1
|
Pastras CJ, Curthoys IS. Vestibular Testing-New Physiological Results for the Optimization of Clinical VEMP Stimuli. Audiol Res 2023; 13:910-928. [PMID: 37987337 PMCID: PMC10660708 DOI: 10.3390/audiolres13060079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Both auditory and vestibular primary afferent neurons can be activated by sound and vibration. This review relates the differences between them to the different receptor/synaptic mechanisms of the two systems, as shown by indicators of peripheral function-cochlear and vestibular compound action potentials (cCAPs and vCAPs)-to click stimulation as recorded in animal studies. Sound- and vibration-sensitive type 1 receptors at the striola of the utricular macula are enveloped by the unique calyx afferent ending, which has three modes of synaptic transmission. Glutamate is the transmitter for both cochlear and vestibular primary afferents; however, blocking glutamate transmission has very little effect on vCAPs but greatly reduces cCAPs. We suggest that the ultrafast non-quantal synaptic mechanism called resistive coupling is the cause of the short latency vestibular afferent responses and related results-failure of transmitter blockade, masking, and temporal precision. This "ultrafast" non-quantal transmission is effectively electrical coupling that is dependent on the membrane potentials of the calyx and the type 1 receptor. The major clinical implication is that decreasing stimulus rise time increases vCAP response, corresponding to the increased VEMP response in human subjects. Short rise times are optimal in human clinical VEMP testing, whereas long rise times are mandatory for audiometric threshold testing.
Collapse
Affiliation(s)
- Christopher J. Pastras
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Ian S. Curthoys
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Curthoys IS, Grant JW, Pastras CJ, Brown DJ, Burgess AM, Brichta AM, Lim R. A review of mechanical and synaptic processes in otolith transduction of sound and vibration for clinical VEMP testing. J Neurophysiol 2019; 122:259-276. [DOI: 10.1152/jn.00031.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Older studies of mammalian otolith physiology have focused mainly on sustained responses to low-frequency (<50 Hz) or maintained linear acceleration. So the otoliths have been regarded as accelerometers. Thus evidence of otolithic activation and high-precision phase locking to high-frequency sound and vibration appears to be very unusual. However, those results are exactly in accord with a substantial body of knowledge of otolith function in fish and frogs. It is likely that phase locking of otolith afferents to vibration is a general property of all vertebrates. This review examines the literature about the activation and phase locking of single otolithic neurons to air-conducted sound and bone-conducted vibration, in particular the high precision of phase locking shown by mammalian irregular afferents that synapse on striolar type I hair cells by calyx endings. Potassium in the synaptic cleft between the type I hair cell receptor and the calyx afferent ending may be responsible for the tight phase locking of these afferents even at very high discharge rates. Since frogs and fish do not possess full calyx endings, it is unlikely that they show phase locking with such high precision and to such high frequencies as has been found in mammals. The high-frequency responses have been modeled as the otoliths operating in a seismometer mode rather than an accelerometer mode. These high-frequency otolithic responses constitute the neural basis for clinical vestibular-evoked myogenic potential tests of otolith function.
Collapse
Affiliation(s)
- Ian S. Curthoys
- Vestibular Research Laboratory, School of Psychology, the University of Sydney, New South Wales, Australia
| | - J. Wally Grant
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia
| | - Christopher J. Pastras
- The Meniere’s Laboratory, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Daniel J. Brown
- The Meniere’s Laboratory, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Ann M. Burgess
- Vestibular Research Laboratory, School of Psychology, the University of Sydney, New South Wales, Australia
| | - Alan M. Brichta
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute. Newcastle, New South Wales, Australia
| | - Rebecca Lim
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute. Newcastle, New South Wales, Australia
| |
Collapse
|
3
|
Nam JH, Grant JW, Rowe MH, Peterson EH. Multiscale modeling of mechanotransduction in the utricle. J Neurophysiol 2019; 122:132-150. [PMID: 30995138 DOI: 10.1152/jn.00068.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We review recent progress in using numerical models to relate utricular hair bundle and otoconial membrane (OM) structure to the functional requirements imposed by natural behavior in turtles. The head movements section reviews the evolution of experimental attempts to understand vestibular system function with emphasis on turtles, including data showing that accelerations occurring during natural head movements achieve higher magnitudes and frequencies than previously assumed. The structure section reviews quantitative anatomical data documenting topographical variation in the structures underlying macromechanical and micromechanical responses of the turtle utricle to head movement: hair bundles, OM, and bundle-OM coupling. The macromechanics section reviews macromechanical models that incorporate realistic anatomical and mechanical parameters and reveal that the system is significantly underdamped, contrary to previous assumptions. The micromechanics: hair bundle motion and met currents section reviews work based on micromechanical models, which demonstrates that topographical variation in the structure of hair bundles and OM, and their mode of coupling, result in regional specializations for signaling of low frequency (or static) head position and high frequency head accelerations. We conclude that computational models based on empirical data are especially promising for investigating mechanotransduction in this challenging sensorimotor system.
