1
|
Bakker NAM, Burrello C, de Visser KE. Ex vivo assessment of human neutrophil motility and migration. Methods Cell Biol 2024; 191:115-133. [PMID: 39824552 DOI: 10.1016/bs.mcb.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Neutrophils are pivotal in orchestrating tumor-induced systemic inflammation and are increasingly recognized for their critical involvement in both the initiation and progression of cancer. A fundamental facet of neutrophil biology is their migratory capacity, which enables them to extravasate and infiltrate tumors in other tissues, where they carry out essential effector functions. Unraveling the intricate mechanisms of neutrophil motility and migration is crucial for comprehending immune responses and inflammatory processes, shedding light on their substantial contribution to cancer progression. Here, we provide a comprehensive protocol to assess direct ex vivo motility and migration of freshly isolated human neutrophils, offering valuable insights into their behavior.
Collapse
Affiliation(s)
- Noor A M Bakker
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Claudia Burrello
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Karin E de Visser
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Abstract
While the involvement of actin polymerization in cell migration is well-established, much less is known about the role of transmembrane water flow in cell motility. Here, we investigate the role of water influx in a prototypical migrating cell, the neutrophil, which undergoes rapid, directed movement to sites of injury, and infection. Chemoattractant exposure both increases cell volume and potentiates migration, but the causal link between these processes are not known. We combine single-cell volume measurements and a genome-wide CRISPR screen to identify the regulators of chemoattractant-induced neutrophil swelling, including NHE1, AE2, PI3K-gamma, and CA2. Through NHE1 inhibition in primary human neutrophils, we show that cell swelling is both necessary and sufficient for the potentiation of migration following chemoattractant stimulation. Our data demonstrate that chemoattractant-driven cell swelling complements cytoskeletal rearrangements to enhance migration speed.
Collapse
Affiliation(s)
- Tamas L Nagy
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Strickland
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
3
|
Nagy TL, Strickland E, Weiner OD. Neutrophils actively swell to potentiate rapid migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.15.540704. [PMID: 37292824 PMCID: PMC10245588 DOI: 10.1101/2023.05.15.540704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While the involvement of actin polymerization in cell migration is well-established, much less is known about the role of transmembrane water flow in cell motility. Here, we investigate the role of water influx in a prototypical migrating cell, the neutrophil, which undergoes rapid, directed movement to sites of injury and infection. Chemoattractant exposure both increases cell volume and potentiates migration, but the causal link between these processes is not known. We combine single cell volume measurements and a genome-wide CRISPR screen to identify the regulators of chemoattractant-induced neutrophil swelling, including NHE1, AE2, PI3K-gamma, and CA2. Through NHE1 inhibition in primary human neutrophils, we show that cell swelling is both necessary and sufficient for the potentiation of migration following chemoattractant stimulation. Our data demonstrate that chemoattractant-driven cell swelling complements cytoskeletal rearrangements to enhance migration speed.
Collapse
Affiliation(s)
- Tamas L Nagy
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Evelyn Strickland
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Inozemtsev V, Sergunova V, Vorobjeva N, Kozlova E, Sherstyukova E, Lyapunova S, Chernysh A. Stages of NETosis Development upon Stimulation of Neutrophils with Activators of Different Types. Int J Mol Sci 2023; 24:12355. [PMID: 37569729 PMCID: PMC10418979 DOI: 10.3390/ijms241512355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Before NETs are released, the neutrophil undergoes structural changes. First, it flattens, accompanied by a change in cell shape and rearrangement of the cytoskeleton. Then, nuclear swelling begins, which ends with the ejection of NETs into the extracellular space. We used widefield and confocal fluorescence microscopy to register morphological and structural changes in neutrophils during activation and NETosis. Different types of activators were used, such as NOX-dependent PMA and calcium ionophore A23187. The measurements were performed in a series of sequential stages. In the first stage (30 s after addition of activators and immediately after stimulation of neutrophils), the response of neutrophils to A23187 and PMA exposure was studied. Subsequently, the characteristics of neutrophils in different phases of activation were examined over a longer period of time (30, 60, 120, 180, and 240 min). The specific features of NETosis development were analyzed separately. During the first 30 s, neutrophils appeared to be heterogeneous in shape and structure of the actin cytoskeleton. Characteristic cell shapes included 30″ type 1 cells, similar in shape to the control, with F-actin concentrated in the center of the cytoplasm, and 30″ type 2 cells, which had flattened (spread) shapes with increased frontal dimensions and F-actin distributed throughout the cell. Later, the development of nuclear swelling, the corresponding changes in neutrophil membranes, and NET release into the extracellular space were evaluated. The conditions determining the initiation of chromatin ejection and two characteristic types of decondensed chromatin ejection were revealed. The results obtained contribute to a better understanding of the biophysical mechanisms of neutrophil activation and NETosis development.
Collapse
Affiliation(s)
- Vladimir Inozemtsev
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Petrovka Street 25c2, 107031 Moscow, Russia; (V.S.); (E.K.); (E.S.); (S.L.); (A.C.)
