1
|
Aghaaminiha M, Farnoud AM, Sharma S. Interdependence of cholesterol distribution and conformational order in lipid bilayers. Biointerphases 2023; 18:2887740. [PMID: 37125848 DOI: 10.1116/6.0002489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
We show, via molecular simulations, that not only does cholesterol induce a lipid order, but the lipid order also enhances cholesterol localization within the lipid leaflets. Therefore, there is a strong interdependence between these two phenomena. In the ordered phase, cholesterol molecules are predominantly present in the bilayer leaflets and orient themselves parallel to the bilayer normal. In the disordered phase, cholesterol molecules are mainly present near the center of the bilayer at the midplane region and are oriented orthogonal to the bilayer normal. At the melting temperature of the lipid bilayers, cholesterol concentration in the leaflets and the bilayer midplane is equal. This result suggests that the localization of cholesterol in the lipid bilayers is mainly dictated by the degree of ordering of the lipid bilayer. We validate our findings on 18 different lipid bilayer systems, obtained from three different phospholipid bilayers with varying concentrations of cholesterol. To cover a large temperature range in simulations, we employ the Dry Martini force field. We demonstrate that the Dry and the Wet Martini (with polarizable water) force fields produce comparable results.
Collapse
Affiliation(s)
| | - Amir M Farnoud
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701
| | - Sumit Sharma
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701
| |
Collapse
|
2
|
Shaw TR, Wisser KC, Schaffner TA, Gaffney AD, Machta BB, Veatch SL. Chemical potential measurements constrain models of cholesterol-phosphatidylcholine interactions. Biophys J 2023; 122:1105-1117. [PMID: 36785512 PMCID: PMC10111267 DOI: 10.1016/j.bpj.2023.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/12/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
Bilayer membranes composed of cholesterol and phospholipids exhibit diverse forms of nonideal mixing. In particular, many previous studies document macroscopic liquid-liquid phase separation as well as nanometer-scale heterogeneity in membranes of phosphatidylcholine (PC) lipids and cholesterol. Here, we present experimental measurements of cholesterol chemical potential (μc) in binary membranes containing dioleoyl PC (DOPC), 1-palmitoyl-2-oleoyl PC (POPC), or dipalmitoyl PC (DPPC), and in ternary membranes of DOPC and DPPC, referenced to crystalline cholesterol. μc is the thermodynamic quantity that dictates the availability of cholesterol to bind other factors, and notably must be equal between coexisting phases of a phase separated mixture. It is simply related to concentration under conditions of ideal mixing, but is far from ideal for the majority of lipid mixtures investigated here. Measurements of μc can vary with phospholipid composition by 1.5 kBT at constant cholesterol mole fraction implying a more than fivefold change in its availability for binding receptors and other reactions. Experimental measurements are fit to thermodynamic models including cholesterol-DPPC complexes or pairwise interactions between lipid species to provide intuition about the magnitude of interactions. These findings reinforce that μc depends on membrane composition overall, suggesting avenues for cells to alter the availability of cholesterol without varying cholesterol concentration.
Collapse
Affiliation(s)
- Thomas R Shaw
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan; Program in Applied Physics, University of Michigan, Ann Arbor, Michigan
| | | | | | - Anna D Gaffney
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan
| | | | - Sarah L Veatch
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan; Program in Applied Physics, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
3
|
Varma M, Deserno M. Distribution of cholesterol in asymmetric membranes driven by composition and differential stress. Biophys J 2022; 121:4001-4018. [PMID: 35927954 PMCID: PMC9674969 DOI: 10.1016/j.bpj.2022.07.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
Many lipid membranes of eukaryotic cells are asymmetric, which means the two leaflets differ in at least one physical property, such as lipid composition or lateral stress. Maintaining this asymmetry is helped by the fact that ordinary phospholipids rarely transition between leaflets, but cholesterol is an exception: its flip-flop times are in the microsecond range, so that its distribution between leaflets is determined by a chemical equilibrium. In particular, preferential partitioning can draw cholesterol into a more saturated leaflet, and phospholipid number asymmetry can force it out of a compressed leaflet. Combining highly coarse-grained membrane simulations with theoretical modeling, we investigate how these two driving forces play against each other until cholesterol's chemical potential is equilibrated. The theory includes two coupled elastic sheets and a Flory-Huggins mixing free energy with a χ parameter. We obtain a relationship between χ and the interaction strength between cholesterol and lipids in either of the two leaflets, and we find that it depends, albeit weakly, on lipid number asymmetry. The differential stress measurements under various asymmetry conditions agree with our theoretical predictions. Using the two kinds of asymmetries in combination, we find that it is possible to counteract the phospholipid number bias, and the resultant stress in the membrane, via the control of cholesterol mixing in the leaflets.
Collapse
Affiliation(s)
- Malavika Varma
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
4
|
DiPasquale M, Nguyen MHL, Pabst G, Marquardt D. Partial Volumes of Phosphatidylcholines and Vitamin E: α-Tocopherol Prefers Disordered Membranes. J Phys Chem B 2022; 126:6691-6699. [PMID: 36027485 DOI: 10.1021/acs.jpcb.2c04209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite its discovery over 95 years ago, the biological and nutritional roles of vitamin E remain subjects of much controversy. Though it is known to possess antioxidant properties, recent assertions have implied that vitamin E may not be limited to this function in living systems. Through densitometry measurements and small-angle X-ray scattering we observe favorable interactions between α-tocopherol and unsaturated phospholipids, with more favorable interactions correlating to an increase in lipid chain unsaturation. Our data provide evidence that vitamin E may preferentially associate with oxygen sensitive lipids─an association that is considered innate for a viable membrane antioxidant.
Collapse
Affiliation(s)
- Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Michael H L Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Georg Pabst
- Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, University of Graz, Graz 8010, Austria.,BioTechMed-Graz, Graz 8010, Austria
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.,Department of Physics, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
5
|
Aghaaminiha M, Farnoud AM, Sharma S. Quantitative relationship between cholesterol distribution and ordering of lipids in asymmetric lipid bilayers. SOFT MATTER 2021; 17:2742-2752. [PMID: 33533367 DOI: 10.1039/d0sm01709d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The plasma membrane of eukaryotic cells is known to be compositionally asymmetric. Certain phospholipids, such as sphingomyelin and phosphatidylcholine species, are predominantly localized in the outer leaflet, while phosphatidylethanolamine and phosphatidylserine species primarily reside in the inner leaflet. While phospholipid asymmetry between the membrane leaflets is well established, there is no consensus about cholesterol distribution between the two leaflets. We have performed a systematic study, via molecular simulations, of how the spatial distribution of cholesterol molecules in different "asymmetric" lipid bilayers are affected by the lipids' backbone, head-type, unsaturation, and chain-length by considering an asymmetric bilayer mimicking the plasma membrane lipids of red blood cells, as well as seventeen other asymmetric bilayers comprising of different lipid types. Our results reveal that the distribution of cholesterol in the leaflets is solely a function of the extent of ordering of the lipids within the leaflets. The ratio of the amount of cholesterol matches the ratio of lipid order in the two leaflets, thus providing a quantitative relationship between the two. These results are understood by the observation that asymmetric bilayers with equimolar amount of lipids in the two leaflets develop tensile and compressive stresses due to differences in the extent of lipid order. These stresses are alleviated by the transfer of cholesterol from the leaflet in compressive stress to the one in tensile stress. These findings are important in understanding the biology of the cell membrane, especially with regard to the composition of the membrane leaflets.
Collapse
Affiliation(s)
- Mohammadreza Aghaaminiha
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, OH 45701, USA.
| | - Amir M Farnoud
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, OH 45701, USA.
| | - Sumit Sharma
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
6
|
Vahedi A, Bigdelou P, Farnoud AM. Quantitative analysis of red blood cell membrane phospholipids and modulation of cell-macrophage interactions using cyclodextrins. Sci Rep 2020; 10:15111. [PMID: 32934292 PMCID: PMC7492248 DOI: 10.1038/s41598-020-72176-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/21/2020] [Indexed: 01/27/2023] Open
Abstract
The plasma membrane of eukaryotic cells is asymmetric with respect to its phospholipid composition. Analysis of the lipid composition of the outer leaflet is important for understanding cell membrane biology in health and disease. Here, a method based on cyclodextrin-mediated lipid exchange to characterize the phospholipids in the outer leaflet of red blood cells (RBCs) is reported. Methyl-α-cyclodextrin, loaded with exogenous lipids, was used to extract phospholipids from the membrane outer leaflet, while delivering lipids to the cell to maintain cell membrane integrity. Thin layer chromatography and lipidomics demonstrated that the extracted lipids were from the membrane outer leaflet. Phosphatidylcholines (PC) and sphingomyelins (SM) were the most abundant phospholipids in the RBCs outer leaflet with PC 34:1 and SM 34:1 being the most abundant species. Fluorescence quenching confirmed the delivery of exogenous lipids to the cell outer leaflet. The developed lipid exchange method was then used to remove phosphatidylserine, a phagocyte recognition marker, from the outer leaflet of senescent RBCs. Senescent RBCs with reconstituted membranes were phagocytosed in significantly lower amounts compared to control cells, demonstrating the efficiency of the lipid exchange process and its application in modifying cell–cell interactions.