Collapse
Affiliation(s)
- Jong-Hoon Nam
- Department of Mechanical Engineering, Department of Biomedical Engineering, University of Rochester , Rochester, New York
| | - J W Grant
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia
| | - M H Rowe
- Department of Biology, Neuroscience Program, Quantitative Biology Institute, Ohio University , Athens, Ohio
| | - E H Peterson
- Department of Biology, Neuroscience Program, Quantitative Biology Institute, Ohio University , Athens, Ohio
| |
Collapse
|
4
|
Kottapalli AGP, Asadnia M, Karavitaki KD, Warkiani ME, Miao J, Corey DP, Triantafyllou M. Engineering biomimetic hair bundle sensors for underwater sensing applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1063/1.5038533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
5
|
Nam JH. An operating principle of the turtle utricle to detect wide dynamic range. Hear Res 2017; 360:31-39. [PMID: 29037815 DOI: 10.1016/j.heares.2017.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/10/2017] [Accepted: 09/27/2017] [Indexed: 01/11/2023]
Abstract
The utricle encodes both static information such as head orientation, and dynamic information such as vibrations. It is not well understood how the utricle can encode both static and dynamic information for a wide dynamic range (from <0.05 to >2 times the gravitational acceleration; from DC to > 1000 Hz vibrations). Using computational models of the hair cells in the turtle utricle, this study presents an explanation on how the turtle utricle encodes stimulations over such a wide dynamic range. Two hair bundles were modeled using the finite element method-one representing the striolar hair cell (Cell S), and the other representing the medial extrastriolar hair cell (Cell E). A mechano-transduction (MET) channel model was incorporated to compute MET current (iMET) due to hair bundle deflection. A macro-mechanical model of the utricle was used to compute otoconial motions from head accelerations (aHead). According to known anatomical data, Cell E has a long kinocilium that is embedded into the stiff otoconial layer. Unlike Cell E, the hair bundle of Cell S falls short of the otoconial layer. Considering such difference in the mechanical connectivity between the hair cell bundle and the otoconial layer, three cases were simulated: Cell E displacement-clamped, Cell S viscously-coupled, and Cell S displacement-clamped. Head accelerations at different amplitude levels and different frequencies were simulated for the three cases. When a realistic head motion was simulated, Cell E was responsive to head orientation, while the viscously-coupled Cell S was responsive to fast head motion imitating the feeding strike of a turtle.
Collapse
Affiliation(s)
- Jong-Hoon Nam
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
6
|
Sataric MV, Sekulic DL, Sataric BM. Actin filaments as the fast pathways for calcium ions involved in auditory processes. J Biosci 2016; 40:549-59. [PMID: 26333401 DOI: 10.1007/s12038-015-9547-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated the polyelectrolyte properties of actin filaments which are in interaction with myosin motors, basic participants in mechano-electrical transduction in the stereocilia of the inner ear. Here, we elaborated a model in which actin filaments play the role of guides or pathways for localized flow of calcium ions. It is well recognized that calcium ions are implicated in tuning of actin-myosin cross-bridge interaction, which controls the mechanical property of hair bundle. Actin filaments enable much more efficient delivery of calcium ions and faster mechanism for their distribution within the stereocilia. With this model we were able to semiquantitatively explain experimental evidences regarding the way of how calcium ions tune the mechanosensitivity of hair cells.
