1
|
Villacres JI, Luong O, Shaikhet M, Ononiwu J, Avis TJ. Membrane-targeting antimicrobial compounds have differential effects on living and artificial yeast membrane models. Biochem Biophys Res Commun 2025; 758:151651. [PMID: 40120345 DOI: 10.1016/j.bbrc.2025.151651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
The stability of the plasma membrane is crucial for cell viability and disruptions in membrane stability can significantly impact cell function. Antimicrobial compounds targeting fungal membranes are required as novel alternatives to current resistance-prone fungicides. Six antimicrobials were assessed using the yeast Saccharomyces cerevisiae in living and artificial membrane models to gain insight into their efficacy and mechanistic activity. Antimicrobial-treated yeast cultures were monitored for growth inhibition and cell membrane permeability. Liposomes prepared from yeast polar lipids were used to examine the impact of the antimicrobials on size, polydispersity, and ζ-potential. Iturin and nystatin were the most effective compounds in reducing growth and increasing membrane permeability. ζ-Potential measurements indicated that iturin caused reduced stability, whereas there were no changes in stability with nystatin. Daptomycin and fengycin did not affect growth or permeability, but reduced stability. Nisin inhibited growth but did not affect stability. Surfactin was the only tested compound to increase stability. Results indicate that antimicrobials known to target biomembranes had variable effects, with lipid membrane components playing a role in antifungal outcome and mechanistic activity.
Collapse
Affiliation(s)
- Jennifer I Villacres
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Olivia Luong
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Michael Shaikhet
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Jonathan Ononiwu
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Tyler J Avis
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada; Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
2
|
Akkerman V, Scheidt HA, Reinholdt P, Bashawat M, Szomek M, Lehmann M, Wessig P, Covey DF, Kongsted J, Müller P, Wüstner D. Natamycin interferes with ergosterol-dependent lipid phases in model membranes. BBA ADVANCES 2023; 4:100102. [PMID: 37691996 PMCID: PMC10482743 DOI: 10.1016/j.bbadva.2023.100102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Natamycin is an antifungal polyene macrolide that is used as a food preservative but also to treat fungal keratitis and other yeast infections. In contrast to other polyene antimycotics, natamycin does not form ion pores in the plasma membrane, but its mode of action is poorly understood. Using nuclear magnetic resonance (NMR) spectroscopy of deuterated sterols, we find that natamycin slows the mobility of ergosterol and cholesterol in liquid-ordered (Lo) membranes to a similar extent. This is supported by molecular dynamics (MD) simulations, which additionally reveal a strong impact of natamycin dimers on sterol dynamics and water permeability. Interference with sterol-dependent lipid packing is also reflected in a natamycin-mediated increase in membrane accessibility for dithionite, particularly in bilayers containing ergosterol. NMR experiments with deuterated sphingomyelin (SM) in sterol-containing membranes reveal that natamycin reduces phase separation and increases lipid exchange in bilayers with ergosterol. In ternary lipid mixtures containing monounsaturated phosphatidylcholine, saturated SM, and either ergosterol or cholesterol, natamycin interferes with phase separation into Lo and liquid-disordered (Ld) domains, as shown by NMR spectroscopy. Employing the intrinsic fluorescence of natamycin in ultraviolet-sensitive microscopy, we can visualize the binding of natamycin to giant unilamellar vesicles (GUVs) and find that it has the highest affinity for the Lo phase in GUVs containing ergosterol. Our results suggest that natamycin specifically interacts with the sterol-induced ordered phase, in which it disrupts lipid packing and increases solvent accessibility. This property is particularly pronounced in ergosterol containing membranes, which could underlie the selective antifungal activity of natamycin.
Collapse
Affiliation(s)
- Vibeke Akkerman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Holger A. Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107, Leipzig, Germany
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Mohammad Bashawat
- Department of Biology, Humboldt University Berlin, Invalidenstr. 43, D-10115, Berlin, Germany
| | - Maria Szomek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Max Lehmann
- Institute for Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam, Germany
| | - Pablo Wessig
- Institute for Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam, Germany
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University, St. Louis, MO, 63110, USA
- Taylor Family Institute for Innovative Psychiatric Research, St. Louis, Missouri, USA
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Peter Müller
- Department of Biology, Humboldt University Berlin, Invalidenstr. 43, D-10115, Berlin, Germany
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230, Odense M, Denmark
| |
Collapse
|
3
|
Structured foraging of soil predators unveils functional responses to bacterial defenses. Proc Natl Acad Sci U S A 2022; 119:e2210995119. [PMID: 36538486 PMCID: PMC9907142 DOI: 10.1073/pnas.2210995119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Predators and their foraging strategies often determine ecosystem structure and function. Yet, the role of protozoan predators in microbial soil ecosystems remains elusive despite the importance of these ecosystems to global biogeochemical cycles. In particular, amoebae-the most abundant soil protozoan predator of bacteria-remineralize soil nutrients and shape the bacterial community. However, their foraging strategies and their role as microbial ecosystem engineers remain unknown. Here, we present a multiscale approach, connecting microscopic single-cell analysis and macroscopic whole ecosystem dynamics, to expose a phylogenetically widespread foraging strategy, in which an amoeba population spontaneously partitions between cells with fast, polarized movement and cells with slow, unpolarized movement. Such differentiated motion gives rise to efficient colony expansion and consumption of the bacterial substrate. From these insights, we construct a theoretical model that predicts how disturbances to amoeba growth rate and movement disrupt their predation efficiency. These disturbances correspond to distinct classes of bacterial defenses, which allows us to experimentally validate our predictions. All considered, our characterization of amoeba foraging identifies amoeba mobility, and not amoeba growth, as the core determinant of predation efficiency and a key target for bacterial defense systems.
Collapse
|
4
|
Szomek M, Reinholdt P, Walther HL, Scheidt HA, Müller P, Obermaier S, Poolman B, Kongsted J, Wüstner D. Natamycin sequesters ergosterol and interferes with substrate transport by the lysine transporter Lyp1 from yeast. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184012. [PMID: 35914570 DOI: 10.1016/j.bbamem.2022.184012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Natamycin is a polyene macrolide, widely employed to treat fungal keratitis and other yeast infections as well as to protect food products against fungal molds. In contrast to other polyene macrolides, such as nystatin or amphotericin B, natamycin does not form pores in yeast membranes, and its mode of action is not well understood. Here, we have employed a variety of spectroscopic methods, computational modeling, and membrane reconstitution to study the molecular interactions of natamycin underlying its antifungal activity. We find that natamycin forms aggregates in an aqueous solution with strongly altered optical properties compared to monomeric natamycin. Interaction of natamycin with model membranes results in a concentration-dependent fluorescence increase which is more pronounced for ergosterol- compared to cholesterol-containing membranes up to 20 mol% sterol. Evidence for formation of specific ergosterol-natamycin complexes in the bilayer is provided. Using nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy, we find that natamycin sequesters sterols, thereby interfering with their well-known ability to order acyl chains in lipid bilayers. This effect is more pronounced for membranes containing the sterol of fungi, ergosterol, compared to those containing mammalian cholesterol. Natamycin interferes with ergosterol-dependent transport of lysine by the yeast transporter Lyp1, which we propose to be due to the sequestering of ergosterol, a mechanism that also affects other plasma membrane proteins. Our results provide a mechanistic explanation for the selective antifungal activity of natamycin, which can set the stage for rational design of novel polyenes in the future.
