1
|
An M, Akyuz M, Capik O, Yalcin C, Bertram R, Karatas EA, Karatas OF, Yildirim V. Gain of function mutation in K(ATP) channels and resulting upregulation of coupling conductance are partners in crime in the impairment of Ca 2+ oscillations in pancreatic ß-cells. Math Biosci 2024; 374:109224. [PMID: 38821258 DOI: 10.1016/j.mbs.2024.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Gain of function mutations in the pore forming Kir6 subunits of the ATP sensitive K+ channels (K(ATP) channels) of pancreatic β-cells are the major cause of neonatal diabetes in humans. In this study, we show that in insulin secreting mouse β-cell lines, gain of function mutations in Kir6.1 result in a significant connexin36 (Cx36) overexpression, which form gap junctional connections and mediate electrical coupling between β-cells within pancreatic islets. Using computational modeling, we show that upregulation in Cx36 might play a functional role in the impairment of glucose stimulated Ca2+ oscillations in a cluster of β-cells with Kir6.1 gain of function mutations in their K(ATP) channels (GoF-K(ATP) channels). Our results show that without an increase in Cx36 expression, a gain of function mutation in Kir6.1 might not be sufficient to diminish glucose stimulated Ca2+ oscillations in a β-cell cluster. We also show that a reduced Cx36 expression, which leads to loss of coordination in a wild-type β-cell cluster, restores coordinated Ca2+ oscillations in a β-cell cluster with GoF-K(ATP) channels. Our results indicate that in a heterogenous β-cell cluster with GoF-K(ATP) channels, there is an inverted u-shaped nonmonotonic relation between the cluster activity and Cx36 expression. These results show that in a neonatal diabetic β-cell model, gain of function mutations in the Kir6.1 cause Cx36 overexpression, which aggravates the impairment of glucose stimulated Ca2+ oscillations.
Collapse
Affiliation(s)
- Murat An
- Department of Basic Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Mesut Akyuz
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Ozel Capik
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Cigdem Yalcin
- Department of Mathematics, Erzurum Technical University, Erzurum, Turkey
| | - Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| | - Elanur Aydin Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Vehpi Yildirim
- Department of Mathematics, Erzurum Technical University, Erzurum, Turkey; Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Félix-Martínez GJ, Godínez-Fernández JR. A primer on modelling pancreatic islets: from models of coupled β-cells to multicellular islet models. Islets 2023; 15:2231609. [PMID: 37415423 PMCID: PMC10332213 DOI: 10.1080/19382014.2023.2231609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
Pancreatic islets are mini-organs composed of hundreds or thousands of ɑ, β and δ-cells, which, respectively, secrete glucagon, insulin and somatostatin, key hormones for the regulation of blood glucose. In pancreatic islets, hormone secretion is tightly regulated by both internal and external mechanisms, including electrical communication and paracrine signaling between islet cells. Given its complexity, the experimental study of pancreatic islets has been complemented with computational modeling as a tool to gain a better understanding about how all the mechanisms involved at different levels of organization interact. In this review, we describe how multicellular models of pancreatic cells have evolved from the early models of electrically coupled β-cells to models in which experimentally derived architectures and both electrical and paracrine signals have been considered.
Collapse
Affiliation(s)
- Gerardo J. Félix-Martínez
- Investigador por México CONAHCYT-Department of Electrical Engineering, Universidad Autónoma Metropolitana, Mexico, Mexico
- Department of Electrical Engineering, Universidad Autónoma Metropolitana, Mexico, Mexico
| | | |
Collapse
|
3
|
Briggs JK, Gresch A, Marinelli I, Dwulet JM, Albers DJ, Kravets V, Benninger RKP. β-cell intrinsic dynamics rather than gap junction structure dictates subpopulations in the islet functional network. eLife 2023; 12:e83147. [PMID: 38018905 PMCID: PMC10803032 DOI: 10.7554/elife.83147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/27/2023] [Indexed: 11/30/2023] Open
Abstract
Diabetes is caused by the inability of electrically coupled, functionally heterogeneous β-cells within the pancreatic islet to provide adequate insulin secretion. Functional networks have been used to represent synchronized oscillatory [Ca2+] dynamics and to study β-cell subpopulations, which play an important role in driving islet function. The mechanism by which highly synchronized β-cell subpopulations drive islet function is unclear. We used experimental and computational techniques to investigate the relationship between functional networks, structural (gap junction) networks, and intrinsic β-cell dynamics in slow and fast oscillating islets. Highly synchronized subpopulations in the functional network were differentiated by intrinsic dynamics, including metabolic activity and KATP channel conductance, more than structural coupling. Consistent with this, intrinsic dynamics were more predictive of high synchronization in the islet functional network as compared to high levels of structural coupling. Finally, dysfunction of gap junctions, which can occur in diabetes, caused decreases in the efficiency and clustering of the functional network. These results indicate that intrinsic dynamics rather than structure drive connections in the functional network and highly synchronized subpopulations, but gap junctions are still essential for overall network efficiency. These findings deepen our interpretation of functional networks and the formation of functional subpopulations in dynamic tissues such as the islet.
Collapse
Affiliation(s)
- Jennifer K Briggs
- Department of Bioengineering, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Anne Gresch
- Department of Bioengineering, University of Colorado Anschutz Medical CampusAuroraUnited States
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Isabella Marinelli
- Centre for Systems Modelling and Quantitative Biomedicine, University of BirminghamBirminghamUnited Kingdom
| | - JaeAnn M Dwulet
- Department of Bioengineering, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - David J Albers
- Department of Bioengineering, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Biomedical Informatics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Vira Kravets
- Department of Bioengineering, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Richard KP Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical CampusAuroraUnited States
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
4
|
Šterk M, Barać U, Stožer A, Gosak M. Both electrical and metabolic coupling shape the collective multimodal activity and functional connectivity patterns in beta cell collectives: A computational model perspective. Phys Rev E 2023; 108:054409. [PMID: 38115462 DOI: 10.1103/physreve.108.054409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/20/2023] [Indexed: 12/21/2023]
Abstract
Pancreatic beta cells are coupled excitable oscillators that synchronize their activity via different communication pathways. Their oscillatory activity manifests itself on multiple timescales and consists of bursting electrical activity, subsequent oscillations in the intracellular Ca^{2+}, as well as oscillations in metabolism and exocytosis. The coordination of the intricate activity on the multicellular level plays a key role in the regulation of physiological pulsatile insulin secretion and is incompletely understood. In this paper, we investigate theoretically the principles that give rise to the synchronized activity of beta cell populations by building up a phenomenological multicellular model that incorporates the basic features of beta cell dynamics. Specifically, the model is composed of coupled slow and fast oscillatory units that reflect metabolic processes and electrical activity, respectively. Using a realistic description of the intercellular interactions, we study how the combination of electrical and metabolic coupling generates collective rhythmicity and shapes functional beta cell networks. It turns out that while electrical coupling solely can synchronize the responses, the addition of metabolic interactions further enhances coordination, the spatial range of interactions increases the number of connections in the functional beta cell networks, and ensures a better consistency with experimental findings. Moreover, our computational results provide additional insights into the relationship between beta cell heterogeneity, their activity profiles, and functional connectivity, supplementing thereby recent experimental results on endocrine networks.
Collapse
Affiliation(s)
- Marko Šterk
- Department of Physics, Faculty of Natural Sciences and Mathematics, Koroška cesta 160, University of Maribor, 2000 Maribor, Slovenia
- Institute of Physiology, Faculty of Medicine, Taborska ulica 8, University of Maribor, 2000 Maribor, Slovenia
- Alma Mater Europaea, Slovenska ulica 17, 2000 Maribor, Slovenia
| | - Uroš Barać
- Department of Physics, Faculty of Natural Sciences and Mathematics, Koroška cesta 160, University of Maribor, 2000 Maribor, Slovenia
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, Taborska ulica 8, University of Maribor, 2000 Maribor, Slovenia
| | - Marko Gosak
- Department of Physics, Faculty of Natural Sciences and Mathematics, Koroška cesta 160, University of Maribor, 2000 Maribor, Slovenia
- Institute of Physiology, Faculty of Medicine, Taborska ulica 8, University of Maribor, 2000 Maribor, Slovenia
- Alma Mater Europaea, Slovenska ulica 17, 2000 Maribor, Slovenia
| |
Collapse
|
5
|
Luchetti N, Filippi S, Loppini A. Multilevel synchronization of human β-cells networks. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1264395. [PMID: 37808419 PMCID: PMC10557430 DOI: 10.3389/fnetp.2023.1264395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
β-cells within the endocrine pancreas are fundamental for glucose, lipid and protein homeostasis. Gap junctions between cells constitute the primary coupling mechanism through which cells synchronize their electrical and metabolic activities. This evidence is still only partially investigated through models and numerical simulations. In this contribution, we explore the effect of combined electrical and metabolic coupling in β-cell clusters using a detailed biophysical model. We add heterogeneity and stochasticity to realistically reproduce β-cell dynamics and study networks mimicking arrangements of β-cells within human pancreatic islets. Model simulations are performed over different couplings and heterogeneities, analyzing emerging synchronization at the membrane potential, calcium, and metabolites levels. To describe network synchronization, we use the formalism of multiplex networks and investigate functional network properties and multiplex synchronization motifs over the structural, electrical, and metabolic layers. Our results show that metabolic coupling can support slow wave propagation in human islets, that combined electrical and metabolic synchronization is realized in small aggregates, and that metabolic long-range correlation is more pronounced with respect to the electrical one.
