1
|
Giverso C, Loy N, Lucci G, Preziosi L. Cell orientation under stretch: A review of experimental findings and mathematical modelling. J Theor Biol 2023; 572:111564. [PMID: 37391125 DOI: 10.1016/j.jtbi.2023.111564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/15/2023] [Indexed: 07/02/2023]
Abstract
The key role of electro-chemical signals in cellular processes had been known for many years, but more recently the interplay with mechanics has been put in evidence and attracted substantial research interests. Indeed, the sensitivity of cells to mechanical stimuli coming from the microenvironment turns out to be relevant in many biological and physiological circumstances. In particular, experimental evidence demonstrated that cells on elastic planar substrates undergoing periodic stretches, mimicking native cyclic strains in the tissue where they reside, actively reorient their cytoskeletal stress fibres. At the end of the realignment process, the cell axis forms a certain angle with the main stretching direction. Due to the importance of a deeper understanding of mechanotransduction, such a phenomenon was studied both from the experimental and the mathematical modelling point of view. The aim of this review is to collect and discuss both the experimental results on cell reorientation and the fundamental features of the mathematical models that have been proposed in the literature.
Collapse
Affiliation(s)
- Chiara Giverso
- Department of Mathematical Sciences "G.L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10126, Italy.
| | - Nadia Loy
- Department of Mathematical Sciences "G.L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10126, Italy.
| | - Giulio Lucci
- Department of Mathematical Sciences "G.L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10126, Italy.
| | - Luigi Preziosi
- Department of Mathematical Sciences "G.L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10126, Italy.
| |
Collapse
|
2
|
Loy N, Preziosi L. A Statistical Mechanics Approach to Describe Cell Reorientation Under Stretch. Bull Math Biol 2023; 85:60. [PMID: 37249663 PMCID: PMC10229726 DOI: 10.1007/s11538-023-01161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
Experiments show that when a monolayer of cells cultured on an elastic substratum is subject to a cyclic stretch, cells tend to reorient either perpendicularly or at an oblique angle with respect to the main stretching direction. Due to stochastic effects, however, the distribution of angles achieved by the cells is broader and, experimentally, histograms over the interval [Formula: see text] are usually reported. Here we will determine the evolution and the stationary state of probability density functions describing the statistical distribution of the orientations of the cells using Fokker-Planck equations derived from microscopic rules for describing the reorientation process of the cell. As a first attempt, we shall use a stochastic differential equation related to a very general elastic energy that the cell tries to minimize and, we will show that the results of the time integration and of the stationary state of the related forward Fokker-Planck equation compare very well with experimental results obtained by different researchers. Then, in order to model more accurately the microscopic process of cell reorientation and to shed light on the mechanisms performed by cells that are subject to cyclic stretch, we consider discrete in time random processes that allow to recover Fokker-Planck equations through classical tools of kinetic theory. In particular, we shall introduce a model of reorientation as a function of the rotation angle as a result of an optimal control problem. Also in this latter case the results match very well with experiments.
Collapse
Affiliation(s)
- N Loy
- Politecnico di Torino, Torino, Italy.
| | | |
Collapse
|
3
|
Feedback-controlled dynamics of neuronal cells on directional surfaces. Biophys J 2022; 121:769-781. [PMID: 35101418 PMCID: PMC8943704 DOI: 10.1016/j.bpj.2022.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
The formation of neuronal networks is a complex phenomenon of fundamental importance for understanding the development of the nervous system. The basic process underlying the network formation is axonal growth, a process involving the extension of axons from the cell body and axonal navigation toward target neurons. Axonal growth is guided by the interactions between the tip of the axon (growth cone) and its extracellular environmental cues, which include intercellular interactions, the biochemical landscape around the neuron, and the mechanical and geometrical features of the growth substrate. Here, we present a comprehensive experimental and theoretical analysis of axonal growth for neurons cultured on micropatterned polydimethylsiloxane (PDMS) surfaces. We demonstrate that closed-loop feedback is an essential component of axonal dynamics on these surfaces: the growth cone continuously measures environmental cues and adjusts its motion in response to external geometrical features. We show that this model captures all the characteristics of axonal dynamics on PDMS surfaces for both untreated and chemically modified neurons. We combine experimental data with theoretical analysis to measure key parameters that describe axonal dynamics: diffusion (cell motility) coefficients, speed and angular distributions, and cell-substrate interactions. The experiments performed on neurons treated with Taxol (inhibitor of microtubule dynamics) and Y-27632 (disruptor of actin filaments) indicate that the internal dynamics of microtubules and actin filaments plays a critical role for the proper function of the feedback mechanism. Our results demonstrate that axons follow geometrical patterns through a contact-guidance mechanism, in which high-curvature geometrical features impart high traction forces to the growth cone. These results have important implications for our fundamental understanding of axonal growth as well as for bioengineering novel substrate to guide neuronal growth and promote nerve repair.