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Viktoria Sergunova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Petrovka Street 25c2, 107031 Moscow, Russia; (V.S.); (E.K.); (E.S.); (S.L.); (A.C.)
| | - Nina Vorobjeva
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Lenin Hills 1/12, 119234 Moscow, Russia;
| | - Elena Kozlova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Petrovka Street 25c2, 107031 Moscow, Russia; (V.S.); (E.K.); (E.S.); (S.L.); (A.C.)
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Ekaterina Sherstyukova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Petrovka Street 25c2, 107031 Moscow, Russia; (V.S.); (E.K.); (E.S.); (S.L.); (A.C.)
| | - Snezhanna Lyapunova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Petrovka Street 25c2, 107031 Moscow, Russia; (V.S.); (E.K.); (E.S.); (S.L.); (A.C.)
| | - Aleksandr Chernysh
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Petrovka Street 25c2, 107031 Moscow, Russia; (V.S.); (E.K.); (E.S.); (S.L.); (A.C.)
- General Pathology Department, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Petrovka Street 25c2, 107031 Moscow, Russia
| |
Collapse
|
5
|
Abdelrahman A, Smith AS, Sengupta K. Observing Membrane and Cell Adhesion via Reflection Interference Contrast Microscopy. Methods Mol Biol 2023; 2654:123-135. [PMID: 37106179 DOI: 10.1007/978-1-0716-3135-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Reflection interference contrast microscopy (RICM) is an optical microscopy technique ideally suited for imaging adhesion. While RICM (and the closely related interference reflection microscopy (IRM)) has been extensively used qualitatively or semiquantitatively to image cells, including immune cells, it can also be used quantitatively to measure membrane to surface distance, especially for model membranes. Here, we present a protocol for RICM and IRM imaging and the details of semiquantitative and quantitative analysis.
Collapse
Affiliation(s)
- Ahmed Abdelrahman
- Aix Marseille University, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France
| | - Ana-Sunčana Smith
- PULS Group, Department of Physics, Centre for Computational Materials and Processes, Friedrich Alexander University Erlangen-Nürnberg, IZNF, Erlangen, Germany.
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Kheya Sengupta
- Aix Marseille University, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
6
|
Kalashnikov N, Moraes C. Engineering physical microenvironments to study innate immune cell biophysics. APL Bioeng 2022; 6:031504. [PMID: 36156981 PMCID: PMC9492295 DOI: 10.1063/5.0098578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Innate immunity forms the core of the human body's defense system against infection, injury, and foreign objects. It aims to maintain homeostasis by promoting inflammation and then initiating tissue repair, but it can also lead to disease when dysregulated. Although innate immune cells respond to their physical microenvironment and carry out intrinsically mechanical actions such as migration and phagocytosis, we still do not have a complete biophysical description of innate immunity. Here, we review how engineering tools can be used to study innate immune cell biophysics. We first provide an overview of innate immunity from a biophysical perspective, review the biophysical factors that affect the innate immune system, and then explore innate immune cell biophysics in the context of migration, phagocytosis, and phenotype polarization. Throughout the review, we highlight how physical microenvironments can be designed to probe the innate immune system, discuss how biophysical insight gained from these studies can be used to generate a more comprehensive description of innate immunity, and briefly comment on how this insight could be used to develop mechanical immune biomarkers and immunomodulatory therapies.
Collapse
Affiliation(s)
- Nikita Kalashnikov
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
7
|
Sung B, Kim DH, Kim MH, Vigolo D. Combined Effect of Matrix Topography and Stiffness on Neutrophil Shape and Motility. Adv Biol (Weinh) 2022; 6:e2101312. [PMID: 35347887 DOI: 10.1002/adbi.202101312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/11/2022] [Indexed: 01/27/2023]
Abstract
The crawling behavior of leukocytes is driven by the cell morphology transition, which is a direct manifestation of molecular motor machinery. The topographical anisotropy and mechanical stiffness of the substrates are the main physical cues that affect leukocytes' shape generation and migratory responses. However, their combined effects on the cell morphology and motility have been poorly understood, particularly for neutrophils, which are the fastest reacting leukocytes against infections and wounds. Here, spatiotemporally correlated physical parameters are shown, which determine the neutrophil shape change during migratory processes, in response to surface topography and elasticity. Guided crawling and shape generation of individual neutrophils, activated by a uniform concentration of a chemoattractant, are analyzed by adopting elasticity-tunable micropatterning and live cell imaging techniques. Whole cell-level image analysis is performed based on a planar geometric quantification of cell shape and motility. The findings show that the pattern anisotropy and elastic modulus of the substrate induce synergic effects on the shape anisotropy, deformability, and polarization/alignment of crawling neutrophils. How the morphology-motility relationship is affected by different surface microstructures and stiffness is demonstrated. These results imply that the neutrophil shape-motility correlations can be utilized for controlling the immune cell functions with predefined physical microenvironments.