Collapse
Affiliation(s)
- Amid Vahedi
- Department of Chemical and Biomolecular Engineering, Ohio University, 161 Stocker Center, Athens, OH, 45701, USA
| | - Parnian Bigdelou
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
| | - Amir M Farnoud
- Department of Chemical and Biomolecular Engineering, Ohio University, 161 Stocker Center, Athens, OH, 45701, USA. .,Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
7
|
Hutchison JM, Shih KC, Scheidt HA, Fantin SM, Parson KF, Pantelopulos GA, Harrington HR, Mittendorf KF, Qian S, Stein RA, Collier SE, Chambers MG, Katsaras J, Voehler MW, Ruotolo BT, Huster D, McFeeters RL, Straub JE, Nieh MP, Sanders CR. Bicelles Rich in both Sphingolipids and Cholesterol and Their Use in Studies of Membrane Proteins. J Am Chem Soc 2020; 142:12715-12729. [PMID: 32575981 DOI: 10.1021/jacs.0c04669] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
How the distinctive lipid composition of mammalian plasma membranes impacts membrane protein structure is largely unexplored, partly because of the dearth of isotropic model membrane systems that contain abundant sphingolipids and cholesterol. This gap is addressed by showing that sphingomyelin and cholesterol-rich (SCOR) lipid mixtures with phosphatidylcholine can be cosolubilized by n-dodecyl-β-melibioside to form bicelles. Small-angle X-ray and neutron scattering, as well as cryo-electron microscopy, demonstrate that these assemblies are stable over a wide range of conditions and exhibit the bilayered-disc morphology of ideal bicelles even at low lipid-to-detergent mole ratios. SCOR bicelles are shown to be compatible with a wide array of experimental techniques, as applied to the transmembrane human amyloid precursor C99 protein in this medium. These studies reveal an equilibrium between low-order oligomer structures that differ significantly from previous experimental structures of C99, providing an example of how ordered membranes alter membrane protein structure.
Collapse
Affiliation(s)
- James M Hutchison
- Chemical and Physical Biology Graduate Program and Center for Structural Biology, Vanderbilt University, Nashville 37240, Tennessee, United States
| | - Kuo-Chih Shih
- Polymer Program, Department of Chemical & Biomolecular Engineering, and Department of Biomedical Engineering, University of Connecticut, Storrs 06269, Connecticut, United States
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig 16-18, 04107, Germany
| | - Sarah M Fantin
- Department of Chemistry, University of Michigan, Ann Arbor 48109, Michigan, United States
| | - Kristine F Parson
- Department of Chemistry, University of Michigan, Ann Arbor 48109, Michigan, United States
| | - George A Pantelopulos
- Department of Chemistry, Boston University, Boston 02215, Massachusetts, United States
| | - Haley R Harrington
- Center for Structural Biology and Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville 37240, Tennessee, United States
| | - Kathleen F Mittendorf
- Center for Health Research, Kaiser Permanente, Portland 97227, Oregon, United States
| | - Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge 37831, Tennessee, United States
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville37240, Tennessee, United States
| | - Scott E Collier
- Department of Translational and Applied Genomics, Center for Health Research, Kaiser Permanente Northwest, Portland 97227, Oregon, United States
| | - Melissa G Chambers
- Center for Structural Biology, Vanderbilt University, Nashville 37240, Tennessee, United States
| | - John Katsaras
- Neutron Scattering Division and Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge 37831, Tennessee, United States
| | - Markus W Voehler
- Center for Structural Biology and Department of Chemistry, Vanderbilt University, Nashville 37240, Tennessee, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor 48109, Michigan, United States
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig 16-18, 04107, Germany
| | - Robert L McFeeters
- Department of Chemistry, University of Alabama, Huntsville 35899, Alabama, United States
| | - John E Straub
- Department of Chemistry, Boston University, Boston 02215, Massachusetts, United States
| | - Mu-Ping Nieh
- Polymer Program, Department of Chemical & Biomolecular Engineering, and Department of Biomedical Engineering, University of Connecticut, Storrs 06269, Connecticut, United States
| | - Charles R Sanders
- Center for Structural Biology, Department of Biochemistry, and Department of Medicine, Vanderbilt University School of Medicine, Nashville 37240, Tennessee, United States
| |
Collapse
|
8
|
Nyholm TKM, Engberg O, Hautala V, Tsuchikawa H, Lin KL, Murata M, Slotte JP. Impact of Acyl Chain Mismatch on the Formation and Properties of Sphingomyelin-Cholesterol Domains. Biophys J 2019; 117:1577-1588. [PMID: 31610877 DOI: 10.1016/j.bpj.2019.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 11/30/2022] Open
Abstract
Lateral segregation and the formation of lateral domains are well-known phenomena in ternary lipid bilayers composed of an unsaturated (low gel-to-liquid phase transition temperature (Tm)) phospholipid, a saturated (high-Tm) phospholipid, and cholesterol. The formation of lateral domains has been shown to be influenced by differences in phospholipid acyl chain unsaturation and length. Recently, we also showed that differential interactions of cholesterol with low- and high-Tm phospholipids in the bilayer can facilitate phospholipid segregation. Now, we have investigated phospholipid-cholesterol interactions and their role in lateral segregation in ternary bilayers composed of different unsaturated phosphatidylcholines (PCs) with varying acyl chain lengths, N-palmitoyl-D-erythro-sphingomyelin (PSM), and cholesterol. Using deuterium NMR spectroscopy, we determined how PSM was influenced by the acyl chain composition in surrounding PC environments and correlated this with the affinity of cholestatrienol (a fluorescent cholesterol analog) for PSM in the different PC environments. Results from a combination of time-resolved fluorescence measurements of trans-parinaric acid and Förster resonance energy transfer experiments showed that the relative affinity of cholesterol for phospholipids determined the degree to which the sterol promoted domain formation. From Förster resonance energy transfer, deuterium NMR, and differential scanning calorimetry results, it was clear that cholesterol also influenced both the thermostability of the domains and the degree of order in and outside the PSM-rich domains. The results of this study have shown that the affinity of cholesterol for both low-Tm and high-Tm phospholipids and the effects of low- and high-Tm phospholipids on each other influence both lateral structure and domain properties in complex bilayers. We envision that similar effects also contribute to lateral heterogeneity in even more complex biological membranes.
Collapse
Affiliation(s)
- Thomas K M Nyholm
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku Finland.
| | - Oskar Engberg
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku Finland
| | - Victor Hautala
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku Finland
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kai-Lan Lin
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku Finland
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku Finland
| |
Collapse
|
9
|
Heerklotz H, London E. Kiss and Run Asymmetric Vesicles to Investigate Coupling. Biophys J 2019; 117:1009-1011. [PMID: 31477242 DOI: 10.1016/j.bpj.2019.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022] Open
Affiliation(s)
- Heiko Heerklotz
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Signalling Research Centers BIOSS and CIBSS, Freiburg, Germany.
