1
|
Intermittent ELF-MF Induce an Amplitude-Window Effect on Umbilical Cord Blood Lymphocytes. Int J Mol Sci 2022; 23:ijms232214391. [PMID: 36430865 PMCID: PMC9699011 DOI: 10.3390/ijms232214391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
In a previous study of the effects of intermittent extremely low frequency (ELF) magnetic fields (MF) on umbilical cord blood lymphocytes (UCBL), we evaluated MF amplitudes between 6 µT and 24 µT and found an effect only for those below 13 µT. This suggested the existence of an amplitude window. In this brief communication, we further tested this hypothesis. UCBLs from healthy newborns were isolated and exposed for 72 h to an intermittent ELF-MF (triangular, 7.8 Hz, 250 s ON/250 s OFF) with 6 different amplitudes between 3 µT and 12 µT, utilizing an oblong coil. Percentage of viable, early apoptotic (EA), and late apoptotic/necrotic (LAN) cells were determined by flow cytometry. Moreover, reactive oxygen species (ROS) were determined at 1 h and 3 h of the exposure. Like in our previous work, neither EA, nor LAN, nor ROS were statistically significantly affected by the intermittent ELF-MF. However, the percentage of viable cells was decreased by exposure to the fields with intensities of 6.5 µT and 12 µT (p < 0.05; and p = 0.057 for 8.5 µT). ELF-MF decreased the percentage of viable cells for fields down to 6.5 µT, but not for 5 µT, 4 µT, or 3 µT. Combined with our previous findings, the results reported here indicate an amplitude window effect between 6 µT and 13 µT. The obtained data are in line with a notion of amplitude and frequency windows, which request scanning of both amplitude and frequency while studying the ELF-MF effects.
Collapse
|
2
|
Pham MT, Tran TD, Zayabaatar E. Leuconostoc mesenteroides utilizes glucose fermentation to produce electricity and ameliorates high-fat diet-induced abdominal fat mass. Arch Microbiol 2022; 204:670. [PMID: 36241916 DOI: 10.1007/s00203-022-03281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 11/02/2022]
Abstract
Bacteria capable of producing electricity in intestinal microbiota have been discovered. However, no studies have explored butyric acid which generated by electrogenic bacteria on the host organism have significant physiological impacts on certain organs. We found that the capacity for electrical current generation by the commensal gut Leuconostoc mesenteroides EH-1 (L. mesenteroides EH-1) during glucose fermentation. The electricity production was essential for the gut colonization of L. mesenteroides EH-1 since the inhibition of electricity production by cyclophilin A inhibitor (TMN355) significantly diminished the number of bacteria attached to the human gut epithelial cell surface. The adipocyte differentiation contributes to the increased 4-hydroxy-2-nonenal (4-HNE), considered as a biomarker of reactive oxygen species (ROS). The effect of intestinal electrogenic microbiota in the high-fat diet (HFD)-induced 4-HNE and abdominal fat accumulation in mice was investigated in this study. The oral administration of glucose with a butyric acid-producing L. mesenteroides EH-1 bacterium attenuated the expression of 4-HNE and abdominal fat. The level of 4-HNE and abdominal fat depot were markedly increased in mice administered with cyclophilin A inhibitor-pretreated bacteria or GLPG-0974, an antagonist of free fatty acid receptor 2 (Ffar2). Our studies suggest a novel means by which the probiotic bacteria can modulate fat mass deposition and oxidative stress via the cyclophilin A-mediated electron production and the butyric acid-activated Ffar2 pathway.