Collapse
Affiliation(s)
- Miljko V Sataric
- Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000, Novi Sad, Serbia
| | | | | |
Collapse
|
7
|
Nam JH, Peng AW, Ricci AJ. Underestimated sensitivity of mammalian cochlear hair cells due to splay between stereociliary columns. Biophys J 2016; 108:2633-47. [PMID: 26039165 PMCID: PMC4457497 DOI: 10.1016/j.bpj.2015.04.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/08/2015] [Accepted: 04/21/2015] [Indexed: 01/04/2023] Open
Abstract
Current-displacement (I-X) and the force-displacement (F-X) relationships characterize hair-cell mechano-transduction in the inner ear. A common technique for measuring these relationships is to deliver mechanical stimulations to individual hair bundles with microprobes and measure whole cell transduction currents through patch pipette electrodes at the basolateral membrane. The sensitivity of hair-cell mechano-transduction is determined by two fundamental biophysical properties of the mechano-transduction channel, the stiffness of the putative gating spring and the gating swing, which are derived from the I-X and F-X relationships. Although the hair-cell stereocilia in vivo deflect <100 nm even at high sound pressure levels, often it takes >500 nm of stereocilia displacement to saturate hair-cell mechano-transduction in experiments with individual hair cells in vitro. Despite such discrepancy between in vivo and in vitro data, key biophysical properties of hair-cell mechano-transduction to define the transduction sensitivity have been estimated from in vitro experiments. Using three-dimensional finite-element methods, we modeled an inner hair-cell and an outer hair-cell stereocilia bundle and simulated the effect of probe stimulation. Unlike the natural situation where the tectorial membrane stimulates hair-cell stereocilia evenly, probes deflect stereocilia unevenly. Because of uneven stimulation, 1) the operating range (the 10–90% width of the I-X relationship) increases by a factor of 2–8 depending on probe shapes, 2) the I-X relationship changes from a symmetric to an asymmetric function, and 3) the bundle stiffness is underestimated. Our results indicate that the generally accepted assumption of parallel stimulation leads to an overestimation of the gating swing and underestimation of the gating spring stiffness by an order of magnitude.
Collapse
Affiliation(s)
- Jong-Hoon Nam
- Department of Mechanical Engineering, University of Rochester, Rochester, New York; Department of Biomedical Engineering, University of Rochester, Rochester, New York.
| | - Anthony W Peng
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
| | - Anthony J Ricci
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
8
|
Huwe JA, Logan GJ, Williams B, Rowe MH, Peterson EH. Utricular afferents: morphology of peripheral terminals. J Neurophysiol 2015; 113:2420-33. [PMID: 25632074 DOI: 10.1152/jn.00481.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/23/2015] [Indexed: 11/22/2022] Open
Abstract
The utricle provides critical information about spatiotemporal properties of head movement. It comprises multiple subdivisions whose functional roles are poorly understood. We previously identified four subdivisions in turtle utricle, based on hair bundle structure and mechanics, otoconial membrane structure and hair bundle coupling, and immunoreactivity to calcium-binding proteins. Here we ask whether these macular subdivisions are innervated by distinctive populations of afferents to help us understand the role each subdivision plays in signaling head movements. We quantified the morphology of 173 afferents and identified six afferent classes, which differ in structure and macular locus. Calyceal and dimorphic afferents innervate one striolar band. Bouton afferents innervate a second striolar band; they have elongated terminals and the thickest processes and axons of all bouton units. Bouton afferents in lateral (LES) and medial (MES) extrastriolae have small-diameter axons but differ in collecting area, bouton number, and hair cell contacts (LES >> MES). A fourth, distinctive population of bouton afferents supplies the juxtastriola. These results, combined with our earlier findings on utricular hair cells and the otoconial membrane, suggest the hypotheses that MES and calyceal afferents encode head movement direction with high spatial resolution and that MES afferents are well suited to signal three-dimensional head orientation and striolar afferents to signal head movement onset.