Collapse
Affiliation(s)
- Maria Szomek
- Department of Biochemistry and Molecular Biology, PhyLife, Physical Life Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Hanna-Loisa Walther
- Department of Biochemistry and Molecular Biology, PhyLife, Physical Life Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Peter Müller
- Department of Biology, Humboldt University Berlin, Invalidenstr. 43, 10115 Berlin, Germany
| | - Sebastian Obermaier
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 Groningen, the Netherlands
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, PhyLife, Physical Life Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark.
| |
Collapse
|
5
|
Deng Z, Yang Y, Luo J, Zhang B, Liu J, Shui G, Jiao R, Wei C. An Integrated Transcriptomics and Lipidomics Analysis Reveals That Ergosterol Is Required for Host Defense Against Bacterial Infection in Drosophila. Front Immunol 2022; 13:933137. [PMID: 35874695 PMCID: PMC9301368 DOI: 10.3389/fimmu.2022.933137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Animals adjust their lipid metabolism states in response to pathogens infection. However, the underlying molecular mechanisms for how lipid metabolism responds to infection remain to be elusive. In this study, we assessed the temporal changes of lipid metabolism profiles during infection by an integrated transcriptomics and lipidomics analysis. Ergosterol is identified to be required for proper host defense to pathogens. Notably, ergosterol level is increased in the hemolymph upon bacterial infection. We show that the increase of ergosterol level by food supplement or genetic depletion of Acsl, a long-chain fatty acid-CoA synthetase, promotes host survival against bacterial challenges. Together, our results suggest a critical role of lipid metabolism adaption in the process of host defense against invading pathogens.
Collapse
Affiliation(s)
- Zihao Deng
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yanyang Yang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiazhen Luo
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Biling Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiyong Liu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Renjie Jiao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Renjie Jiao, ; Chuanxian Wei,
| | - Chuanxian Wei
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Renjie Jiao, ; Chuanxian Wei,
| |
Collapse
|
6
|
Rahimi F, Amoabediny G, Sabahi H, Zandieh-Doulabi B. Fungal Infected Adipose Stem Cells: The Effects of Novel Lipo-Niosome Nanoparticles Loaded with Amphotericin B and Thymus Essential Oil. CELL JOURNAL 2022; 24:391-402. [PMID: 36043407 PMCID: PMC9428479 DOI: 10.22074/cellj.2022.7967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE In this study, we aimed to develop new Lipo-niosomes based nanoparticles loaded with Amphotericin B (AmB) and Thymus Essential Oil (TEO) and test their effectiveness in the treatment of fungal-infected human adipose stem cells (hASCs). MATERIALS AND METHODS In this experimental study, optimal formulation of AmB and TEO loaded lipo-niosome (based on lipid-surfactant thin-film hydration method) was chemically, and biologically characterized. Therefore, encapsulation capacity, drug release, size, and the survival rate of cells with different concentrations of free and encapsulated AmB/ TEO were evaluated using the MTT method, and its antifungal activity was compared with conventional AmB. RESULTS Lipo-Niosome containing Tween 60 surfactant: cholesterol: Dipalmitoyl phosphatidylcholine (DPPC): Polyethylene glycol (PEG) with a ratio of 20:40:60:3 were chosen as optimal formulation. Lipo-Niosomes entrapment efficiency was 94.15%. The drug release rate after 24 hours was 52%, 54%, and 48% for Lipo-AmB, Lipo-TEO, and Lipo-AmB/TEO, respectively. Physical and chemical characteristics of the Lipo-Niosomes particles indicated size of 200 nm and a dispersion index of 0.32 with a Zeta potential of -24.56 mv. Furthermore, no chemical interaction between drugs and nano-carriers was observed. The cell viability of adipose mesenchymal stem cells exposed to 50 μg/ml of free AmB, free TEO, and free AmB/TEO was 13.4, 58, and 36.9%, respectively. Whereas the toxicity of the encapsulated formulas of these drugs was 48.9, 70.8, and 58.3% respectively. The toxicity of nanoparticles was very low (8.5%) at this concentration. Fluorescence microscopic images showed that the antifungal activity of Lipo-AmB/ TEO was significantly higher than free formulas of AmB, TEO, and AmB/TEO. CONCLUSION In this study, we investigated the efficacy of the TEO/AmB combination, in both free and encapsulatedniosomal form, on the growth of fungal infected-hASCs. The results showed that the AmB/TEO-loaded Lipo-Niosomes can be suggested as a new efficient anti-fungal nano-system for patients treated with hASCs.
Collapse
Affiliation(s)
- Fardin Rahimi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran,Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran,
Tehran, Iran
| | - Ghasem Amoabediny
- Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran,
Tehran, Iran,School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran,Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers-location Vumc and Academic
Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands,P.O.Box: 14155-6619School of Chemical EngineeringCollege of EngineeringUniversity of TehranTehranIran
| | - Hossein Sabahi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Behrouz Zandieh-Doulabi
- Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran,
Tehran, Iran,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), The University of Amsterdam and Vrije Universiteit
Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Haro-Reyes T, Díaz-Peralta L, Galván-Hernández A, Rodríguez-López A, Rodríguez-Fragoso L, Ortega-Blake I. Polyene Antibiotics Physical Chemistry and Their Effect on Lipid Membranes; Impacting Biological Processes and Medical Applications. MEMBRANES 2022; 12:681. [PMID: 35877884 PMCID: PMC9316096 DOI: 10.3390/membranes12070681] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023]
Abstract
This review examined a collection of studies regarding the molecular properties of some polyene antibiotic molecules as well as their properties in solution and in particular environmental conditions. We also looked into the proposed mechanism of action of polyenes, where membrane properties play a crucial role. Given the interest in polyene antibiotics as therapeutic agents, we looked into alternative ways of reducing their collateral toxicity, including semi-synthesis of derivatives and new formulations. We follow with studies on the role of membrane structure and, finally, recent developments regarding the most important clinical applications of these compounds.
Collapse
Affiliation(s)
- Tammy Haro-Reyes
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Lucero Díaz-Peralta
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Arturo Galván-Hernández
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Anahi Rodríguez-López
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Morelos, Mexico; (A.R.-L.); (L.R.-F.)
| | - Lourdes Rodríguez-Fragoso
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Morelos, Mexico; (A.R.-L.); (L.R.-F.)