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York.
| |
Collapse
|
10
|
Engberg O, Scheidt HA, Nyholm TKM, Slotte JP, Huster D. Membrane Localization and Lipid Interactions of Common Lipid-Conjugated Fluorescence Probes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11902-11911. [PMID: 31424941 DOI: 10.1021/acs.langmuir.9b01202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lateral segregation of lipids in model and biological membranes has been studied intensively in the last decades using a comprehensive set of experimental techniques. Most methods require a probe to report on the biophysical properties of a specific molecule in the lipid bilayer. Because such probes can adversely affect the results of the measurement and perturb the local membrane structure and dynamics, a detailed understanding of probe behavior and its influence on the properties of its direct environment is important. Membrane phase-selective and lipid-mimicking molecules represent common types of probes. Here, we have studied how the fluorescent probes trans-parinaric acid (tPA), diphenylhexatriene (DPH), and 1-oleoyl-2-propionyl[DPH]-sn-glycero-3-phosphocholine (O-DPH-PC) affect the membrane properties of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayers using 2H and 31P NMR spectroscopy in the solid state. In addition, using 2D 1H magic-angle spinning (MAS) nuclear Overhauser enhancement spectroscopy (NOESY) NMR, we have determined the distribution of the probe moieties in the POPC membrane parallel to the membrane normal. We found that the different probes exhibit distinct membrane localizations and distributions, e.g. tPA is located parallel to the membrane normal while DPH predominantly exist in two orientations. Further, tPA was conjugated to sphingomyelin (tPA-SM) as a substitute for the acyl chain in the SM. 1H NOESY NMR was used to probe the interaction of the tPA-SM with cholesterol as dominant in liquid ordered membrane domains in comparison to POPC-cholesterol interaction in membranes composed of ternary lipid mixtures. We could show that tPA-SM exhibited a strong favorable and very temperature-dependent interaction with cholesterol in comparison to POPC. In conclusion, the NMR techniques can explain probe behavior but also be used to measure lipid-specific affinities between different lipid segments and individual molecules in complex bilayers, relevant to understanding nanodomain formation in biological membranes.
Collapse
Affiliation(s)
- Oskar Engberg
- Institute for Medical Physics and Biophysics, Medical Department , Leipzig University , Leipzig , Germany
- Biochemistry, Faculty of Science and Engineering , Åbo Akademi University , Turku , Finland
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, Medical Department , Leipzig University , Leipzig , Germany
| | - Thomas K M Nyholm
- Biochemistry, Faculty of Science and Engineering , Åbo Akademi University , Turku , Finland
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering , Åbo Akademi University , Turku , Finland
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Medical Department , Leipzig University , Leipzig , Germany
| |
Collapse
|
11
|
Nyholm TKM, Jaikishan S, Engberg O, Hautala V, Slotte JP. The Affinity of Sterols for Different Phospholipid Classes and Its Impact on Lateral Segregation. Biophys J 2018; 116:296-307. [PMID: 30583790 DOI: 10.1016/j.bpj.2018.11.3135] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022] Open
Abstract
Cholesterol is an essential molecule in the membranes of mammalian cells. It is known to be distributed heterogeneously within the cells, between the bilayer leaflets, as well as between lateral domains within the bilayer. However, we do not know exactly how cholesterol is distributed and what forces drive this sorting process because it extremely difficult to study using currently available methods. To further elucidate this distribution, we measured how cholesterol partitions between different phospholipid (PL) environments using different methods based on cholesterol, TopFluor-cholesterol, and cholesta-5,7,9(11)-triene-3-β-ol. Based on the obtained relative partition coefficients, we made predictions regarding how cholesterol would be distributed between lateral domains and between the inner and outer leaflets of the plasma membrane. In addition, using a trans-parinaric acid fluorescence-based method, we tested how cholesterol could influence lateral segregation through its interaction with unsaturated PLs with different headgroups. The results showed that the lower the affinity of cholesterol was for the different unsaturated PLs, the more cholesterol stimulated lateral segregation in a ternary bilayer of unsaturated PL/N-palmitoyl-D-erythro-sphingomyelin and cholesterol. Overall, the results indicate that both the distribution of cholesterol between different lipid environments and the impact of cholesterol on lateral segregation can be predicted relatively accurately from determined relative partition coefficients.
Collapse
Affiliation(s)
- Thomas K M Nyholm
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku, Finland.
| | - Shishir Jaikishan
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku, Finland
| | - Oskar Engberg
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku, Finland
| | - Victor Hautala
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku, Finland
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku, Finland
| |
Collapse
|
12
|
Drechsler C, Markones M, Choi JY, Frieling N, Fiedler S, Voelker DR, Schubert R, Heerklotz H. Preparation of Asymmetric Liposomes Using a Phosphatidylserine Decarboxylase. Biophys J 2018; 115:1509-1517. [PMID: 30266319 DOI: 10.1016/j.bpj.2018.08.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 01/08/2023] Open
Abstract
Lipid asymmetries between the outer and inner leaflet of the lipid bilayer exist in nearly all biological membranes. Although living cells spend great effort to adjust and maintain these asymmetries, little is known about the biophysical phenomena within asymmetric membranes and their role in cellular function. One reason for this lack of insight into such a fundamental membrane property is the fact that the majority of model-membrane studies have been performed on symmetric membranes. Our aim is to overcome this problem by employing a targeted, enzymatic reaction to prepare asymmetric liposomes with phosphatidylserine (PS) primarily in the inner leaflet. To achieve this goal, we use a recombinant version of a water soluble PS decarboxylase from Plasmodium knowlesi, which selectively decarboxylates PS in the outer leaflet, converting it to phosphatidylethanolamine. The extent of decarboxylation is quantified using high-performance thin-layer chromatography, and the local concentration of anionic PS in the outer leaflet is monitored in terms of the ζ potential. Starting, for example, with 21 mol % 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine sodium salt, the assay leads to liposomes with 21 mol % in the inner and 6 mol % PS in the outer leaflet. This asymmetry persists virtually unchanged for at least 4 days at 20°C and at least 2 days at 40°C. The use of a highly specific enzyme carries the advantage that a minor component such as PS can be adjusted without affecting or being affected by the other lipid species present in the model membrane. The phenomena governing the residual outside PS content are addressed but warrant further study.
Collapse
Affiliation(s)
- Carina Drechsler
- Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| | - Marie Markones
- Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| | - Jae-Yeon Choi
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Niklas Frieling
- Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Sebastian Fiedler
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Dennis R Voelker
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Rolf Schubert
- Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| | - Heiko Heerklotz
- Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Freiburg, Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada.
| |
Collapse
|
13
|
Bozelli JC, Hou YH, Epand RM. Thermodynamics of Methyl-β-cyclodextrin-Induced Lipid Vesicle Solubilization: Effect of Lipid Headgroup and Backbone. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13882-13891. [PMID: 29120189 DOI: 10.1021/acs.langmuir.7b03447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The low aqueous solubility of phospholipids makes necessary the use of lipid carriers in studies ranging from lipid traffic and metabolism to the engineering of model membranes bearing lipid transverse asymmetry. One particular lipid carrier that has proven to be particularly useful is methyl-β-cyclodextrin (MβCD). To assess the interaction of MβCD with structurally different phospholipids, the present work reports the results of isothermal titration calorimetry in conjunction with dynamic light scattering measurements. The results showed that the interaction of MβCD with large unilamellar vesicles composed of a single type of lipid led to the solubilization of the lipid vesicle and, consequently, the complexation of MβCD with the lipids. This interaction is dependent on the nature of the lipid headgroup, with a preferable interaction with phosphatidylglycerol in comparison to phosphatidylcholine. It was also possible to show a role played by the phospholipid backbone in this interaction. In many cases, the differences in the transfer energy between one lipid and another in going from a bilayer to a cyclodextrin-bound state can be qualitatively explained by the energy required to extract the lipid from a bilayer. In all cases, the data showed that the solubilization of the vesicles is entropically driven with a large negative ΔCp, suggesting a mechanism dependent on the hydrophobic effect.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre , Hamilton, Ontario L8S 4K1 Canada
| | - Yu Heng Hou
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre , Hamilton, Ontario L8S 4K1 Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre , Hamilton, Ontario L8S 4K1 Canada
| |
Collapse
|
14
|
Molugu TR, Lee S, Brown MF. Concepts and Methods of Solid-State NMR Spectroscopy Applied to Biomembranes. Chem Rev 2017; 117:12087-12132. [PMID: 28906107 DOI: 10.1021/acs.chemrev.6b00619] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Concepts of solid-state NMR spectroscopy and applications to fluid membranes are reviewed in this paper. Membrane lipids with 2H-labeled acyl chains or polar head groups are studied using 2H NMR to yield knowledge of their atomistic structures in relation to equilibrium properties. This review demonstrates the principles and applications of solid-state NMR by unifying dipolar and quadrupolar interactions and highlights the unique features offered by solid-state 2H NMR with experimental illustrations. For randomly oriented multilamellar lipids or aligned membranes, solid-state 2H NMR enables direct measurement of residual quadrupolar couplings (RQCs) due to individual C-2H-labeled segments. The distribution of RQC values gives nearly complete profiles of the segmental order parameters SCD(i) as a function of acyl segment position (i). Alternatively, one can measure residual dipolar couplings (RDCs) for natural abundance lipid samples to obtain segmental SCH order parameters. A theoretical mean-torque model provides acyl-packing profiles representing the cumulative chain extension along the normal to the aqueous interface. Equilibrium structural properties of fluid bilayers and various thermodynamic quantities can then be calculated, which describe the interactions with cholesterol, detergents, peptides, and integral membrane proteins and formation of lipid rafts. One can also obtain direct information for membrane-bound peptides or proteins by measuring RDCs using magic-angle spinning (MAS) in combination with dipolar recoupling methods. Solid-state NMR methods have been extensively applied to characterize model membranes and membrane-bound peptides and proteins, giving unique information on their conformations, orientations, and interactions in the natural liquid-crystalline state.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| | - Soohyun Lee
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| | - Michael F Brown
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
15
|
The Affinity of Cholesterol for Different Phospholipids Affects Lateral Segregation in Bilayers. Biophys J 2017; 111:546-556. [PMID: 27508438 DOI: 10.1016/j.bpj.2016.06.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/21/2016] [Accepted: 06/29/2016] [Indexed: 12/20/2022] Open
Abstract
Saturated and unsaturated phospholipids (PLs) can segregate into lateral domains. The preference of cholesterol for saturated acyl chains over monounsaturated, and especially polyunsaturated ones, may also affect lateral segregation. Here we have studied how cholesterol influenced the lateral segregation of saturated and unsaturated PLs, for which cholesterol had a varying degree of affinity. The fluorescence lifetime of trans-parinaric acid reported the formation of ordered domains (gel or liquid-ordered (lo)) in bilayers composed of different unsaturated phosphatidylcholines, and dipalmitoyl-phosphatidylcholine or n-palmitoyl-sphingomyelin, in the presence or absence of cholesterol. We observed that cholesterol facilitated lateral segregations and the degree of facilitation correlated with the relative affinity of cholesterol for the different PLs in the bilayers. Differential scanning calorimetry and (2)H nuclear magnetic resonance showed that cholesterol increased the thermostability of both the gel and lo-domains. Increased number of double bonds in the unsaturated PL increased the order in the lo-domains, likely by enriching the ordered domains in saturated lipids and cholesterol. This supported the conclusions from the trans-parinaric acid experiments, and offers insight into how cholesterol facilitated lateral segregation. In conclusion, the relative affinity of cholesterol for different PLs appears to be an important determinant for the formation of ordered domains. Our data suggests that knowledge of the affinity of cholesterol for the different PLs in a bilayer allows prediction of the degree to which the sterol promotes lo-domain formation.