Collapse
Affiliation(s)
- J A Huwe
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - G J Logan
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - B Williams
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - M H Rowe
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - E H Peterson
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| |
Collapse
|
9
|
Abstract
Vestibular hair cell bundles in the inner ear each contain a single kinocilium that has the classic 9+2 axoneme microtubule structure. Kinocilia transmit movement of the overlying otoconial membrane mass and cupula to the mechanotransducing portion of the hair cell bundle. Here, we describe how force-deflection techniques can be used to measure turtle utricle kinocilium shaft and base rotational stiffness. In this approach, kinocilia are modeled as homogenous cylindrical rods and their deformation examined as both isotropic Euler-Bernoulli beams (bending only) and transversely isotropic Timoshenko beams (combined shear and bending). The measurements fit the transversely isotropic model much better with flexural rigidity EI=10,400 pN μm(2) (95% confidence interval: 7182-13,630) and shear rigidity kGA=247 pN (180-314), resulting in a shear modulus (G=1.9 kPa) that was four orders of magnitude less than Young's modulus (E=14.1 MPa), indicating that significant shear deformation occurs within deflected kinocilia. The base rotational stiffness (κ) was measured following BAPTA treatment to break the kinocilial links that bind the kinocilium to the bundle along its shaft, and κ was measured as 177±47 pN μm/rad. These parameters are important for understanding how forces arising from head movement are transduced and encoded.
Collapse
|
10
|
Lee C, Park S. A mechanical model of stereocilia that demonstrates a shift in the high-sensitivity region due to the interplay of a negative stiffness and an adaptation mechanism. BIOINSPIRATION & BIOMIMETICS 2012; 7:046013. [PMID: 23093086 DOI: 10.1088/1748-3182/7/4/046013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Stereocilia are the basic sensory units of nature's inertial sensors and are highly sensitive over broad dynamic ranges, which is a major challenge in the design of conventional engineering sensors. The high sensitivity that is maintained by stereocilia was hypothesized to exist due to a combination of adaptation and negative stiffness mechanisms, which shift the region of highest sensitivity toward the active operation range of the stereocilia bundle. To examine the adaptation hypothesis in terms of its potential applicability to future applications regarding the design of inertial sensors, we developed a mechanical mimicry of the interplay between negative stiffness and the adaptation of the stereocilia that produces spontaneous oscillation of the hair bundle. The mechanical model consists of an inverted pendulum and a fixed T-bar that mimic the interaction of two adjacent stereocilia. To focus on the interaction of one gating spring and the corresponding adaptation motor without the effect of coupling from the other gating springs attached to the neighboring stereocilia, we fixed one bar that contains the adaptation motor. To emulate the negative resistance of the tip-link due to the transient stiffness softening by the gating ion channel, a magnet pair was attached to the top of the inverted pendulum and the fixed T-bar. Readjustment of the tip-link tension by the 'slipping down and climbing up' motion of the adaptation molecular motors was demonstrated by the side-to-side movement of the magnet by a step motor. The negative stiffness region was observed near the equilibrium position and shifted with the activation of the adaptation motor. The temporal demonstration of the stiffness shift was measured as a spontaneous oscillation. The results showed that the interplay between the negative stiffness and the adaptation mechanism was mechanically produced by the combination of a repulsive force and its continuous readjustment and is better understood through a parameter study of a biomimetic mechanical system.
Collapse
Affiliation(s)
- Changwon Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | | |
Collapse
|
11
|
Rivera ARV, Davis J, Grant W, Blob RW, Peterson E, Neiman AB, Rowe M. Quantifying utricular stimulation during natural behavior. ACTA ACUST UNITED AC 2012; 317:467-80. [PMID: 22753360 DOI: 10.1002/jez.1739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/24/2012] [Accepted: 05/18/2012] [Indexed: 11/07/2022]
Abstract
The use of natural stimuli in neurophysiological studies has led to significant insights into the encoding strategies used by sensory neurons. To investigate these encoding strategies in vestibular receptors and neurons, we have developed a method for calculating the stimuli delivered to a vestibular organ, the utricle, during natural (unrestrained) behaviors, using the turtle as our experimental preparation. High-speed digital video sequences are used to calculate the dynamic gravito-inertial (GI) vector acting on the head during behavior. X-ray computed tomography (CT) scans are used to determine the orientation of the otoconial layer (OL) of the utricle within the head, and the calculated GI vectors are then rotated into the plane of the OL. Thus, the method allows us to quantify the spatio-temporal structure of stimuli to the OL during natural behaviors. In the future, these waveforms can be used as stimuli in neurophysiological experiments to understand how natural signals are encoded by vestibular receptors and neurons. We provide one example of the method, which shows that turtle feeding behaviors can stimulate the utricle at frequencies higher than those typically used in vestibular studies. This method can be adapted to other species, to other vestibular end organs, and to other methods of quantifying head movements.