Collapse
|
4
|
Dong J, Pacella M, Liu Y, Zhao L. Surface engineering and the application of laser-based processes to stents - A review of the latest development. Bioact Mater 2021; 10:159-184. [PMID: 34901537 PMCID: PMC8636930 DOI: 10.1016/j.bioactmat.2021.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/04/2021] [Accepted: 08/20/2021] [Indexed: 12/21/2022] Open
Abstract
Late in-stent thrombus and restenosis still represent two major challenges in stents’ design. Surface treatment of stent is attracting attention due to the increasing importance of stenting intervention for coronary artery diseases. Several surface engineering techniques have been utilised to improve the biological response in vivo on a wide range of biomedical devices. As a tailorable, precise, and ultra-fast process, laser surface engineering offers the potential to treat stent materials and fabricate various 3D textures, including grooves, pillars, nanowires, porous and freeform structures, while also modifying surface chemistry through nitridation, oxidation and coatings. Laser-based processes can reduce the biodegradable materials' degradation rate, offering many advantages to improve stents’ performance, such as increased endothelialisation rate, prohibition of SMC proliferation, reduced platelet adhesion and controlled corrosion and degradation. Nowadays, adequate research has been conducted on laser surface texturing and surface chemistry modification. Laser texturing on commercial stents has been also investigated and a promotion of performance of laser-textured stents has been proved. In this critical review, the influence of surface texture and surface chemistry on stents performance is firstly reviewed to understand the surface characteristics of stents required to facilitate cellular response. This is followed by the explicit illustration of laser surface engineering of stents and/or related materials. Laser induced periodic surface structure (LIPSS) on stent materials is then explored, and finally the application of laser surface modification techniques on latest generation of stent devices is highlighted to provide future trends and research direction on laser surface engineering of stents. Compared conventional surface engineering with laser-based methods for biomedical devices. Explained the influence of texture geometry and surface chemistry on stents biological response. Reviewed state of the art in laser surface engineering of stents for improved biological response. Reviewed state of the art in laser surface engineering to control degradation of bioresorbable stents. Highlighted novel laser surface engineering designs for improved stents'performance.
Collapse
Affiliation(s)
- J Dong
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - M Pacella
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Y Liu
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.,Centre for Biological Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - L Zhao
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| |
Collapse
|
5
|
Bredov DV, Volodyaev IV, Luchinskaya NN. Spatio-Temporal Dynamics of Embryonic Tissue Deformations during Gastrulation in Xenopus laevis: Morphometric Analysis. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421050027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Sunnerberg JP, Descoteaux M, Kaplan DL, Staii C. Axonal growth on surfaces with periodic geometrical patterns. PLoS One 2021; 16:e0257659. [PMID: 34555083 PMCID: PMC8459970 DOI: 10.1371/journal.pone.0257659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/08/2021] [Indexed: 11/18/2022] Open
Abstract
The formation of neuron networks is a complex phenomenon of fundamental importance for understanding the development of the nervous system, and for creating novel bioinspired materials for tissue engineering and neuronal repair. The basic process underlying the network formation is axonal growth, a process involving the extension of axons from the cell body towards target neurons. Axonal growth is guided by environmental stimuli that include intercellular interactions, biochemical cues, and the mechanical and geometrical features of the growth substrate. The dynamics of the growing axon and its biomechanical interactions with the growing substrate remains poorly understood. In this paper, we develop a model of axonal motility which incorporates mechanical interactions between the axon and the growth substrate. We combine experimental data with theoretical analysis to measure the parameters that describe axonal growth on surfaces with micropatterned periodic geometrical features: diffusion (cell motility) coefficients, speed and angular distributions, and axon bending rigidities. Experiments performed on neurons treated Taxol (inhibitor of microtubule dynamics) and Blebbistatin (disruptor of actin filaments) show that the dynamics of the cytoskeleton plays a critical role in the axon steering mechanism. Our results demonstrate that axons follow geometrical patterns through a contact-guidance mechanism, in which high-curvature geometrical features impart high traction forces to the growth cone. These results have important implications for our fundamental understanding of axonal growth as well as for bioengineering novel substrates that promote neuronal growth and nerve repair.
Collapse
Affiliation(s)
- Jacob P. Sunnerberg
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, United States of America
| | - Marc Descoteaux
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, United States of America
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
7
|
Yurchenko I, Farwell M, Brady DD, Staii C. Neuronal Growth and Formation of Neuron Networks on Directional Surfaces. Biomimetics (Basel) 2021; 6:biomimetics6020041. [PMID: 34208649 PMCID: PMC8293217 DOI: 10.3390/biomimetics6020041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/26/2021] [Accepted: 06/10/2021] [Indexed: 11/26/2022] Open
Abstract
The formation of neuron networks is a process of fundamental importance for understanding the development of the nervous system and for creating biomimetic devices for tissue engineering and neural repair. The basic process that controls the network formation is the growth of an axon from the cell body and its extension towards target neurons. Axonal growth is directed by environmental stimuli that include intercellular interactions, biochemical cues, and the mechanical and geometrical properties of the growth substrate. Despite significant recent progress, the steering of the growing axon remains poorly understood. In this paper, we develop a model of axonal motility, which incorporates substrate-geometry sensing. We combine experimental data with theoretical analysis to measure the parameters that describe axonal growth on micropatterned surfaces: diffusion (cell motility) coefficients, speed and angular distributions, and cell-substrate interactions. Experiments performed on neurons treated with inhibitors for microtubules (Taxol) and actin filaments (Y-27632) indicate that cytoskeletal dynamics play a critical role in the steering mechanism. Our results demonstrate that axons follow geometrical patterns through a contact-guidance mechanism, in which geometrical patterns impart high traction forces to the growth cone. These results have important implications for bioengineering novel substrates to guide neuronal growth and promote nerve repair.
Collapse
|
8
|
Sales A, Picart C, Kemkemer R. Age-dependent migratory behavior of human endothelial cells revealed by substrate microtopography. Exp Cell Res 2018; 374:1-11. [PMID: 30342990 DOI: 10.1016/j.yexcr.2018.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/07/2023]
Abstract
Cell migration is part of many important in vivo biological processes and is influenced by chemical and physical factors such as substrate topography. Although the migratory behavior of different cell types on structured substrates has already been investigated, up to date it is largely unknown if specimen's age affects cell migration on structures. In this work, we investigated age-dependent migratory behavior of human endothelial cells from young (≤ 31 years old) and old (≥ 60 years old) donors on poly(dimethylsiloxane) microstructured substrates consisting of well-defined parallel grooves. We observed a decrease in cell migration velocity in all substrate conditions and in persistence length perpendicular to the grooves in cells from old donors. Nevertheless, in comparison to young cells, old cells exhibited a higher cell directionality along grooves of certain depths and a higher persistence time. We also found a systematic decrease of donor age-dependent responses of cell protrusions in orientation, velocity and length, all of them decreased in old cells. These observations lead us to hypothesize a possible impairment of actin cytoskeleton network and affected actin polymerization and steering systems, caused by aging.