Collapse
|
16
|
Hilsch M, Haralampiev I, Müller P, Huster D, Scheidt HA. Membrane properties of hydroxycholesterols related to the brain cholesterol metabolism. Beilstein J Org Chem 2017; 13:720-727. [PMID: 28503207 PMCID: PMC5405690 DOI: 10.3762/bjoc.13.71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/04/2017] [Indexed: 12/11/2022] Open
Abstract
Compared to cholesterol, hydroxycholesterols contain an additional hydroxy group in the alkyl chain and are able to efficiently cross the brain-blood barrier. Therefore, they are responsible for the sterol transfer between brain and circulation. The current study compares the membrane properties of several hydroxycholesterols with those of cholesterol using 2H NMR spectroscopy, a membrane permeability assay, and fluorescence microscopy experiments. It is shown that hydroxycholesterols do not exert the unique impact on membrane properties characteristic for cholesterol with regard to the influence on lipid chain order, membrane permeability and formation of lateral domains.
Collapse
Affiliation(s)
- Malte Hilsch
- Department of Biology, Humboldt University Berlin, Invalidenstraße 43, D-10115 Berlin, Germany
| | - Ivan Haralampiev
- Department of Biology, Humboldt University Berlin, Invalidenstraße 43, D-10115 Berlin, Germany
| | - Peter Müller
- Department of Biology, Humboldt University Berlin, Invalidenstraße 43, D-10115 Berlin, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16–18, D-04107 Leipzig, Germany
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16–18, D-04107 Leipzig, Germany
| |
Collapse
|
17
|
Blosser MC, Horst BG, Keller SL. cDICE method produces giant lipid vesicles under physiological conditions of charged lipids and ionic solutions. SOFT MATTER 2016; 12:7364-71. [PMID: 27510092 PMCID: PMC5008994 DOI: 10.1039/c6sm00868b] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Giant unilamellar vesicles are a powerful and common tool employed in biophysical studies of lipid membranes. Here we evaluate a recently introduced method of vesicle formation, "continuous droplet interface crossing encapsulation" (cDICE). This method produces monodisperse giant unilamellar vesicles of controlled sizes and high encapsulation efficiencies, using readily available instrumentation. We find that mixtures of phospholipids within vesicle membranes produced by cDICE undergo phase separation at the same characteristic temperatures as lipids in vesicles formed by a complementary technique. We find that the cDICE method is effective both when vesicles are produced from charged lipids and when the surrounding buffer contains a high concentration of salt. A shortcoming of the technique is that cholesterol is not substantially incorporated into vesicle membranes.
Collapse
Affiliation(s)
- Matthew C Blosser
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA.
| | | | | |
Collapse
|
18
|
Gutay-Tóth Z, Fenyvesi F, Bársony O, Szente L, Goda K, Szabó G, Bacsó Z. Cholesterol-dependent conformational changes of P-glycoprotein are detected by the 15D3 monoclonal antibody. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:188-95. [DOI: 10.1016/j.bbalip.2015.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/23/2015] [Accepted: 12/11/2015] [Indexed: 01/08/2023]
|
19
|
Díaz-Tejada C, Ariz-Extreme I, Awasthi N, Hub JS. Quantifying Lateral Inhomogeneity of Cholesterol-Containing Membranes. J Phys Chem Lett 2015; 6:4799-4803. [PMID: 26575955 DOI: 10.1021/acs.jpclett.5b02414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lateral inhomogeneity plays a critical role for many properties of cholesterol-containing membranes, yet the thermodynamic forces involved in inhomogeneity remain poorly understood. Based on coarse-grained simulations of cholesterol in four increasingly unsaturated phospholipids, we computed lateral density fluctuations and free energies of domain formation, and we quantitatively relate those to variations in the chemical potential of cholesterol. Our simulations suggest that the lateral organization is dominated by weak repulsive cholesterol interactions, leading to a significantly more homogeneous distribution as compared to a two-dimensional ideal gas. Hence, phospholipids provide a "good" solvent for cholesterol. Unexpectedly, the degree of unsaturation of the phospholipid has only a minor effect on the lateral inhomogeneity of cholesterol in binary lipid mixtures. These results provide a link between functional properties and thermal fluctuations in lipid membranes.
Collapse
Affiliation(s)
- Celsa Díaz-Tejada
- Georg-August-University Göttingen , Institute for Microbiology and Genetics, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Igor Ariz-Extreme
- Georg-August-University Göttingen , Institute for Microbiology and Genetics, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Neha Awasthi
- Georg-August-University Göttingen , Institute for Microbiology and Genetics, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Jochen S Hub
- Georg-August-University Göttingen , Institute for Microbiology and Genetics, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
20
|
Stetter FWS, Cwiklik L, Jungwirth P, Hugel T. Single lipid extraction: the anchoring strength of cholesterol in liquid-ordered and liquid-disordered phases. Biophys J 2015; 107:1167-1175. [PMID: 25185552 DOI: 10.1016/j.bpj.2014.07.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/29/2014] [Accepted: 07/07/2014] [Indexed: 11/18/2022] Open
Abstract
Cholesterol is important for the formation of microdomains in supported lipid bilayers and is enriched in the liquid-ordered phase. To understand the interactions leading to this enrichment, we developed an AFM-based single-lipid-extraction (SLX) approach that enables us to determine the anchoring strength of cholesterol in the two phases of a phase-separated lipid membrane. As expected, the forces necessary for extracting a single cholesterol molecule from liquid-ordered phases are significantly higher than for extracting it from the liquid-disordered phases. Interestingly, application of the Bell model shows two energy barriers that correlate with the head and full length of the cholesterol molecule. The resulting lifetimes for complete extraction are 90 s and 11 s in the liquid-ordered and liquid-disordered phases, respectively. Molecular dynamics simulations of the very same experiment show similar force profiles and indicate that the stabilization of cholesterol in the liquid-ordered phase is mainly due to nonpolar contacts.