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| |
Collapse
|
8
|
Effects of Cholesterol on the mechanism of fengycin, a biofungicide. Biophys J 2022; 121:1963-1974. [DOI: 10.1016/j.bpj.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
|
9
|
Hady MA, Darwish AB, Abdel-Aziz MS, Sayed OM. Design of transfersomal nanocarriers of nystatin for combating vulvovaginal candidiasis; A different prospective. Colloids Surf B Biointerfaces 2021; 211:112304. [PMID: 34959094 DOI: 10.1016/j.colsurfb.2021.112304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/26/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022]
Abstract
The objective of this study was to prepare and evaluate Nystatin (NYS) loaded transfersomes to achieve better treatment of vulvovaginal candidiasis. Nystatin transferosomes were formulated utilizing thin film hydration method. A 32 full factorial design was employed to evaluate the effect of different formulation variables. Two independent variables were chosen; the ratio between lecithin surfactant (X1) was set at three levels (10-40), and the type of surfactants (X2) was set at three levels (Span 60, Span 85 and Pluronic F-127). The dependent responses were; entrapment efficiency (Y1: EE %), vesicles size (Y2: VS) and release rate (Y3: RR). Design Expert® software was utilized to statistically optimize formulation variables. The vesicles revealed high NYS encapsulation efficiency ranging from 97.35 ± 0.03 to 98.01 ± 0.20% whereas vesicle size ranged from 194.8 ± 20.42 to 400.8 ± 42.09 nm. High negative zeta potential values indicated good stability of the prepared formulations. NYS release from transfersomes was biphasic and the release pattern followed Higuchi's model. The optimized formulation (F7) exhibited spherical morphology under transmission electron microscopy (TEM). In-vitro and in-vivo antifungal efficiency studies revealed that the optimized formula F7 exhibited significant eradication of candida infestation in comparison to free NYS. The results revealed that the developed NYS transfersomes could be a promising drug delivery system to enhance antifungal efficacy of NYS.
Collapse
Affiliation(s)
- Mayssa Abdel Hady
- Department of Pharmaceutical Technology, National Research Centre, El Bohouth Street, Cairo12622, Egypt
| | - Asmaa B Darwish
- Department of Pharmaceutical Technology, National Research Centre, El Bohouth Street, Cairo12622, Egypt.
| | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, El Bohouth Street, Cairo 12622, Egypt
| | - Ossama M Sayed
- Department of Pharmaceutics Industrial Pharmacy, Faculty of Pharmacy, Sinai University - Kantara Branch, Egypt.
| |
Collapse
|
10
|
Szomek M, Reinholdt P, Petersen D, Caci A, Kongsted J, Wüstner D. Direct observation of nystatin binding to the plasma membrane of living cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183528. [PMID: 33279513 DOI: 10.1016/j.bbamem.2020.183528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 01/04/2023]
Abstract
Nystatin is an antifungal polyene macrolide which is widely applied to treat yeast infections. Nystatin has also been used as a laboratory tool to inhibit endocytic processes in mammalian cells. The interaction of nystatin with model membranes has been studied thoroughly by various spectroscopic methods, making use of its weak fluorescence in the ultraviolet (UV). Studying its interaction with cells would require direct imaging, which, so far, required attachment of a fluorophore to nystatin. Using UV-sensitive microscopy, we show here how to visualize the interaction of nystatin with the plasma membrane (PM) directly. We find that nystatin forms micron-sized aggregates in buffer, and molecular dynamics simulations confirm that nystatin rapidly self-assembles into aggregates in aqueous solution. Using UV-sensitive microscopy, we find that large nystatin aggregates adhere to the surface of Chinese Hamster Ovarian (CHO) cells, causing slow spreading of nystatin fluorescence into the PM. Binding of nystatin to CHO cells does not interfere with cellular uptake or lateral membrane diffusion of the cholesterol analogue TopFluor-cholesterol (TF-Chol). Nystatin binds extensively to the PM of yeast cells as inferred from a strong UV signal in this membrane. Loading a yeast mutant unable to synthesize ergosterol with cholesterol gave much less nystatin membrane staining compared to loading such cells with ergosterol. These results explain the selective fungicidal effect of nystatin by differential interaction of nystatin with yeast membranes containing ergosterol compared to the mammalian cholesterol. Our combined experimental and computational approach provides a toolset for future design of new polyene macrolides.
Collapse
Affiliation(s)
- Maria Szomek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej55, DK-5230 Odense M, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej55, DK-5230 Odense M, Denmark
| | - Daniel Petersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej55, DK-5230 Odense M, Denmark
| | - Atenisa Caci
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej55, DK-5230 Odense M, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej55, DK-5230 Odense M, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej55, DK-5230 Odense M, Denmark.
| |
Collapse
|
11
|
Preta G. New Insights Into Targeting Membrane Lipids for Cancer Therapy. Front Cell Dev Biol 2020; 8:571237. [PMID: 32984352 PMCID: PMC7492565 DOI: 10.3389/fcell.2020.571237] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Modulation of membrane lipid composition and organization is currently developing as an effective therapeutic strategy against a wide range of diseases, including cancer. This field, known as membrane-lipid therapy, has risen from new discoveries on the complex organization of lipids and between lipids and proteins in the plasma membranes. Membrane microdomains present in the membrane of all eukaryotic cells, known as lipid rafts, have been recognized as an important concentrating platform for protein receptors involved in the regulation of intracellular signaling, apoptosis, redox balance and immune response. The difference in lipid composition between the cellular membranes of healthy cells and tumor cells allows for the development of novel therapies based on targeting membrane lipids in cancer cells to increase sensitivity to chemotherapeutic agents and consequently defeat multidrug resistance. In the current manuscript strategies based on influencing cholesterol/sphingolipids content will be presented together with innovative ones, more focused in changing biophysical properties of the membrane bilayer without affecting the composition of its constituents.
Collapse
Affiliation(s)
- Giulio Preta
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
12
|
Sugiura T, Nakao H, Ikeda K, Khan D, Nile AH, Bankaitis VA, Nakano M. Biophysical parameters of the Sec14 phospholipid exchange cycle - Effect of lipid packing in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183450. [PMID: 32828847 DOI: 10.1016/j.bbamem.2020.183450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/28/2022]
Abstract
Sec14, a yeast phosphatidylinositol/phosphatidylcholine transfer protein, functions at the trans-Golgi membranes. It lacks domains involved in protein-protein or protein-lipid interactions and consists solely of the Sec14 domain; hence, the mechanism underlying Sec14 function at proper sites remains unclear. In this study, we focused on the lipid packing of membranes and evaluated its association with in vitro Sec14 lipid transfer activity. Phospholipid transfer assays using pyrene-labelled phosphatidylcholine suggested that increased membrane curvature as well as the incorporation of phosphatidylethanolamine accelerated the lipid transfer. The quantity of membrane-bound Sec14 significantly increased in these membranes, indicating that "packing defects" of the membranes promote the membrane binding and phospholipid transfer of Sec14. Increased levels of phospholipid unsaturation promoted Sec14-mediated PC transfer, but had little effect on the membrane binding of the protein. Our results demonstrate the possibility that the location and function of Sec14 are regulated by the lipid packing states produced by a translocase activity at the trans-Golgi network.