Collapse
Affiliation(s)
- Angela R V Rivera
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Estimation of optimal insertion angle in a mammalian outer hair cell stereocilium. J Biomech 2012; 45:1823-7. [PMID: 22591639 DOI: 10.1016/j.jbiomech.2012.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 03/05/2012] [Accepted: 04/12/2012] [Indexed: 11/22/2022]
Abstract
Optimal insertion angle of mammalian stereocilia is estimated from the finite element analysis of the tip motion of outer hair cells (OHCs) stereocilia. The OHC stereocilia motion in the acousticolateral system appears to result in the mechanoelectrical transduction channels. Deflection of the hair bundle towards the tallest row of stereocilia causes increased probability of opening of ion channels. In this work, we focus on one of the physical features of the OHC stereocilium, the initial insertion angle of the tallest row into the tectorial membrane (TM), and its effects on the stereocilia's deflection motion. A three-dimensional model was built for the tallest stereocilium and the TM at the region where the best frequency was 500Hz. The mechanical interactions between the embedded stereocilia and the TM have been implemented into the finite element simulation. We found that, the optimum insertion angle of the tallest stereocilium into the TM was 69.8°, where the stereocilium is maximally deflected. This quantity is consistent with the histological observation obtained from the literature.
Collapse
|
13
|
Kozlov AS, Risler T, Hinterwirth AJ, Hudspeth AJ. Relative stereociliary motion in a hair bundle opposes amplification at distortion frequencies. J Physiol 2011; 590:301-8. [PMID: 22124150 DOI: 10.1113/jphysiol.2011.218362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Direct gating of mechanoelectrical transduction channels by mechanical force is a basic feature of hair cells that assures fast transduction and underpins the mechanical amplification of acoustic inputs, but the associated non-linearity - the gating compliance - inevitably distorts signals. Because reducing distortion would make the ear a better detector, we sought mechanisms with that effect. Mimicking in vivo stimulation, we used stiff probes to displace individual hair bundles at physiological amplitudes and measured the coherence and phase of the relative stereociliary motions with a dual-beam differential interferometer. Although stereocilia moved coherently and in phase at the stimulus frequencies, large phase lags at the frequencies of the internally generated distortion products indicated dissipative relative motions. Tip links engaged these relative modes and decreased the coherence in both stimulated and free hair bundles. These results show that a hair bundle breaks into a highly dissipative serial arrangement of stereocilia at distortion frequencies, precluding their amplification.
Collapse
Affiliation(s)
- Andrei S Kozlov
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| | | | | | | |
Collapse
|
14
|
LeBoeuf AC, Ó Maoiléidigh D, Hudspeth AJ. Divalent counterions tether membrane-bound carbohydrates to promote the cohesion of auditory hair bundles. Biophys J 2011; 101:1316-25. [PMID: 21943412 DOI: 10.1016/j.bpj.2011.07.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 07/13/2011] [Accepted: 07/28/2011] [Indexed: 11/16/2022] Open
Abstract
The cell membranes in the hair bundle of an auditory hair cell confront a difficult task as the bundle oscillates in response to sound: for efficient mechanotransduction, all the component stereocilia of the hair bundle must move essentially in unison, shearing at their tips yet maintaining contact without membrane fusion. One mechanism by which this cohesion might occur is counterion-mediated attachment between glycan components of apposed stereociliary membranes. Using capillary electrophoresis, we showed that the stereociliary glycocalyx acts as a negatively charged polymer brush. We found by force-sensing photomicrometry that the stereocilia formed elastic connections with one another to various degrees depending on the surrounding ionic environment and the presence of N-linked sugars. Mg(2+) was a more potent mediator of attachment than was Ca(2+). The forces between stereocilia produced chaotic stick-slip behavior. These results indicate that counterion-mediated interactions in the glycocalyx contribute to the stereociliary coherence that is essential for hearing.
