1
|
Haftbaradaran Esfahani P, Westergren J, Lindfors L, Knöll R. Frequency-dependent signaling in cardiac myocytes. Front Physiol 2022; 13:926422. [PMID: 36117711 PMCID: PMC9478484 DOI: 10.3389/fphys.2022.926422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Recent experimental data support the view that signaling activity at the membrane depends on its geometric parameters such as surface area and curvature. However, a mathematical, biophysical concept linking shape to receptor signaling is missing. The membranes of cardiomyocytes are constantly reshaped due to cycles of contraction and relaxation. According to constant-volume behavior of cardiomyocyte contraction, the length shortening is compensated by Z-disc myofilament lattice expansion and dynamic deformation of membrane between two adjacent Z-discs. Both morphological changes are strongly dependent on the frequency of contraction. Here, we developed the hypothesis that dynamic geometry of cardiomyocytes could be important for their plasticity and signaling. This effect may depend on the frequency of the beating heart and may represent a novel concept to explain how changes in frequency affect cardiac signaling. Methods: This hypothesis is almost impossible to answer with experiments, as the in-vitro cardiomyocytes are almost two-dimensional and flattened rather than being in their real in-vivo shape. Therefore, we designed a COMSOL multiphysics program to mathematically model the dynamic geometry of a human cardiomyocyte and explore whether the beating frequency can modulate membrane signal transduction. Src kinase is an important component of cardiac mechanotransduction. We first presented that Src mainly localizes at costameres. Then, the frequency-dependent signaling effect was studied mathematically by numerical simulation of Src-mediated PDGFR signaling pathway. The reaction-convection-diffusion partial differential equation was formulated to simulate PDGFR pathway in a contracting sarcomeric disc for a range of frequencies from 1 to 4 Hz. Results: Simulations exhibits higher concentration of phospho-Src when a cardiomyocyte beats with higher rates. The calculated phospho-Src concentration at 4, 2, and 1 Hz beat rates, comparing to 0 Hz, was 21.5%, 9.4%, and 4.7% higher, respectively. Conclusion: Here we provide mathematical evidence for a novel concept in biology. Cell shape directly translates into signaling, an effect of importance particularly for the myocardium, where cells continuously reshape their membranes. The concept of locality of surface-to-volume ratios is demonstrated to lead to changes in membrane-mediated signaling and may help to explain the remarkable plasticity of the myocardium in response to biomechanical stress.
Collapse
Affiliation(s)
| | | | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Ralph Knöll
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institute, Stockholm, Sweden
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
- *Correspondence: Ralph Knöll,
| |
Collapse
|
2
|
Waddingham MT, Tsuchimochi H, Sonobe T, Asano R, Jin H, Ow CPC, Schwenke DO, Katare R, Aoyama K, Umetani K, Hoshino M, Uesugi K, Shirai M, Ogo T, Pearson JT. Using Synchrotron Radiation Imaging Techniques to Elucidate the Actions of Hexarelin in the Heart of Small Animal Models. Front Physiol 2022; 12:766818. [PMID: 35126171 PMCID: PMC8814524 DOI: 10.3389/fphys.2021.766818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
The majority of the conventional techniques that are utilized for investigating the pathogenesis of cardiovascular disease in preclinical animal models do not permit microlevel assessment of in situ cardiomyocyte and microvascular functions. Therefore, it has been difficult to establish whether cardiac dysfunction in complex multiorgan disease states, such as heart failure with preserved ejection fraction and pulmonary hypertension, have their origins in microvascular dysfunction or rather in the cardiomyocyte. Herein, we describe our approach of utilizing synchrotron radiation microangiography to, first, ascertain whether the growth hormone secretagogue (GHS) hexarelin is a vasodilator in the coronary circulation of normal and anesthetized Sprague-Dawley rats, and next investigate if hexarelin is able to prevent the pathogenesis of right ventricle (RV) dysfunction in pulmonary hypertension in the sugen chronic hypoxia model rat. We show that acute hexarelin administration evokes coronary microvascular dilation through GHS-receptor 1a and nitric oxide, and through endothelium-derived hyperpolarization. Previous work indicated that chronic exogenous administration of ghrelin largely prevented the pathogenesis of pulmonary hypertension in chronic hypoxia and in monocrotaline models. Unexpectedly, chronic hexarelin administration prior to sugen chronic hypoxia did not prevent RV hypertrophy or RV cardiomyocyte relaxation impairment. Small-angle X-ray scattering revealed that super relaxed myosin filaments contributed to diastolic dysfunction, and that length-dependent activation might contribute to sustained contractility of the RV. Thus, synchrotron-based imaging approaches can reveal novel insights into cardiac and coronary functions in vivo.