Collapse
Affiliation(s)
- Frank W S Stetter
- Physik-Department E22a and IMETUM, Technische Universität München, Munich, Germany
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Thorsten Hugel
- Physik-Department E22a and IMETUM, Technische Universität München, Munich, Germany.
| |
Collapse
|
21
|
Leftin A, Molugu TR, Job C, Beyer K, Brown MF. Area per lipid and cholesterol interactions in membranes from separated local-field (13)C NMR spectroscopy. Biophys J 2015; 107:2274-86. [PMID: 25418296 DOI: 10.1016/j.bpj.2014.07.044] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 10/24/2022] Open
Abstract
Investigations of lipid membranes using NMR spectroscopy generally require isotopic labeling, often precluding structural studies of complex lipid systems. Solid-state (13)C magic-angle spinning NMR spectroscopy at natural isotopic abundance gives site-specific structural information that can aid in the characterization of complex biomembranes. Using the separated local-field experiment DROSS, we resolved (13)C-(1)H residual dipolar couplings that were interpreted with a statistical mean-torque model. Liquid-disordered and liquid-ordered phases were characterized according to membrane thickness and average cross-sectional area per lipid. Knowledge of such structural parameters is vital for molecular dynamics simulations, and provides information about the balance of forces in membrane lipid bilayers. Experiments were conducted with both phosphatidylcholine (dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC)) and egg-yolk sphingomyelin (EYSM) lipids, and allowed us to extract segmental order parameters from the (13)C-(1)H residual dipolar couplings. Order parameters were used to calculate membrane structural quantities, including the area per lipid and bilayer thickness. Relative to POPC, EYSM is more ordered in the ld phase and experiences less structural perturbation upon adding 50% cholesterol to form the lo phase. The loss of configurational entropy is smaller for EYSM than for POPC, thus favoring its interaction with cholesterol in raftlike lipid systems. Our studies show that solid-state (13)C NMR spectroscopy is applicable to investigations of complex lipids and makes it possible to obtain structural parameters for biomembrane systems where isotope labeling may be prohibitive.
Collapse
Affiliation(s)
- Avigdor Leftin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Trivikram R Molugu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Constantin Job
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Klaus Beyer
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona.
| |
Collapse
|
22
|
Marquardt D, Geier B, Pabst G. Asymmetric lipid membranes: towards more realistic model systems. MEMBRANES 2015; 5:180-96. [PMID: 25955841 PMCID: PMC4496639 DOI: 10.3390/membranes5020180] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 04/28/2015] [Indexed: 01/23/2023]
Abstract
Despite the ubiquity of transbilayer asymmetry in natural cell membranes, the vast majority of existing research has utilized chemically well-defined symmetric liposomes, where the inner and outer bilayer leaflets have the same composition. Here, we review various aspects of asymmetry in nature and in model systems in anticipation for the next phase of model membrane studies.
Collapse
Affiliation(s)
- Drew Marquardt
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Humboldtstr 50/III, Graz, 8010, Austria.
- BioTechMed-Graz, Graz, 8010, Austria.
| | - Barbara Geier
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Humboldtstr 50/III, Graz, 8010, Austria.
- BioTechMed-Graz, Graz, 8010, Austria.
| | - Georg Pabst
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Humboldtstr 50/III, Graz, 8010, Austria.
- BioTechMed-Graz, Graz, 8010, Austria.
| |
Collapse
|
23
|
Trif M, Craciunescu O. Liposome as efficient system for intracellular delivery of bioactive molecules. NANOTECHNOLOGY AND FUNCTIONAL FOODS 2015:191-213. [DOI: 10.1002/9781118462157.ch12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
24
|
Membrane properties of cholesterol analogs with an unbranched aliphatic side chain. Chem Phys Lipids 2014; 184:1-6. [PMID: 25173446 DOI: 10.1016/j.chemphyslip.2014.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/07/2014] [Accepted: 08/21/2014] [Indexed: 11/21/2022]
Abstract
The interactions between cholesterol and other membrane molecules determine important membrane properties. It was shown that even small changes in the molecular structure of cholesterol have a crucial influence on these interactions. We recently reported that in addition to alterations in the tetracyclic ring structure, the iso-branched side chain of cholesterol also has a significant impact on membrane properties (Scheidt et al., 2013). Here we used synthetic cholesterol analogs to investigate the influence of an unbranched aliphatic side chain of different length. The (2)H NMR order parameter of the phospholipid chains and therefore the molecular packing of the phospholipid molecules shows a significant dependence on the sterol's alkyl side chain length, while, membrane permeation studied by a dithionite ion permeation assay and lateral diffusion measured by (1)H MAS pulsed field gradient NMR are less influenced. To achieve the same molecular packing effect similar to that of an iso-branched aliphatic side chain, a longer unbranched side chain (n-dodecyl instead of n-octyl) at C17 of cholesterol is required. Obviously, sterols having a branched iso-alkyl chain with two terminal methyl groups exhibit altered cholesterol-phospholipid interactions compared to analogous molecules with a straight unbranched chain.
Collapse
|
25
|
Shaikh SR, Kinnun JJ, Leng X, Williams JA, Wassall SR. How polyunsaturated fatty acids modify molecular organization in membranes: insight from NMR studies of model systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:211-9. [PMID: 24820775 DOI: 10.1016/j.bbamem.2014.04.020] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/23/2014] [Indexed: 11/26/2022]
Abstract
Marine long chain n-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), are bioactive molecules with clinical applications for the treatment of several diseases. In order to effectively translate these molecules into clinical trials, it is essential to establish the underlying mechanisms for n-3 PUFA. This review focuses on efforts to understand how EPA and DHA, upon incorporation into plasma membrane phospholipids, remodel the molecular organization of cholesterol-enriched lipid microdomains. We first give an overview of results from studies on cells. Paradoxical data generated from mouse studies indicate that EPA and DHA incorporate into lipid microdomains, yet in spite of their high disorder increase molecular order within the domain. We then spotlight the utility of solid state (2)H NMR spectroscopy of model bilayers as a tool for elucidating underlying mechanisms by which n-3 PUFA-containing phospholipids can regulate molecular organization of lipid microdomains. Evidence is presented demonstrating that n-3 PUFA exert differential structural effects when incorporated into phosphatidylethanolamines (PE) compared to phosphatidylcholines (PC), which explains some of the conflicting results observed in vivo. Recent studies that reveal differences between the interactions of EPA and DHA with lipid microdomains, potentially reflecting a differential in bioactivity, are finally described. Overall, we highlight the notion that NMR experiments on model membranes suggest a complex model by which n-3 PUFA reorganize lipid microdomains in vivo.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Room 4117, Mail Stop 743, Greenville, NC 27834, USA
| | - Jacob J Kinnun
- Department of Physics, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, IN 46202-3273, USA
| | - Xiaoling Leng
- Department of Physics, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, IN 46202-3273, USA
| | - Justin A Williams
- Department of Physics, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, IN 46202-3273, USA
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, IN 46202-3273, USA.
| |
Collapse
|
26
|
López CA, de Vries AH, Marrink SJ. Computational microscopy of cyclodextrin mediated cholesterol extraction from lipid model membranes. Sci Rep 2013; 3:2071. [PMID: 23797782 PMCID: PMC3691568 DOI: 10.1038/srep02071] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/06/2013] [Indexed: 11/09/2022] Open
Abstract
Beta-cyclodextrins (β-CDs) can form inclusion complexes with cholesterol, and are commonly used to manipulate cholesterol levels of biomembranes. In this work, we have used multiscale molecular dynamics simulations to provide a detailed view on the interaction between β-CDs and lipid model membranes. We show that cholesterol can be extracted efficiently upon adsorption of β-CD dimers at the membrane/water interface. However, extraction is only observed to occur spontaneously in membranes with high cholesterol levels. Free energy calculations reveal the presence of a kinetic barrier for cholesterol extraction in the case of low cholesterol content. Cholesterol uptake is facilitated in case of (poly)unsaturated lipid membranes, which increases the free energy of the membrane bound state of cholesterol. Comparing lipid/cholesterol compositions typical of liquid-disordered (L(d)) and liquid-order (L(o)) domains, we furthermore show that cholesterol is preferentially extracted from the disordered regions, in line with recent experimental data.