Collapse
Affiliation(s)
- Adria C LeBoeuf
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York, USA
| | | | | |
Collapse
|
15
|
Sliding adhesion confers coherent motion to hair cell stereocilia and parallel gating to transduction channels. J Neurosci 2010; 30:9051-63. [PMID: 20610739 DOI: 10.1523/jneurosci.4864-09.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
When the tip of a hair bundle is deflected by a sensory stimulus, the stereocilia pivot as a unit, producing a shearing displacement between adjacent tips. It is not clear how stereocilia can stick together laterally but still shear. We used dissociated hair cells from the bullfrog saccule and high-speed video imaging to characterize this sliding adhesion. Movement of individual stereocilia was proportional to height, indicating that stereocilia pivot at their basal insertion points. All stereocilia moved by approximately the same angular deflection, and the same motion was observed at 1, 20, and 700 Hz stimulus frequency. Motions were consistent with a geometric model that assumes the stiffness of lateral links holding stereocilia together is >1000 times the pivot stiffness of stereocilia and that these links can slide in the plane of the membrane-in essence, that stereocilia shear without separation. The same motion was observed when bundles were moved perpendicular to the tip links, or when tip links, ankle links, and shaft connectors were cut, ruling out these links as the basis for sliding adhesion. Stereocilia rootlets are angled toward the center of the bundle, tending to push stereocilia tips together for small deflections. However, stereocilia remained cohesive for deflections of up to +/-35 degrees, ruling out rootlet prestressing as the basis for sliding adhesion. These observations suggest that horizontal top connectors mediate a sliding adhesion. They also indicate that all transduction channels of a hair cell are mechanically in parallel, an arrangement that may enhance amplification in the inner ear.
Collapse
|
16
|
|
17
|
Lim K, Park S. A mechanical model of the gating spring mechanism of stereocilia. J Biomech 2009; 42:2158-64. [PMID: 19679307 DOI: 10.1016/j.jbiomech.2009.05.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 05/17/2009] [Accepted: 05/20/2009] [Indexed: 11/24/2022]
Abstract
The stereocilium is the basic sensory unit of nature's mechanotransducers, which include the cochlear and vestibular organs. In noisy environments, stereocilia display high sensitivity to miniscule stimuli, effectively dealing with a situation that is a design challenge in micro systems. The gating spring hypothesis suggests that the mechanical stiffness of stereocilia bundle is softened by tip-link gating in combination with active bundle movement, contributing to the nonlinear amplification of miniscule stimuli. To demonstrate that the amplification is induced mechanically by the gating as hypothesized, we developed a biomimetic model of stereocilia and fabricated the model at the macro scale. The model consists of an inverted pendulum array with bistable buckled springs at its tips, which represent the mechanically gated ion channel. Model simulations showed that at the moment of gating, instantaneous stiffness softening generates an increase in response magnitude, which then sequentially occurs as the number of gating increases. This amplification mechanism appeared to be robust to the change of model parameters. Experimental data from the fabricated macro model also showed a significant increase in the open probability and pendulum deflection at the region having a smaller input magnitude. The results demonstrate that the nonlinear amplification of miniscule stimuli is mechanically produced by stiffness softening from channel gating.
Collapse
Affiliation(s)
- Koeun Lim
- Department of Mechanical Engineering, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | |
Collapse
|
18
|
Breneman KD, Brownell WE, Rabbitt RD. Hair cell bundles: flexoelectric motors of the inner ear. PLoS One 2009; 4:e5201. [PMID: 19384413 PMCID: PMC2668172 DOI: 10.1371/journal.pone.0005201] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/16/2009] [Indexed: 11/18/2022] Open
Abstract
Microvilli (stereocilia) projecting from the apex of hair cells in the inner ear are actively motile structures that feed energy into the vibration of the inner ear and enhance sensitivity to sound. The biophysical mechanism underlying the hair bundle motor is unknown. In this study, we examined a membrane flexoelectric origin for active movements in stereocilia and conclude that it is likely to be an important contributor to mechanical power output by hair bundles. We formulated a realistic biophysical model of stereocilia incorporating stereocilia dimensions, the known flexoelectric coefficient of lipid membranes, mechanical compliance, and fluid drag. Electrical power enters the stereocilia through displacement sensitive ion channels and, due to the small diameter of stereocilia, is converted to useful mechanical power output by flexoelectricity. This motor augments molecular motors associated with the mechanosensitive apparatus itself that have been described previously. The model reveals stereocilia to be highly efficient and fast flexoelectric motors that capture the energy in the extracellular electro-chemical potential of the inner ear to generate mechanical power output. The power analysis provides an explanation for the correlation between stereocilia height and the tonotopic organization of hearing organs. Further, results suggest that flexoelectricity may be essential to the exquisite sensitivity and frequency selectivity of non-mammalian hearing organs at high auditory frequencies, and may contribute to the “cochlear amplifier” in mammals.