Collapse
Affiliation(s)
- Minh Tan Pham
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Thi Dung Tran
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Enkhbat Zayabaatar
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| |
Collapse
|
3
|
Barnes F, Freeman JER. Some thoughts on the possible health effects of electric and magnetic fields and exposure guidelines. Front Public Health 2022; 10:994758. [PMID: 36187692 PMCID: PMC9521330 DOI: 10.3389/fpubh.2022.994758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 01/26/2023] Open
Abstract
Concerns about the possible health effects from exposure to weak electric and magnetic (EM) fields have been debated since the early 1960s. It is now well established that biological systems respond to exposure to weak EM fields at energy levels well below the current safety guidelines which result in modification of their functionality without significant changes in temperature. These observations are adding to the debate over what should be done to protect the users of cellular telecommunications systems. Experimental results showing both increases and decreases in cancer cell growth rates and concentration of reactive oxygen species for exposure to nano-Tesla magnetic fields at both radio frequencies (RF) and extra low frequencies (ELF) are cited in this paper. Some theoretical models on how variations in EM exposure can lead to different biological outcomes and how feedback and repair processes often mitigate potential health effects due to long-term exposure to low-level EM energy sources are presented. Of particular interest are the application of the radical pair mechanisms that affect polarization of electrons, and nuclear spins and the importance of time-delayed feedback loops and the timing of perturbations to oscillations in biological systems. These models help account for some of the apparently conflicting experimental results reported and suggest further investigation. These observations are discussed with particular emphasis on setting future safety guidelines for exposure to electromagnetic fields in cellular telecommunications systems. The papers cited are a very small fraction of those in the literature showing both biological effects and no effects from weak electric and magnetic fields.
Collapse
|
4
|
Low-Frequency Magnetic Field Exposure System for Cells Electromagnetic Biocompatibility Studies. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The advancement in science and technology has resulted in the invention and widespread usage of many electrical devices in the daily lives of humans. The exponential use of modern electronic facilities has increased electromagnetic field exposure in the current population. Therefore, the presented article deals with designing, constructing, and testing a new applicator system developed for cells electromagnetic biocompatibility studies. The applicator system is intended for studying the non-thermal impacts of low-frequency magnetic field on cell cultures growth. Main attention is focused on increasing the capacity of the applicator and effectivity of the experiments. The key idea is to reach high level of the magnetic field homogeneity in an area of interest and the temperature stability during the biocompatibility studies. The applicator system is designed based on numerical simulations and its construction, measurements, and properties evaluation are also reported for proving the applicator’s functionality. The new applicator allows performing five parallel experiments at the same time under the same conditions. The simulation together with the experimental results confirm that the magnetic field homogeneity reaches 99% in the area of interest and the maximum temperature instability is lower than 2% during the experiments. The effectiveness of new applicator is tested and proved during preliminary experiments with Saccharomyces Cerevisiae cells. The observed effects of MF exposure represent maximal stimulation of 74% and maximal inhibition of 49%. The reason why MF with the same parameters induces inhibition in one sample and stimulation in the other will be the subject of further research.
Collapse
|
5
|
About 4-day rhythm of proliferative activity of fibroblast-like cell cultures isn't endogenous and don't depend from the variations of Earth's magnetic field. Sci Rep 2022; 12:7130. [PMID: 35504894 PMCID: PMC9065162 DOI: 10.1038/s41598-022-11191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/20/2022] [Indexed: 12/02/2022] Open
Abstract
A study of the 4-day rhythm of the proliferative activity of the embryonic fibroblast-like cells in the logarithmic growth phase was carried out. It was shown that in cell cultures obtained on different days from embryos of different ages, the phase of the 4-day rhythm coincides. In vitro the maxima of the proliferative activity were consistent with the minima of the motor activity of mice. Freezing the culture for 2 or 6 days does not cause a shift in the phase of the 4-day rhythm of cell proliferative activity compare with the unfreezing culture. That indicates the existence of an external synchronizer, which determines the 4-day infradian rhythm of the proliferative activity of embryonic cells. Then we daily thawed samples of single L929 culture of mice fibroblast-like cells for 22 and 17 days and researched the dynamics of its proliferative activity. We also showed 4-day rhythm of the simultaneous increase in the number of cells for all thawed samples. Taking into account that deep freezing of a culture leads to the cessation of all life processes, the fact we obtained indicates an exogenous mechanism of the formation of about a 4-day rhythm of the proliferative activity of cell culture. Variations of the Earth's magnetic field could be one of the external synchronizers of the infradian rhythm. We studied the increase in number of L929 cell in conditions of a magnetic permalloy screen and showed that the magnetic shielding no affect the parameters of the infradian rhythm of L929 cell proliferative activity. So further searches of the external synchronizers are need.