Collapse
Affiliation(s)
- Cesar A López
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
27
|
Le Guillou J, Ropers MH, Gaillard C, David-Briand E, Desherces S, Schmitt E, Bencharif D, Amirat-Briand L, Tainturier D, Anton M. Organization of lipids in the artificial outer membrane of bull spermatozoa reconstructed at the air–water interface. Colloids Surf B Biointerfaces 2013; 108:246-54. [DOI: 10.1016/j.colsurfb.2013.02.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/15/2013] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
|
28
|
Maula T, Artetxe I, Grandell PM, Slotte JP. Importance of the sphingoid base length for the membrane properties of ceramides. Biophys J 2013. [PMID: 23199915 DOI: 10.1016/j.bpj.2012.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The sphingoid bases of sphingolipids, including ceramides, can vary in length from 12 to >20 carbons. To study how such length variation affects the bilayer properties of ceramides, we synthesized ceramides consisting of a C12-, C14-, C16-, C18-, or C20-sphing-4-enin derivative coupled to palmitic acid. The ceramides were studied in mixtures with palmitoyloleoylphosphocholine (POPC) and/or palmitoylsphingomyelin (PSM), and in more complex bilayers also containing cholesterol. The trans-parinaric acid lifetimes showed that 12:1- and 14:1-PCer failed to increase the order of POPC bilayers, whereas 16:1-, 18:1-, and 20:1-PCer induced ordered- or gel-phase formation. Nevertheless, all of the analogs were able to thermally stabilize PSM, and a chain-length-dependent increase in the main phase transition temperature of equimolar PSM/Cer bilayers was revealed by differential scanning calorimetry. Similar thermal stabilization of PSM-rich domains by the ceramides was observed in POPC bilayers with a trans-parinaric acid-quenching assay. A cholestatrienol-quenching assay and sterol partitioning experiments showed that 18:1- and 20:1-PCer formed sterol-excluding gel phases with PSM, reducing the overall bilayer affinity of sterol. The effect of 16:1-PCer on sterol distribution was less dramatic, and no displacement of sterol from the PSM environment was observed with 12:1- and 14:1-PCer. The results are discussed in relation to other structural features that affect the bilayer properties of ceramides.
Collapse
Affiliation(s)
- Terhi Maula
- Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland.
| | | | | | | |
Collapse
|
29
|
|
30
|
Almeida PF, Best A, Hinderliter A. Monte Carlo simulation of protein-induced lipid demixing in a membrane with interactions derived from experiment. Biophys J 2012; 101:1930-7. [PMID: 22004747 DOI: 10.1016/j.bpj.2011.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 09/06/2011] [Accepted: 09/09/2011] [Indexed: 12/31/2022] Open
Abstract
Lipid domain formation induced by annexin was investigated in mixtures of phosphatidylcholine (PC), phosphatidylserine (PS), and cholesterol (Chol), which were selected to mimic the inner leaflet of a eukaryotic plasma membrane. Annexins are ubiquitous and abundant cytoplasmic, peripheral proteins, which bind to membranes containing PS in the presence of calcium ions (Ca(2+)), but whose function is unknown. Prompted by indications of interplay between the presence of cholesterol in PS/PC mixtures and the binding of annexins, we used Monte Carlo simulations to investigate protein and lipid domain formation in these mixtures. The set of interaction parameters between lipids and proteins was assigned by matching experimental observables to corresponding variables in the calculations. In the case of monounsaturated phospholipids, the PS-PC and PC-Chol interactions are weakly repulsive. The interaction between protein and PS was determined based on experiments of annexin binding to PC/PS mixtures in the presence of Ca(2+). Based on the proposal that PS and cholesterol form a complex in model membranes, a favorable PS-Chol interaction was postulated. Finally, protein-protein favorable interactions were also included, which are consistent with observations of large, two-dimensional, regular arrays of annexins on membranes. Those net interactions between pairs of lipids, proteins and lipids, and between proteins are all small, of the order of the average kinetic energy. We found that annexin a5 can induce formation of large PS domains, coincident with protein domains, but only if cholesterol is present.
Collapse
Affiliation(s)
- Paulo F Almeida
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA.
| | | | | |
Collapse
|
31
|
Curvature factor and membrane solubilization, with particular reference to membrane rafts. Cell Biol Int 2012; 35:991-5. [PMID: 21438858 DOI: 10.1042/cbi20100786] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The composition of membrane rafts (cholesterol/sphingolipid-rich domains) cannot be fully deduced from the analysis of a detergent-resistant membrane fraction after solubilization in Triton X-100 at 4°C. It is hypothesized that the membrane curvature-dependent lateral distribution of membrane components affects their solubilization. The stomatocytogenic, Triton X-100, cannot effectively solubilize membrane components, especially with regard to the outward membrane curvature.
Collapse
|
32
|
Sterols have higher affinity for sphingomyelin than for phosphatidylcholine bilayers even at equal acyl-chain order. Biophys J 2011; 100:2633-41. [PMID: 21641308 DOI: 10.1016/j.bpj.2011.03.066] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 01/08/2023] Open
Abstract
The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by (2)H-NMR on bilayers made from either 14:0/14:0((d27))-PC, or 14:0((d27))-SM. Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient (K(x)) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the K(x) did increase with acyl-chain order, the higher K(x) for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the K(x) was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in K(x). We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes.
Collapse
|
33
|
Abstract
Receptor-mediated endocytosis is used by a number of viruses and toxins to gain entry into cells. Some have evolved to use specific lipids in the plasma membrane as their receptors. They include bacterial toxins such as Shiga and Cholera toxin and viruses such as mouse polyoma virus and simian virus 40. Through multivalent binding to glycosphingolipids, they induce lipid clustering and changes in membrane properties. Internalization occurs by unusual endocytic mechanisms involving lipid rafts, induction of membrane curvature, trans-bilayer coupling, and activation of signaling pathways. Once delivered to early endosomes, they follow diverse intracellular routes to the lumen of the ER, from which they penetrate into the cytosol. The role of the lipid receptors is central in these well-studied processes.
Collapse
Affiliation(s)
- Helge Ewers
- Laboratorium für Physikalische Chemie, ETH Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|
34
|
Wydro P, Knapczyk S, Lapczyńska M. Variations in the condensing effect of cholesterol on saturated versus unsaturated phosphatidylcholines at low and high sterol concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5433-5444. [PMID: 21452813 DOI: 10.1021/la105142w] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this work, we have investigated the condensing and ordering effect induced by cholesterol on phosphatidylcholines (PCs). To perform the studies systematically, for the experiments we have selected phospholipids differing only in the number of cis monounsaturated chains (1,2-distearoyl-sn-glycero-3-phosphocholine--DSPC, 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine--SOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine--DOPC) or in the length (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine--POPC vs SOPC) of sn-1 acyl chain. Because the cholesterol concentration in mammalian membranes can be as high as 70 mol % of total lipids, the investigations were performed in a wide range of the sterol content. The results of the Langmuir monolayer experiments evidence that the relation between the structure of hydrophobic part of PC and the magnitude of the effects induced by cholesterol found at lower sterol content is different from that observed at higher sterol concentration. At a lower concentration of sterol (up to 30%), the condensing effect of cholesterol is stronger on saturated DSPC than on PCs containing monounsaturated chain(s), which is consistent with the conclusions drawn by other authors. However, at higher sterol content (≥50%), saturated DSPC is less susceptible to the influence of sterol than the investigated unsaturated PCs. To explain these irregularities, we have considered the strength of van der Waals interactions as well as the influence of sterol on the tilt of polar heads of PCs. It was also found that in the whole range of sterol concentration the ordering effect is stronger on saturated DSPC as compared to unsaturated phospholipids. However, at lower sterol content (up to 30%) the ordering effect induced on unsaturated PCs is rather weak, and the ordering does not change drastically in comparison with pure PCs film.
Collapse
Affiliation(s)
- Paweł Wydro
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland.
| | | | | |
Collapse
|
35
|
Tumaneng PW, Pandit SA, Zhao G, Scott HL. Self-consistent mean-field model for palmitoyloleoylphosphatidylcholine-palmitoyl sphingomyelin-cholesterol lipid bilayers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:031925. [PMID: 21517541 PMCID: PMC3397247 DOI: 10.1103/physreve.83.031925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 01/13/2011] [Indexed: 05/30/2023]
Abstract
The connection between membrane inhomogeneity and the structural basis of lipid rafts has sparked interest in the lateral organization of model lipid bilayers of two and three components. In an effort to investigate anisotropic lipid distribution in mixed bilayers, a self-consistent mean-field theoretical model is applied to palmitoyloleoylphosphatidylcholine (POPC)--palmitoyl sphingomyelin (PSM)--cholesterol mixtures. The compositional dependence of lateral organization in these mixtures is mapped onto a ternary plot. The model utilizes molecular dynamics simulations to estimate interaction parameters and to construct chain conformation libraries. We find that at some concentration ratios the bilayers separate spatially into regions of higher and lower chain order coinciding with areas enriched with PSM and POPC, respectively. To examine the effect of the asymmetric chain structure of POPC on bilayer lateral inhomogeneity, we consider POPC-lipid interactions with and without angular dependence. Results are compared with experimental data and with results from a similar model for mixtures of dioleoylphosphatidylcholine, steroyl sphingomyelin, and cholesterol.