Collapse
Affiliation(s)
- Kathryn D. Breneman
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
| | - William E. Brownell
- Department of Otolaryngology - H&NS, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard D. Rabbitt
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
The dimensions and composition of stereociliary rootlets in mammalian cochlear hair cells: comparison between high- and low-frequency cells and evidence for a connection to the lateral membrane. J Neurosci 2008; 28:6342-53. [PMID: 18562604 DOI: 10.1523/jneurosci.1154-08.2008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The sensory bundle of vertebrate cochlear hair cells consists of actin-containing stereocilia that are thought to bend at their ankle during mechanical stimulation. Stereocilia have dense rootlets that extend through the ankle region to anchor them into the cuticular plate. Because this region may be important in bundle stiffness and durability during prolonged stimulation at high frequencies, we investigated the structure and dimensions of rootlets relative to the stereocilia in apical (low-frequency) and basal (high-frequency) regions of rodent cochleae using light and electron microscopy. Their composition was investigated using postembedding immunogold labeling of tropomyosin, spectrin, beta-actin, gamma-actin, espin, and prestin. The rootlets have a thick central core that widens at the ankle, and are embedded in a filamentous meshwork in the cuticular plate. Within a particular frequency region, rootlet length correlates with stereociliary height but between regions it changes disproportionately; apical stereocilia are, thus, approximately twice the height of basal stereocilia in equivalent rows, but rootlet lengths increase much less. Some rootlets contact the tight junctions that underlie the ends of the bundle. Rootlets contain spectrin, tropomyosin, and beta- and gamma-actin, but espin was not detected; spectrin is also evident near the apical and junctional membranes, whereas prestin is confined to the basolateral membrane below the junctions. These data suggest that rootlets strengthen the ankle region to provide durability and may contact with the lateral wall either to give additional anchoring of the stereocilia or to provide a route for interactions between the bundle and the lateral wall.
Collapse
|
20
|
Jaeger R, Kondrachuk A, Haslwanter T. The distribution of otolith polarization vectors in mammals: Comparison between model predictions and single cell recordings. Hear Res 2008; 239:12-9. [DOI: 10.1016/j.heares.2008.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 01/02/2008] [Accepted: 01/15/2008] [Indexed: 11/26/2022]
|
21
|
Ciaravella G, Bennequin D, Laschi C. Biomechanical study on the sensorial epithelium of otolithic organs for creating a biomimetic sensor. ACTA ACUST UNITED AC 2008; 2007:4667-70. [PMID: 18003047 DOI: 10.1109/iembs.2007.4353381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This paper presents a biomechanical model of the sensorial cells in otolithic organs and a design of a 3D device that imitates the biological system. Starting from anatomical and physiological data, mechanical and structural parameters have been identified and a mechanical model has been formulated, by considering the cilia and kinocilium as a interconnected structure. The mechanical model was used to simulate the behavior of the system under known conditions. Furthermore, the behavior of a proximal link to the kinocilium were investigated for a better comprehension regarding the polymeric materials that could be used to model and manufacture the biological organs. The results obtained from the models were used to design a biomimetic organ.
Collapse
Affiliation(s)
- G Ciaravella
- Member, IEEE, PhD Student at the PhD School in Biorobotics Science and Engineering of the IMT Insitute of Advanced Studies, Lucca, Italy
| | | | | |
Collapse
|
22
|
Nam JH, Cotton JR, Grant W. A virtual hair cell, II: evaluation of mechanoelectric transduction parameters. Biophys J 2007; 92:1929-37. [PMID: 17208974 PMCID: PMC1861769 DOI: 10.1529/biophysj.106.085092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The virtual hair cell we have proposed utilizes a set of parameters related to its mechanoelectric transduction. In this work, we observed the effect of such channel gating parameters as the gating threshold, critical tension, resting tension, and Ca(2+) concentration. The gating threshold is the difference between the resting and channel opening tension exerted by the tip link assembly on the channel. The critical tension is the tension in the tip link assembly over which the channel cannot close despite Ca(2+) binding. Our results show that 1), the gating threshold dominated the initial sensitivity of the hair cell; 2), the critical tension minimally affects the peak response, (I), but considerably affects the time course of response, I(t), and the force-displacement, F-X, relationship; and 3), higher intracellular [Ca(2+)] resulted in a smaller fast adaptation time constant. Based on the simulation results we suggest a role of the resting tension: to help overcome the viscous drag of the hair bundle during the oscillatory movement of the bundle. Also we observed the three-dimensional bundle effect on the hair cell response by varying the number of cilia forced. These varying forcing conditions affected the hair cell response.