Collapse
Affiliation(s)
- Taichi Sugiura
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hiroyuki Nakao
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Keisuke Ikeda
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Danish Khan
- Departments of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | - Aaron H Nile
- Department of Molecular & Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX 77843-1114, USA
| | - Vytas A Bankaitis
- Departments of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA; Department of Molecular & Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX 77843-1114, USA
| | - Minoru Nakano
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
13
|
Khmelinskaia A, Marquês JMT, Bastos AEP, Antunes CAC, Bento-Oliveira A, Scolari S, Lobo GMDS, Malhó R, Herrmann A, Marinho HS, de Almeida RFM. Liquid-Ordered Phase Formation by Mammalian and Yeast Sterols: A Common Feature With Organizational Differences. Front Cell Dev Biol 2020; 8:337. [PMID: 32596234 PMCID: PMC7304482 DOI: 10.3389/fcell.2020.00337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/17/2020] [Indexed: 11/13/2022] Open
Abstract
Here, biophysical properties of membranes enriched in three metabolically related sterols are analyzed both in vitro and in vivo. Unlike cholesterol and ergosterol, the common metabolic precursor zymosterol is unable to induce the formation of a liquid ordered (l o) phase in model lipid membranes and can easily accommodate in a gel phase. As a result, Zym has a marginal ability to modulate the passive membrane permeability of lipid vesicles with different compositions, contrary to cholesterol and ergosterol. Using fluorescence-lifetime imaging microscopy of an aminostyryl dye in living mammalian and yeast cells we established a close parallel between sterol-dependent membrane biophysical properties in vivo and in vitro. This approach unraveled fundamental differences in yeast and mammalian plasma membrane organization. It is often suggested that, in eukaryotes, areas that are sterol-enriched are also rich in sphingolipids, constituting highly ordered membrane regions. Our results support that while cholesterol is able to interact with saturated lipids, ergosterol seems to interact preferentially with monounsaturated phosphatidylcholines. Taken together, we show that different eukaryotic kingdoms developed unique solutions for the formation of a sterol-rich plasma membrane, a common evolutionary trait that accounts for sterol structural diversity.
Collapse
Affiliation(s)
- Alena Khmelinskaia
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M T Marquês
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - André E P Bastos
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina A C Antunes
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Bento-Oliveira
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Silvia Scolari
- Department of Biology, Molecular Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerson M da S Lobo
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Rui Malhó
- Faculdade de Ciências, BioISI, Universidade de Lisboa, Lisbon, Portugal
| | - Andreas Herrmann
- Department of Biology, Molecular Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - H Susana Marinho
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Rodrigo F M de Almeida
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Bento-Oliveira A, Santos FC, Marquês JT, Paulo PMR, Korte T, Herrmann A, Marinho HS, de Almeida RFM. Yeast Sphingolipid-Enriched Domains and Membrane Compartments in the Absence of Mannosyldiinositolphosphorylceramide. Biomolecules 2020; 10:biom10060871. [PMID: 32517183 PMCID: PMC7356636 DOI: 10.3390/biom10060871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
The relevance of mannosyldiinositolphosphorylceramide [M(IP)2C] synthesis, the terminal complex sphingolipid class in the yeast Saccharomyces cerevisiae, for the lateral organization of the plasma membrane, and in particular for sphingolipid-enriched gel domains, was investigated by fluorescence spectroscopy and microscopy. We also addressed how changing the complex sphingolipid profile in the plasma membrane could influence the membrane compartments (MC) containing either the arginine/ H+ symporter Can1p (MCC) or the proton ATPase Pma1p (MCP). To achieve these goals, wild-type (wt) and ipt1Δ cells, which are unable to synthesize M(IP)2C accumulating mannosylinositolphosphorylceramide (MIPC), were compared. Living cells, isolated plasma membrane and giant unilamellar vesicles reconstituted from plasma membrane lipids were labelled with various fluorescent membrane probes that report the presence and organization of distinct lipid domains, global order, and dielectric properties. Can1p and Pma1p were tagged with GFP and mRFP, respectively, in both yeast strains, to evaluate their lateral organization using confocal fluorescence intensity and fluorescence lifetime imaging. The results show that IPT1 deletion strongly affects the rigidity of gel domains but not their relative abundance, whereas no significant alterations could be perceived in ergosterol-enriched domains. Moreover, in these cells lacking M(IP)2C, a clear alteration in Pma1p membrane distribution, but no significant changes in Can1p distribution, were observed. Thus, this work reinforces the notion that sphingolipid-enriched domains distinct from ergosterol-enriched regions are present in the S. cerevisiae plasma membrane and suggests that M(IP)2C is important for a proper hydrophobic chain packing of sphingolipids in the gel domains of wt cells. Furthermore, our results strongly support the involvement of sphingolipid domains in the formation and stability of the MCP, possibly being enriched in this compartment.
Collapse
Affiliation(s)
- Andreia Bento-Oliveira
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
| | - Filipa C. Santos
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
| | - Joaquim Trigo Marquês
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
| | - Pedro M. R. Paulo
- Centro de Química Estrutural, Instituto Superior Técnico, 1049-001 Lisbon, Portugal;
| | - Thomas Korte
- Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (T.K.); (A.H.)
| | - Andreas Herrmann
- Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (T.K.); (A.H.)
| | - H. Susana Marinho
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
| | - Rodrigo F. M. de Almeida
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
- Correspondence: ; Tel.: +351-217-500-925
| |
Collapse
|
15
|
Mantil E, Crippin T, Avis TJ. Supported lipid bilayers using extracted microbial lipids: domain redistribution in the presence of fengycin. Colloids Surf B Biointerfaces 2019; 178:94-102. [DOI: 10.1016/j.colsurfb.2019.02.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/17/2019] [Accepted: 02/24/2019] [Indexed: 10/27/2022]
|
16
|
Mantil E, Crippin T, Avis TJ. Domain redistribution within ergosterol-containing model membranes in the presence of the antimicrobial compound fengycin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:738-747. [DOI: 10.1016/j.bbamem.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 12/01/2018] [Accepted: 01/08/2019] [Indexed: 01/25/2023]
|
17
|
Amaral VSG, Fernandes CM, Felício MR, Valle AS, Quintana PG, Almeida CC, Barreto-Bergter E, Gonçalves S, Santos NC, Kurtenbach E. Psd2 pea defensin shows a preference for mimetic membrane rafts enriched with glucosylceramide and ergosterol. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2019; 1861:713-728. [PMID: 30639288 DOI: 10.1016/j.bbamem.2018.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 12/20/2018] [Accepted: 12/29/2018] [Indexed: 12/26/2022]
Abstract
Psd2 is a pea defensin with 47 amino acid residues that inhibits the growth of fungal species by an uncharacterized mechanism. In this work, Psd2 interactions with model membranes mimicking the lipid compositions of different organisms were evaluated. Protein-lipid overlay assays indicated that Psd2 recognizes Fusarium solani glucosylceramide (GlcCerF.solani) and ergosterol (Erg) in addition to phosphatidylcholine (POPC) and some phosphatidylinositol species, such as PtdIns (3)P, (5)P and (3,5)P2, suggesting that these lipids may play important roles as Psd2 targets. Assays using lipid vesicles were also performed to study the behaviour and dynamics that occur after peptide-membrane interactions. Surface plasmon resonance analysis showed that Psd2 has a higher affinity for pure POPC and POPC-based vesicles containing GlcCer and Erg at a 70:30 proportion than for vesicles containing cholesterol (Chol). Partition experiments by fluorescence spectroscopy showed a decrease in Trp42 quantum yield of Psd2 in the presence of GlcCerF.solani and Erg, individually or in simultaneously enriched membranes. The partition coefficient (Kp) obtained indicated a Psd2 partition preference for this vesicles, confirmed by quenching assays using acrylamide and 5/16-doxyl-stearic acid. Furthermore, we showed that the presence of C8C9 double bonds and a methyl group at position C9 of the sphingoid base backbone of GlcCer was relevant to Psd2 activity against Aspergillus nidulans. These results are consistent with the selectivity of Psd2 against fungi and its lack of toxicity in human erythrocytes. Psd2 represents a promising natural compound for the treatment of fungal infections.