Collapse
Affiliation(s)
- Nicole Luchetti
- Center for Life Nano and Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Engineering Department, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Simonetta Filippi
- Engineering Department, Università Campus Bio-Medico di Roma, Rome, Italy
- National Institute of Optics, National Research Council, Florence, Italy
- International Center for Relativistic Astrophysics Network, Pescara, Italy
| | - Alessandro Loppini
- Center for Life Nano and Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Engineering Department, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
6
|
Duan K, Zhou M, Wang Y, Oberholzer J, Lo JF. Visualizing hypoxic modulation of beta cell secretions via a sensor augmented oxygen gradient. MICROSYSTEMS & NANOENGINEERING 2023; 9:14. [PMID: 36760229 PMCID: PMC9902275 DOI: 10.1038/s41378-022-00482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 06/18/2023]
Abstract
One distinct advantage of microfluidic-based cell assays is their scalability for multiple concentrations or gradients. Microfluidic scaling can be extremely powerful when combining multiple parameters and modalities. Moreover, in situ stimulation and detection eliminates variability between individual bioassays. However, conventional microfluidics must combat diffusion, which limits the spatial distance and time for molecules traveling through microchannels. Here, we leveraged a multilayered microfluidic approach to integrate a novel oxygen gradient (0-20%) with an enhanced hydrogel sensor to study pancreatic beta cells. This enabled our microfluidics to achieve spatiotemporal detection that is difficult to achieve with traditional microfluidics. Using this device, we demonstrated the in situ detection of calcium, insulin, and ATP (adenosine triphosphate) in response to glucose and oxygen stimulation. Specifically, insulin was quantified at levels as low as 25 pg/mL using our imaging technique. Furthermore, by analyzing the spatial detection data dynamically over time, we uncovered a new relationship between oxygen and beta cell oscillations. We observed an optimum oxygen level between 10 and 12%, which is neither hypoxic nor normoxic in the conventional cell culture sense. These results provide evidence to support the current islet oscillator model. In future applications, this spatial microfluidic technique can be adapted for discrete protein detection in a robust platform to study numerous oxygen-dependent tissue dysfunctions.
Collapse
Affiliation(s)
- Kai Duan
- Department of Mechanical Engineering, Bioengineering Program, University of Michigan at Dearborn, Dearborn, MI 48128 USA
| | - Mengyang Zhou
- Department of Mechanical Engineering, Bioengineering Program, University of Michigan at Dearborn, Dearborn, MI 48128 USA
| | - Yong Wang
- Department of Surgery/Transplant, University of Virginia, Charlottesville, VA 22908 USA
| | - Jose Oberholzer
- Department of Surgery/Transplant, University of Virginia, Charlottesville, VA 22908 USA
| | - Joe F. Lo
- Department of Mechanical Engineering, Bioengineering Program, University of Michigan at Dearborn, Dearborn, MI 48128 USA
| |
Collapse
|
7
|
Stožer A, Šterk M, Paradiž Leitgeb E, Markovič R, Skelin Klemen M, Ellis CE, Križančić Bombek L, Dolenšek J, MacDonald PE, Gosak M. From Isles of Königsberg to Islets of Langerhans: Examining the Function of the Endocrine Pancreas Through Network Science. Front Endocrinol (Lausanne) 2022; 13:922640. [PMID: 35784543 PMCID: PMC9240343 DOI: 10.3389/fendo.2022.922640] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Islets of Langerhans are multicellular microorgans located in the pancreas that play a central role in whole-body energy homeostasis. Through secretion of insulin and other hormones they regulate postprandial storage and interprandial usage of energy-rich nutrients. In these clusters of hormone-secreting endocrine cells, intricate cell-cell communication is essential for proper function. Electrical coupling between the insulin-secreting beta cells through gap junctions composed of connexin36 is particularly important, as it provides the required, most important, basis for coordinated responses of the beta cell population. The increasing evidence that gap-junctional communication and its modulation are vital to well-regulated secretion of insulin has stimulated immense interest in how subpopulations of heterogeneous beta cells are functionally arranged throughout the islets and how they mediate intercellular signals. In the last decade, several novel techniques have been proposed to assess cooperation between cells in islets, including the prosperous combination of multicellular imaging and network science. In the present contribution, we review recent advances related to the application of complex network approaches to uncover the functional connectivity patterns among cells within the islets. We first provide an accessible introduction to the basic principles of network theory, enumerating the measures characterizing the intercellular interactions and quantifying the functional integration and segregation of a multicellular system. Then we describe methodological approaches to construct functional beta cell networks, point out possible pitfalls, and specify the functional implications of beta cell network examinations. We continue by highlighting the recent findings obtained through advanced multicellular imaging techniques supported by network-based analyses, giving special emphasis to the current developments in both mouse and human islets, as well as outlining challenges offered by the multilayer network formalism in exploring the collective activity of islet cell populations. Finally, we emphasize that the combination of these imaging techniques and network-based analyses does not only represent an innovative concept that can be used to describe and interpret the physiology of islets, but also provides fertile ground for delineating normal from pathological function and for quantifying the changes in islet communication networks associated with the development of diabetes mellitus.
Collapse
Affiliation(s)
- Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Šterk
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rene Markovič
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Institute of Mathematics and Physics, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Cara E. Ellis
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
8
|
Marinelli I, Thompson BM, Parekh VS, Fletcher PA, Gerardo-Giorda L, Sherman AS, Satin LS, Bertram R. Oscillations in K(ATP) conductance drive slow calcium oscillations in pancreatic β-cells. Biophys J 2022; 121:1449-1464. [PMID: 35300967 PMCID: PMC9072586 DOI: 10.1016/j.bpj.2022.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/07/2021] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
ATP-sensitive K+ (K(ATP)) channels were first reported in the β-cells of pancreatic islets in 1984, and it was soon established that they are the primary means by which the blood glucose level is transduced to cellular electrical activity and consequently insulin secretion. However, the role that the K(ATP) channels play in driving the bursting electrical activity of islet β-cells, which drives pulsatile insulin secretion, remains unclear. One difficulty is that bursting is abolished when several different ion channel types are blocked pharmacologically or genetically, making it challenging to distinguish causation from correlation. Here, we demonstrate a means for determining whether activity-dependent oscillations in K(ATP) conductance play the primary role in driving electrical bursting in β-cells. We use mathematical models to predict that if K(ATP) is the driver, then contrary to intuition, the mean, peak, and nadir levels of ATP/ADP should be invariant to changes in glucose within the concentration range that supports bursting. We test this in islets using Perceval-HR to image oscillations in ATP/ADP. We find that mean, peak, and nadir levels are indeed approximately invariant, supporting the hypothesis that oscillations in K(ATP) conductance are the main drivers of the slow bursting oscillations typically seen at stimulatory glucose levels in mouse islets. In conclusion, we provide, for the first time to our knowledge, causal evidence for the role of K(ATP) channels not only as the primary target for glucose regulation but also for their role in driving bursting electrical activity and pulsatile insulin secretion.
Collapse
Affiliation(s)
- Isabella Marinelli
- Centre for Systems Modelling & Quantitative Biomedicine (SMQB), University of Birmingham, Birmingham, UK
| | - Benjamin M Thompson
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan
| | - Vishal S Parekh
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, Massachusetts
| | - Patrick A Fletcher
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland
| | - Luca Gerardo-Giorda
- Institute for Mathematical Methods in Medicine and Data Based Modeling, Johannes Kepler University, Linz, Austria; Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Linz, Austria
| | - Arthur S Sherman
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland
| | - Leslie S Satin
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan
| | - Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida.
| |
Collapse
|
9
|
Shekhar Chaurasia S, Biswas A, Parmananda P, Sinha S. Ill-matched timescales in coupled systems can induce oscillation suppression. CHAOS (WOODBURY, N.Y.) 2021; 31:103104. [PMID: 34717315 DOI: 10.1063/5.0059170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
We explore the behavior of two coupled oscillators, considering combinations of similar and dissimilar oscillators, with their intrinsic dynamics ranging from periodic to chaotic. We first investigate the coupling of two different real-world systems, namely, the chemical mercury beating heart oscillator and the electronic Chua oscillator, with the disparity in the timescales of the constituent oscillators. Here, we are considering a physical situation that is not commonly addressed: the coupling of sub-systems whose characteristic timescales are very different. Our findings indicate that the oscillations in coupled systems are quenched to oscillation death (OD) state, at sufficiently high coupling strength, when there is a large timescale mismatch. In contrast, phase synchronization occurs when their timescales are comparable. In order to further strengthen the concept, we demonstrate this timescale-induced oscillation suppression and phase synchrony through numerical simulations, with the disparity in the timescales serving as a tuning or control parameter. Importantly, oscillation suppression (OD) occurs for a significantly smaller timescale mismatch when the coupled oscillators are chaotic. This suggests that the inherent broad spectrum of timescales underlying chaos aids oscillation suppression, as the temporal complexity of chaotic dynamics lends a natural heterogeneity to the timescales. The diversity of the experimental systems and numerical models we have chosen as a test-bed for the proposed concept lends support to the broad generality of our findings. Last, these results indicate the potential prevention of system failure by small changes in the timescales of the constituent dynamics, suggesting a potent control strategy to stabilize coupled systems to steady states.