Collapse
Affiliation(s)
- Mark T. Waddingham
- Department of Advanced Medical Research for Pulmonary Hypertension, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Takashi Sonobe
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Ryotaro Asano
- Department of Advanced Medical Research for Pulmonary Hypertension, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Huiling Jin
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Connie P. C. Ow
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Daryl O. Schwenke
- Department of Physiology, School of Biomedical Sciences, Heart Otago, University of Otago, Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology, School of Biomedical Sciences, Heart Otago, University of Otago, Dunedin, New Zealand
| | - Kohki Aoyama
- Japan Synchrotron Radiation Research Institute, Harima, Japan
| | - Keiji Umetani
- Japan Synchrotron Radiation Research Institute, Harima, Japan
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute, Harima, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute, Harima, Japan
| | - Mikiyasu Shirai
- Department of Advanced Medical Research for Pulmonary Hypertension, National Cerebral and Cardiovascular Center, Suita, Japan
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Takeshi Ogo
- Department of Advanced Medical Research for Pulmonary Hypertension, National Cerebral and Cardiovascular Center, Suita, Japan
| | - James T. Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- *Correspondence: James T. Pearson
| |
Collapse
|
3
|
Powers JD, Kirkland NJ, Liu C, Razu SS, Fang X, Engler AJ, Chen J, McCulloch AD. Subcellular Remodeling in Filamin C Deficient Mouse Hearts Impairs Myocyte Tension Development during Progression of Dilated Cardiomyopathy. Int J Mol Sci 2022; 23:871. [PMID: 35055055 PMCID: PMC8779483 DOI: 10.3390/ijms23020871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 01/15/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a life-threatening form of heart disease that is typically characterized by progressive thinning of the ventricular walls, chamber dilation, and systolic dysfunction. Multiple mutations in the gene encoding filamin C (FLNC), an actin-binding cytoskeletal protein in cardiomyocytes, have been found in patients with DCM. However, the mechanisms that lead to contractile impairment and DCM in patients with FLNC variants are poorly understood. To determine how FLNC regulates systolic force transmission and DCM remodeling, we used an inducible, cardiac-specific FLNC-knockout (icKO) model to produce a rapid onset of DCM in adult mice. Loss of FLNC reduced systolic force development in single cardiomyocytes and isolated papillary muscles but did not affect twitch kinetics or calcium transients. Electron and immunofluorescence microscopy showed significant defects in Z-disk alignment in icKO mice and altered myofilament lattice geometry. Moreover, a loss of FLNC induces a softening myocyte cortex and structural adaptations at the subcellular level that contribute to disrupted longitudinal force production during contraction. Spatially explicit computational models showed that these structural defects could be explained by a loss of inter-myofibril elastic coupling at the Z-disk. Our work identifies FLNC as a key regulator of the multiscale ultrastructure of cardiomyocytes and therefore plays an important role in maintaining systolic mechanotransmission pathways, the dysfunction of which may be key in driving progressive DCM.
Collapse
Affiliation(s)
- Joseph D. Powers
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Natalie J. Kirkland
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Canzhao Liu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
| | - Swithin S. Razu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Xi Fang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
| | - Adam J. Engler
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Ju Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
- Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Microscale thermophoresis suggests a new model of regulation of cardiac myosin function via interaction with cardiac myosin-binding protein C. J Biol Chem 2021; 298:101485. [PMID: 34915024 PMCID: PMC8733265 DOI: 10.1016/j.jbc.2021.101485] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 12/02/2022] Open
Abstract
The cardiac isoform of myosin-binding protein C (cMyBP-C) is a key regulatory protein found in cardiac myofilaments that can control the activation state of both the actin-containing thin and myosin-containing thick filaments. However, in contrast to thin filament–based mechanisms of regulation, the mechanism of myosin-based regulation by cMyBP-C has yet to be defined in detail. To clarify its function in this process, we used microscale thermophoresis to build an extensive interaction map between cMyBP-C and isolated fragments of β-cardiac myosin. We show here that the regulatory N-terminal domains (C0C2) of cMyBP-C interact with both the myosin head (myosin S1) and tail domains (myosin S2) with micromolar affinity via phosphorylation-independent and phosphorylation-dependent interactions of domain C1 and the cardiac-specific m-motif, respectively. Moreover, we show that the interaction sites with the highest affinity between cMyBP-C and myosin S1 are localized to its central domains, which bind myosin with submicromolar affinity. We identified two separate interaction regions in the central C2C4 and C5C7 segments that compete for the same binding site on myosin S1, suggesting that cMyBP-C can crosslink the two myosin heads of a single myosin molecule and thereby stabilize it in the folded OFF state. Phosphorylation of the cardiac-specific m-motif by protein kinase A had no effect on the binding of either the N-terminal or the central segments to the myosin head domain, suggesting this might therefore represent a constitutively bound state of myosin associated with cMyBP-C. Based on our results, we propose a new model of regulation of cardiac myosin function by cMyBP-C.