Collapse
|
6
|
Gurhan H, Bruzon R, Kandala S, Greenebaum B, Barnes F. Effects Induced by a Weak Static Magnetic Field of Different Intensities on HT-1080 Fibrosarcoma Cells. Bioelectromagnetics 2021; 42:212-223. [PMID: 33735454 DOI: 10.1002/bem.22332] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 02/20/2021] [Accepted: 03/03/2021] [Indexed: 01/07/2023]
Abstract
In this study, we investigated the effects of weak static magnetic fields (SMFs) on HT-1080 human fibrosarcoma cells. Exposures to SMFs for four consecutive days were varied from 0.5 to 600 µT for treated units, while exposures to control units were held at 45 µT. Growth rates were measured by comparing cell counts, whereas membrane potentials, mitochondrial calcium, mitochondrial superoxide (O2 - ), nitric oxide (NO), hydrogen peroxide (H2 O2 ), intercellular pH, and oxidative stress were measured by using fluorescent dyes. The relative cell growth rates vary with the angle of the SMFs. Increases in the magnitude of the SMFs increased concentrations of mitochondrial calcium and membrane potential and decreased intracellular pH. H2 O2 , an important reactive oxygen species (ROS), increases at 100 and 200 µT, decreases at 300 and 400 µT and increases again at 500 and 600 µT. Overall, oxidative stress increases slightly with increasing SMFs, while superoxide and NO concentrations decrease. These results indicate that weak SMFs can accelerate and inhibit cell growth rates and induce alterations in ROS. Changes in ROS and oxidative stress are important for various cell functions. Calcium influx into mitochondria was one of the initial steps into the corresponding changes. Bioelectromagnetics. 2021. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Hakki Gurhan
- Department of Electrical, Computer and Energy, University of Colorado Boulder, Boulder, Colorado
| | - Rodolfo Bruzon
- Department of Electrical, Computer and Energy, University of Colorado Boulder, Boulder, Colorado
| | - Sahithi Kandala
- Department of Electrical, Computer and Energy, University of Colorado Boulder, Boulder, Colorado
| | - Ben Greenebaum
- Department of Physics, University of Wisconsin-Parkside, Kenosha, Wisconsin
| | - Frank Barnes
- Department of Electrical, Computer and Energy, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
7
|
Pham MT, Yang JJ, Balasubramaniam A, Rahim AR, Adi P, Do TTM, Herr DR, Huang CM. Leuconostoc mesenteroides mediates an electrogenic pathway to attenuate the accumulation of abdominal fat mass induced by high fat diet. Sci Rep 2020; 10:21916. [PMID: 33318546 PMCID: PMC7736347 DOI: 10.1038/s41598-020-78835-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/27/2020] [Indexed: 11/26/2022] Open
Abstract
Although several electrogenic bacteria have been identified, the physiological effect of electricity generated by bacteria on host health remains elusive. We found that probiotic Leuconostoc mesenteroides (L. mesenteroides) can metabolize linoleic acid to yield electricity via an intracellular cyclophilin A-dependent pathway. Inhibition of cyclophilin A significantly abolished bacterial electricity and lowered the adhesion of L. mesenteroides to the human gut epithelial cell line. Butyrate from L. mesenteroides in the presence of linoleic acid were detectable and mediated free fatty acid receptor 2 (Ffar2) to reduce the lipid contents in differentiating 3T3-L1 adipocytes. Oral administration of L. mesenteroides plus linoleic acid remarkably reduced high-fat-diet (HFD)-induced formation of 4-hydroxy-2-nonenal (4-HNE), a reactive oxygen species (ROS) biomarker, and decreased abdominal fat mass in mice. The reduction of 4-HNE and abdominal fat mass was reversed when cyclophilin A inhibitor-pretreated bacteria were administered to mice. Our studies present a novel mechanism of reducing abdominal fat mass by electrogenic L. mesenteroides which may yield electrons to enhance colonization and sustain high amounts of butyrate to limit ROS during adipocyte differentiation.