Collapse
Affiliation(s)
- Adrià Sales
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany.
| | - Catherine Picart
- Centre National de la Recherche Scientifique UMR 5628, Laboratoire des Matériaux et du Génie Physique, Institute of Technology, 38016 Grenoble, France
| | - Ralf Kemkemer
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Heidelberg, Germany; Reutlingen University, 72762 Reutlingen, Germany.
| |
Collapse
|
9
|
Abstract
In Neurofibromatosis 1 (NF1) germ line loss of function mutations result in reduction of cellular neurofibromin content (NF1+/-, NF1 haploinsufficiency). The Ras-GAP neurofibromin is a very large cytoplasmic protein (2818 AA, 319 kDa) involved in the RAS-MAPK pathway. Aside from regulation of proliferation, it is involved in mechanosensoric of cells. We investigated neurofibromin replacement in cultured human fibroblasts showing reduced amount of neurofibromin. Full length neurofibromin was produced recombinantly in insect cells and purified. Protein transduction into cultured fibroblasts was performed employing cell penetrating peptides along with photochemical internalization. This combination of transduction strategies ensures the intracellular uptake and the translocation to the cytoplasm of neurofibromin. The transduced neurofibromin is functional, indicated by functional rescue of reduced mechanosensoric blindness and reduced RasGAP activity in cultured fibroblasts of NF1 patients or normal fibroblasts treated by NF1 siRNA. Our study shows that recombinant neurofibromin is able to revert cellular effects of NF1 haploinsuffiency in vitro, indicating a use of protein transduction into cells as a potential treatment strategy for the monogenic disease NF1.
Collapse
|
10
|
Çoban G, Çelebi MS. A novel computational remodelling algorithm for the probabilistic evolution of collagen fibre dispersion in biaxially strained vascular tissue. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2017; 34:433-467. [PMID: 27614761 DOI: 10.1093/imammb/dqw012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
In this work, we constructed a novel collagen fibre remodelling algorithm that incorporates the complex nature of random evolution acting on single fibres causing macroscopic fibre dispersion. The proposed framework is different from the existing remodelling algorithms, in that the microscopic random force on cellular scales causing a rotational-type Brownian motion alone is considered as an aspect of vascular tissue remodelling. A continuum mechanical framework for the evolution of local dispersion and how it could be used for modeling the evolution of internal radius of biaxially strained artery structures under constant internal blood pressure are presented. A linear evolution form for the statistical fibre dispersion is employed in the model. The random force component of the evolution, which depends on the mechanical stress stimuli, is described by a single parameter. Although the mathematical form of the proposed model is simple, there is a strong link between the microscopic evolution of collagen dispersion on the cellular level and its effects on the macroscopic visible world through mechanical variables. We believe that the proposed algorithm utilizes a better understanding of the relationship between the evolution rates of mean fibre direction and fibre dispersion. The predictive capability of the algorithm is presented using experimental data. The model has been simulated by solving a single-layered axisymmetric artery (adventitia) deformation problem. The algorithm performed well for estimating the quantitative features of experimental anisotropy, the mean fibre direction vector and the dispersion (κ) measurements under strain-dependent evolution assumptions.
Collapse
Affiliation(s)
- Gürsan Çoban
- Department of Computational Science & Engineering, Informatics Institute, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - M Serdar Çelebi
- Department of Computational Science & Engineering, Informatics Institute, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
11
|
Sales A, Holle AW, Kemkemer R. Initial contact guidance during cell spreading is contractility-independent. SOFT MATTER 2017; 13:5158-5167. [PMID: 28664962 DOI: 10.1039/c6sm02685k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A wide variety of cell types exhibit substrate topography-based behavior, also known as contact guidance. However, the precise cellular mechanisms underlying this process are still unknown. In this study, we investigated contact guidance by studying the reaction of human endothelial cells (ECs) to well-defined microgroove topographies, both during and after initial cell spreading. As the cytoskeleton plays a major role in cellular adaptation to topographical features, two methods were used to perturb cytoskeletal structures. Inhibition of actomyosin contractility with the chemical inhibitor blebbistatatin demonstrated that initial contact guidance events are independent of traction force generation. However, cell alignment to the grooved substrate was altered at later time points, suggesting an initial 'passive' phase of contact guidance, followed by a contractility-dependent 'active' phase that relies on mechanosensitive feedback. The actin cytoskeleton was also perturbed in an indirect manner by culturing cells upside down, resulting in decreased levels of contact guidance and suggesting that a possible loss of contact between the actin cytoskeleton and the substrate could lead to cytoskeleton impairment. The process of contact guidance at the microscale was found to be primarily lamellipodia driven, as no bias in filopodia extension was observed on micron-scale grooves.