Collapse
|
5
|
Kampourakis T, Irving M. The regulatory light chain mediates inactivation of myosin motors during active shortening of cardiac muscle. Nat Commun 2021; 12:5272. [PMID: 34489440 PMCID: PMC8421338 DOI: 10.1038/s41467-021-25601-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022] Open
Abstract
The normal function of heart muscle depends on its ability to contract more strongly at longer length. Increased venous filling stretches relaxed heart muscle cells, triggering a stronger contraction in the next beat- the Frank-Starling relation. Conversely, heart muscle cells are inactivated when they shorten during ejection, accelerating relaxation to facilitate refilling before the next beat. Although both effects are essential for the efficient function of the heart, the underlying mechanisms were unknown. Using bifunctional fluorescent probes on the regulatory light chain of the myosin motor we show that its N-terminal domain may be captured in the folded OFF state of the myosin dimer at the end of the working-stroke of the actin-attached motor, whilst its C-terminal domain joins the OFF state only after motor detachment from actin. We propose that sequential folding of myosin motors onto the filament backbone may be responsible for shortening-induced de-activation in the heart.
Collapse
Affiliation(s)
- Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
- British Heart Foundation Centre of Research Excellence, King's College London, London, UK.
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
- British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| |
Collapse
|
6
|
The Mechanical Microenvironment in Breast Cancer. Cancers (Basel) 2020; 12:cancers12061452. [PMID: 32503141 PMCID: PMC7352870 DOI: 10.3390/cancers12061452] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 01/22/2023] Open
Abstract
Mechanotransduction is the interpretation of physical cues by cells through mechanosensation mechanisms that elegantly translate mechanical stimuli into biochemical signaling pathways. While mechanical stress and their resulting cellular responses occur in normal physiologic contexts, there are a variety of cancer-associated physical cues present in the tumor microenvironment that are pathological in breast cancer. Mechanistic in vitro data and in vivo evidence currently support three mechanical stressors as mechanical modifiers in breast cancer that will be the focus of this review: stiffness, interstitial fluid pressure, and solid stress. Increases in stiffness, interstitial fluid pressure, and solid stress are thought to promote malignant phenotypes in normal breast epithelial cells, as well as exacerbate malignant phenotypes in breast cancer cells.
Collapse
|
7
|
Gonzalez-Martinez D, Johnston JR, Landim-Vieira M, Ma W, Antipova O, Awan O, Irving TC, Bryant Chase P, Pinto JR. Structural and functional impact of troponin C-mediated Ca 2+ sensitization on myofilament lattice spacing and cross-bridge mechanics in mouse cardiac muscle. J Mol Cell Cardiol 2018; 123:26-37. [PMID: 30138628 DOI: 10.1016/j.yjmcc.2018.08.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/26/2018] [Accepted: 08/05/2018] [Indexed: 12/25/2022]
Abstract
Acto-myosin cross-bridge kinetics are important for beat-to-beat regulation of cardiac contractility; however, physiological and pathophysiological mechanisms for regulation of contractile kinetics are incompletely understood. Here we explored whether thin filament-mediated Ca2+ sensitization influences cross-bridge kinetics in permeabilized, osmotically compressed cardiac muscle preparations. We used a murine model of hypertrophic cardiomyopathy (HCM) harboring a cardiac troponin C (cTnC) Ca2+-sensitizing mutation, Ala8Val in the regulatory N-domain. We also treated wild-type murine muscle with bepridil, a cTnC-targeting Ca2+ sensitizer. Our findings suggest that both methods of increasing myofilament Ca2+ sensitivity increase cross-bridge cycling rate measured by the rate of tension redevelopment (kTR); force per cross-bridge was also enhanced as measured by sinusoidal stiffness and I1,1/I1,0 ratio from X-ray diffraction. Computational modeling suggests that Ca2+ sensitization through this cTnC mutation or bepridil accelerates kTR primarily by promoting faster cross-bridge detachment. To elucidate if myofilament structural rearrangements are associated with changes in kTR, we used small angle X-ray diffraction to simultaneously measure myofilament lattice spacing and isometric force during steady-state Ca2+ activations. Within in vivo lattice dimensions, lattice spacing and steady-state isometric force increased significantly at submaximal activation. We conclude that the cTnC N-domain controls force by modulating both the number and rate of cycling cross-bridges, and that the both methods of Ca2+ sensitization may act through stabilization of cTnC's D-helix. Furthermore, we propose that the transient expansion of the myofilament lattice during Ca2+ activation may be an additional factor that could increase the rate of cross-bridge cycling in cardiac muscle. These findings may have implications for the pathophysiology of HCM.