Collapse
Affiliation(s)
- Minh Tan Pham
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - John Jackson Yang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Arun Balasubramaniam
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Adelia Riezka Rahim
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Prakoso Adi
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Thi Tra My Do
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Deron Raymond Herr
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Chun-Ming Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, 32001, Taiwan.
| |
Collapse
|
8
|
Zastko L, Makinistian L, Moravčíková A, Jakuš J, Belyaev I. Effect of Intermittent ELF MF on Umbilical Cord Blood Lymphocytes. Bioelectromagnetics 2020; 41:649-655. [PMID: 33190314 DOI: 10.1002/bem.22302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/11/2020] [Accepted: 10/10/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Lucián Zastko
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Leonardo Makinistian
- Department of Physics, Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis-CONICET, San Luis, Argentina
| | - Andrea Moravčíková
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ján Jakuš
- Department of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
9
|
Electrical impulse effects on degenerative human annulus fibrosus model to reduce disc pain using micro-electrical impulse-on-a-chip. Sci Rep 2019; 9:5827. [PMID: 30967598 PMCID: PMC6456732 DOI: 10.1038/s41598-019-42320-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Electrical stimulation of cells and tissues for therapeutic benefit is a well-established method. Although animal studies can emulate the complexity of an organism’s physiology, lab-on-a-chip platforms provide a suitable primary model for follow-up animal studies. Thus, inexpensive and easy-to-use platforms for in vitro human cell studies are required. In the present study, we designed a micro-electrical impulse (micro-EI)-on-a-chip (micro-EI-chip), which can precisely control electron density and adjust the frequency based on a micro-EI. The micro-EI-chip can stimulate cells at various micro-EI densities (0–500 mV/mm) and frequencies (0–300 Hz), which enables multiple co-culture of different cell types with or without electrical stimulation. As a proof-of-concept study, a model involving degenerative inflamed human annulus fibrosus (hAF) cells was established in vitro and the effects of micro-EI on inflamed hAF cells were evaluated using the micro-EI-chip. Stimulation of the cells (150 mV/mm at 200 Hz) inhibited the secretion of inflammatory cytokines and downregulated the activities of extracellular matrix-modifying enzymes and matrix metalloproteinase-1. These results show that micro-EI stimulation could affect degenerative diseases based on inflammation, implicating the micro-EI-chip as being useful for basic research of electroceuticals.
Collapse
|
10
|
Ferreira F, Raghunathan V, Luxardi G, Zhu K, Zhao M. Early redox activities modulate Xenopus tail regeneration. Nat Commun 2018; 9:4296. [PMID: 30327466 PMCID: PMC6191437 DOI: 10.1038/s41467-018-06614-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 09/10/2018] [Indexed: 12/15/2022] Open
Abstract
Redox state sustained by reactive oxygen species (ROS) is crucial for regeneration; however, the interplay between oxygen (O2), ROS and hypoxia-inducible factors (HIF) remains elusive. Here we observe, using an optic-based probe (optrode), an elevated and steady O2 influx immediately upon amputation. The spatiotemporal O2 influx profile correlates with the regeneration of Xenopus laevis tadpole tails. Inhibition of ROS production but not ROS scavenging decreases O2 influx. Inhibition of HIF-1α impairs regeneration and stabilization of HIF-1α induces regeneration in the refractory period. In the regeneration bud, hypoxia correlates with O2 influx, ROS production, and HIF-1α stabilization that modulate regeneration. Further analyses reveal that heat shock protein 90 is a putative downstream target of HIF-1α while electric current reversal is a de facto downstream target of HIF-1α. Collectively, the results show a mechanism for regeneration via the orchestration of O2 influx, ROS production, and HIF-1α stabilization.
Collapse
Affiliation(s)
- Fernando Ferreira
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, 95616, CA, USA.
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Braga, 4704, Portugal.
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, 77204, TX, USA
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, 77204, TX, USA
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, 77204, TX, USA
| | - Guillaume Luxardi
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, 95616, CA, USA
| | - Kan Zhu
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, 95616, CA, USA
| | - Min Zhao
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, 95616, CA, USA.