Collapse
Affiliation(s)
- Adrià Sales
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany.
| | | | | |
Collapse
|
12
|
Intermediate filament reorganization dynamically influences cancer cell alignment and migration. Sci Rep 2017; 7:45152. [PMID: 28338091 PMCID: PMC5364536 DOI: 10.1038/srep45152] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/20/2017] [Indexed: 01/24/2023] Open
Abstract
The interactions between a cancer cell and its extracellular matrix (ECM) have been the focus of an increasing amount of investigation. The role of the intermediate filament keratin in cancer has also been coming into focus of late, but more research is needed to understand how this piece fits in the puzzle of cytoskeleton-mediated invasion and metastasis. In Panc-1 invasive pancreatic cancer cells, keratin phosphorylation in conjunction with actin inhibition was found to be sufficient to reduce cell area below either treatment alone. We then analyzed intersecting keratin and actin fibers in the cytoskeleton of cyclically stretched cells and found no directional correlation. The role of keratin organization in Panc-1 cellular morphological adaptation and directed migration was then analyzed by culturing cells on cyclically stretched polydimethylsiloxane (PDMS) substrates, nanoscale grates, and rigid pillars. In general, the reorganization of the keratin cytoskeleton allows the cell to become more ‘mobile’- exhibiting faster and more directed migration and orientation in response to external stimuli. By combining keratin network perturbation with a variety of physical ECM signals, we demonstrate the interconnected nature of the architecture inside the cell and the scaffolding outside of it, and highlight the key elements facilitating cancer cell-ECM interactions.
Collapse
|
13
|
Greiner AM, Sales A, Chen H, Biela SA, Kaufmann D, Kemkemer R. Nano- and microstructured materials for in vitro studies of the physiology of vascular cells. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1620-1641. [PMID: 28144512 PMCID: PMC5238670 DOI: 10.3762/bjnano.7.155] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 10/04/2016] [Indexed: 05/21/2023]
Abstract
The extracellular environment of vascular cells in vivo is complex in its chemical composition, physical properties, and architecture. Consequently, it has been a great challenge to study vascular cell responses in vitro, either to understand their interaction with their native environment or to investigate their interaction with artificial structures such as implant surfaces. New procedures and techniques from materials science to fabricate bio-scaffolds and surfaces have enabled novel studies of vascular cell responses under well-defined, controllable culture conditions. These advancements are paving the way for a deeper understanding of vascular cell biology and materials-cell interaction. Here, we review previous work focusing on the interaction of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) with materials having micro- and nanostructured surfaces. We summarize fabrication techniques for surface topographies, materials, geometries, biochemical functionalization, and mechanical properties of such materials. Furthermore, various studies on vascular cell behavior and their biological responses to micro- and nanostructured surfaces are reviewed. Emphasis is given to studies of cell morphology and motility, cell proliferation, the cytoskeleton and cell-matrix adhesions, and signal transduction pathways of vascular cells. We finalize with a short outlook on potential interesting future studies.
Collapse
Affiliation(s)
- Alexandra M Greiner
- Karlsruhe Institute of Technology (KIT), Institute of Zoology, Department of Cell and Neurobiology, Haid-und-Neu-Strasse 9, 76131 Karlsruhe, Germany
- now at: Pforzheim University, School of Engineering, Tiefenbronner Strasse 65, 75175 Pforzheim, Germany
| | - Adria Sales
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Hao Chen
- Karlsruhe Institute of Technology (KIT), Institute of Zoology, Department of Cell and Neurobiology, Haid-und-Neu-Strasse 9, 76131 Karlsruhe, Germany
| | - Sarah A Biela
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Dieter Kaufmann
- Universitätsklinikum Ulm, Institut für Humangenetik, Albert Einstein Allee 11, 89070 Ulm, Germany
| | - Ralf Kemkemer
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Reutlingen University, Faculty of Applied Chemistry, Alteburgstrasse 150, 72762 Reutlingen, Germany
| |
Collapse
|
14
|
Emmert M, Witzel P, Heinrich D. Challenges in tissue engineering - towards cell control inside artificial scaffolds. SOFT MATTER 2016; 12:4287-4294. [PMID: 27139622 DOI: 10.1039/c5sm02844b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Control of living cells is vital for the survival of organisms. Each cell inside an organism is exposed to diverse external mechano-chemical cues, all coordinated in a spatio-temporal pattern triggering individual cell functions. This complex interplay between external chemical cues and mechanical 3D environments is translated into intracellular signaling loops. Here, we describe how external mechano-chemical cues control cell functions, especially cell migration, and influence intracellular information transport. In particular, this work focuses on the quantitative analysis of (1) intracellular vesicle transport to understand intracellular state changes in response to external cues, (2) cellular sensing of external chemotactic cues, and (3) the cells' ability to migrate in 3D structured environments, artificially fabricated to mimic the 3D environment of tissue in the human body.
Collapse
Affiliation(s)
- M Emmert
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany. and Julius-Maximilians University Würzburg, Chemical Technology of Material Synthesis, Röntgenring 11, 97070 Würzburg, Germany
| | - P Witzel
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany. and Julius-Maximilians University Würzburg, Chemical Technology of Material Synthesis, Röntgenring 11, 97070 Würzburg, Germany
| | - D Heinrich
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany. and Leiden Institute of Physics LION, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| |
Collapse
|
15
|
Zhou SF, Gopalakrishnan S, Xu YH, Yang J, Lam YW, Pang SW. A Unidirectional Cell Switching Gate by Engineering Grating Length and Bending Angle. PLoS One 2016; 11:e0147801. [PMID: 26821058 PMCID: PMC4731054 DOI: 10.1371/journal.pone.0147801] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/09/2016] [Indexed: 11/18/2022] Open
Abstract
On a microgrooved substrate, cells migrate along the pattern, and at random positions, reverse their directions. Here, we demonstrate that these reversals can be controlled by introducing discontinuities to the pattern. On "V-shaped grating patterns", mouse osteogenic progenitor MC3T3-E1 cells reversed predominately at the bends and the ends. The patterns were engineered in a way that the combined effects of angle- and length-dependence could be examined in addition to their individual effects. Results show that when the bend was placed closer to one end, migration behaviour of cells depends on their direction of approach. At an obtuse bend (135°), more cells reversed when approaching from the long segment than from the short segment. But at an acute bend (45°), this relationship was reversed. Based on this anisotropic behaviour, the designed patterns effectively allowed cells to move in one direction but blocked migrations in the opposing direction. This study demonstrates that by the strategic placement of bends and ends on grating patterns, we can engineer effective unidirectional switching gates that can control the movement of adherent cells. The knowledge developed in this study could be utilised in future cell sorting or filtering platforms without the need for chemotaxis or microfluidic control.