Collapse
Affiliation(s)
- David Gonzalez-Martinez
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Weikang Ma
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Olga Antipova
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, USA; X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Omar Awan
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Thomas C Irving
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - J Renato Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
8
|
Shirai M, Yagi N, Umetani K. SPring-8 synchrotron radiation imaging for analyzing cardiovascular function in anesthetized small animals. Nihon Yakurigaku Zasshi 2016; 148:92-9. [PMID: 27478048 DOI: 10.1254/fpj.148.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Helmes M, Najafi A, Palmer BM, Breel E, Rijnveld N, Iannuzzi D, van der Velden J. Mimicking the cardiac cycle in intact cardiomyocytes using diastolic and systolic force clamps; measuring power output. Cardiovasc Res 2016; 111:66-73. [PMID: 27037258 PMCID: PMC5853507 DOI: 10.1093/cvr/cvw072] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/26/2016] [Indexed: 01/08/2023] Open
Abstract
Aims A single isolated cardiomyocyte is the smallest functional unit of the heart. Yet, all single isolated cardiomyocyte experiments have been limited by the lack of proper methods that could reproduce a physiological cardiac cycle. We aimed to investigate the contractile properties of a single cardiomyocyte that correctly mimic the cardiac cycle. Methods and results By adjusting the parameters of the feedback loop, using a suitably engineered feedback system and recording the developed force and the length of a single rat cardiomyocyte during contraction and relaxation, we were able to construct force–length (FL) relations analogous to the pressure–volume (PV) relations at the whole heart level. From the cardiac loop graphs, we obtained, for the first time, the power generated by one single cardiomyocyte. Conclusion Here, we introduce a new approach that by combining mechanics, electronics, and a new type optical force transducer can measure the FL relationship of a single isolated cardiomyocyte undergoing a mechanical loop that mimics the PV cycle of a beating heart.
Collapse
Affiliation(s)
- Michiel Helmes
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research (ICaR-VU), van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands IonOptix Llc., Milton, MA, USA
| | - Aref Najafi
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research (ICaR-VU), van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| | | | - Ernst Breel
- Biophotonics and Medical Imaging and Laserlab, VU University Amsterdam, Amsterdam, The Netherlands Optics11 BV, Amsterdam, The Netherlands
| | | | - Davide Iannuzzi
- Biophotonics and Medical Imaging and Laserlab, VU University Amsterdam, Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research (ICaR-VU), van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
10
|
Kampourakis T, Sun YB, Irving M. Orientation of the N- and C-terminal lobes of the myosin regulatory light chain in cardiac muscle. Biophys J 2015; 108:304-14. [PMID: 25606679 PMCID: PMC4302210 DOI: 10.1016/j.bpj.2014.11.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 02/02/2023] Open
Abstract
The orientations of the N- and C-terminal lobes of the cardiac isoform of the myosin regulatory light chain (cRLC) in the fully dephosphorylated state in ventricular trabeculae from rat heart were determined using polarized fluorescence from bifunctional sulforhodamine probes. cRLC mutants with one of eight pairs of surface-accessible cysteines were expressed, labeled with bifunctional sulforhodamine, and exchanged into demembranated trabeculae to replace some of the native cRLC. Polarized fluorescence data from the probes in each lobe were combined with RLC crystal structures to calculate the lobe orientation distribution with respect to the filament axis. The orientation distribution of the N-lobe had three distinct peaks (N1–N3) at similar angles in relaxation, isometric contraction, and rigor. The orientation distribution of the C-lobe had four peaks (C1–C4) in relaxation and isometric contraction, but only two of these (C2 and C4) remained in rigor. The N3 and C4 orientations are close to those of the corresponding RLC lobes in myosin head fragments bound to isolated actin filaments in the absence of ATP (in rigor), but also close to those of the pair of heads folded back against the filament surface in isolated thick filaments in the so-called J-motif conformation. The N1 and C1 orientations are close to those expected for actin-bound myosin heads with their light chain domains in a pre-powerstroke conformation. The N2 and C3 orientations have not been observed previously. The results show that the average change in orientation of the RLC region of the myosin heads on activation of cardiac muscle is small; the RLC regions of most heads remain in the same conformation as in relaxation. This suggests that the orientation of the dephosphorylated RLC region of myosin heads in cardiac muscle is primarily determined by an interaction with the thick filament surface.
Collapse
Affiliation(s)
- Thomas Kampourakis
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Yin-Biao Sun
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Malcolm Irving
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom.