Collapse
Affiliation(s)
- Virginia Sara Grancieri Amaral
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Mário R Felício
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Aline Sol Valle
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula G Quintana
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Correa Almeida
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliana Barreto-Bergter
- Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
18
|
Zhang X, Li T, Chen X, Wang S, Liu Z. Nystatin enhances the immune response against Candida albicans and protects the ultrastructure of the vaginal epithelium in a rat model of vulvovaginal candidiasis. BMC Microbiol 2018; 18:166. [PMID: 30359236 PMCID: PMC6202846 DOI: 10.1186/s12866-018-1316-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023] Open
Abstract
Background Vulvovaginal candidiasis (VVC) is a common infectious disease of the lower genital tract. Nystatin, a polyene fungicidal antibiotic, is used as a topical antifungal agent for VVC treatment. The aim of the current study was to investigate the possible immunomodulatory effects of nystatin on the vaginal mucosal immune response during Candida albicans infection and examine its role in protection of vaginal epithelial cell (VEC) ultrastructure. Results Following infection with C. albicans, IFN-γ and IL-17 levels in VECs were significantly elevated, while the presence of IgG was markedly decreased as compared to uninfected controls (P < 0.05). No significant differences in IL4 expression were observed. After treatment with nystatin, the level of IFN-γ, IL-17 and IgG was dramatically increased in comparison to the untreated group (P < 0.05). Transmission electron microscopy revealed that C. albicans invades the vaginal epithelium by both induced endocytosis and active penetration. Nystatin treatment protects the ultrastructure of the vaginal epithelium. Compared with the untreated C. albicans-infected group, Flameng scores which measure mitochondrial damage of VECs were markedly decreased (P < 0.001) and the number of adhesive and invasive C. albicans was significantly reduced (P < 0.01) after treatment with nystatin. Conclusions Nystatin plays a protective role in the host defense against C. albicans by up-regulating the IFN-γ-related cellular response, the IL-17 signaling pathway and possibly through enhancing VEC-derived IgG-mediated immunity. Furthermore, nystatin notably improves the ultramorphology of the vaginal mucosa, partially through the protection of mitochondria ultrastructure in VECs and inhibition of adhesion and invasion by C. albicans. Together, these effects enhance the immune response of the vaginal mucosa against C. albicans and protect the ultrastructure of vaginal epithelium in VVC rats.
Collapse
Affiliation(s)
- Xu Zhang
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First Hospital, Beijing, 100034, China
| | - Ting Li
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Xi Chen
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Suxia Wang
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First Hospital, Beijing, 100034, China
| | - Zhaohui Liu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| |
Collapse
|
19
|
Zhuang X, Chappell J. Building terpene production platforms in yeast. Biotechnol Bioeng 2015; 112:1854-64. [DOI: 10.1002/bit.25588] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/04/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Xun Zhuang
- Departments of Plant & Soil Science and Pharmaceutical Sciences; University of Kentucky; Lexington Kentucky
| | - Joe Chappell
- Departments of Plant & Soil Science and Pharmaceutical Sciences; University of Kentucky; Lexington Kentucky
| |
Collapse
|
20
|
The assembly of GM1 glycolipid- and cholesterol-enriched raft-like membrane microdomains is important for giardial encystation. Infect Immun 2015; 83:2030-42. [PMID: 25733521 DOI: 10.1128/iai.03118-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/22/2015] [Indexed: 12/12/2022] Open
Abstract
Although encystation (or cyst formation) is an important step of the life cycle of Giardia, the cellular events that trigger encystation are poorly understood. Because membrane microdomains are involved in inducing growth and differentiation in many eukaryotes, we wondered if these raft-like domains are assembled by this parasite and participate in the encystation process. Since the GM1 ganglioside is a major constituent of mammalian lipid rafts (LRs) and known to react with cholera toxin B (CTXB), we used Alexa Fluor-conjugated CTXB and GM1 antibodies to detect giardial LRs. Raft-like structures in trophozoites are located in the plasma membranes and on the periphery of ventral discs. In cysts, however, they are localized in the membranes beneath the cyst wall. Nystatin and filipin III, two cholesterol-binding agents, and oseltamivir (Tamiflu), a viral neuraminidase inhibitor, disassembled the microdomains, as evidenced by reduced staining of trophozoites with CTXB and GM1 antibodies. GM1- and cholesterol-enriched LRs were isolated from Giardia by density gradient centrifugation and found to be sensitive to nystatin and oseltamivir. The involvement of LRs in encystation could be supported by the observation that raft inhibitors interrupted the biogenesis of encystation-specific vesicles and cyst production. Furthermore, culturing of trophozoites in dialyzed medium containing fetal bovine serum (which is low in cholesterol) reduced raft assembly and encystation, which could be rescued by adding cholesterol from the outside. Our results suggest that Giardia is able to form GM1- and cholesterol-enriched lipid rafts and these raft domains are important for encystation.
Collapse
|
21
|
Marquês JT, Antunes CA, Santos FC, de Almeida RF. Biomembrane Organization and Function. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2015. [DOI: 10.1016/bs.adplan.2015.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Kristanc L, Božič B, Gomišček G. The role of sterols in the lipid vesicle response induced by the pore-forming agent nystatin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2635-45. [DOI: 10.1016/j.bbamem.2014.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/03/2014] [Accepted: 05/16/2014] [Indexed: 01/20/2023]
|
23
|
Gitrowski C, Al-Jubory AR, Handy RD. Uptake of different crystal structures of TiO2 nanoparticles by Caco-2 intestinal cells. Toxicol Lett 2014; 226:264-76. [DOI: 10.1016/j.toxlet.2014.02.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 02/12/2014] [Accepted: 02/17/2014] [Indexed: 12/29/2022]
|
24
|
Segura T, Puga AM, Burillo G, Llovo J, Brackman G, Coenye T, Concheiro A, Alvarez-Lorenzo C. Materials with Fungi-Bioinspired Surface for Efficient Binding and Fungi-Sensitive Release of Antifungal Agents. Biomacromolecules 2014; 15:1860-70. [DOI: 10.1021/bm500257s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tania Segura
- Departamento
de Química de Radiaciones y Radioquímica, Instituto
de Ciencias Nucleares, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, 04510 México, D.F.
México
| | - Ana M. Puga
- Departamento
de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago
de Compostela, Spain
| | - Guillermina Burillo
- Departamento
de Química de Radiaciones y Radioquímica, Instituto
de Ciencias Nucleares, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, 04510 México, D.F.