- Department of Ophthalmology, Institute for Regenerative Cures, University of California, Davis, 95817, CA, USA.
| |
Collapse
|
11
|
Barnes F, Kandala S. Effects of time delays on biological feedback systems and electromagnetic field exposures. Bioelectromagnetics 2018; 39:249-252. [PMID: 29457641 DOI: 10.1002/bem.22114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/14/2018] [Indexed: 11/08/2022]
|
12
|
Barnes F, Greenebaum B. Comments on Vladimir Binhi and Frank Prato's A physical mechanism of magnetoreception: Extension and analysis. Bioelectromagnetics 2017; 38:322-323. [PMID: 28220941 DOI: 10.1002/bem.22041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/28/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Frank Barnes
- Department of Electrical Computer and Energy Engineering, University of Colorado, Boulder, Colorado
| | - Ben Greenebaum
- Department of Physics, University of Wisconsin-Parkside, Kenosha, Wisconsin
| |
Collapse
|
13
|
Funk RHW. Endogenous electric fields as guiding cue for cell migration. Front Physiol 2015; 6:143. [PMID: 26029113 PMCID: PMC4429568 DOI: 10.3389/fphys.2015.00143] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 04/21/2015] [Indexed: 12/17/2022] Open
Abstract
This review covers two topics: (1) "membrane potential of low magnitude and related electric fields (bioelectricity)" and (2) "cell migration under the guiding cue of electric fields (EF)."Membrane potentials for this "bioelectricity" arise from the segregation of charges by special molecular machines (pumps, transporters, ion channels) situated within the plasma membrane of each cell type (including eukaryotic non-neural animal cells). The arising patterns of ion gradients direct many cell- and molecular biological processes such as embryogenesis, wound healing, regeneration. Furthermore, EF are important as guiding cues for cell migration and are often overriding chemical or topographic cues. In osteoblasts, for instance, the directional information of EF is captured by charged transporters on the cell membrane and transferred into signaling mechanisms that modulate the cytoskeleton and motor proteins. This results in a persistent directional migration along an EF guiding cue. As an outlook, we discuss questions concerning the fluctuation of EF and the frequencies and mapping of the "electric" interior of the cell. Another exciting topic for further research is the modeling of field concepts for such distant, non-chemical cellular interactions.
Collapse
|
14
|
The role of physiological elements in future therapies of rheumatoid arthritis. III. The role of the electromagnetic field in regulation of redox potential and life cycle of inflammatory cells. Reumatologia 2015; 53:219-24. [PMID: 27407251 PMCID: PMC4847292 DOI: 10.5114/reum.2015.54000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/28/2015] [Indexed: 11/27/2022] Open
Abstract
Each material consisting of charged particles can be influenced by a magnetic field. Polarized particles play an essential role in almost all physiological processes. Locally generated electromagnetic fields several physiological processes within the human body, for example: stimulation of nerves, muscles, and cardiac electrical activity. This phenomenon is used today in many medical applications. In this article, we discuss ways in which electromagnetic field affects the physiological and pathological processes in cells and tissues. This knowledge will help to better understand the electrophysiological phenomenon in connective tissue diseases and can bring new therapeutic strategies (in the form of “invisible drugs”) for the treatment of rheumatic diseases?
Collapse
|
15
|
Portelli LA, Schomay TE, Barnes FS. Inhomogeneous background magnetic field in biological incubators is a potential confounder for experimental variability and reproducibility. Bioelectromagnetics 2013; 34:337-48. [DOI: 10.1002/bem.21787] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 01/29/2013] [Indexed: 01/03/2023]
|
16
|
Sagdilek E, Sebik O, Celebi G. Does the magnetic field of a magnetic stirrer in an optical aggregometer affect concurrent platelet aggregation? Bioelectromagnetics 2013; 34:349-57. [PMID: 23436227 DOI: 10.1002/bem.21785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 01/16/2013] [Indexed: 11/06/2022]
Abstract
Platelets are subjected to extremely low frequency electromagnetic fields during standard aggregometry measurements owing to the use of a magnetic stir bar in the instrument. This study evaluates the effects of this magnetic field exposure on platelet aggregation by comparing the results obtained in a modified aggregometer. Blood samples from healthy volunteers were anticoagulated using citrate or heparin. Platelet-rich plasma (PRP) samples were prepared. A mechanical stirring device was attached to the aggregometer instead of the magnetic stir bar system. The PRP samples were stirred using a stirring rod tip that did not produce any magnetic fields in one channel of the aggregometer; in the other channel, a stirring rod carrying a small magnet at its tip was used. As a result, a magnetic field in the extremely low frequency range and in the amplitude range of 1.9-65 mT was applied to the platelets assigned to the channel where the magnetic stirring rod tip was used. Aggregation was induced using adenosine diphosphate (ADP), collagen, or epinephrine. The slopes, maximum aggregation values, and areas under the aggregation curves were compared between the magnetic and neutral stirring rod tip groups. For samples stirred with the magnetic stirring rod tip, a significant decrease was observed in 12 of the 14 parameters evaluated for aggregations induced with ADP or collagen compared to the neutral stirring rod tip, regardless of the method used for anticoagulation. This observation indicates that the magnetic stir bars used in standard aggregometry may significantly alter aggregation parameters and platelets may be possible targets of electromagnetic fields.