Collapse
Affiliation(s)
- Shu Fan Zhou
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
| | - Singaram Gopalakrishnan
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Yuan Hao Xu
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
| | - Jie Yang
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Yun Wah Lam
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Stella W Pang
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
16
|
Yevick HG, Duclos G, Bonnet I, Silberzan P. Architecture and migration of an epithelium on a cylindrical wire. Proc Natl Acad Sci U S A 2015; 112:5944-9. [PMID: 25922533 PMCID: PMC4434757 DOI: 10.1073/pnas.1418857112] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In a wide range of epithelial tissues such as kidney tubules or breast acini, cells organize into bidimensional monolayers experiencing an out-of-plane curvature. Cancer cells can also migrate collectively from epithelial tumors by wrapping around vessels or muscle fibers. However, in vitro experiments dealing with epithelia are mostly performed on flat substrates, neglecting this out-of-plane component. In this paper, we study the development and migration of epithelial tissues on glass wires of well-defined radii varying from less than 1 µm up to 85 µm. To uncouple the effect of out-of-plane curvature from the lateral confinement experienced by the cells in these geometries, we compare our results to experiments performed on narrow adhesive tracks. Because of lateral confinement, the velocity of collective migration increases for radii smaller than typically 20 µm. The monolayer dynamics is then controlled by front-edge protrusions. Conversely, high curvature is identified as the inducer of frequent cell detachments at the front edge, a phenotype reminiscent of the Epithelial-Mesenchymal Transition. High curvature also induces a circumferential alignment of the actin cytoskeleton, stabilized by multiple focal adhesions. This organization of the cytoskeleton is reminiscent of in vivo situations such as the development of the trachea of the Drosophila embryo. Finally, submicron radii halt the monolayer, which then reconfigures into hollow cysts.
Collapse
Affiliation(s)
- Hannah G Yevick
- Laboratoire PhysicoChimie Curie, Institut Curie - Centre de Recherche - Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie - Sorbonne Universités, Equipe labellisée Ligue Contre le Cancer, 75248 Paris, France
| | - Guillaume Duclos
- Laboratoire PhysicoChimie Curie, Institut Curie - Centre de Recherche - Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie - Sorbonne Universités, Equipe labellisée Ligue Contre le Cancer, 75248 Paris, France
| | - Isabelle Bonnet
- Laboratoire PhysicoChimie Curie, Institut Curie - Centre de Recherche - Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie - Sorbonne Universités, Equipe labellisée Ligue Contre le Cancer, 75248 Paris, France
| | - Pascal Silberzan
- Laboratoire PhysicoChimie Curie, Institut Curie - Centre de Recherche - Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie - Sorbonne Universités, Equipe labellisée Ligue Contre le Cancer, 75248 Paris, France
| |
Collapse
|
17
|
Barthes J, Özçelik H, Hindié M, Ndreu-Halili A, Hasan A, Vrana NE. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. BIOMED RESEARCH INTERNATIONAL 2014; 2014:921905. [PMID: 25143954 PMCID: PMC4124711 DOI: 10.1155/2014/921905] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/15/2014] [Indexed: 01/01/2023]
Abstract
In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.
Collapse
Affiliation(s)
- Julien Barthes
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1121, “Biomatériaux et Bioingénierie”, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Hayriye Özçelik
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1121, “Biomatériaux et Bioingénierie”, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Mathilde Hindié
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, Université de Cergy-Pontoise, 2 Avenue Adolphe Chauvin, 95302 Cergy Pontoise, France
| | | | - Anwarul Hasan
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nihal Engin Vrana
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1121, “Biomatériaux et Bioingénierie”, 11 rue Humann, 67085 Strasbourg Cedex, France
- Protip SAS, 8 Place de l'Hôpital, 67000, Strasbourg, France
| |
Collapse
|
18
|
Grigola MS, Dyck CL, Babacan DS, Joaquin DN, Hsia KJ. Myoblast alignment on 2D wavy patterns: dependence on feature characteristics and cell-cell interaction. Biotechnol Bioeng 2014; 111:1617-26. [PMID: 24643546 DOI: 10.1002/bit.25219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/06/2014] [Accepted: 02/12/2014] [Indexed: 01/13/2023]
Abstract
In this study, we investigate the effects of micron-scale surface patterns on the alignment of individual cells and groups of cells. Using a simple replication molding process we produce a number of micron-scale periodic wavy patterns with different pitch and depth. We observe C2C12 cells as they grow to confluence on these patterns and find that, for some geometries, cell-cell interaction leads to global alignment in a confluent culture when individual cells would not align on the same pattern. Three types of alignment behavior are thus defined: no alignment, immediate alignment, and alignment upon confluence. To further characterize this response, we introduce a non-dimensional parameter that describes the aligning power of a periodic pattern based on its geometry. The three types of alignment behavior can be distinguished by the value of the alignment parameter, and we identify values at which the transitions in alignment behavior occur. Applying this parameter to data from the current and several earlier studies reveals that the parameter successfully describes substrate aligning power over a wide range of length scales for both wavy and grooved features.