Collapse
Affiliation(s)
| | - Animesh Biswas
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - P Parmananda
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudeshna Sinha
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, Manauli 140306, India
| |
Collapse
|
10
|
Saadati M, Jamali Y. The effects of beta-cell mass and function, intercellular coupling, and islet synchrony on [Formula: see text] dynamics. Sci Rep 2021; 11:10268. [PMID: 33986325 PMCID: PMC8119479 DOI: 10.1038/s41598-021-89333-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/26/2021] [Indexed: 11/30/2022] Open
Abstract
Type 2 diabetes (T2D) is a challenging metabolic disorder characterized by a substantial loss of [Formula: see text]-cell mass and alteration of [Formula: see text]-cell function in the islets of Langerhans, disrupting insulin secretion and glucose homeostasis. The mechanisms for deficiency in [Formula: see text]-cell mass and function during the hyperglycemia development and T2D pathogenesis are complex. To study the relative contribution of [Formula: see text]-cell mass to [Formula: see text]-cell function in T2D, we make use of a comprehensive electrophysiological model of human [Formula: see text]-cell clusters. We find that defect in [Formula: see text]-cell mass causes a functional decline in single [Formula: see text]-cell, impairment in intra-islet synchrony, and changes in the form of oscillatory patterns of membrane potential and intracellular [Formula: see text] concentration, which can lead to changes in insulin secretion dynamics and in insulin levels. The model demonstrates a good correspondence between suppression of synchronizing electrical activity and published experimental measurements. We then compare the role of gap junction-mediated electrical coupling with both [Formula: see text]-cell synchronization and metabolic coupling in the behavior of [Formula: see text] concentration dynamics within human islets. Our results indicate that inter-[Formula: see text]-cellular electrical coupling depicts a more important factor in shaping the physiological regulation of islet function and in human T2D. We further predict that varying the whole-cell conductance of delayed rectifier [Formula: see text] channels modifies oscillatory activity patterns of [Formula: see text]-cell population lacking intercellular coupling, which significantly affect [Formula: see text] concentration and insulin secretion.
Collapse
Affiliation(s)
- Maryam Saadati
- Biomathematics Laboratory, Department of Applied Mathematics, School of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yousef Jamali
- Biomathematics Laboratory, Department of Applied Mathematics, School of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
11
|
Small subpopulations of β-cells do not drive islet oscillatory [Ca2+] dynamics via gap junction communication. PLoS Comput Biol 2021; 17:e1008948. [PMID: 33939712 PMCID: PMC8118513 DOI: 10.1371/journal.pcbi.1008948] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/13/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
The islets of Langerhans exist as multicellular networks that regulate blood glucose levels. The majority of cells in the islet are excitable, insulin-producing β-cells that are electrically coupled via gap junction channels. β-cells are known to display heterogeneous functionality. However, due to gap junction coupling, β-cells show coordinated [Ca2+] oscillations when stimulated with glucose, and global quiescence when unstimulated. Small subpopulations of highly functional β-cells have been suggested to control [Ca2+] dynamics across the islet. When these populations were targeted by optogenetic silencing or photoablation, [Ca2+] dynamics across the islet were largely disrupted. In this study, we investigated the theoretical basis of these experiments and how small populations can disproportionality control islet [Ca2+] dynamics. Using a multicellular islet model, we generated normal, skewed or bimodal distributions of β-cell heterogeneity. We examined how islet [Ca2+] dynamics were disrupted when cells were targeted via hyperpolarization or populations were removed; to mimic optogenetic silencing or photoablation, respectively. Targeted cell populations were chosen based on characteristics linked to functional subpopulation, including metabolic rate of glucose oxidation or [Ca2+] oscillation frequency. Islets were susceptible to marked suppression of [Ca2+] when ~10% of cells with high metabolic activity were hyperpolarized; where hyperpolarizing cells with normal metabolic activity had little effect. However, when highly metabolic cells were removed from the model, [Ca2+] oscillations remained. Similarly, when ~10% of cells with either the highest frequency or earliest elevations in [Ca2+] were removed from the islet, the [Ca2+] oscillation frequency remained largely unchanged. Overall, these results indicate small populations of β-cells with either increased metabolic activity or increased frequency are unable to disproportionately control islet-wide [Ca2+] via gap junction coupling. Therefore, we need to reconsider the physiological basis for such small β-cell populations or the mechanism by which they may be acting to control normal islet function. Many biological systems can be studied using network theory. How heterogeneous cell subpopulations come together to create complex multicellular behavior is of great value in understanding function and dysfunction in tissues. The pancreatic islet of Langerhans is a highly coupled structure that is important for maintaining blood glucose homeostasis. β-cell electrical activity is coordinated via gap junction communication. The function of the insulin-producing β-cell within the islet is disrupted in diabetes. As such, to understand the causes of islet dysfunction we need to understand how different cells within the islet contribute to its overall function via gap junction coupling. Using a computational model of β-cell electrophysiology, we investigated how small highly functional β-cell populations within the islet contribute to its function. We found that when small populations with greater functionality were introduced into the islet, they displayed signatures of this enhanced functionality. However, when these cells were removed, the islet, retained near-normal function. Thus, in a highly coupled system, such as an islet, the heterogeneity of cells allows small subpopulations to be dispensable, and thus their absence is unable to disrupt the larger cellular network. These findings can be applied to other electrical systems that have heterogeneous cell populations.
Collapse
|
12
|
Zmazek J, Klemen MS, Markovič R, Dolenšek J, Marhl M, Stožer A, Gosak M. Assessing Different Temporal Scales of Calcium Dynamics in Networks of Beta Cell Populations. Front Physiol 2021; 12:612233. [PMID: 33833686 PMCID: PMC8021717 DOI: 10.3389/fphys.2021.612233] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/26/2021] [Indexed: 01/06/2023] Open
Abstract
Beta cells within the pancreatic islets of Langerhans respond to stimulation with coherent oscillations of membrane potential and intracellular calcium concentration that presumably drive the pulsatile exocytosis of insulin. Their rhythmic activity is multimodal, resulting from networked feedback interactions of various oscillatory subsystems, such as the glycolytic, mitochondrial, and electrical/calcium components. How these oscillatory modules interact and affect the collective cellular activity, which is a prerequisite for proper hormone release, is incompletely understood. In the present work, we combined advanced confocal Ca2+ imaging in fresh mouse pancreas tissue slices with time series analysis and network science approaches to unveil the glucose-dependent characteristics of different oscillatory components on both the intra- and inter-cellular level. Our results reveal an interrelationship between the metabolically driven low-frequency component and the electrically driven high-frequency component, with the latter exhibiting the highest bursting rates around the peaks of the slow component and the lowest around the nadirs. Moreover, the activity, as well as the average synchronicity of the fast component, considerably increased with increasing stimulatory glucose concentration, whereas the stimulation level did not affect any of these parameters in the slow component domain. Remarkably, in both dynamical components, the average correlation decreased similarly with intercellular distance, which implies that intercellular communication affects the synchronicity of both types of oscillations. To explore the intra-islet synchronization patterns in more detail, we constructed functional connectivity maps. The subsequent comparison of network characteristics of different oscillatory components showed more locally clustered and segregated networks of fast oscillatory activity, while the slow oscillations were more global, resulting in several long-range connections and a more cohesive structure. Besides the structural differences, we found a relatively weak relationship between the fast and slow network layer, which suggests that different synchronization mechanisms shape the collective cellular activity in islets, a finding which has to be kept in mind in future studies employing different oscillations for constructing networks.
Collapse
Affiliation(s)
- Jan Zmazek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | | | - Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Education, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
13
|
Biswas A, Chaurasia SS, Parmananda P, Sinha S. Asymmetry induced suppression of chaos. Sci Rep 2020; 10:15582. [PMID: 32973133 PMCID: PMC7518436 DOI: 10.1038/s41598-020-72476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/28/2020] [Indexed: 12/04/2022] Open
Abstract
We explore the dynamics of a group of unconnected chaotic relaxation oscillators realized by mercury beating heart systems, coupled to a markedly different common external chaotic system realized by an electronic circuit. Counter-intuitively, we find that this single dissimilar chaotic oscillator manages to effectively steer the group of oscillators on to steady states, when the coupling is sufficiently strong. We further verify this unusual observation in numerical simulations of model relaxation oscillator systems mimicking this interaction through coupled differential equations. Interestingly, the ensemble of oscillators is suppressed most efficiently when coupled to a completely dissimilar chaotic external system, rather than to a regular external system or an external system identical to those of the group. So this experimentally demonstrable controllability of groups of oscillators via a distinct external system indicates a potent control strategy. It also illustrates the general principle that symmetry in the emergent dynamics may arise from asymmetry in the constituent systems, suggesting that diversity or heterogeneity may have a crucial role in aiding regularity in interactive systems.