México
| | - José Llovo
- Servicio
de Microbiología y Parasitología, Complejo Hospitalario Universitario de Santiago de Compostela, 15782-Santiago
de Compostela, Spain
| | - Gilles Brackman
- Laboratory
of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Tom Coenye
- Laboratory
of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Angel Concheiro
- Departamento
de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago
de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento
de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago
de Compostela, Spain
| |
Collapse
|
25
|
Lee H, Choi H, Ko HJ, Woo ER, Lee DG. Antifungal effect and mode of action of glochidioboside against Candida albicans membranes. Biochem Biophys Res Commun 2014; 444:30-5. [DOI: 10.1016/j.bbrc.2014.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/06/2014] [Indexed: 01/05/2023]
|
26
|
Kim DH, Rhim BY, Eo SK, Kim K. Differential regulation of CC chemokine ligand 2 and CXCL8 by antifungal agent nystatin in macrophages. Biochem Biophys Res Commun 2013; 437:392-6. [PMID: 23831464 DOI: 10.1016/j.bbrc.2013.06.087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
Abstract
The polyene antifungal antibiotic nystatin can interact with cholesterol, thereby altering the composition of the plasma membrane in eukaryotic cells. We investigated whether nystatin influences responses to the infection by inducing expression of chemokines. THP-1 macrophages rarely expressed CC chemokine ligand 2 (CCL2) and CXCL8. However, nystatin dose-dependently increased CCL2 and CXCL8 expression at the mRNA and protein levels. To understand the molecular mechanisms of the antifungal agent, we identified cellular factors activated by nystatin and those involved in nystatin-induced upregulation of CCL2 and CXCL8. Treatment with nystatin resulted in enhanced phosphorylation of Akt, ERK1/2, p38 MAPK, and JNK. Treatment with cholesterol, LY294002, Akt inhibitor IV, U0126, and SP6001250 resulted in abrogation or significant attenuation of nystatin-induced CCL2 expression. Nystatin-mediated CXCL8 expression was attenuated in the presence of Akt inhibitor IV and SP6001250. These results indicate that exposure of human macrophages to nystatin can lead to differential regulation of CCL2 and CXCL8 via the activation of multiple cellular kinases. We propose that upregulation of CCL2 and CXCL8 contributes to pharmacological effects of nystatin.
Collapse
Affiliation(s)
- Do-Hyung Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | | | | | | |
Collapse
|
27
|
Semis R, Kagan S, Berdicevsky I, Polacheck I, Segal E. Mechanism of activity and toxicity of Nystatin-Intralipid. Med Mycol 2012; 51:422-31. [PMID: 23088298 DOI: 10.3109/13693786.2012.731712] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A novel lipid formulation of Nystatin (NYT), Nystatin-Intralipid (NYT-IL), which was found to be more active and less toxic in vitro and in vivo, was developed in our laboratory. The aim of the present study was to explore the possible mechanisms underlying its biological activity. To assess mechanisms affecting fungal cells we conducted the following experiments: killing kinetics, scanning and transmission electron microscopy (EM), measurements of potassium ion leakage and susceptibility in the presence of ergosterol. To study mechanisms affecting mammalian cells, we evaluated the effect of NYT-IL on a kidney cell line, with respect to viability, metabolic activity, potassium leakage and internalization of FITC-labeled human transferrin. NYT-IL exhibited killing kinetics patterns against Candida albicans similar to those of NYT and caused disruption of fungal cells and potassium ion leakage. Susceptibility tests showed that NYT-IL had lower antifungal activity in the presence of ergosterol. Thus, NYT-IL acts apparently by damaging fungal membrane, possibly through interaction with ergosterol, and maybe by additional modes of action. NYT-IL did not cause potassium leakage from mammalian kidney cells at any tested concentration and was not cytotoxic, whereas NYT, at high concentrations, led to K(+) leakage and was cytotoxic. Furthermore, the high NYT concentration interfered in the internalization process of human transferrin receptor (hTfnR) while NYT-IL did not. In summary, the Intralipid formulation of NYT diminishes the mechanisms responsible for toxicity to mammalian cells but preserves mechanisms of action against fungi, thereby suggesting superiority of NYT-IL as compared to NYT as an antifungal agent.
Collapse
Affiliation(s)
- Rita Semis
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
28
|
Shamitko-Klingensmith N, Molchanoff KM, Burke KA, Magnone GJ, Legleiter J. Mapping the mechanical properties of cholesterol-containing supported lipid bilayers with nanoscale spatial resolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:13411-13422. [PMID: 22924735 DOI: 10.1021/la302705f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
It has been demonstrated that many biological processes are influenced by mechanical changes in membranes comprised of a variety of lipid components. As a result, the ability to map physicomechanical properties of surfaces with high temporal and spatial resolution is desirable. Tapping mode atomic force microscopy (AFM) has proven to be a useful technique for imaging biological surfaces due to its ability to operate in solution; however, access to information concerning the mechanical properties of these surfaces can also be obtained by reconstructing the time-resolved tip/sample force interactions during the imaging process. An advantage of such an approach is the direct correlation of topographical features with mechanical properties. Reconstruction of the tip/sample force is achievable by a technique called scanning probe acceleration microscopy (SPAM), which treats the cantilever as an accelerometer. The acceleration, which is directly related to the tip/sample force, of the cantilever is obtained by taking the second derivative of the cantilever deflection signal during a tapping mode AFM experiment in solution with standard cantilevers. Herein, we describe the applicability of SPAM to study mechanical properties of supported lipid bilayers with nanoscale spatial resolution via numerical simulations and experiment. The maximum and minimum tapping forces respond to changes in specific surface mechanical properties. Furthermore, we demonstrate how these changes can be used to map relative changes in the Young's modulus and adhesive properties of supported total brain lipid extract bilayers containing exogenous cholesterol. Finally, the ability of SPAM to distinguish nanoscale lipid raft domains based on changes in local mechanical properties is demonstrated.
Collapse
|
29
|
Bastos AEP, Marinho HS, Cordeiro AM, de Soure AM, de Almeida RFM. Biophysical properties of ergosterol-enriched lipid rafts in yeast and tools for their study: characterization of ergosterol/phosphatidylcholine membranes with three fluorescent membrane probes. Chem Phys Lipids 2012; 165:577-88. [PMID: 22705749 DOI: 10.1016/j.chemphyslip.2012.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/01/2012] [Accepted: 06/04/2012] [Indexed: 01/06/2023]
Abstract
In this work, binary mixtures of phospholipid/ergosterol (erg) were studied using three fluorescent membrane probes. The phospholipid was either saturated (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) or monounsaturated (1-palmitoyl-2-dioleoyl-sn-glycero-3-phosphocholine, POPC) phosphatidylcholine, to evaluate the fluorescence properties of the probes in gel, liquid ordered (l(o)) and liquid disordered (l(d)) phases. The probes have been used previously to study cholesterol-enriched domains, but their photophysical properties in erg-enriched membranes have not been characterized. N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (NBD-DPPE) presents modest blue-shifts upon erg addition, and the changes in the fluorescence lifetime are mainly due to differences in the efficiency of its fluorescence dynamic self-quenching. However, the steady-state fluorescence anisotropy of NBD-DPPE presents well-defined values in each lipid phase. N-(lissamine rhodamine B sulfonyl)-1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (Rhod-DOPE) presents a close to random distribution in erg-rich membranes. There are no appreciable spectral shifts and the steady-state fluorescence anisotropy presents complex behavior, as a result of different photophysical processes. The probe is mostly useful to label l(d) domains in yeast membranes. 4-(2-(6-(Dibutylamino)-2-naphthalenyl)ethenyl)-1-(3-sulfopropyl)-pyridinium (di-4-ANEPPS) is an electrochromic dye with excitation spectra largely insensitive to the presence of erg, but presenting a strong blue-shift of its emission with increasing concentrations of this sterol. Its partition coefficient is favorable to l(o) domains in POPC/erg mixtures. Although the fluorescence properties of di-4-ANEPPS are less sensitive to erg than to chol, in both cases the fluorescence lifetime responds monotonically to sterol mole fraction, becoming significantly longer in the presence of sterol as compared to pure POPC or DPPC bilayers. The probe displays a unique sensitivity to sterol-lipid interaction due to the influence of hydration and H-bonding patterns at the membrane/water interface on its fluorescence properties. This makes di-4-ANEPPS (and possibly similar probes) potentially useful in the study of erg-enriched domains in more complex lipid mixtures and in the membranes of living yeast cells.