Collapse
Affiliation(s)
- Engin Sagdilek
- Faculty of Medicine, Department of Biophysics, Ege University, Izmir, Turkey.
| | | | | |
Collapse
|
17
|
Sağdilek E, Sebik O, Celebi G. Investigation of the effects of 50 Hz magnetic fields on platelet aggregation using a modified aggregometer. Electromagn Biol Med 2012; 31:382-93. [PMID: 22690688 DOI: 10.3109/15368378.2012.681822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Electromagnetic fields have various effects on intracellular calcium levels, free oxygen radicals and various enzymes. The platelet activation pathway involves an increase in intracellular calcium levels and protein kinase C activation; and free oxygen radicals play a mediating role in this pathway. This study investigated whether 1 mT and 6 mT, 50 Hz magnetic fields had any effects on platelet aggregation. MATERIALS AND METHODS Blood from healthy volunteers was anticoagulated with either citrate or heparin. Each sample was divided in half and assigned to exposure and control groups. Platelet rich plasma samples in the exposure group were exposed to a 1 mT or a 6 mT, 50 Hz magnetic field for 1.5 or 1 h, respectively. The samples from both exposure and control groups were simultaneously evaluated using a modified optical aggregometer. Adenosine-diphosphate, collagen, and epinephrine were used as inducing agents. The slopes of the aggregation curve, the maximum values and the areas under the curves were recorded and compared. RESULTS A significant effect was observed only in the 1 mT-citrate group. It was found that magnetic field exposure significantly increased the maximum values and slopes of the collagen-induced aggregations. CONCLUSIONS It was found that magnetic field exposure has an activating effect on platelet aggregation.
Collapse
Affiliation(s)
- Engin Sağdilek
- Department of Biophysics, Faculty of Medicine, Ege University, Izmir, Turkey.
| | | | | |
Collapse
|
18
|
Fixler D, Yitzhaki S, Axelrod A, Zinman T, Shainberg A. Correlation of magnetic AC field on cardiac myocyte Ca(2+) transients at different magnetic DC levels. Bioelectromagnetics 2012; 33:634-40. [PMID: 22532275 DOI: 10.1002/bem.21729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/29/2012] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to determine the effect of extremely low frequency and weak magnetic fields (WMF) on cardiac myocyte Ca(2+) transients, and to explore the involvement of potassium channels under the WMF effect. In addition, we aimed to find a physical explanation for the effect of WMF on cardiac myocyte Ca(2+) transients. Indo-1 loaded cells, which were exposed to a WMF at 16 Hz and 40 nT, demonstrated a 75 ± 4% reduction in cytosolic Ca(2+) transients versus control. Treatment with the K(ATP) channel blocker, glibenclamide, followed by WMF at 16 Hz exposure, blocked the reduction in cytosolic calcium transients while treatment with pinacidil, a K(ATP) channel opener, or chromanol 293B, a selective potassium channel blocker of the delayed rectifier K(+) channels, did not inhibit the effect. Based on these finding and the ion cyclotron resonance frequency theory, we further investigated the effect of WMF by changing the direct current (DC) magnetic field (B(0) ). When operating different DC magnetic fields we showed that the WMF value changed correspondingly: for B(0) = 44.5 µT, the effect was observed at 17.05 Hz; for B(0) = 46.5 µT, the effect was observed at 18.15 Hz; and for B(0) = 49 µT the effect was observed at 19.1 Hz. We can conclude that the effect of WMF on Ca(2+) transients depends on the DC magnetic field level.