Collapse
Affiliation(s)
- Animesh Biswas
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai, 400 076, India
| | | | - P Parmananda
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai, 400 076, India
| | - Sudeshna Sinha
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai, 400 076, India.
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli, PO 140 306, Punjab, India.
| |
Collapse
|
14
|
Kumar K, Biswas D, Banerjee T, Zou W, Kurths J, Senthilkumar DV. Revival and death of oscillation under mean-field coupling: Interplay of intrinsic and extrinsic filtering. Phys Rev E 2019; 100:052212. [PMID: 31870041 DOI: 10.1103/physreve.100.052212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Mean-field diffusive coupling was known to induce the phenomenon of quenching of oscillations even in identical systems, where the standard diffusive coupling (without mean-field) fails to do so [Phys. Rev. E 89, 052912 (2014)PLEEE81539-375510.1103/PhysRevE.89.052912]. In particular, the mean-field diffusive coupling facilitates the transition from amplitude to oscillation death states and the onset of a nontrivial amplitude death state via a subcritical pitchfork bifurcation. In this paper, we show that an adaptive coupling using a low-pass filter in both the intrinsic and extrinsic variables in the coupling is capable of inducing the counterintuitive phenomenon of reviving of oscillations from the death states induced by the mean-field coupling. In particular, even a weak filtering of the extrinsic (intrinsic) variable in the mean-field coupling facilitates the onset of revival (quenching) of oscillations, whereas a strong filtering of the extrinsic (intrinsic) variable results in quenching (revival) of oscillations. Our results reveal that the degree of filtering plays a predominant role in determining the effect of filtering in the extrinsic or intrinsic variables, thereby engineering the dynamics as desired. We also extend the analysis to networks of mean-field coupled limit-cycle and chaotic oscillators along with the low-pass filters to illustrate the generic nature of our results. Finally, we demonstrate the observed dynamical transition experimentally to elucidate the robustness of our results despite the presence of inherent parameter fluctuations and noise.
Collapse
Affiliation(s)
- Krishna Kumar
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram-695 551, India
| | - Debabrata Biswas
- Department of Physics, Bankura University, Bankura 722 155, West Bengal, India
| | - Tanmoy Banerjee
- Chaos and Complex Systems Research Laboratory, Department of Physics, University of Burdwan, Burdwan 713 104, West Bengal, India
| | - Wei Zou
- School of Mathematical Sciences, South China Normal University, Guangzhou 510631, People's Republic of China
| | - J Kurths
- Potsdam Institute for Climate Impact Research, Telegraphenberg, Potsdam D-14415, Germany
- Institute of Physics, Humboldt University Berlin, Berlin D-12489, Germany
- Saratov State University, 83 Astrakhanskaya Street, Saratov, 410012, Russia
| | - D V Senthilkumar
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram-695 551, India
| |
Collapse
|
15
|
Marsh DJ, Postnov DD, Sosnovtseva OV, Holstein-Rathlou NH. The nephron-arterial network and its interactions. Am J Physiol Renal Physiol 2019; 316:F769-F784. [DOI: 10.1152/ajprenal.00484.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Tubuloglomerular feedback and the myogenic mechanism form an ensemble in renal afferent arterioles that regulate single-nephron blood flow and glomerular filtration. Each mechanism generates a self-sustained oscillation, the mechanisms interact, and the oscillations synchronize. The synchronization generates a bimodal electrical signal in the arteriolar wall that propagates retrograde to a vascular node, where it meets similar electrical signals from other nephrons. Each signal carries information about the time-dependent behavior of the regulatory ensemble. The converging signals support synchronization of the nephrons participating in the information exchange, and the synchronization can lead to formation of nephron clusters. We review the experimental evidence and the theoretical implications of these interactions and consider additional interactions that can limit the size of nephron clusters. The architecture of the arterial tree figures prominently in these interactions.
Collapse
Affiliation(s)
- Donald J. Marsh
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island
| | - Dmitry D. Postnov
- Neurophotonics Center, Boston University, Boston, Massachusetts
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Olga V. Sosnovtseva
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
16
|
Loppini A, Pedersen MG. Gap-junction coupling can prolong beta-cell burst period by an order of magnitude via phantom bursting. CHAOS (WOODBURY, N.Y.) 2018; 28:063111. [PMID: 29960397 DOI: 10.1063/1.5022217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pancreatic β-cells show multiple intrinsic modes of oscillation with bursting electrical activity playing a crucial role. Bursting is seen both in experimentally isolated β-cells as well as in electrically coupled cells in the pancreatic islets, but the burst period is typically an order of magnitude greater in coupled cells. This difference has previously been attributed to noisier dynamics, or perturbed electrophysiological properties, in isolated β-cells. Here, we show that diffusive coupling alone can extend the period more than ten-fold in bursting oscillators modeled with a so-called phantom burster model and analyze this result with slow-fast bifurcation analysis of an electrically coupled pair of cells. Our results should be applicable to other scenarios where coupling of bursting units, e.g., neurons, may increase the oscillation period drastically.
Collapse
Affiliation(s)
- Alessandro Loppini
- Unit of Nonlinear Physics and Mathematical Modeling, Campus Bio-Medico University of Rome, I-00128 Rome, Italy
| | - Morten Gram Pedersen
- Department of Information Engineering, University of Padua, I-35131 Padua, Italy
| |
Collapse
|
17
|
Stankevich N, Mosekilde E. Coexistence between silent and bursting states in a biophysical Hodgkin-Huxley-type of model. CHAOS (WOODBURY, N.Y.) 2017; 27:123101. [PMID: 29289049 DOI: 10.1063/1.4986401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Classification of the dynamical mechanisms that support bistability between bursting oscillations and silence has not yet been clarified in detail. The purpose of this paper is to demonstrate that the coexistence of a stable equilibrium point with a state of continuous bursting can occur in a slightly modified, biophysical model that describe the dynamics of pancreatic beta-cells. To realize this form of coexistence, we have introduced an additional voltage-dependent potassium current that is activated in the region around the original, unstable equilibrium point. It is interesting to note that this modification also leads the model to display a blue-sky catastrophe in the transition region between chaotic and bursting states.
Collapse
Affiliation(s)
- Nataliya Stankevich
- Department of Radio-Electronics and Telecommunications, Yuri Gagarin State Technical University of Saratov, 77, Politechnicheskaya, Saratov 410054, Russian Federation
| | - Erik Mosekilde
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
18
|
Skelin Klemen M, Dolenšek J, Slak Rupnik M, Stožer A. The triggering pathway to insulin secretion: Functional similarities and differences between the human and the mouse β cells and their translational relevance. Islets 2017; 9:109-139. [PMID: 28662366 PMCID: PMC5710702 DOI: 10.1080/19382014.2017.1342022] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In β cells, stimulation by metabolic, hormonal, neuronal, and pharmacological factors is coupled to secretion of insulin through different intracellular signaling pathways. Our knowledge about the molecular machinery supporting these pathways and the patterns of signals it generates comes mostly from rodent models, especially the laboratory mouse. The increased availability of human islets for research during the last few decades has yielded new insights into the specifics in signaling pathways leading to insulin secretion in humans. In this review, we follow the most central triggering pathway to insulin secretion from its very beginning when glucose enters the β cell to the calcium oscillations it produces to trigger fusion of insulin containing granules with the plasma membrane. Along the way, we describe the crucial building blocks that contribute to the flow of information and focus on their functional role in mice and humans and on their translational implications.
Collapse
Affiliation(s)
- Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Institute of Physiology; Center for Physiology and Pharmacology; Medical University of Vienna; Vienna, Austria
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
19
|
Zakharova A, Kapeller M, Schöll E. Amplitude chimeras and chimera death in dynamical networks. ACTA ACUST UNITED AC 2016. [DOI: 10.1088/1742-6596/727/1/012018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Schneider I, Kapeller M, Loos S, Zakharova A, Fiedler B, Schöll E. Stable and transient multicluster oscillation death in nonlocally coupled networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052915. [PMID: 26651770 DOI: 10.1103/physreve.92.052915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Indexed: 05/03/2023]
Abstract
In a network of nonlocally coupled Stuart-Landau oscillators with symmetry-breaking coupling, we study numerically, and explain analytically, a family of inhomogeneous steady states (oscillation death). They exhibit multicluster patterns, depending on the cluster distribution prescribed by the initial conditions. Besides stable oscillation death, we also find a regime of long transients asymptotically approaching synchronized oscillations. To explain these phenomena analytically in dependence on the coupling range and the coupling strength, we first use a mean-field approximation, which works well for large coupling ranges but fails for coupling ranges, which are small compared to the cluster size. Going beyond standard mean-field theory, we predict the boundaries of the different stability regimes as well as the transient times analytically in excellent agreement with numerical results.