Collapse
Affiliation(s)
- Paul W Tumaneng
- Department of Biological, Chemical and Physical Sciences and Center for the Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | | | | | | |
Collapse
|
36
|
Leftin A, Brown MF. An NMR database for simulations of membrane dynamics. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:818-39. [PMID: 21134351 PMCID: PMC5176272 DOI: 10.1016/j.bbamem.2010.11.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/18/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
Computational methods are powerful in capturing the results of experimental studies in terms of force fields that both explain and predict biological structures. Validation of molecular simulations requires comparison with experimental data to test and confirm computational predictions. Here we report a comprehensive database of NMR results for membrane phospholipids with interpretations intended to be accessible by non-NMR specialists. Experimental ¹³C-¹H and ²H NMR segmental order parameters (S(CH) or S(CD)) and spin-lattice (Zeeman) relaxation times (T(1Z)) are summarized in convenient tabular form for various saturated, unsaturated, and biological membrane phospholipids. Segmental order parameters give direct information about bilayer structural properties, including the area per lipid and volumetric hydrocarbon thickness. In addition, relaxation rates provide complementary information about molecular dynamics. Particular attention is paid to the magnetic field dependence (frequency dispersion) of the NMR relaxation rates in terms of various simplified power laws. Model-free reduction of the T(1Z) studies in terms of a power-law formalism shows that the relaxation rates for saturated phosphatidylcholines follow a single frequency-dispersive trend within the MHz regime. We show how analytical models can guide the continued development of atomistic and coarse-grained force fields. Our interpretation suggests that lipid diffusion and collective order fluctuations are implicitly governed by the viscoelastic nature of the liquid-crystalline ensemble. Collective bilayer excitations are emergent over mesoscopic length scales that fall between the molecular and bilayer dimensions, and are important for lipid organization and lipid-protein interactions. Future conceptual advances and theoretical reductions will foster understanding of biomembrane structural dynamics through a synergy of NMR measurements and molecular simulations.
Collapse
Affiliation(s)
- Avigdor Leftin
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Michael F. Brown
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
37
|
Nyström JH, Lönnfors M, Nyholm TKM. Transmembrane peptides influence the affinity of sterols for phospholipid bilayers. Biophys J 2010; 99:526-33. [PMID: 20643071 DOI: 10.1016/j.bpj.2010.04.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 04/12/2010] [Accepted: 04/22/2010] [Indexed: 11/17/2022] Open
Abstract
Cholesterol is distributed unevenly between different cellular membrane compartments, and the cholesterol content increases from the inner bilayers toward the plasma membrane. It has been suggested that this cholesterol gradient is important in the sorting of transmembrane proteins. Cholesterol has also been to shown play an important role in lateral organization of eukaryotic cell membranes. In this study the aim was to determine how transmembrane proteins influence the lateral distribution of cholesterol in phospholipid bilayers. Insight into this can be obtained by studying how cholesterol interacts with bilayer membranes of different composition in the presence of designed peptides that mimic the transmembrane helices of proteins. For this purpose we developed an assay in which the partitioning of the fluorescent cholesterol analog CTL between LUVs and mbetaCD can be measured. Comparison of how cholesterol and CTL partitioning between mbetaCD and phospholipid bilayers with different composition suggests that CTL sensed changes in bilayer composition similarly as cholesterol. Therefore, the results obtained with CTL can be used to understand cholesterol distribution in lipid bilayers. The effect of WALP23 on CTL partitioning between DMPC bilayers and mbetaCD was measured. From the results it was clear that WALP23 increased both the order in the bilayers (as seen from CTL and DPH anisotropy) and the affinity of the sterol for the bilayer in a concentration dependent way. Although WALP23 also increased the order in DLPC and POPC bilayers the effects on CTL partitioning was much smaller with these lipids. This indicates that proteins have the largest effect on sterol interactions with phospholipids that have longer and saturated acyl chains. KALP23 did not significantly affect the acyl chain order in the phospholipid bilayers, and inclusion of KALP23 into DMPC bilayers slightly decreased CTL partitioning into the bilayer. This shows that transmembrane proteins can both decrease and increase the affinity of sterols for the lipid bilayers surrounding proteins. This is likely to affect the sterol distribution within the bilayer and thereby the lateral organization in biomembranes.
Collapse
Affiliation(s)
- Joel H Nyström
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland
| | | | | |
Collapse
|
38
|
|
39
|
Atkinson J, Harroun T, Wassall SR, Stillwell W, Katsaras J. The location and behavior of alpha-tocopherol in membranes. Mol Nutr Food Res 2010; 54:641-51. [PMID: 20166146 DOI: 10.1002/mnfr.200900439] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vitamin E (alpha-tocopherol) has long been recognized as the major antioxidant in biological membranes, and yet many structurally related questions persist of how the vitamin functions. For example, the very low levels of alpha-tocopherol reported for whole cell extracts question how this molecule can successfully protect the comparatively enormous quantities of PUFA-containing phospholipids found in membranes that are highly susceptible to oxidative attack. The contemporary realization that membranes laterally segregate into regions of distinct lipid composition (domains), we propose, provides the answer. We hypothesize alpha-tocopherol partitions into domains that are enriched in polyunsaturated phospholipids, amplifying the concentration of the vitamin in the place where it is most needed. These highly disordered domains depleted in cholesterol are analogous, but organizationally antithetical, to the well-studied lipid rafts. We review here the ideas that led to our hypothesis. Experimental evidence in support of the formation of PUFA-rich domains in model membranes is presented, focusing upon docosahexaenoic acid that is the most unsaturated fatty acid commonly found. Physical methodologies are then described to elucidate the nature of the interaction of alpha-tocopherol with PUFA and to establish that the vitamin and PUFA-containing phospholipids co-localize in non-raft domains.
Collapse
Affiliation(s)
- Jeffrey Atkinson
- Department of Chemistry, Brock University, St. Catharines, Ont., Canada.
| | | | | | | | | |
Collapse
|
40
|
Sphingomyelin analogs with branched N-acyl chains: the position of branching dramatically affects acyl chain order and sterol interactions in bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1987-94. [PMID: 20637720 DOI: 10.1016/j.bbamem.2010.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/14/2010] [Accepted: 07/06/2010] [Indexed: 01/18/2023]
Abstract
Sphingolipids have been found to have single methyl branchings both in their long-chain base and in their N-linked acyl chains. In this study we determined how methyl-branching in the N-linked acyl chain of sphingomyelin (SM) affected their membrane properties. SM analogs with a single methyl-branching at carbon 15 (of a 17:0 acyl chain; anteiso) had a lower gel-liquid transition temperature as compared to an iso-branched SM analog. Phytanoyl SM (methyls at carbons 3, 7, 11 and 15) as well as a SM analog with a methyl on carbon 10 in a hexadecanoyl chain failed to show a gel-liquid transition above 10 degrees C. Only the two distally branched SM analogs (iso and anteiso) formed ordered domains with cholesterol in a 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer. However, domains formed by the branched SM analogs appeared to contain less sterol when compared to palmitoyl SM (PSM) as the saturated phospholipid. Sterol-enriched domains formed by the anteiso SM analog were also less stable against temperature than domains formed by PSM. Both the 10-methyl and phytanoyl SM analogs failed to form sterol-enriched domains in the POPC bilayer. Acyl chain branching weakened SM/sterol interactions markedly when compared to PSM, as also evidenced from the decreased affinity of cholestatrienol to bilayers containing branched SM analogs. Our results show that methyl-branching weakened intermolecular interactions in a position-dependent manner.
Collapse
|
41
|
Ahyayauch H, Bennouna M, Alonso A, Goñi FM. Detergent effects on membranes at subsolubilizing concentrations: transmembrane lipid motion, bilayer permeabilization, and vesicle lysis/reassembly are independent phenomena. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:7307-13. [PMID: 20170131 DOI: 10.1021/la904194a] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Soluble amphiphiles, or detergents, are known to produce a number of structural and dynamic effects on membranes, even at concentrations below those causing membrane solubilization (i.e. in the so-called stage I of detergent-membrane interaction). The main subsolubilizing detergent effects on membranes are transmembrane lipid motion (flip-flop), breakdown of the membrane permeability barrier (leakage), and vesicle lysis/reassembly. For a proper understanding of membrane solubilization by detergents, it is important to assess whether the various effects seen at subsolubilizing surfactant concentrations occur independently from each other or are interconnected by cause-effect relationships so that they can be interpreted as necessary steps in the overall process of solubilization. To answer this question, we have explored the three above-mentioned effects (i.e., flip-flop, leakage, and lysis/reassembly) apart from solubilization in model (large unilamellar vesicles) and cell (erythrocyte) membranes. Five structurally different surfactants, namely, chlorpromazine, imipramine, Triton X-100, sodium dodecylsulfate, and sodium deoxycholate have been used. Each of them behaves in a unique way. Our results reveal that lipid flip-flop, vesicle leakage, and vesicle lysis/reassembly occur independently between them and with respect to bilayer solubilization so that they cannot be considered to be necessary parts of a higher-order unified process of membrane solubilization by detergents.