Collapse
Affiliation(s)
- André E P Bastos
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
30
|
Elucidation of the Rotavirus NSP4-Caveolin-1 and -Cholesterol Interactions Using Synthetic Peptides. JOURNAL OF AMINO ACIDS 2012; 2012:575180. [PMID: 22500212 PMCID: PMC3303745 DOI: 10.1155/2012/575180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/16/2011] [Indexed: 01/19/2023]
Abstract
Rotavirus (RV) NSP4, the first described viral enterotoxin, is a multifunctional glycoprotein that contributes to viral pathogenesis, morphogenesis, and replication. NSP4 binds both termini of caveolin-1 and is isolated from caveolae fractions that are rich in anionic phospholipids and cholesterol. These interactions indicate that cholesterol/caveolin-1 plays a role in NSP4 transport to the cell surface, which is essential to its enterotoxic activity. Synthetic peptides were utilized to identify target(s) of intervention by exploring the NSP4-caveolin-1 and -cholesterol interactions. NSP4112–140 that overlaps the caveolin-1 binding domain and a cholesterol recognition amino acid consensus (CRAC) motif and both termini of caveolin-1 (N-caveolin-12–20, 19–40 and C-caveolin-1161–180) were synthesized. Direct fluorescence-binding assays were employed to determine binding affinities of the NSP4-caveolin-1 peptides and cholesterol. Intracellular cholesterol alteration revealed a redistribution of NSP4 and disintegration of viroplasms. These data further imply interruption of NSP4112–140-N-caveolin-119–40 and cholesterol interactions may block NSP4 intracellular transport, hence enterotoxicity.
Collapse
|
31
|
Foglia F, Drake A, Terry A, Rogers S, Lawrence M, Barlow D. Small-angle neutron scattering studies of the effects of amphotericin B on phospholipid and phospholipid–sterol membrane structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1574-80. [DOI: 10.1016/j.bbamem.2011.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 01/18/2011] [Accepted: 02/09/2011] [Indexed: 11/26/2022]
|
32
|
Aresta-Branco F, Cordeiro AM, Marinho HS, Cyrne L, Antunes F, de Almeida RFM. Gel domains in the plasma membrane of Saccharomyces cerevisiae: highly ordered, ergosterol-free, and sphingolipid-enriched lipid rafts. J Biol Chem 2010; 286:5043-54. [PMID: 21127065 DOI: 10.1074/jbc.m110.154435] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasma membrane of Saccharomyces cerevisiae was studied using the probes trans-parinaric acid and diphenylhexatriene. Diphenylhexatriene anisotropy is a good reporter of global membrane order. The fluorescence lifetimes of trans-parinaric acid are particularly sensitive to the presence and nature of ordered domains, but thus far they have not been measured in yeast cells. A long lifetime typical of the gel phase (>30 ns) was found in wild-type (WT) cells from two different genetic backgrounds, at 24 and 30 °C, providing the first direct evidence for the presence of gel domains in living cells. To understand their nature and location, the study of WT cells was extended to spheroplasts, the isolated plasma membrane, and liposomes from total lipid and plasma membrane lipid extracts (with or without ergosterol extraction by cyclodextrin). It is concluded that the plasma membrane is mostly constituted by ordered domains and that the gel domains found in living cells are predominantly at the plasma membrane and are formed by lipids. To understand their composition, strains with mutations in sphingolipid and ergosterol metabolism and in the glycosylphosphatidylinositol anchor remodeling pathway were also studied. The results strongly indicate that the gel domains are not ergosterol-enriched lipid rafts; they are mainly composed of sphingolipids, possibly inositol phosphorylceramide, and contain glycosylphosphatidylinositol-anchored proteins, suggesting an important role in membrane traffic and signaling, and interactions with the cell wall. The abundance of the sphingolipid-enriched gel domains was inversely related to the cellular membrane system global order, suggesting their involvement in the regulation of membrane properties.
Collapse
Affiliation(s)
- Francisco Aresta-Branco
- Centro de Química e Bioquímica e, Faculdade de Ciências da Universidade de Lisboa, Ed C8, Campo Grande, 1749-016 Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
33
|
Neumann A, Baginski M, Czub J. How Do Sterols Determine the Antifungal Activity of Amphotericin B? Free Energy of Binding between the Drug and Its Membrane Targets. J Am Chem Soc 2010; 132:18266-72. [DOI: 10.1021/ja1074344] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anna Neumann
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Jacek Czub
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
34
|
Récamier KS, Hernández-Gómez A, González-Damián J, Ortega-Blake I. Effect of Membrane Structure on the Action of Polyenes: I. Nystatin Action in Cholesterol- and Ergosterol-Containing Membranes. J Membr Biol 2010; 237:31-40. [DOI: 10.1007/s00232-010-9304-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 08/27/2010] [Indexed: 11/27/2022]
|
35
|
Effect of Membrane Structure on the Action of Polyenes II: Nystatin Activity along the Phase Diagram of Ergosterol- and Cholesterol-Containing POPC Membranes. J Membr Biol 2010; 237:41-9. [DOI: 10.1007/s00232-010-9301-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 08/27/2010] [Indexed: 01/14/2023]
|
36
|
Neumann A, Czub J, Baginski M. On the possibility of the amphotericin B-sterol complex formation in cholesterol- and ergosterol-containing lipid bilayers: a molecular dynamics study. J Phys Chem B 2010; 113:15875-85. [PMID: 19929013 DOI: 10.1021/jp905133f] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amphotericin B (AmB) is a well-known membrane-active antibiotic that has been used to treat systemic fungal infections for more than 45 years. Therapeutic application of AmB is based on the fact that it is more active against ergosterol-containing membranes of fungal cells than against mammalian membranes with cholesterol. In this paper, we examine the hypothesis according to which the selectivity of the AmB's membrane action originates from its different ability to form the binary complexes with the relevant sterols. To this end, molecular dynamics simulations were performed for systems containing the preformed models of AmB/sterol complexes embedded in lipid bilayers containing either cholesterol or ergosterol. The initial structures of the studied binary associates were selected on the basis of a systematic scan of all possible mutual positions and orientations of the two molecules. The results obtained demonstrate that in general the complexes with ergosterol are more stable on the 100 ns time scale. Furthermore, on the basis of motional correlation analysis, taking into account the effects of lipid environment, we propose that, within the sterol-enriched liquid-ordered membrane phases, AmB molecules exhibit a greater tendency to bind ergosterol than cholesterol. The analysis of the interactions suggests that this affinity difference is of enthalpic origin and may arise from the considerable difference in the energy of the van der Waals interactions between AmB and the two types of sterols. Thus, our current results: (i) support the hypothesis that binary AmB/sterol complexes form within a lipid membrane and (ii) suggest that the higher toxicity may at least partly be attributed to the higher affinity of AmB for ergosterol than for cholesterol within a lipid membrane environment.