Collapse
Affiliation(s)
- Isabelle Schneider
- Institut für Mathematik, Freie Universität Berlin, Arnimallee 7, 14195 Berlin, Germany
| | - Marie Kapeller
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Sarah Loos
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Anna Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Bernold Fiedler
- Institut für Mathematik, Freie Universität Berlin, Arnimallee 7, 14195 Berlin, Germany
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| |
Collapse
|
21
|
Gerencser AA. Bioenergetic Analysis of Single Pancreatic β-Cells Indicates an Impaired Metabolic Signature in Type 2 Diabetic Subjects. Endocrinology 2015. [PMID: 26204464 DOI: 10.1210/en.2015-1552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Impaired activation of mitochondrial energy metabolism by glucose has been demonstrated in type 2 diabetic β-cells. The cause of this dysfunction is unknown. The aim of this study was to identify segments of energy metabolism with normal or with altered function in human type 2 diabetes mellitus. The mitochondrial membrane potential (ΔψM), and its response to glucose, is the main driver of mitochondrial ATP synthesis and is hence a central mediator of glucose-induced insulin secretion, but its quantitative determination in β-cells from human donors has not been attempted, due to limitations in assay technology. Here, novel fluorescence microscopic assays are exploited to quantify ΔψM and its response to glucose and other secretagogues in β-cells of dispersed pancreatic islet cells from 4 normal and 3 type 2 diabetic organ donors. Mitochondrial volume densities and the magnitude of ΔψM in low glucose were not consistently altered in diabetic β-cells. However, ΔψM was consistently less responsive to elevation of glucose concentration, whereas the decreased response was not observed with metabolizable secretagogue mixtures that feed directly into the tricarboxylic acid cycle. Single-cell analysis of the heterogeneous responses to metabolizable secretagogues indicated no dysfunction in relaying ΔψM hyperpolarization to plasma membrane potential depolarization in diabetic β-cells. ΔψM of diabetic β-cells was distinctly responsive to acute inhibition of ATP synthesis during glucose stimulation. It is concluded that the mechanistic deficit in glucose-induced insulin secretion and mitochondrial hyperpolarization of diabetic human β-cells is located upstream of the tricarboxylic acid cycle and manifests in dampening the control of ΔψM by glucose metabolism.
Collapse
Affiliation(s)
- Akos A Gerencser
- Buck Institute for Research on Aging and Image Analyst Software, Novato, California 94945; and College of Pharmacy, Touro University California, Vallejo, California 94592
| |
Collapse
|
22
|
Loppini A, Braun M, Filippi S, Pedersen MG. Mathematical modeling of gap junction coupling and electrical activity in human β-cells. Phys Biol 2015; 12:066002. [PMID: 26403477 DOI: 10.1088/1478-3975/12/6/066002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Coordinated insulin secretion is controlled by electrical coupling of pancreatic β-cells due to connexin-36 gap junctions. Gap junction coupling not only synchronizes the heterogeneous β-cell population, but can also modify the electrical behavior of the cells. These phenomena have been widely studied with mathematical models based on data from mouse β-cells. However, it is now known that human β-cell electrophysiology shows important differences to its rodent counterpart, and although human pancreatic islets express connexin-36 and show evidence of β-cell coupling, these aspects have been little investigated in human β-cells. Here we investigate theoretically, the gap junction coupling strength required for synchronizing electrical activity in a small cluster of cells simulated with a recent mathematical model of human β-cell electrophysiology. We find a lower limit for the coupling strength of approximately 20 pS (i.e., normalized to cell size, ∼2 pS pF(-1)) below which spiking electrical activity is asynchronous. To confront this theoretical lower bound with data, we use our model to estimate from an experimental patch clamp recording that the coupling strength is approximately 100-200 pS (10-20 pS pF(-1)), similar to previous estimates in mouse β-cells. We then investigate the role of gap junction coupling in synchronizing and modifying other forms of electrical activity in human β-cell clusters. We find that electrical coupling can prolong the period of rapid bursting electrical activity, and synchronize metabolically driven slow bursting, in particular when the metabolic oscillators are in phase. Our results show that realistic coupling conductances are sufficient to promote synchrony in small clusters of human β-cells as observed experimentally, and provide motivation for further detailed studies of electrical coupling in human pancreatic islets.
Collapse
Affiliation(s)
- Alessandro Loppini
- Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico, I-00128, Rome, Italy
| | | | | | | |
Collapse
|
23
|
Kamal NK, Sharma PR, Shrimali MD. Oscillation suppression in indirectly coupled limit cycle oscillators. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022928. [PMID: 26382496 DOI: 10.1103/physreve.92.022928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Indexed: 06/05/2023]
Abstract
We study the phenomena of oscillation quenching in a system of limit cycle oscillators which are coupled indirectly via a dynamic environment. The dynamics of the environment is assumed to decay exponentially with some decay parameter. We show that for appropriate coupling strength, the decay parameter of the environment plays a crucial role in the emergent dynamics such as amplitude death (AD) and oscillation death (OD). The critical curves for the regions of oscillation quenching as a function of coupling strength and decay parameter of the environment are obtained analytically using linear stability analysis and are found to be consistent with the numerics.
Collapse
Affiliation(s)
- Neeraj Kumar Kamal
- Department of Physics, Central University of Rajasthan, Ajmer 305 817, India
| | - Pooja Rani Sharma
- Department of Physics, Central University of Rajasthan, Ajmer 305 817, India
| | - Manish Dev Shrimali
- Department of Physics, Central University of Rajasthan, Ajmer 305 817, India
| |
Collapse
|
24
|
|
25
|
Benninger RKP, Piston DW. Cellular communication and heterogeneity in pancreatic islet insulin secretion dynamics. Trends Endocrinol Metab 2014; 25:399-406. [PMID: 24679927 PMCID: PMC4112137 DOI: 10.1016/j.tem.2014.02.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 11/20/2022]
Abstract
Coordinated pulses of electrical activity and insulin secretion are a hallmark of the islet of Langerhans. These coordinated behaviors are lost when β cells are dissociated, which also leads to increased insulin secretion at low glucose levels. Islets without gap junctions exhibit asynchronous electrical activity similar to dispersed cells, but their secretion at low glucose levels is still clamped off, putatively by a juxtacrine mechanism. Mice lacking β cell gap junctions have near-normal average insulin levels, but are glucose intolerant due to reduced first-phase and pulsatile insulin secretion, illustrating the importance of temporal dynamics. Here, we review the quantitative data on islet synchronization and the current mathematical models that have been developed to explain these behaviors and generate greater understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Richard K P Benninger
- Department of Bioengineering and Barbara Davis Center, University of Colorado Anschutz Medical campus, Aurora, CO, USA.
| | - David W Piston
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
26
|
Zakharova A, Kapeller M, Schöll E. Chimera death: symmetry breaking in dynamical networks. PHYSICAL REVIEW LETTERS 2014; 112:154101. [PMID: 24785041 DOI: 10.1103/physrevlett.112.154101] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Indexed: 05/03/2023]
Abstract
For a network of generic oscillators with nonlocal topology and symmetry-breaking coupling we establish novel partially coherent inhomogeneous spatial patterns, which combine the features of chimera states (coexisting incongruous coherent and incoherent domains) and oscillation death (oscillation suppression), which we call "chimera death". We show that due to the interplay of nonlocality and breaking of rotational symmetry by the coupling, two distinct scenarios from oscillatory behavior to a stationary state regime are possible: a transition from an amplitude chimera to chimera death via in-phase synchronized oscillations and a direct abrupt transition for larger coupling strength.
Collapse
Affiliation(s)
- Anna Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Marie Kapeller
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| |
Collapse
|
27
|
Fu D, Tan P, Kuznetsov A, Molkov YI. Chaos and robustness in a single family of genetic oscillatory networks. PLoS One 2014; 9:e90666. [PMID: 24667178 PMCID: PMC3965403 DOI: 10.1371/journal.pone.0090666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 02/03/2014] [Indexed: 12/04/2022] Open
Abstract
Genetic oscillatory networks can be mathematically modeled with delay differential equations (DDEs). Interpreting genetic networks with DDEs gives a more intuitive understanding from a biological standpoint. However, it presents a problem mathematically, for DDEs are by construction infinitely-dimensional and thus cannot be analyzed using methods common for systems of ordinary differential equations (ODEs). In our study, we address this problem by developing a method for reducing infinitely-dimensional DDEs to two- and three-dimensional systems of ODEs. We find that the three-dimensional reductions provide qualitative improvements over the two-dimensional reductions. We find that the reducibility of a DDE corresponds to its robustness. For non-robust DDEs that exhibit high-dimensional dynamics, we calculate analytic dimension lines to predict the dependence of the DDEs’ correlation dimension on parameters. From these lines, we deduce that the correlation dimension of non-robust DDEs grows linearly with the delay. On the other hand, for robust DDEs, we find that the period of oscillation grows linearly with delay. We find that DDEs with exclusively negative feedback are robust, whereas DDEs with feedback that changes its sign are not robust. We find that non-saturable degradation damps oscillations and narrows the range of parameter values for which oscillations exist. Finally, we deduce that natural genetic oscillators with highly-regular periods likely have solely negative feedback.