Collapse
Affiliation(s)
- Hasna Ahyayauch
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | | | | | | |
Collapse
|
42
|
Quinn PJ. A lipid matrix model of membrane raft structure. Prog Lipid Res 2010; 49:390-406. [PMID: 20478335 DOI: 10.1016/j.plipres.2010.05.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 05/06/2010] [Indexed: 12/12/2022]
Abstract
Domains in cell membranes are created by lipid-lipid interactions and are referred to as membrane rafts. Reliable isolation methods have been developed which have shown that rafts from the same membranes have different proteins and can be sub-fractionated by immunoaffinity methods. Analysis of these raft subfractions shows that they are also comprised of different molecular species of lipids. The major lipid classes present are phospholipids, glycosphingolipids and cholesterol. Model studies show that mixtures of phospholipids, particularly sphingomyelin, and cholesterol form liquid-ordered phase with properties intermediate between a gel and fluid phase. This type of liquid-ordered phase dominates theories of domain formation and raft structure in biological membranes. Recently it has been shown that sphingolipids with long (22-26C) N-acyl fatty acids form quasi-crystalline bilayer structures with diacylphospholipids that have well-defined stoichiometries. A two tier heuristic model of membrane raft structure is proposed in which liquid-ordered phase created by a molecular complex between sphingolipids with hydrocarbon chains of approximately equal length and cholesterol acts as a primary staging area for selecting raft proteins. Tailoring of the lipid anchors of raft proteins takes place at this site. Assembly of lipid-anchored proteins on a scaffold of sphingolipids with asymmetric hydrocarbon chains and phospholipids arranged in a quasi-crystalline bilayer structure serves to concentrate and orient the proteins in a manner that couples them functionally within the membrane. Specificity is inherent in the quasi-crystalline lipid structure of liquid-ordered matrices formed by both types of complex into which protein lipid anchors are interpolated. An interaction between the sugar residues of the glycolipids and the raft proteins provides an additional level of specificity that distinguishes one raft from another.
Collapse
Affiliation(s)
- Peter J Quinn
- Biochemistry Department, King's College London, 150 Stamford Street, London, UK.
| |
Collapse
|
43
|
Sterol affinity for bilayer membranes is affected by their ceramide content and the ceramide chain length. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1008-13. [DOI: 10.1016/j.bbamem.2009.12.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/22/2009] [Accepted: 12/24/2009] [Indexed: 12/16/2022]
|
44
|
Ramirez DMC, Ogilvie WW, Johnston LJ. NBD-cholesterol probes to track cholesterol distribution in model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:558-68. [DOI: 10.1016/j.bbamem.2009.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/17/2009] [Accepted: 12/08/2009] [Indexed: 01/08/2023]
|
45
|
Tumaneng PW, Pandit SA, Zhao G, Scott HL. Lateral organization of complex lipid mixtures from multiscale modeling. J Chem Phys 2010; 132:065104. [PMID: 20151760 PMCID: PMC2833188 DOI: 10.1063/1.3314729] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 01/20/2010] [Indexed: 11/14/2022] Open
Abstract
The organizational properties of complex lipid mixtures can give rise to functionally important structures in cell membranes. In model membranes, ternary lipid-cholesterol (CHOL) mixtures are often used as representative systems to investigate the formation and stabilization of localized structural domains ("rafts"). In this work, we describe a self-consistent mean-field model that builds on molecular dynamics simulations to incorporate multiple lipid components and to investigate the lateral organization of such mixtures. The model predictions reveal regions of bimodal order on ternary plots that are in good agreement with experiment. Specifically, we have applied the model to ternary mixtures composed of dioleoylphosphatidylcholine:18:0 sphingomyelin:CHOL. This work provides insight into the specific intermolecular interactions that drive the formation of localized domains in these mixtures. The model makes use of molecular dynamics simulations to extract interaction parameters and to provide chain configuration order parameter libraries.
Collapse
Affiliation(s)
- Paul W Tumaneng
- Department of Biological, Chemical and Physical Sciences and Center for the Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60616, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
Assessing the ability of biomolecules or drugs to overcome lipid membranes in a receptor-independent way is of great importance in both basic research and applications involving the use of liposomes. A combination of uptake, release, and dilution experiments performed by steady-state fluorescence spectroscopy provides a powerful, straightforward, and inexpensive way of monitoring membrane translocation of fluorescent compounds. This is particularly true for peptides and proteins carrying intrinsic tryptophan residues, which eliminates the need for attaching extrinsic labeling moieties to the compound of interest. The approach encompasses three different kinds of fluorescence titrations and some simple calculations that can be carried out in a spreadsheet program. A complete set of experiments and data analyses can typically be completed within two days.
Collapse
Affiliation(s)
- Jana Broecker
- Leibniz Institute of Molecular Pharmacology FMP, Berlin, Germany
| | | |
Collapse
|
47
|
Lipid membrane interactions of indacaterol and salmeterol: Do they influence their pharmacological properties? Eur J Pharm Sci 2009; 38:533-47. [DOI: 10.1016/j.ejps.2009.10.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 09/28/2009] [Accepted: 10/01/2009] [Indexed: 01/24/2023]
|
48
|
Morris RJ. Ionic control of the metastable inner leaflet of the plasma membrane: Fusions natural and artefactual. FEBS Lett 2009; 584:1665-9. [PMID: 19913542 DOI: 10.1016/j.febslet.2009.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/02/2009] [Accepted: 11/07/2009] [Indexed: 10/20/2022]
Abstract
The phospholipids of the inner and outer leaflets of the plasma membrane face chemically very different environments, and are specialized to serve different needs. While lipids of the outer leaflet are inherently stable in a lamellar (bilayer) phase, the main lipid of the inner layer, phosphatidylethanolamine (PE), does not form a lamellar phase unless evenly mixed with phosphatidylserine (PS(-)). This mixture can be readily perturbed by factors that include an influx of Ca(2+) that chelates the negatively charged PS(-), thereby destabilizing PE. The implications of this metastability of the inner leaflet for vesicular trafficking, and experimentally for the isolation of detergent-resistant membrane domains (DRMs) at physiological temperature, are considered.
Collapse
Affiliation(s)
- Roger J Morris
- Wolfson Centre for Age-Related Disease, Guy's Campus, King's College London, UK.
| |
Collapse
|
49
|
Lange Y, Ye J, Duban ME, Steck TL. Activation of membrane cholesterol by 63 amphipaths. Biochemistry 2009; 48:8505-15. [PMID: 19655814 DOI: 10.1021/bi900951r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A few membrane-intercalating amphipaths have been observed to stimulate the interaction of cholesterol with cholesterol oxidase, saponin and cyclodextrin, presumably by displacing cholesterol laterally from its phospholipid complexes. We now report that this effect, referred to as cholesterol activation, occurs with dozens of other amphipaths, including alkanols, saturated and cis- and trans-unsaturated fatty acids, fatty acid methyl esters, sphingosine derivatives, terpenes, alkyl ethers, ketones, aromatics and cyclic alkyl derivatives. The apparent potency of the agents tested ranged from 3 microM to 7 mM and generally paralleled their octanol/water partition coefficients, except that relative potency declined for compounds with >10 carbons. Some small amphipaths activated cholesterol at a membrane concentration of approximately 3 mol per 100 mol of bilayer lipids, about equimolar with the cholesterol they displaced. Lysophosphatidylserine countered the effects of all these agents, consistent with its ability to reduce the pool of active membrane cholesterol. Various amphipaths stabilized red cells against the hemolysis elicited by cholesterol depletion, presumably by substituting for the extracted sterol. The number and location of cis and trans fatty acid unsaturations and the absolute stereochemistry of enantiomer pairs had only small effects on amphipath potency. Nevertheless, potency varied approximately 7-fold within a group of diverse agents with similar partition coefficients. We infer that a wide variety of amphipaths can displace membrane cholesterol by competing stoichiometrically but with only limited specificity for weak association with phospholipids. Any number of other drugs and experimental agents might do the same.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | |
Collapse
|
50
|
Thermotropic and structural evaluation of the interaction of natural sphingomyelins with cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1877-89. [DOI: 10.1016/j.bbamem.2009.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 06/24/2009] [Accepted: 07/08/2009] [Indexed: 11/23/2022]
|