Collapse
Affiliation(s)
- Dror Fixler
- Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel.
| | | | | | | | | |
Collapse
|
19
|
Sunkari VG, Aranovitch B, Portwood N, Nikoshkov A. Effects of a low-intensity electromagnetic field on fibroblast migration and proliferation. Electromagn Biol Med 2011; 30:80-5. [PMID: 21591892 DOI: 10.3109/15368378.2011.566774] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study was to test if an extremely weak 1 GHz electromagnetic field (EMF), known to be in resonance with clusters of water molecules, has biological effects on human fibroblasts. We demonstrated that in an in vitro model of wound healing, this EMF can activate fibroblast migration. [(3)H]thymidine incorporation experiments demonstrated that the EMF could also activate fibroblast proliferation. Activation of the expression of human fibroblast growth factor 1 (HFGF1) after EMF exposure showed that molecular wound healing pathways are activated in response to this water-resonant EMF.
Collapse
|
20
|
Matteucci E, Ghimenti M, Consani C, Masoni MC, Giampietro O. Exploring leukocyte mitochondrial membrane potential in type 1 diabetes families. Cell Biochem Biophys 2011; 59:121-6. [PMID: 20963513 DOI: 10.1007/s12013-010-9124-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proper cellular function requires the maintenance of mitochondrial membrane potential (MMP) sustained by the electron transport chain. Mitochondrial dysfunction is believed to play a role in the development of diabetes and diabetic complications possibly because of the active generation of free radicals. Since MMP can be investigated in clinical settings using fluorescent probes and living whole blood cells, mitochondrial membrane alterations have been observed in some chronic disorders. We have used the mitochondrial indicator 5,5',6,6'-tetra chloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) in conjunction with flow cytometry to measure the MMP in peripheral blood granulocytes from type 1 diabetes (T1D) families. The intracellular ROS levels and the respiratory burst activity were also measured. Leukocyte MMP was elevated in 20 T1D patients and their 20 non-diabetic siblings compared with 25 healthy subjects without family history of T1D. Fasting plasma glucose was the only correlate of MMP. If confirmed by further observations, the functional implications of mitochondrial hyperpolarisation (probably different among different cells) will require extensive investigation.
Collapse
|
21
|
Lu J, Kim SG, Lee S, Oh IK. Actuation of Electro-Active Artificial Muscle at Ultralow Frequency. MACROMOL CHEM PHYS 2011. [DOI: 10.1002/macp.201000739] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Ahmed Z, Wagdy M, Benjamin M, Mohamed S, Mohamed H, Ahmed S, Kanjilal B, Wieraszko A. Therapeutic effects of acrobatic exercise and magnetic field exposure on functional recovery after spinal cord injury in mice. Bioelectromagnetics 2010; 32:49-57. [DOI: 10.1002/bem.20610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Gapeyev AB, Mikhailik EN, Chemeris NK. Features of anti-inflammatory effects of modulated extremely high-frequency electromagnetic radiation. Bioelectromagnetics 2009; 30:454-61. [PMID: 19431156 DOI: 10.1002/bem.20499] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using a model of acute zymosan-induced paw edema in NMRI mice, we test the hypothesis that anti-inflammatory effects of extremely high-frequency electromagnetic radiation (EHF EMR) can be essentially modified by application of pulse modulation with certain frequencies. It has been revealed that a single exposure of animals to continuous EHF EMR for 20 min reduced the exudative edema of inflamed paw on average by 19% at intensities of 0.1-0.7 mW/cm(2) and frequencies from the range of 42.2-42.6 GHz. At fixed effective carrier frequency of 42.2 GHz, the anti-inflammatory effect of EHF EMR did not depend on modulation frequencies, that is, application of different modulation frequencies from the range of 0.03-100 Hz did not lead to considerable changes in the effect level. On the contrary, at "ineffective" carrier frequencies of 43.0 and 61.22 GHz, the use of modulation frequencies of 0.07-0.1 and 20-30 Hz has allowed us to restore the effect up to a maximal level. The results obtained show the critical dependence of anti-inflammatory action of low-intensity EHF EMR on carrier and modulation frequencies. Within the framework of this study, the possibility of changing the level of expected biological effect of modulated EMR by a special selection of combination of carrier and modulation frequencies is confirmed.
