chemistry and Biochemistry and the Molecular Biophysics Program, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
50
|
Zahid NI, Abou-Zied OK, Hashim R, Heidelberg T. Fluorescence probing of the temperature-induced phase transition in a glycolipid self-assembly: hexagonal ↔ micellar and cubic ↔ lamellar. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:4989-95. [PMID: 22364590 DOI: 10.1021/la3001976] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Water-driven self-assembly of lipids displays a variety of liquid crystalline phases that are crucial for membrane functions. Herein, we characterize the temperature-induced phase transitions in two compositions of an aqueous self-assembly system of the octyl β-D-glucoside (βGlcOC(8)) system, using steady-state and time-resolved fluorescence measurements. The phase transitions hexagonal ↔ micellar and cubic ↔ lamellar were investigated using tryptophan (Trp) and two of its ester derivatives (Trp-C(4) and Trp-C(8)) to probe the polar headgroup region and pyrene to probe the hydrophobic tail region. The polarity of the headgroup region was estimated to be close to that of simple alcohols (methanol and ethanol) for all phases. The pyrene fluorescence indicates that the pyrene molecules are dispersed among the tails of the hydrophobic region, yet remain in close proximity to the polar head groups. Comparing the present results with our previously reported one for βMaltoOC(12), increasing the tail length of the hexagonal phase from C(8) to C(12) leads to less interaction with pyrene, which is attributed to the more random and wobbling motion of the longer alkyl tail. We measured a reduction (more hydrophobic) in the ratio of the vibronic peak intensities of pyrene (I(1)/I(3)) for the lamellar phase compared to that of the cubic phase. The higher polarity in the cubic phase can be correlated to the nature of its interface, which curves toward the bulk water. This geometry also explains the slight reduction in polarity of the headgroup region compared to the other phases. Upon the addition of Trp-C(8), the fluorescence lifetime of pyrene is reduced by 28% in the lamellar and cubic phases, whereas the I(1)/I(3) value is only slightly reduced. The results reflect the dominant role of dynamic interaction mechanism between the C(8) chain of Trp-C(8) and pyrene. This mechanism may be important for these two phases since they participate in the process of membrane fusion. Both lipid compositions show completely reversible temperature-induced phase transitions, reflecting the thermodynamic equilibrium structures of their mesophases. Probing both regions of the different lipid phases reveals a large degree of heterogeneity and flexibility of the lipid self-assembly. These properties are crucial for carrying out different biological functions such as the ability to accommodate various molecular sizes.
Collapse
Affiliation(s)
- N Idayu Zahid
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|