Collapse
Affiliation(s)
- Anna Neumann
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | | | | |
Collapse
|
37
|
Orädd G, Shahedi V, Lindblom G. Effect of sterol structure on the bending rigidity of lipid membranes: A 2H NMR transverse relaxation study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1762-71. [DOI: 10.1016/j.bbamem.2009.06.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 06/18/2009] [Accepted: 06/23/2009] [Indexed: 02/04/2023]
|
38
|
Formation of two different types of ion channels by amphotericin B in human erythrocyte membranes. J Membr Biol 2009; 230:69-81. [PMID: 19629570 DOI: 10.1007/s00232-009-9187-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022]
Abstract
The polyene antibiotic amphotericin B (AmB) is known to form aqueous pores in lipid membranes and biological membranes. Here, membrane potential and ion permeability measurements were used to demonstrate that AmB can form two types of selective ion channels in human erythrocytes, differing in their interaction with cholesterol. We show that AmB induced a cation efflux (negative membrane polarization) across cholesterol-containing liposomes and erythrocytes at low concentrations (< or =1.0 x 10(-6) M), but a sharp reversal of such polarization was observed at concentrations greater than 1.0 x 10(-6) M AmB, an indication that aqueous pores are formed. Cation-selective AmB channels are also formed across sterol-free liposomes, but aqueous pores are only formed at AmB concentrations 10 times greater. The effect of temperature on the AmB-mediated K+ efflux across erythrocytes revealed that the energies of activation for channel formation are negative and positive at AmB concentrations that lead predominantly to the formation of cation-selective channels and aqueous pores, respectively. These findings support the conclusion that the two types of AmB channels formed in human erythrocytes differ in their interactions with cholesterol and other membrane components. In effect, a membrane lipid reorganization, as induced by incubation of erythrocytes with tetrathionate, a cross-linking agent of the lipid raft-associated protein spectrin, led to differential changes in the activation parameters for the formation of both types of channels, reflecting the different lipid environments in which such structures are formed.
Collapse
|
39
|
Membrane lipid domains and rafts: current applications of fluorescence lifetime spectroscopy and imaging. Chem Phys Lipids 2009; 157:61-77. [DOI: 10.1016/j.chemphyslip.2008.07.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 07/24/2008] [Indexed: 11/30/2022]
|
40
|
Loura LM, de Almeida RF, Silva LC, Prieto M. FRET analysis of domain formation and properties in complex membrane systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:209-24. [DOI: 10.1016/j.bbamem.2008.10.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 10/16/2008] [Accepted: 10/16/2008] [Indexed: 12/27/2022]
|
41
|
Baginski M, Czub J, Sternal K. Interaction of amphotericin B and its selected derivatives with membranes: molecular modeling studies. CHEM REC 2007; 6:320-32. [PMID: 17304519 DOI: 10.1002/tcr.20096] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Amphotericin B (AmB) is a well-known antifungal antibiotic that has been used in the clinic for about five decades. Despite its chemotherapeutic importance, AmB is quite toxic and many efforts have been made to improve its pharmacological properties, e.g., by chemical modifications. The lipid membrane is a molecular target for AmB, however, due to heterogeneity of its components, the molecular mechanism of AmB action is still unclear. The lack of this knowledge hinders rational designing of new and less toxic AmB derivatives. Our review is a critical presentation of the current understanding of AmB molecular mechanism of action at the membrane level. Except the experimental approach, the extensive overview of molecular modeling studies, performed mostly in our lab, is presented. The results of interactions between AmB or some of its derivatives and lipid model membranes are discussed. In our studies, different biomembrane models and different associate states of the antibiotic were included. Presented molecular modeling approach is especially valuable with regard to a new paradigm of the structure of lipid membrane containing liquid-ordered domains. Hopefully, all these complementary experimental/computational approaches are going to reach the point at which a new hypothesis about molecular mechanism of AmB activity and selectivity will be put forward.
Collapse
Affiliation(s)
- Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-952 Gdansk, Poland.
| | | | | |
Collapse
|
42
|
Hsueh YW, Chen MT, Patty PJ, Code C, Cheng J, Frisken BJ, Zuckermann M, Thewalt J. Ergosterol in POPC membranes: physical properties and comparison with structurally similar sterols. Biophys J 2006; 92:1606-15. [PMID: 17142279 PMCID: PMC1796827 DOI: 10.1529/biophysj.106.097345] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The physical properties of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/ergosterol bilayers in the liquid-crystalline phase were determined using deuterium nuclear magnetic resonance ((2)H NMR) and vesicle extrusion. For the (2)H NMR experiments, the sn-1 chain of POPC was perdeuterated, and spectra were taken as a function of ergosterol concentration and temperature. Analysis of the liquid-crystalline spectra provides clear evidence that two types of liquid-crystalline domains, neither of which is a liquid-ordered phase, having distinct average chain conformations coexist in 80:20 and 75:25 POPC/ergosterol membranes over a wide temperature range (from -2 to at least 31 degrees C). Adding ergosterol to a concentration of 25 mol % increases POPC-d(31) chain ordering as measured by the NMR spectral first moment M(1) and also increases the membrane lysis tension, obtained from vesicle extrusion. Further addition of ergosterol had no effect on either chain order or lysis tension. This behavior is in marked contrast to the effect of cholesterol on POPC membranes: POPC/cholesterol membranes have a linear dependence of chain order on sterol concentration to at least 40 mol %. To investigate further we compared the dependence on sterol structure and concentration of the NMR spectra and lysis tension for several POPC/sterol membranes at 25 degrees C. For all POPC/sterol membranes investigated in this study, we observed a universal linear relation between lysis tension and M(1). This suggests that changes in acyl chain ordering directly affect the tensile properties of the membrane.
Collapse
Affiliation(s)
- Ya-Wei Hsueh
- Department of Physics, Center for Complex Systems, and Institute of Biophysics, National Central University, Chung-li 320, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Silva L, Coutinho A, Fedorov A, Prieto M. Nystatin-induced lipid vesicles permeabilization is strongly dependent on sterol structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:452-9. [PMID: 16626629 DOI: 10.1016/j.bbamem.2006.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 03/03/2006] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
The selectivity of the antibiotic nystatin towards ergosterol compared to cholesterol is believed to be a crucial factor in its specificity for fungi. In order to define the structural features of sterols that control this effect, nystatin interaction with ergosterol-, cholesterol-, brassicasterol- and 7-dehydrocholesterol-containing palmitoyloleoylphosphocholine vesicles was studied by fluorescence spectroscopy. Variations in sterol structure were correlated with their effect on nystatin photophysical and activity properties. Substitution of cholesterol by either 7-dehydrocholesterol or brassicasterol enhance nystatin ability to dissipate a transmembrane K+ gradient, showing that the presence of additional double bonds in these sterols-carbon C7 and C22, plus an additional methyl group on C-24, respectively-as compared to cholesterol, is fundamental for nystatin-sterol interaction. However, both modifications of the cholesterol molecule, like in the fungal sterol ergosterol, are critical for the formation of very compact nystatin oligomers in the lipid bilayer that present a long mean fluorescence lifetime and induce a very fast transmembrane dissipation. These observations are relevant to the molecular mechanism underlying the high selectivity presented by nystatin towards fungal cells (with ergosterol) as compared to mammalian cells (with cholesterol).
Collapse
Affiliation(s)
- Liana Silva
- CQFM, Complexo I, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | |
Collapse
|