Collapse
Affiliation(s)
- Daniel Fu
- Department of Mathematics, Park Tudor School, Indianapolis, Indiana, United States of America
- * E-mail:
| | - Patrick Tan
- Department of Mathematics, Carmel High School, Carmel, Indiana, United States of America
| | - Alexey Kuznetsov
- Department of Mathematical Sciences, Indiana University-Purdue University of Indianapolis, Indianapolis, Indiana, United States of America
| | - Yaroslav I. Molkov
- Department of Mathematical Sciences, Indiana University-Purdue University of Indianapolis, Indianapolis, Indiana, United States of America
| |
Collapse
|
28
|
Gjurchinovski A, Zakharova A, Schöll E. Amplitude death in oscillator networks with variable-delay coupling. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:032915. [PMID: 24730921 DOI: 10.1103/physreve.89.032915] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Indexed: 06/03/2023]
Abstract
We study the conditions of amplitude death in a network of delay-coupled limit cycle oscillators by including time-varying delay in the coupling and self-feedback. By generalizing the master stability function formalism to include variable-delay connections with high-frequency delay modulations (i.e., the distributed-delay limit), we analyze the regimes of amplitude death in a ring network of Stuart-Landau oscillators and demonstrate the superiority of the proposed method with respect to the constant delay case. The possibility of stabilizing the steady state is restricted by the odd-number property of the local node dynamics independently of the network topology and the coupling parameters.
Collapse
Affiliation(s)
- Aleksandar Gjurchinovski
- Institute of Physics, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, P. O. Box 162, 1000 Skopje, Macedonia
| | - Anna Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
29
|
Bursting synchronization dynamics of pancreatic β-cells with electrical and chemical coupling. Cogn Neurodyn 2014; 7:197-212. [PMID: 24427201 DOI: 10.1007/s11571-012-9226-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 09/17/2012] [Accepted: 10/11/2012] [Indexed: 10/27/2022] Open
Abstract
Based on bifurcation analysis, the synchronization behaviors of two identical pancreatic β-cells connected by electrical and chemical coupling are investigated, respectively. Various firing patterns are produced in coupled cells when a single cell exhibits tonic spiking or square-wave bursting individually, irrespectively of what the cells are connected by electrical or chemical coupling. On the one hand, cells can burst synchronously for both weak electrical and chemical coupling when an isolated cell exhibits tonic spiking itself. In particular, for electrically coupled cells, under the variation of the coupling strength there exist complex transition processes of synchronous firing patterns such as "fold/limit cycle" type of bursting, then anti-phase continuous spiking, followed by the "fold/torus" type of bursting, and finally in-phase tonic spiking. On the other hand, it is shown that when the individual cell exhibits square-wave bursting, suitable coupling strength can make the electrically coupled system generate "fold/Hopf" bursting via "fold/fold" hysteresis loop; whereas, the chemically coupled cells generate "fold/subHopf" bursting. Especially, chemically coupled bursters can exhibit inverse period-adding bursting sequence. Fast-slow dynamics analysis is applied to explore the generation mechanism of these bursting oscillations. The above analysis of bursting types and the transition may provide us with better insight into understanding the role of coupling in the dynamic behaviors of pancreatic β-cells.
Collapse
|
30
|
Ren J, Sherman A, Bertram R, Goforth PB, Nunemaker CS, Waters CD, Satin LS. Slow oscillations of KATP conductance in mouse pancreatic islets provide support for electrical bursting driven by metabolic oscillations. Am J Physiol Endocrinol Metab 2013; 305:E805-17. [PMID: 23921138 PMCID: PMC3798703 DOI: 10.1152/ajpendo.00046.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We used the patch clamp technique in situ to test the hypothesis that slow oscillations in metabolism mediate slow electrical oscillations in mouse pancreatic islets by causing oscillations in KATP channel activity. Total conductance was measured over the course of slow bursting oscillations in surface β-cells of islets exposed to 11.1 mM glucose by either switching from current clamp to voltage clamp at different phases of the bursting cycle or by clamping the cells to -60 mV and running two-second voltage ramps from -120 to -50 mV every 20 s. The membrane conductance, calculated from the slopes of the ramp current-voltage curves, oscillated and was larger during the silent phase than during the active phase of the burst. The ramp conductance was sensitive to diazoxide, and the oscillatory component was reduced by sulfonylureas or by lowering extracellular glucose to 2.8 mM, suggesting that the oscillatory total conductance is due to oscillatory KATP channel conductance. We demonstrate that these results are consistent with the Dual Oscillator model, in which glycolytic oscillations drive slow electrical bursting, but not with other models in which metabolic oscillations are secondary to calcium oscillations. The simulations also confirm that oscillations in membrane conductance can be well estimated from measurements of slope conductance and distinguished from gap junction conductance. Furthermore, the oscillatory conductance was blocked by tolbutamide in isolated β-cells. The data, combined with insights from mathematical models, support a mechanism of slow (∼5 min) bursting driven by oscillations in metabolism, rather than by oscillations in the intracellular free calcium concentration.
Collapse
Affiliation(s)
- Jianhua Ren
- Department of Pharmacology and Brehm Diabetes Center, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | | | | | | | |
Collapse
|
31
|
Palumbo P, Ditlevsen S, Bertuzzi A, De Gaetano A. Mathematical modeling of the glucose–insulin system: A review. Math Biosci 2013; 244:69-81. [DOI: 10.1016/j.mbs.2013.05.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 05/10/2013] [Accepted: 05/16/2013] [Indexed: 11/29/2022]
|
32
|
Koseska A, Volkov E, Kurths J. Transition from amplitude to oscillation death via Turing bifurcation. PHYSICAL REVIEW LETTERS 2013; 111:024103. [PMID: 23889406 DOI: 10.1103/physrevlett.111.024103] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/16/2013] [Indexed: 06/02/2023]
Abstract
Coupled oscillators are shown to experience two structurally different oscillation quenching types: amplitude death (AD) and oscillation death (OD). We demonstrate that both AD and OD can occur in one system and find that the transition between them underlies a classical, Turing-type bifurcation, providing a clear classification of these significantly different dynamical regimes. The implications of obtaining a homogeneous (AD) or inhomogeneous (OD) steady state, as well as their significance for physical and biological applications and control studies, are also pointed out.
Collapse
Affiliation(s)
- Aneta Koseska
- Institute of Physics, Humboldt-University, 10099 Berlin, Germany.
| | | | | |
Collapse
|
33
|
Granqvist E, Wysham D, Hazledine S, Kozlowski W, Sun J, Charpentier M, Martins TV, Haleux P, Tsaneva-Atanasova K, Downie JA, Oldroyd GE, Morris RJ. Buffering capacity explains signal variation in symbiotic calcium oscillations. PLANT PHYSIOLOGY 2012; 160:2300-10. [PMID: 23027664 PMCID: PMC3510149 DOI: 10.1104/pp.112.205682] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Legumes form symbioses with rhizobial bacteria and arbuscular mycorrhizal fungi that aid plant nutrition. A critical component in the establishment of these symbioses is nuclear-localized calcium (Ca(2+)) oscillations. Different components on the nuclear envelope have been identified as being required for the generation of the Ca(2+) oscillations. Among these an ion channel, Doesn't Make Infections1, is preferentially localized on the inner nuclear envelope and a Ca(2+) ATPase is localized on both the inner and outer nuclear envelopes. Doesn't Make Infections1 is conserved across plants and has a weak but broad similarity to bacterial potassium channels. A possible role for this cation channel could be hyperpolarization of the nuclear envelope to counterbalance the charge caused by the influx of Ca(2+) into the nucleus. Ca(2+) channels and Ca(2+) pumps are needed for the release and reuptake of Ca(2+) from the internal store, which is hypothesized to be the nuclear envelope lumen and endoplasmic reticulum, but the release mechanism of Ca(2+) remains to be identified and characterized. Here, we develop a mathematical model based on these components to describe the observed symbiotic Ca(2+) oscillations. This model can recapitulate Ca(2+) oscillations, and with the inclusion of Ca(2+)-binding proteins it offers a simple explanation for several previously unexplained phenomena. These include long periods of frequency variation, changes in spike shape, and the initiation and termination of oscillations. The model also predicts that an increase in buffering capacity in the nucleoplasm would cause a period of rapid oscillations. This phenomenon was observed experimentally by adding more of the inducing signal.