Collapse
Affiliation(s)
- Michael S Grigola
- Department of Mechanical Sciences and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | | | | | | | | |
Collapse
|
19
|
Driscoll MK, Sun X, Guven C, Fourkas JT, Losert W. Cellular contact guidance through dynamic sensing of nanotopography. ACS NANO 2014; 8:3546-55. [PMID: 24649900 PMCID: PMC4017610 DOI: 10.1021/nn406637c] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 03/20/2014] [Indexed: 05/25/2023]
Abstract
We investigate the effects of surface nanotopography on the migration and cell shape dynamics of the amoeba Dictyostelium discoideum. Multiple prior studies have implicated the patterning of focal adhesions in contact guidance. However, we observe significant contact guidance of Dictyostelium along surfaces with nanoscale ridges or grooves, even though this organism lacks integrin-based adhesions. Cells that move parallel to nanoridges are faster, more protrusive at their fronts, and more elongated than are cells that move perpendicular to nanoridges. Quantitative studies show that nanoridges spaced 1.5 μm apart exhibit the greatest contact guidance efficiency. Because Dictyostelium cells exhibit oscillatory shape dynamics, we model contact guidance as a process in which stochastic cellular harmonic oscillators couple to the periodicity of the nanoridges. In support of this connection, we find that nanoridges nucleate actin polymerization waves of nanoscale width that propagate parallel to the nanoridges.
Collapse
Affiliation(s)
- Meghan K. Driscoll
- Department of Physics, Department of Chemistry and Biochemistry, and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States
| | - Xiaoyu Sun
- Department of Physics, Department of Chemistry and Biochemistry, and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States
| | - Can Guven
- Department of Physics, Department of Chemistry and Biochemistry, and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States
| | - John T. Fourkas
- Department of Physics, Department of Chemistry and Biochemistry, and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States
| | - Wolfgang Losert
- Department of Physics, Department of Chemistry and Biochemistry, and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States
| |
Collapse
|
20
|
Faghihi F, Baghaban Eslaminejad M. The effect of nano-scale topography on osteogenic differentiation of mesenchymal stem cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014; 158:5-16. [DOI: 10.5507/bp.2013.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 02/14/2013] [Indexed: 01/08/2023] Open
|
21
|
Jiang Y, Lu S. Three-dimensional insights into dermal tissue as a cue for cellular behavior. Burns 2014; 40:191-9. [DOI: 10.1016/j.burns.2013.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/22/2013] [Accepted: 09/29/2013] [Indexed: 01/23/2023]
|
22
|
Pfluger CA, McMahon BJ, Carrier RL, Burkey DD. Precise, Biomimetic Replication of the Multiscale Structure of Intestinal Basement Membrane Using Chemical Vapor Deposition. Tissue Eng Part A 2013; 19:649-56. [DOI: 10.1089/ten.tea.2012.0153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Courtney A. Pfluger
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts
| | - Brian J. McMahon
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts
| | - Rebecca L. Carrier
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts
| | - Daniel D. Burkey
- Department of Chemical, Materials, and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
23
|
Mitra J, Tripathi G, Sharma A, Basu B. Scaffolds for bone tissue engineering: role of surface patterning on osteoblast response. RSC Adv 2013. [DOI: 10.1039/c3ra23315d] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Kaufmann D, Hoesch J, Su Y, Deeg L, Mellert K, Spatz JP, Kemkemer R. Partial Blindness to Submicron Topography in NF1 Haploinsufficient Cultured Fibroblasts Indicates a New Function of Neurofibromin in Regulation of Mechanosensoric. Mol Syndromol 2012; 3:169-79. [PMID: 23239959 DOI: 10.1159/000342698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2012] [Indexed: 12/22/2022] Open
Abstract
Cells sense physical properties of their extracellular environment and translate them into biochemical signals. In this study, cell responses to surfaces with submicron topographies were investigated in cultured human NF1 haploinsufficient fibroblasts. Age-matched fibroblasts from 8 patients with neurofibromatosis type 1 (NF1(+/-)) and 9 controls (NF1(+/+)) were cultured on surfaces with grooves of 200 nm height and lateral distance of 2 μm. As cellular response indicator, the mean cell orientation along microstructured grooves was systematically examined. The tested NF1 haploinsufficient fibroblasts were significantly less affected by the topography than those from healthy donors. Incubation of the NF1(+/-) fibroblasts with the farnesyltransferase inhibitor FTI-277 and other inhibitors of the neurofibromin pathway ameliorates significantly the cell orientation. These data indicate that NF1 haploinsufficiency results in an altered response to specific surface topography in fibroblasts. We suggest a new function of neurofibromin in the sensoric mechanism to topographies and a partial mechanosensoric blindness by NF1 haploinsufficiency.
Collapse
Affiliation(s)
- D Kaufmann
- Institute of Human Genetics, University of Ulm, Ulm, Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Yang SP, Yang CY, Lee TM, Lui TS. Effects of calcium-phosphate topography on osteoblast mechanobiology determined using a cytodetacher. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2011.10.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Reffay M, Petitjean L, Coscoy S, Grasland-Mongrain E, Amblard F, Buguin A, Silberzan P. Orientation and polarity in collectively migrating cell structures: statics and dynamics. Biophys J 2011; 100:2566-75. [PMID: 21641301 DOI: 10.1016/j.bpj.2011.04.047] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 04/06/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022] Open
Abstract
Collective cell migration is often characterized by the spontaneous onset of multicellular protrusions (known as fingers) led by a single leader cell. Working with epithelial Madin-Darby canine kidney monolayers we show that cells within the fingers, as compared with the epithelium, are well oriented and polarized along the main finger direction, which suggests that these cells actively migrate. The cell orientation and polarity decrease continuously from the tip toward the epithelium over a penetration distance of typically two finger lengths. Furthermore, laser photoablation experiments at various locations along these fingers demonstrate that the cells in the fingers are submitted to a tensile stress whose value is larger close to the tip. From a dynamical point of view, cells entering a finger gradually polarize on timescales that depend upon their particular initial position. Selective laser nanosurgery of the leader lamellipodium shows not only that these structures need a leader to progress, but that this leader itself is the consequence of a prior self-organization of the cells forming the finger. These results highlight the complex interplay between the collective orientation within the fingers and the mechanical action of the leader.