| |
Collapse
|
11
|
Higuchi T, Miyagawa S, Pearson JT, Fukushima S, Saito A, Tsuchimochi H, Sonobe T, Fujii Y, Yagi N, Astolfo A, Shirai M, Sawa Y. Functional and Electrical Integration of Induced Pluripotent Stem Cell-Derived Cardiomyocytes in a Myocardial Infarction Rat Heart. Cell Transplant 2015; 24:2479-89. [PMID: 25606821 DOI: 10.3727/096368914x685799] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In vitro expanded beating cardiac myocytes derived from induced pluripotent stem cells (iPSC-CMs) are a promising source of therapy for cardiac regeneration. Meanwhile, the cell sheet method has been shown to potentially maximize survival, functionality, and integration of the transplanted cells into the heart. It is thus hypothesized that transplanted iPSC-CMs in a cell sheet manner may contribute to functional recovery via direct mechanical effects on the myocardial infarction (MI) heart. F344/NJcl-rnu/rnu rats were left coronary artery ligated (n = 30), followed by transplantation of Dsred-labeled iPSC-CM cell sheets of murine origin over the infarct heart surface. Effects of the treatment were assessed, including in vivo molecular/cellular evaluations using a synchrotron radiation scattering technique. Ejection fraction and activation recovery interval were significantly greater from day 3 onward after iPSC-CM transplantation compared to those after sham operation. A number of transplanted iPSC-CMs were present on the heart surface expressing cardiac myosin or connexin 43 over 2 weeks, assessed by immunoconfocal microscopy, while mitochondria in the transplanted iPSC-CMs gradually showed mature structure as assessed by electron microscopy. Of note, X-ray diffraction identified 1,0 and 1,1 equatorial reflections attributable to myosin and actin-myosin lattice planes typical of organized cardiac muscle fibers within the transplanted cell sheets at 4 weeks, suggesting cyclic systolic myosin mass transfer to actin filaments in the transplanted iPSC-CMs. Transplantation of iPSC-CM cell sheets into the heart yielded functional and electrical recovery with cyclic contraction of transplanted cells in the rat MI heart, indicating that this strategy may be a promising cardiac muscle replacement therapy.
Collapse
Affiliation(s)
- Takahiro Higuchi
- Department of Cardiac Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jenkins MJ, Pearson JT, Schwenke DO, Edgley AJ, Sonobe T, Fujii Y, Ishibashi-Ueda H, Kelly DJ, Yagi N, Shirai M. Myosin heads are displaced from actin filaments in the in situ beating rat heart in early diabetes. Biophys J 2013; 104:1065-72. [PMID: 23473489 DOI: 10.1016/j.bpj.2013.01.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/06/2012] [Accepted: 01/02/2013] [Indexed: 01/13/2023] Open
Abstract
Diabetes is independently associated with a specific cardiomyopathy, characterized by impaired cardiac muscle relaxation and force development. Using synchrotron radiation small-angle x-ray scattering, this study investigated in the in situ heart and in real-time whether changes in cross-bridge disposition and myosin interfilament spacing underlie the early development of diabetic cardiomyopathy. Experiments were conducted using anesthetized Sprague-Dawley rats 3 weeks after treatment with either vehicle (control) or streptozotocin (diabetic). Diffraction patterns were recorded during baseline and dobutamine infusions simultaneous with ventricular pressure-volumetry. From these diffraction patterns myosin mass transfer to actin filaments was assessed as the change in intensity ratio (I(1,0)/I(1,1)). In diabetic hearts cross-bridge disposition was most notably abnormal in the diastolic phase (p < 0.05) and to a lesser extent the systolic phase (p < 0.05). In diabetic rats only, there was a transmural gradient of contractile depression. Elevated diabetic end-diastolic intensity ratios were correlated with the suppression of diastolic function (p < 0.05). Furthermore, the expected increase in myosin head transfer by dobutamine was significantly blunted in diabetic animals (p < 0.05). Interfilament spacing did not differ between groups. We reveal that impaired cross-bridge disposition and radial transfer may thus underlie the early decline in ventricular function observed in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Mathew J Jenkins
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shirai M, Schwenke DO, Tsuchimochi H, Umetani K, Yagi N, Pearson JT. Synchrotron radiation imaging for advancing our understanding of cardiovascular function. Circ Res 2013; 112:209-21. [PMID: 23287456 DOI: 10.1161/circresaha.111.300096] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synchrotron radiation (SR) is increasingly being used for micro-level and nano-level functional imaging in in vivo animal experiments. This review focuses on the methodology that enables repeated and regional assessment of vessel internal diameter and flow in the resistance vessels of different organ systems. In particular, SR absorption microangiography approaches offer unique opportunities for real-time in vivo vascular imaging in small animals, even during dynamic motion of the heart and lungs. We also describe recent progress in the translation of multiple phase-contrast imaging techniques from ex vivo to in vivo small-animal studies. Furthermore, we also review the utility of SR for multiple pinpoint (dimensions 0.2×0.2 mm) assessments of myocardial function at the cross-bridge level in different regions of the heart using small-angle X-ray scattering, resulting from increases in SR flux at modern facilities. Finally, we present cases for the use of complementary SR approaches to study cardiovascular function, particularly the pathological changes associated with disease using small-animal models.