Collapse
|
34
|
Abstract
Intercellular calcium (Ca(2+)) waves (ICWs) represent the propagation of increases in intracellular Ca(2+) through a syncytium of cells and appear to be a fundamental mechanism for coordinating multicellular responses. ICWs occur in a wide diversity of cells and have been extensively studied in vitro. More recent studies focus on ICWs in vivo. ICWs are triggered by a variety of stimuli and involve the release of Ca(2+) from internal stores. The propagation of ICWs predominately involves cell communication with internal messengers moving via gap junctions or extracellular messengers mediating paracrine signaling. ICWs appear to be important in both normal physiology as well as pathophysiological processes in a variety of organs and tissues including brain, liver, retina, cochlea, and vascular tissue. We review here the mechanisms of initiation and propagation of ICWs, the key intra- and extracellular messengers (inositol 1,4,5-trisphosphate and ATP) mediating ICWs, and the proposed physiological functions of ICWs.
Collapse
Affiliation(s)
- Luc Leybaert
- Department of Basic Medical Sciences, Physiology Group, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium.
| | | |
Collapse
|
35
|
Liu W, Volkov E, Xiao J, Zou W, Zhan M, Yang J. Inhomogeneous stationary and oscillatory regimes in coupled chaotic oscillators. CHAOS (WOODBURY, N.Y.) 2012; 22:033144. [PMID: 23020483 DOI: 10.1063/1.4751333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The dynamics of linearly coupled identical Lorenz and Pikovsky-Rabinovich oscillators are explored numerically and theoretically. We concentrate on the study of inhomogeneous stable steady states ("oscillation death (OD)" phenomenon) and accompanying periodic and chaotic regimes that emerge at an appropriate choice of the coupling matrix. The parameters, for which OD occurs, are determined by stability analysis of the chosen steady state. Three model-specific types of transitions to and from OD are observed: (1) a sharp transition to OD from a nonsymmetric chaotic attractor containing random intervals of synchronous chaos; (2) transition to OD from the symmetry-breaking chaotic regime created by negative coupling; (3) supercritical bifurcation of OD into inhomogeneous limit cycles and further evolution of the system to inhomogeneous chaotic regimes that coexist with complete synchronous chaos. These results may fill a gap in the understanding of the mechanism of OD in coupled chaotic systems.
Collapse
Affiliation(s)
- Weiqing Liu
- School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
36
|
Resmi V, Ambika G, Amritkar RE, Rangarajan G. Amplitude death in complex networks induced by environment. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:046211. [PMID: 22680560 DOI: 10.1103/physreve.85.046211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Indexed: 06/01/2023]
Abstract
We present a mechanism for amplitude death in coupled nonlinear dynamical systems on a complex network having interactions with a common environment like external system. We develop a general stability analysis that is valid for any network topology and obtain the threshold values of coupling constants for the onset of amplitude death. An important outcome of our study is a universal relation between the critical coupling strength and the largest nonzero eigenvalue of the coupling matrix. Our results are fully supported by the detailed numerical analysis for different network topologies.
Collapse
Affiliation(s)
- V Resmi
- Indian Institute of Science Education and Research, Pune 411021, India.
| | | | | | | |
Collapse
|
37
|
Resmi V, Ambika G, Amritkar RE. General mechanism for amplitude death in coupled systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:046212. [PMID: 22181250 DOI: 10.1103/physreve.84.046212] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 09/05/2011] [Indexed: 05/31/2023]
Abstract
We introduce a general mechanism for amplitude death in coupled synchronizable dynamical systems. It is known that when two systems are coupled directly, they can synchronize under suitable conditions. When an indirect feedback coupling through an environment or an external system is introduced in them, it is found to induce a tendency for antisynchronization. We show that, for sufficient strengths, these two competing effects can lead to amplitude death. We provide a general stability analysis that gives the threshold values for onset of amplitude death. We study in detail the nature of the transition to death in several specific cases and find that the transitions can be of two types--continuous and discontinuous. By choosing a variety of dynamics, for example, periodic, chaotic, hyperchaotic, and time-delay systems, we illustrate that this mechanism is quite general and works for different types of direct coupling, such as diffusive, replacement, and synaptic couplings, and for different damped dynamics of the environment.
Collapse
Affiliation(s)
- V Resmi
- Indian Institute of Science Education and Research, Pune 411021, India.
| | | | | |
Collapse
|
38
|
Analysing dynamical behavior of cellular networks via stochastic bifurcations. PLoS One 2011; 6:e19696. [PMID: 21647432 PMCID: PMC3102061 DOI: 10.1371/journal.pone.0019696] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 04/13/2011] [Indexed: 11/19/2022] Open
Abstract
The dynamical structure of genetic networks determines the occurrence of various biological mechanisms, such as cellular differentiation. However, the question of how cellular diversity evolves in relation to the inherent stochasticity and intercellular communication remains still to be understood. Here, we define a concept of stochastic bifurcations suitable to investigate the dynamical structure of genetic networks, and show that under stochastic influence, the expression of given proteins of interest is defined via the probability distribution of the phase variable, representing one of the genes constituting the system. Moreover, we show that under changing stochastic conditions, the probabilities of expressing certain concentration values are different, leading to different functionality of the cells, and thus to differentiation of the cells in the various types.
Collapse
|
39
|
Spatiotemporal dynamics of the Calvin cycle: Multistationarity and symmetry breaking instabilities. Biosystems 2011; 103:212-23. [DOI: 10.1016/j.biosystems.2010.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/18/2010] [Accepted: 10/26/2010] [Indexed: 11/21/2022]
|
40
|
Abstract
We present a mathematical analysis of the dynamics that underlies plateau bursting in models of endocrine cells under variation of the location of the (unstable) equilibrium around which these bursting patterns are organised. We focus primarily on the less well-studied case of pseudo-plateau bursting, but also consider the square-wave case. The behaviour of such models is explained using the theory for systems with multiple time scales and it is well known that the underlying so-called fast subsystem organises their dynamics. However, such results are valid only in a sufficiently small neighbourhood of the singular limit that defines the fast subsystem. Hence, the slow variable (intracellular calcium concentration) must be very slow, which is actually not the case for pseudo-plateau bursting. Furthermore, the theoretical predictions are also only valid for parameter values such that the equilibrium is close to a homoclinic bifurcation occuring in the fast subsystem. In the present study, we use numerical explorations to discuss what happens outside this theoretically known neighbourhood of parameter space. In particular, we consider what happens as the equilibrium moves outside a small neighbourhood of the homoclinic bifurcation that occurs in the fast subsystem, and relatively fast speeds are allowed for the slow variable which is controlled by a relatively large value of a parameter ε. The results obtained complement our earlier work [Tsaneva-Atanasova et al. (2010) J Theor Biol264, 1133-1146], which focussed on how the bursting patterns vary with the rate of change ε of the slow variable: we fix ε and move the equilibrium over the full range of the bursting regime. Our findings show that the transitions between different bursting patterns are rather similar for square-wave and pseudo-plateau bursting, provided that the value of ε for the pseudo-plateau-bursting model is chosen so that it is much larger than for the square-wave bursting model. Furthermore, the two families of tonic spiking and plateau bursting, which are generally viewed as two separately generated families, are actually connected into a single family in the two-parameter plane through branches of unstable periodic orbits.
Collapse
Affiliation(s)
- H M Osinga
- Bristol Centre for Applied Nonlinear Mathematics, Department of Engineering Mathematics, University of Bristol, Bristol, UK.
| | | |
Collapse
|
41
|
Koseska A, Kurths J. Topological structures enhance the presence of dynamical regimes in synthetic networks. CHAOS (WOODBURY, N.Y.) 2010; 20:045111. [PMID: 21198123 DOI: 10.1063/1.3515200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Genetic and protein networks, through their underlying dynamical behavior, characterize structural and functional cellular processes, and are thus regarded as "driving forces" of all living systems. Understanding the rhythm generation mechanisms that emerge from such complex networks has benefited in recent years by synthetic approaches, through which simpler network modules (e.g., switches and oscillators) have been built. In this manner, a significant attention to date has been focused on the dynamical behavior of these isolated synthetic circuits, and the occurrence of unifying rhythms in systems of globally coupled genetic units. In contrast to this, we address here the question: Could topologically distinct structures enhance the presence of various dynamical regimes in synthetic networks? We show that an intercellular mechanism, engineered to operate on a local scale, will inevitably lead to multirhythmicity, and to the appearance of several coexisting (complex) dynamical regimes, if certain preconditions regarding the dynamical structure of the synthetic circuits are met. Moreover, we discuss the importance of regime enhancement in synthetic structures in terms of memory storage and computation capabilities.
Collapse
Affiliation(s)
- A Koseska
- Interdisciplinary Center for Dynamics of Complex Systems, University of Potsdam, D-14469 Potsdam, Germany
| | | |
Collapse
|
42
|
Koseska A, Volkov E, Kurths J. Parameter mismatches and oscillation death in coupled oscillators. CHAOS (WOODBURY, N.Y.) 2010; 20:023132. [PMID: 20590328 DOI: 10.1063/1.3456937] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We use a set of qualitatively different models of coupled oscillators (genetic, membrane, Ca-metabolism, and chemical oscillators) to study dynamical regimes in the presence of small detuning. In particular, we focus on a distinct oscillation quenching mechanism, the oscillation death phenomenon. Using bifurcation analysis in general, we demonstrate that under strong coupling via slow variable detuning can eliminate standard oscillatory solutions from a large region of the parameter space, establishing the dominance of oscillation death. We argue furthermore that the oscillation death dominance effect provides a reliable dynamical control mechanism in the general case of N coupled oscillators.