Collapse
Affiliation(s)
- Andrew B Gapeyev
- Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | | | |
Collapse
|
24
|
Funk RHW, Monsees T, Ozkucur N. Electromagnetic effects - From cell biology to medicine. ACTA ACUST UNITED AC 2008; 43:177-264. [PMID: 19167986 DOI: 10.1016/j.proghi.2008.07.001] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 07/25/2008] [Indexed: 01/03/2023]
Abstract
In this review we compile and discuss the published plethora of cell biological effects which are ascribed to electric fields (EF), magnetic fields (MF) and electromagnetic fields (EMF). In recent years, a change in paradigm took place concerning the endogenously produced static EF of cells and tissues. Here, modern molecular biology could link the action of ion transporters and ion channels to the "electric" action of cells and tissues. Also, sensing of these mainly EF could be demonstrated in studies of cell migration and wound healing. The triggers exerted by ion concentrations and concomitant electric field gradients have been traced along signaling cascades till gene expression changes in the nucleus. Far more enigmatic is the way of action of static MF which come in most cases from outside (e.g. earth magnetic field). All systems in an organism from the molecular to the organ level are more or less in motion. Thus, in living tissue we mostly find alternating fields as well as combination of EF and MF normally in the range of extremely low-frequency EMF. Because a bewildering array of model systems and clinical devices exits in the EMF field we concentrate on cell biological findings and look for basic principles in the EF, MF and EMF action. As an outlook for future research topics, this review tries to link areas of EF, MF and EMF research to thermodynamics and quantum physics, approaches that will produce novel insights into cell biology.
Collapse
Affiliation(s)
- Richard H W Funk
- Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Institut für Anatomie, Germany.
| | | | | |
Collapse
|
25
|
Robinson KR, Cormie P. Electric field effects on human spinal injury: Is there a basis in the in vitro studies? Dev Neurobiol 2008; 68:274-80. [PMID: 17963248 DOI: 10.1002/dneu.20570] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An important basis for the clinical application of small DC electric current to mammalian spinal injury is the responses of neurons in culture to applied electric fields. Our recent finding that zebrafish neurons were unresponsive to applied fields prompted us to critically examine previous results. We conclude that compelling evidence for neuronal guidance and directional stimulation of growth toward either the cathode or anode in an electric field exists only for cultured Xenopus neurons, and not for any mammalian neurons. No basis for the reported success in treating spinal injury exists in the in vitro studies, and considerable research will be required if the conditions of field application in mammalian spinal injury are to be optimized.
Collapse
Affiliation(s)
- Kenneth R Robinson
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
26
|
Bellavite P, Conforti A, Pontarollo F, Ortolani R. Immunology and homeopathy. 2. Cells of the immune system and inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2006; 3:13-24. [PMID: 16550219 PMCID: PMC1375241 DOI: 10.1093/ecam/nek018] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 01/05/2006] [Indexed: 11/14/2022]
Abstract
Here we describe the results of some experimental laboratory studies aimed at verifying the efficacy of high dilutions of substances and of homeopathic medicines in models of inflammation and immunity. Studies carried out on basophils, lymphocytes, granulocytes and fibroblasts are reviewed. This approach may help to test under controlled conditions the main principles of homeopathy such as 'similarity' of drug action at the cellular level and the effects of dilution/dynamization on the drug activity. The current situation is that few and rather small groups are working on laboratory models for homeopathy. Regarding the interpretation of data in view of the simile principle, we observe that there are different levels of similarity and that the laboratory data give support to this principle, but have not yet yielded the ultimate answer to the action mechanism of homeopathy. Evidence of the biological activity in vitro of highly diluted-dynamized solutions is slowly accumulating, with some conflicting reports. It is our hope that this review of literature unknown to most people will give an original and useful insight into the 'state-of-the-art' of homeopathy, without final conclusions 'for' or 'against' this modality. This kind of uncertainty may be difficult to accept, but is conceivably the most open-minded position now.
Collapse
Affiliation(s)
- Paolo Bellavite
- Department of Scienze Morfologico-Biomediche, University of Verona, Italy.
| | | | | | | |
Collapse
|