Collapse
Affiliation(s)
- M Reffay
- Laboratoire Physico-chimie Curie, Paris, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Velocity fields in a collectively migrating epithelium. Biophys J 2010; 98:1790-800. [PMID: 20441742 DOI: 10.1016/j.bpj.2010.01.030] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 01/11/2010] [Accepted: 01/13/2010] [Indexed: 11/20/2022] Open
Abstract
We report quantitative measurements of the velocity field of collectively migrating cells in a motile epithelium. The migration is triggered by presenting free surface to an initially confluent monolayer by using a microstencil technique that does not damage the cells. To avoid the technical difficulties inherent in the tracking of single cells, the field is mapped using the technique of particle image velocimetry. The main relevant parameters, such as the velocity module, the order parameter, and the velocity correlation function, are then extracted from this cartography. These quantities are dynamically measured on two types of cells (collectively migrating Madin-Darby canine kidney (MDCK) cells and fibroblastlike normal rat kidney (NRK) cells), first as they approach confluence, and then when the geometrical constraints are released. In particular, for MDCK cells filling up the patterns, we observe a sharp decrease in the average velocity after the point of confluence, whereas the densification of the monolayer is much more regular. After the peeling off of the stencil, a velocity correlation length of approximately 200 microm is measured for MDCK cells versus only approximately 40 microm for the more independent NRK cells. Our conclusions are supported by parallel single-cell tracking experiments. By using the biorthogonal decomposition of the velocity field, we conclude that the velocity field of MDCK cells is very coherent in contrast with the NRK cells. The displacements in the fingers arising from the border of MDCK epithelia are very oriented along their main direction. They influence the velocity field in the epithelium over a distance of approximately 200 microm.
Collapse
|
28
|
Pfluger CA, Burkey DD, Wang L, Sun B, Ziemer KS, Carrier RL. Biocompatibility of Plasma Enhanced Chemical Vapor Deposited Poly(2-hydroxyethyl methacrylate) Films for Biomimetic Replication of the Intestinal Basement Membrane. Biomacromolecules 2010; 11:1579-84. [DOI: 10.1021/bm100209b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Courtney A. Pfluger
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115
| | - Daniel D. Burkey
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115
| | - Lin Wang
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115
| | - Bing Sun
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115
| | - Katherine S. Ziemer
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115
| | - Rebecca L. Carrier
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115
| |
Collapse
|
29
|
Wang L, Murthy SK, Fowle WH, Barabino GA, Carrier RL. Influence of micro-well biomimetic topography on intestinal epithelial Caco-2 cell phenotype. Biomaterials 2009; 30:6825-34. [PMID: 19766306 DOI: 10.1016/j.biomaterials.2009.08.046] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 08/27/2009] [Indexed: 10/20/2022]
Abstract
A microfabrication approach was utilized to create topographic analogs of intestinal crypts on a polymer substrate. It was hypothesized that biomimetic crypt-like micro-architecture may induce changes in small intestinal cell (i.e. Caco-2 cell) phenotype. A test pattern of micro-well features with similar dimensions (50, 100, and 500 microm diameter, 50 microm spacing, 120 microm in depth) to the crypt structures found in native basal lamina was produced in the surface of a poly(dimethylsiloxane) (PDMS) substrate. PDMS surfaces were coated with fibronectin, seeded with intestinal-epithelial-cell-like Caco-2 cells, and cultured up to fourteen days. The cells were able to crawl along the steep side walls and migrated from the bottom to the top of the well structures, completely covering the surface by 4-5 days in culture. The topography of the PDMS substrates influenced cell spreading after seeding; cells spread faster and in a more uniform fashion on flat surfaces than on those with micro-well structures, where cell protrusions extending to micro-well side walls was evident. Substrate topography also affected cell metabolic activity and differentiation; cells had higher mitochondrial activity but lower alkaline phosphatase activity at early time points in culture (2-3 days post-seeding) when seeded on micro-well patterned PDMS substrates compared to flat substrates. These results emphasize the importance of topographical design properties of a scaffolds used for tissue engineered intestine.
Collapse
Affiliation(s)
- Lin Wang
- Chemical Engineering Department, Northeastern University, 360 Huntington Ave., 342 Snell Engineering, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
30
|
Biela SA, Su Y, Spatz JP, Kemkemer R. Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano-micro range. Acta Biomater 2009; 5:2460-6. [PMID: 19410529 DOI: 10.1016/j.actbio.2009.04.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 03/03/2009] [Accepted: 04/01/2009] [Indexed: 11/26/2022]
Abstract
Cell adhesion, orientation and migration are influenced by surface topographies in the micrometer and nanometer range. In this work, we demonstrate the stimulation by topographical signals of human fibroblast cells (FCs), endothelial cells (ECs) and smooth muscle cells (SMCs). We systematically quantified the contact guidance alignment and directed migration of FCs, ECs and SMCs adhering to grooved substrates with lateral dimensions of 2-10microm and depths of 50-200nm. We found a common quantitative response characteristic of all three cell types: contact guidance significantly increased when the cells were cultured on substrates with smaller lateral dimensions or deeper grooves. Despite their general behavior, the three cell types exhibited a cell-type specific sensitivity to the groove patterns. The minimum groove depth to induce an orientation response and change cell shape was 50nm for FCs and about two times deeper for ECs and SMCs. The degree of alignment and directed migration of the FCs along the grooves was significantly stronger than for the ECs and SMCs. We demonstrate that ECs and SMCs can be stimulated by topographical signals but are less sensitive than FCs.