Collapse
Affiliation(s)
- Mikiyasu Shirai
- National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Nedrud J, Labeit S, Gotthardt M, Granzier H. Mechanics on myocardium deficient in the N2B region of titin: the cardiac-unique spring element improves efficiency of the cardiac cycle. Biophys J 2011; 101:1385-92. [PMID: 21943419 DOI: 10.1016/j.bpj.2011.06.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/01/2011] [Accepted: 06/15/2011] [Indexed: 01/21/2023] Open
Abstract
Titin (also known as connectin) is an intrasarcomeric muscle protein that functions as a molecular spring and generates passive tension upon muscle stretch. The N2B element is a cardiac-specific spring element within titin's extensible region. Our goal was to study the contribution of the N2B element to the mechanical properties of titin, particularly its hypothesized role in limiting energy loss during repeated stretch (diastole)-shortening (systole) cycles of the heart. We studied energy loss by measuring hysteresis from the area between the stretch and release passive force-sarcomere length curves and used both wild-type (WT) mice and N2B knockout (KO) mice in which the N2B element has been deleted. A range of protocols was used, including those that mimic physiological loading conditions. KO mice showed significant increases in hysteresis. Most prominently, in tissue that had been preconditioned with a physiological stretch-release protocol, hysteresis increased significantly from 320 ± 46 pJ/mm(2)/sarcomere in WT to 650 ± 94 pJ/mm(2)/sarcomere in N2B KO myocardium. These results are supported by experiments in which oxidative stress was used to mechanically inactivate portions of the N2B-Us of WT titin through cysteine cross-linking. Studies on muscle from which the thin filaments had been extracted (using the actin severing protein gelsolin) showed that the difference in hysteresis between WT and KO tissue cannot be explained by filament sliding-based viscosity. Instead the results suggest that hysteresis arises from within titin and most likely involves unfolding of immunoglobulin-like domains. These studies support that the mechanical function of the N2B element of titin includes reducing hysteresis and increasing the efficiency of the heart.
Collapse
Affiliation(s)
- Joshua Nedrud
- Graduate Interdisciplinary Program in Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | | | | | | |
Collapse
|
15
|
Prosser BL, Ward CW, Lederer WJ. X-ROS Signaling: Rapid Mechano-Chemo Transduction in Heart. Science 2011; 333:1440-5. [DOI: 10.1126/science.1202768] [Citation(s) in RCA: 426] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Chung CS, Methawasin M, Nelson OL, Radke MH, Hidalgo CG, Gotthardt M, Granzier HL. Titin based viscosity in ventricular physiology: an integrative investigation of PEVK-actin interactions. J Mol Cell Cardiol 2011; 51:428-34. [PMID: 21708170 DOI: 10.1016/j.yjmcc.2011.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/04/2011] [Accepted: 06/08/2011] [Indexed: 01/18/2023]
Abstract
Viscosity is proposed to modulate diastolic function, but only limited understanding of the source(s) of viscosity exists. In vitro experiments have shown that the proline-glutamic acid-valine-lysine (PEVK) rich element of titin interacts with actin, causing a viscous force in the sarcomere. It is unknown whether this mechanism contributes to viscosity in vivo. We tested the hypothesis that PEVK-actin interaction causes cardiac viscosity and is important in vivo via an integrative physiological study on a unique PEVK knockout (KO) model. Both skinned cardiomyocytes and papillary muscle fibers were isolated from wildtype (WT) and PEVK KO mice and passive viscosity was examined using stretch-hold-release and sinusoidal analysis. Viscosity was reduced by ~60% in KO myocytes and ~50% in muscle fibers at room temperature. The PEVK-actin interaction was not modulated by temperature or diastolic calcium, but was increased by lattice compression. Stretch-hold and sinusoidal frequency protocols on intact isolated mouse hearts showed a smaller, 30-40% reduction in viscosity, possibly due to actomyosin interactions, and showed that microtubules did not contribute to viscosity. Transmitral Doppler echocardiography similarly revealed a 40% decrease in LV chamber viscosity in the PEVK KO in vivo. This integrative study is the first to quantify the influence of a specific molecular (PEVK-actin) viscosity in vivo and shows that PEVK-actin interactions are an important physiological source of viscosity.
Collapse
Affiliation(s)
- Charles S Chung
- Molecular Cardiovascular Research Program, Sarver Heart Center, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Cazorla O, Lacampagne A. Regional variation in myofilament length-dependent activation. Pflugers Arch 2011; 462:15-28. [DOI: 10.1007/s00424-011-0933-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 02/01/2011] [Accepted: 02/03/2011] [Indexed: 12/17/2022]
|
18
|
Chung CS, Granzier HL. Contribution of titin and extracellular matrix to passive pressure and measurement of sarcomere length in the mouse left ventricle. J Mol Cell Cardiol 2011; 50:731-9. [PMID: 21255582 DOI: 10.1016/j.yjmcc.2011.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/02/2011] [Accepted: 01/09/2011] [Indexed: 12/17/2022]
Abstract
It remains to be established to what degree titin and the extracellular matrix (ECM) contribute to passive pressure in the left ventricle (LV). Thus, we aimed to elucidate the contribution of major molecular determinants of passive pressure in the normal mouse LV. Furthermore, we determined the working sarcomere length (SL) range of the LV to bridge our findings to earlier work in skinned muscle fibers. We utilized Frank-Starling type protocols to obtain diastolic pressure-volume relationships (PVR) in Langendorff perfused isolated LVs. To quantify the molecular contribution of titin and ECM, we innovated on methods of fiber mechanics to chemically permeabilize intact LVs and measure a fully passive PVR. To differentially dissect the contributions of the ECM and titin, we utilized myofilament extraction techniques in permeabilized LVs, measuring passive PVRs at each stage in the protocol. Myofilament extraction suggests that titin contributes ~80% of passive pressures in the heart. Langendorff perfusion was also used to chemically fix passive and BaCl(2) activated hearts at specific volumes to determine that the maximal working SL range of the midwall LV fibers is approximately 1.8-2.2 μm. A model of the passive SL-volume relationship was then used to estimate the pressure-SL relationships, indicating that the ECM contribution does not exceed titin's contribution until large volumes with SLs >~2.2 μm. In conclusion, within physiological volumes, titin is the dominant contributor to LV passive pressure, and ECM-based pressures dominate at larger volumes.