Collapse
Affiliation(s)
- A Koseska
- Interdisciplinary Center for Dynamics of Complex Systems, University of Potsdam, D-14469 Potsdam, Germany
| | | | | |
Collapse
|
43
|
Buse O, Pérez R, Kuznetsov A. Dynamical properties of the repressilator model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:066206. [PMID: 20866500 DOI: 10.1103/physreve.81.066206] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 11/19/2009] [Indexed: 05/29/2023]
Abstract
Oscillatory regulatory networks have been discovered in many regulatory pathways. Due to their enormous complexity, it is necessary to study their dynamics by means of highly simplified models. These models have received particular value because artificial regulatory networks can be engineered experimentally. In this paper, we study dynamical properties of an artificial regulatory oscillator called repressilator. We have shown that oscillations arise from the existence of an absorbing toruslike region in the phase space of the model. This geometric structure requires monotonic repression at all promoters and the absence of any regulatory connections apart from a cyclic repression loop. We show that oscillations collapse as only weak extra connections are introduced if there is imbalance between the attended concentrations and those sufficient for saturation of the promoters. We found that a pair of diffusively coupled repressilators displays synchronization properties similar to those of relaxation oscillators if the regulatory connections in the cyclic repression loop are strong. Thus, the role of strengthening these connections can be viewed as introducing time scale separation among variables. This may explain controversial synchronization properties reported for repressilators in earlier studies.
Collapse
Affiliation(s)
- Olguta Buse
- Department of Mathematical Sciences, IUPUI, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
44
|
Kitagawa T, Murakami N, Nagano S. Modeling of the gap junction of pancreatic β-cells and the robustness of insulin secretion. Biophysics (Nagoya-shi) 2010; 6:37-51. [PMID: 27857584 PMCID: PMC5036665 DOI: 10.2142/biophysics.6.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 02/19/2010] [Indexed: 12/04/2022] Open
Abstract
Pancreatic β-cells are interconnected by gap junctions, which allow small molecules to pass from cell to cell. In spite of the importance of the gap junctions in cellular communication, modeling studies have been limited by the complexity of the system. Here, we propose a mathematical gap junction model that properly takes into account biological functions, and apply this model to the study of the β-cell cluster. We consider both electrical and metabolic features of the system. Then, we find that when a fraction of the ATP-sensitive K+ channels are damaged, robust insulin secretion can only be achieved by gap junctions. Our finding is consistent with recent experiments conducted by Rocheleau et al. Our study also suggests that the free passage of potassium ions through gap junctions plays an important role in achieving metabolic synchronization between β-cells.
Collapse
Affiliation(s)
- Tomoki Kitagawa
- Department of Bioinformatics, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Noriaki Murakami
- Department of Bioinformatics, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Seido Nagano
- Department of Bioinformatics, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
45
|
Tsaneva-Atanasova K, Osinga HM, Riess T, Sherman A. Full system bifurcation analysis of endocrine bursting models. J Theor Biol 2010; 264:1133-46. [PMID: 20307553 DOI: 10.1016/j.jtbi.2010.03.030] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 02/05/2010] [Accepted: 03/17/2010] [Indexed: 11/25/2022]
Abstract
Plateau bursting is typical of many electrically excitable cells, such as endocrine cells that secrete hormones and some types of neurons that secrete neurotransmitters. Although in many of these cell types the bursting patterns are regulated by the interplay between voltage-gated calcium channels and calcium-sensitive potassium channels, they can be very different. We investigate so-called square-wave and pseudo-plateau bursting patterns found in endocrine cell models that are characterized by a super- or subcritical Hopf bifurcation in the fast subsystem, respectively. By using the polynomial model of Hindmarsh and Rose (Proceedings of the Royal Society of London B 221 (1222) 87-102), which preserves the main properties of the biophysical class of models that we consider, we perform a detailed bifurcation analysis of the full fast-slow system for both bursting patterns. We find that both cases lead to the same possibility of two routes to bursting, that is, the criticality of the Hopf bifurcation is not relevant for characterizing the route to bursting. The actual route depends on the relative location of the full-system's fixed point with respect to a homoclinic bifurcation of the fast subsystem. Our full-system bifurcation analysis reveals properties of endocrine bursting that are not captured by the standard fast-slow analysis.
Collapse
|
46
|
An islet population model of the endocrine pancreas. J Math Biol 2009; 61:171-205. [DOI: 10.1007/s00285-009-0297-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 04/14/2009] [Indexed: 10/20/2022]
|
47
|
Yang D, Li Y, Kuznetsov A. Characterization and merger of oscillatory mechanisms in an artificial genetic regulatory network. CHAOS (WOODBURY, N.Y.) 2009; 19:033115. [PMID: 19791995 DOI: 10.1063/1.3176943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Regulatory molecular networks have numerous pharmacological and medical applications. The oscillatory mechanisms and the role of oscillations in these regulatory networks are not fully understood. In this paper, we explore two oscillatory mechanisms: the hysteresis-based relaxation oscillator and the repressilator. We combine these mechanisms into one regulatory network so that only two parameters, the strength of an additional regulatory connection and the timescale separation for one of the variables, control the transition from one mechanism to the other. Our data support a qualitative difference between the oscillatory mechanisms, but in the parameter space, we found a single oscillatory region, suggesting that the two mechanisms support each other. We examine interactions in a basic population: that is, a pair of the composite oscillators. We found that the relaxation oscillation mechanism is much more resistant to oscillatory death as the cells are diffusively coupled in a population. Additionally, stationary pattern formation has been found to accompany the relaxation oscillation but not the repressilator mechanism. These properties may guide the identification of oscillatory mechanisms in complex natural regulatory networks.
Collapse
Affiliation(s)
- D Yang
- Carmel High School, Carmel, Indiana 46032, USA
| | | | | |
Collapse
|
48
|
Ullner E, Koseska A, Kurths J, Volkov E, Kantz H, García-Ojalvo J. Multistability of synthetic genetic networks with repressive cell-to-cell communication. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:031904. [PMID: 18851062 DOI: 10.1103/physreve.78.031904] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/01/2008] [Indexed: 05/26/2023]
Abstract
We investigate an experimentally feasible synthetic genetic network consisting of two phase repulsively coupled repressilators, which evokes multiple coexisting stable attractors with different features. We perform a bifurcation analysis to determine and classify the dynamical structure of the system. Moreover, some of the dynamical regimes found, such as inhomogeneous steady states and inhomogeneous limit cycles can further be associated with artificial cell differentiation. We also report and characterize the emergence of chaotic dynamics resulting from the intercell coupling.
Collapse
Affiliation(s)
- Ekkehard Ullner
- Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom 11, E-08222 Terrassa, Spain.
| | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Andrew L Harris
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
50
|
Charpantier E, Cancela J, Meda P. Beta cells preferentially exchange cationic molecules via connexin 36 gap junction channels. Diabetologia 2007; 50:2332-41. [PMID: 17828386 DOI: 10.1007/s00125-007-0807-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 07/19/2007] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS Pancreatic beta cells are connected by gap junction channels made of connexin 36 (Cx36), which permit intercellular exchanges of current-carrying ions (ionic coupling) and other molecules (metabolic coupling). Previous studies have suggested that ionic coupling may extend to larger regions of pancreatic islets than metabolic coupling. The aim of the present study was to investigate whether this apparent discrepancy reflects a difference in the sensitivity of the techniques used to evaluate beta cell communication or a specific characteristic of the Cx36 channels themselves. METHODS We microinjected several gap junction tracers, differing in size and charge, into individual insulin-producing cells and evaluated their intercellular exchange either within intact islets of control, knockout and transgenic mice featuring beta cells with various levels of Cx36, or in cultures of wild-type and Cx36-transfected MIN6 cells. RESULTS We found that (1) Cx36 channels favour the exchange of cations and larger positively charged molecules between beta cells at the expense of anionic molecules; (2) this exchange occurs across sizable portions of pancreatic islets; and (3) during glibenclamide (known as glyburide in the USA and Canada) stimulation beta cell coupling increases to an extent that varies for different gap junction-permeant molecules. CONCLUSIONS/INTERPRETATION The data show that beta cells are extensively coupled within pancreatic islets via exchanges of mostly positively charged molecules across Cx36 channels. These exchanges selectively increase during stimulation of insulin secretion. The identification of this permselectivity is expected to facilitate the identification of endogenous permeant molecules and of the mechanism whereby Cx36 signalling significantly contributes to the modulation of insulin secretion.
Collapse
Affiliation(s)
- E Charpantier
- Department of Cell Physiology and Metabolism, University of Geneva, C.M.U., 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|