Collapse
|
31
|
Bettinger C, Langer R, Borenstein J. Die Entwicklung von Substrattopographien im Mikro- und Nanobereich zur Steuerung von Zellfunktionen. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200805179] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
32
|
Huang G, Mei Y, Thurmer DJ, Coric E, Schmidt OG. Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells. LAB ON A CHIP 2009; 9:263-8. [PMID: 19107283 DOI: 10.1039/b810419k] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Transparent oxide rolled-up microtube arrays were constructed on Si substrates by the deposition of a pre-stressed oxide layer on a patterned photoresist sacrificial layer and the subsequent removal of this sacrificial layer. These microtubes as well as their arrays can be well positioned onto a chip for further applications, while their dimensions (e.g. length, diameter and wall thickness) are controlled by tunable parameters of the fabrication process. Due to the unique tubular structure and optical transparency, such rolled-up microtubes can serve as well-defined two-dimensionally (2D) confined cell culture scaffolds. In our experiments, yeast cells exhibit different growth behaviors (i.e. their arrangement) in microtubes with varied diameters. In an extremely small microtube the yeast cell becomes highly elongated during growth but still survives. Detailed investigations on the behavior of individual yeast cells in a single microtube are carried out in situ to elucidate the mechanical interaction between microtubes and the 2D confined cells. The confinement of tubular channels causes the rotation of cell pairs, which is more pronounced in smaller microtubes, leading to different cellular assemblies. Our work demonstrates good capability of rolled-up microtubes for manipulating individual and definite cells, which promises high potential in lab-on-a-chip applications, for example as a bio-analytic system for individual cells if integrated with sensor functionalities.
Collapse
Affiliation(s)
- Gaoshan Huang
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstr. 20, D-01069, Dresden, Germany.
| | | | | | | | | |
Collapse
|
33
|
Bettinger CJ, Langer R, Borenstein JT. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew Chem Int Ed Engl 2009; 48:5406-15. [PMID: 19492373 PMCID: PMC2834566 DOI: 10.1002/anie.200805179] [Citation(s) in RCA: 854] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The interaction of mammalian cells with nanoscale topography has proven to be an important signaling modality in controlling cell function. Naturally occurring nanotopographic structures within the extracellular matrix present surrounding cells with mechanotransductive cues that influence local migration, cell polarization, and other functions. Synthetically nanofabricated topography can also influence cell morphology, alignment, adhesion, migration, proliferation, and cytoskeleton organization. We review the use of in vitro synthetic cell-nanotopography interactions to control cell behavior and influence complex cellular processes, including stem-cell differentiation and tissue organization. Future challenges and opportunities in cell-nanotopography engineering are also discussed, including the elucidation of mechanisms and applications in tissue engineering.
Collapse
Affiliation(s)
- Christopher J Bettinger
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room E25-342, Cambridge, MA, 02139
- Biomedical Engineering Center, Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA, 02139
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room E25-342, Cambridge, MA, 02139
| | - Jeffrey T Borenstein
- Biomedical Engineering Center, Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA, 02139
| |
Collapse
|
34
|
Two characteristic regimes in frequency-dependent dynamic reorientation of fibroblasts on cyclically stretched substrates. Biophys J 2008; 95:3470-8. [PMID: 18515393 DOI: 10.1529/biophysj.107.128611] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells adherent on a cyclically stretched substrate with a periodically varying uniaxial strain are known to dynamically reorient nearly perpendicular to the strain direction. We investigate the dynamic reorientation of rat embryonic and human fibroblast cells over a range of stretching frequency from 0.0001 to 20 s(-1) and strain amplitude from 1% to 15%. We report quantitative measurements that show that the mean cell orientation changes exponentially with a frequency-dependent characteristic time from 1 to 5 h. At subconfluent cell densities, this characteristic time for reorientation shows two characteristic regimes as a function of frequency. For frequencies below 1 s(-1), the characteristic time decreases with a power law as the frequency increases. For frequencies above 1 s(-1), it saturates at a constant value. In addition, a minimum threshold frequency is found below that no significant cell reorientation occurs. Our results are consistent for the two different fibroblast types and indicate a saturation of molecular mechanisms of mechanotransduction or response machinery for subconfluent cells within the frequency regime under investigation. For confluent cell layers, we observe similar behaviors of reorientation under cyclic stretch but no saturation in the characteristic time with frequency, suggesting that cell-cell contacts can play an important role in the response machinery of cells under mechanical strain.
Collapse
|
35
|
Combined effects of microtopography and cyclic strain on vascular smooth muscle cell orientation. J Biomech 2008; 41:762-9. [PMID: 18222460 DOI: 10.1016/j.jbiomech.2007.11.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 11/19/2007] [Accepted: 11/23/2007] [Indexed: 11/20/2022]
Abstract
Cellular alignment studies have shown that cell orientation has a large effect on the expression and behavior of cells. Cyclic strain and substrate microtopography have each been shown to regulate cellular alignment. This study examined the combined effects of these two stimuli on the alignment of bovine vascular smooth muscle cells (VSMCs). Cells were cultured on substrates with microgrooves of varying widths oriented either parallel or perpendicular to the direction of an applied cyclic tensile strain. We found that microgrooves oriented parallel to the direction of the applied strain limited the orientation response of VSMCs to the mechanical stimulus, while grooves perpendicular to the applied strain enhanced cellular alignment. Further, the extent to which parallel grooves limited cell alignment was found to be dependent on the groove width. It was found that for both a small (15microm) and a large (70microm) groove width, cells were better able to reorient in response to the applied strain than for an intermediate groove width (40microm). This study indicates that microtopographical cues modulate the orientation response of VSMCs to cyclic strain. The results suggest that there is a range of microgroove dimensions that is most effective at maintaining the orientation of the cells in the presence of an opposing stimulus induced by cyclic strain.
Collapse
|