Collapse
Affiliation(s)
- Charles S Chung
- Molecular Cardiovascular Research Program, Sarver Heart Center, Department of Physiology, The University of Arizona, Tucson, AZ 85724, USA
| | | |
Collapse
|
19
|
Affiliation(s)
- Martin M LeWinter
- Cardiology Unit, Fletcher Allen Health Care, 111 Colchester Ave, Burlington, VT 05401, USA.
| | | |
Collapse
|
20
|
Lewinter MM, Popper J, McNabb M, Nyland L, Bell SB, Granzier H. Extensible behavior of titin in the miniswine left ventricle. Circulation 2010; 121:768-74. [PMID: 20124120 DOI: 10.1161/circulationaha.109.918151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The sarcomeric protein titin is a molecular spring responsible for passive tension and restoring forces of cardiomyocytes. Extension of titin as a function of sarcomere length (SL) has been studied in rodents, which predominantly express the smaller, stiffer N2B titin isoform. Large mammals coexpress roughly equal proportions of N2B and N2BA titin, the larger, more compliant isoform. We hypothesized that extension of titin in relation to SL differs in large mammals and that this difference is functionally important. METHODS AND RESULTS We characterized the filling pressure-SL relation in diastolic-arrested miniswine left ventricles. SL was 2.15 to 2.25 mum at a filling pressure of approximately 0 mm Hg and reached a maximum of approximately 2.50 mum with overfilling. In the normal filling pressure range, SL ranged from approximately 2.32 to approximately 2.40 mum. We assessed titin extension as a function of SL using immunoelectron microscopy, which allowed delineation of the behavior of specific spring segments. The major isoform difference was that the N2B-Us segment extended approximately 4-fold more as a function of SL in N2B compared with N2BA titin. Using this segment, we estimated sarcomeric force development with a worm-like chain model and found that N2B develops markedly greater force than N2BA titin. The resulting force with coexpression of N2B and N2BA titin is intermediate. CONCLUSIONS In light of murine studies showing that operating SLs are shorter than in miniswine, our results indicate that coexpression of the 2 titin isoforms in large mammals allows longer SLs without the development of excessive diastolic tension.
Collapse
Affiliation(s)
- Martin M Lewinter
- Cardiology Unit, Fletcher Allen Health Care, 111 Colchester Ave, Burlington, VT 05401, USA.
| | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Colson BA, Bekyarova T, Locher MR, Fitzsimons DP, Irving TC, Moss RL. Protein kinase A-mediated phosphorylation of cMyBP-C increases proximity of myosin heads to actin in resting myocardium. Circ Res 2008; 103:244-51. [PMID: 18599866 PMCID: PMC2810832 DOI: 10.1161/circresaha.108.178996] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein kinase A-mediated (PKA) phosphorylation of cardiac myosin binding protein C (cMyBP-C) accelerates the kinetics of cross-bridge cycling and may relieve the tether-like constraint of myosin heads imposed by cMyBP-C. We favor a mechanism in which cMyBP-C modulates cross-bridge cycling kinetics by regulating the proximity and interaction of myosin and actin. To test this idea, we used synchrotron low-angle x-ray diffraction to measure interthick filament lattice spacing and the equatorial intensity ratio, I(11)/I(10), in skinned trabeculae isolated from wild-type and cMyBP-C null (cMyBP-C(-/-)) mice. In wild-type myocardium, PKA treatment appeared to result in radial or azimuthal displacement of cross-bridges away from the thick filaments as indicated by an increase (approximately 50%) in I(11)/I(10) (0.22+/-0.03 versus 0.33+/-0.03). Conversely, PKA treatment did not affect cross-bridge disposition in mice lacking cMyBP-C, because there was no difference in I(11)/I(10) between untreated and PKA-treated cMyBP-C(-/-) myocardium (0.40+/-0.06 versus 0.42+/-0.05). Although lattice spacing did not change after treatment in wild-type (45.68+/-0.84 nm versus 45.64+/-0.64 nm), treatment of cMyBP-C(-/-) myocardium increased lattice spacing (46.80+/-0.92 nm versus 49.61+/-0.59 nm). This result is consistent with the idea that the myofilament lattice expands after PKA phosphorylation of cardiac troponin I, and when present, cMyBP-C, may stabilize the lattice. These data support our hypothesis that tethering of cross-bridges by cMyBP-C is relieved by phosphorylation of PKA sites in cMyBP-C, thereby increasing the proximity of cross-bridges to actin and increasing the probability of interaction with actin on contraction.