Collapse
Affiliation(s)
- Jong-Hoon Nam
- Department of Engineering Science and Mechanics, School of Biomedical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
23
|
Nam JH, Cotton JR, Grant W. A virtual hair cell, I: addition of gating spring theory into a 3-D bundle mechanical model. Biophys J 2007; 92:1918-28. [PMID: 17208975 PMCID: PMC1861784 DOI: 10.1529/biophysj.106.085076] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have developed a virtual hair cell that simulates hair cell mechanoelectrical transduction in the turtle utricle. This study combines a full three-dimensional hair bundle mechanical model with a gating spring theory. Previous mathematical models represent the hair bundle with a single degree of freedom system which, we have argued, cannot fully explain hair bundle mechanics. In our computer model, the tip link tension and fast adaptation modulator kinetics determine the opening and closing of each channel independently. We observed the response of individual transduction channels with our presented model. The simulated results showed three features of hair cells in vitro. First, a transient rebound of the bundle tip appeared when fast adaptation dominated the dynamics. Second, the dynamic stiffness of the bundle was minimized when the response-displacement (I-X) curve was steepest. Third, the hair cell showed "polarity", i.e., activation decreased from a peak to zero as the forcing direction rotated from the excitatory to the inhibitory direction.
Collapse
Affiliation(s)
- Jong-Hoon Nam
- Department of Engineering Science and Mechanics, School of Biomedical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
24
|
Kozlov AS, Risler T, Hudspeth AJ. Coherent motion of stereocilia assures the concerted gating of hair-cell transduction channels. Nat Neurosci 2006; 10:87-92. [PMID: 17173047 PMCID: PMC2174432 DOI: 10.1038/nn1818] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 11/21/2006] [Indexed: 11/08/2022]
Abstract
The hair cell's mechanoreceptive organelle, the hair bundle, is highly sensitive because its transduction channels open over a very narrow range of displacements. The synchronous gating of transduction channels also underlies the active hair-bundle motility that amplifies and tunes responsiveness. The extent to which the gating of independent transduction channels is coordinated depends on how tightly individual stereocilia are constrained to move as a unit. Using dual-beam interferometry in the bullfrog's sacculus, we found that thermal movements of stereocilia located as far apart as a hair bundle's opposite edges showed high coherence and negligible phase lag. Because the mechanical degrees of freedom of stereocilia are strongly constrained, a force applied anywhere in the hair bundle deflects the structure as a unit. This feature assures the concerted gating of transduction channels that maximizes the sensitivity of mechanoelectrical transduction and enhances the hair bundle's capacity to amplify its inputs.
Collapse
Affiliation(s)
- Andrei S Kozlov
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | |
Collapse
|
25
|
Abstract
The ability of hair bundles to signal head movements and sounds depends significantly on their structure, but a quantitative picture of bundle structure has proved elusive. The problem is acute for vestibular organs because their hair bundles exhibit complex morphologies that vary with endorgan, hair cell type, and epithelial locus. Here we use autocorrelation analysis to quantify stereociliary arrays (the number, spacing, and distribution of stereocilia) on hair cells of the turtle utricle. Our first goal was to characterize zonal variation across the macula, from medial extrastriola, through striola, to lateral extrastriola. This is important because it may help explain zonal variation in response dynamics of utricular hair cells and afferents. We also use known differences in type I and II bundles to estimate array characteristics of these two hair cell types. Our second goal was to quantify variation in array orientation at single macular loci and use this to estimate directional tuning in utricular afferents. Our major findings are that, of the features measured, array width is the most distinctive feature of striolar bundles, and within the striola there are significant, negatively correlated gradients in stereocilia number and spacing that parallel gradients in bundle heights. Together with previous results on stereocilia number and bundle heights, our results support the hypothesis that striolar hair cells are specialized to signal high-frequency/acceleration head movements. Finally, there is substantial variation in bundle orientation at single macular loci that may help explain why utricular afferents respond to stimuli orthogonal to their preferred directions.
Collapse
Affiliation(s)
- M H Rowe
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | | |
Collapse
|