Collapse
Affiliation(s)
- Brett A Colson
- Department of Physiology, University of Wisconsin Medical School, Madison, WI, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Pearson JT, Shirai M, Tsuchimochi H, Schwenke DO, Ishida T, Kangawa K, Suga H, Yagi N. Effects of sustained length-dependent activation on in situ cross-bridge dynamics in rat hearts. Biophys J 2007; 93:4319-29. [PMID: 17766361 PMCID: PMC2098739 DOI: 10.1529/biophysj.107.111740] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cellular basis of the length-dependent increases in contractile force in the beating heart has remained unclear. Our aim was to investigate whether length-dependent mediated increases in contractile force are correlated with myosin head proximity to actin filaments, and presumably the number of cross-bridges activated during a contraction. We therefore employed x-ray diffraction analyses of beat-to-beat contractions in spontaneously beating rat hearts under open-chest conditions simultaneous with recordings of left ventricle (LV) pressure-volume. Regional x-ray diffraction patterns were recorded from the anterior LV free wall under steady-state contractions and during acute volume loading (intravenous lactate Ringers infusion at 60 ml/h, <5 min duration) to determine the change in intensity ratio (I(1,0)/I(1,1)) and myosin interfilament spacing (d(1,0)). We found no significant change in end-diastolic (ED) intensity ratio, indicating that the proportion of myosin heads in proximity to actin was unchanged by fiber stretching. Intensity ratio decreased significantly more during the isovolumetric contraction phase during volume loading than under baseline contractions. A significant systolic increase in myosin head proximity to actin filaments correlated with the maximum rate of pressure increase. Hence, a reduction in interfilament spacing at end-diastole ( approximately 0.5 nm) during stretch increased the proportion of cross-bridges activated. Furthermore, our recordings suggest that d(1,0) expansion was inversely related to LV volume but was restricted during contraction and sarcomere shortening to values smaller than the maximum during isovolumetric relaxation. Since ventricular volume, and presumably sarcomere length, was found to be directly related to interfilament spacing, these findings support a role for interfilament spacing in modulating cross-bridge formation and force developed before shortening.
Collapse
Affiliation(s)
- James T Pearson
- Department of Cardiac Physiology, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Bland RD, Mokres LM, Ertsey R, Jacobson BE, Jiang S, Rabinovitch M, Xu L, Shinwell ES, Zhang F, Beasley MA. Mechanical ventilation with 40% oxygen reduces pulmonary expression of genes that regulate lung development and impairs alveolar septation in newborn mice. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1099-110. [PMID: 17704187 DOI: 10.1152/ajplung.00217.2007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical ventilation with 40% oxygen reduces pulmonary expression of genes that regulate lung development and impairs alveolar septation in newborn mice. Am J Physiol Lung Cell Mol Physiol 293: , 2007. First published August 17, 2007; - Mechanical ventilation (MV) with O(2)-rich gas offers life-saving treatment for extremely premature infants with respiratory failure but often leads to neonatal chronic lung disease (CLD), characterized by defective formation of alveoli and blood vessels in the developing lung. We discovered that MV of 2- to 4-day-old mice with 40% O(2) for 8 h, compared with unventilated control pups, reduced lung expression of genes that regulate lung septation and angiogenesis (VEGF-A and its receptor, VEGF-R2; PDGF-A; and tenascin-C). MV with air for 8 h yielded similar results for PDGF-A and tenascin-C but did not alter lung mRNA expression of VEGF or VEGF-R2. MV of 4- to 6-day-old mice with 40% O(2) for 24 h reduced lung protein abundance of VEGF-A, VEGF-R2, PDGF-A, and tenascin-C and resulted in lung structural abnormalities consistent with evolving CLD. After MV with 40% O(2) for 24 h, lung volume was similar to unventilated controls, whereas distal air space size, assessed morphometrically, was greater in lungs of ventilated pups, indicative of impaired septation. Immunostaining for vimentin, which is expressed in myofibroblasts, was reduced in distal lung after 24 h of MV with 40% O(2). These molecular, cellular, and structural changes occurred without detectable lung inflammation as evaluated by histology and assays for proinflammatory cytokines, myeloperoxidase activity, and water content in lung. Thus lengthy MV of newborn mice with O(2)-rich gas reduces lung expression of genes and proteins that are critical for normal lung growth and development. These changes yielded lung structural defects similar to those observed in evolving CLD.
Collapse
Affiliation(s)
- Richard D Bland
- Department of Pediatrics, Stanford Univ. School of Medicine, CCSR Bldg. Rm. 1225, 269 Campus Dr., Stanford, CA 94305-5162, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|