Collapse
Affiliation(s)
- Baeckkyoung Sung
- KIST Europe Forschungsgesellschaft mbH, 66123, Saarbrücken, Germany.,Division of Energy & Environment Technology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Deok-Ho Kim
- Department of Bioengineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Min-Ho Kim
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Daniele Vigolo
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.,School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.,The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
8
|
Mandal K, Gong Z, Rylander A, Shenoy VB, Janmey PA. Opposite responses of normal hepatocytes and hepatocellular carcinoma cells to substrate viscoelasticity. Biomater Sci 2020; 8:1316-1328. [PMID: 31903466 DOI: 10.1039/c9bm01339c] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cellular microenvironment plays a critical role in cell differentiation, proliferation, migration, and homeostasis. Recent studies have shown the importance of substrate viscosity in determining cellular function. Here, we study the mechanoresponse of normal hepatocytes and hepatocellular carcinoma cells (HCC) to elastic and viscoelastic substrates using the Huh7 cell line derived from a human liver tumor and primary human hepatocytes (PHH). Unlike PHH and fibroblasts, which respond to viscoelastic substrates by reducing spreading area and actin bundle assembly compared to purely elastic substrates of the same stiffness, Huh7 cells spread faster on viscoelastic substrates than on purely elastic substrates. The steady state spreading areas of Huh7 cells are larger on viscoelastic substrates, whereas the opposite effect occurs with PHH cells. The viscoelasticity of the microenvironment also promotes motility and multiple long protrusions in Huh7 cells. Pharmacologic disruption of the actin assembly makes cells unable to spread on either elastic or viscoelastic substrates. In contrast, upon vimentin perturbation, cells still spread to a limited degree on elastic substrates but are unable to spread on viscoelastic substrates. The time evolution of cell traction force shows that the peak occurs at an earlier time point on viscoelastic substrates compared to elastic substrates. However, the total force generation at steady state is the same on both substrates after 4 hours. Our data suggest that stress relaxation time scales of the viscoelastic substrate regulate cell dynamics and traction force generation, indicating different binding-unbinding rates of the proteins that form cell attachment sites in HCC cells and normal hepatocytes. These results suggest that liver cancer cells may have different characteristic lifetimes of binding to the substrate in comparision to normal cells, which might cause differences in cell spreading and motility within the diseased tissue.
Collapse
Affiliation(s)
- Kalpana Mandal
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia 19104, USA.
| | | | | | | | | |
Collapse
|
9
|
Walters N, Nguyen LTH, Zhang J, Shankaran A, Reátegui E. Extracellular vesicles as mediators of in vitro neutrophil swarming on a large-scale microparticle array. LAB ON A CHIP 2019; 19:2874-2884. [PMID: 31343025 DOI: 10.1039/c9lc00483a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Neutrophils combat infections and promote healing of damaged tissues while protecting the surrounding healthy tissue through a process called swarming. Swarming neutrophils release soluble factors that recruit additional neutrophils and shape the inflammation response. Additionally, neutrophils release extracellular vesicles (EVs), which are gaining attention as important intercellular mediators. We developed a large-scale array of bioparticles on a glass substrate that triggers neutrophil swarming in vitro in a spatially and temporally controlled manner that facilitates the analysis of neutrophil migration. Our platform can generate 30 000 neutrophil swarms on a glass slide in a highly reproducible manner (98% patterning efficiency), which produces an EV-rich supernatant that enables quantitative characterization of inflammation-specific EVs. Healthy neutrophils were able to form uniform swarms across the bioparticle array, which demonstrates a high degree of intercellular coordination. However, neutrophils swarming on the bioparticle array tended to have a lower radial velocity than neutrophils swarming toward a single target. After collecting and isolating EVs released by swarming and non-swarming neutrophils, we found that neutrophils constitutively release exosomes and microvesicles. Furthermore, EVs released by swarming neutrophils cause neutrophil activation and contain the proinflammatory mediator galectin-3, suggesting that EVs have an active role during neutrophil swarming. Ultimately, understanding EVs' role in intercellular communication during swarming will improve understanding of the complex signaling pathways involved in the regulation of inflammation.
Collapse
Affiliation(s)
- Nicole Walters
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Luong T H Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Jingjing Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Ajay Shankaran
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA. and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Dejardin MJ, Hemmerle A, Sadoun A, Hamon Y, Puech PH, Sengupta K, Limozin L. Lamellipod Reconstruction by Three-Dimensional Reflection Interference Contrast Nanoscopy (3D-RICN). NANO LETTERS 2018; 18:6544-6550. [PMID: 30179011 DOI: 10.1021/acs.nanolett.8b03134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
There are very few techniques to reconstruct the shape of a cell at nanometric resolution, and those that exist are almost exclusively based on fluorescence, implying limitations due to staining constraints and artifacts. Reflection interference contrast microscopy (RICM), a label-free technique, permits the measurement of nanometric distances between refractive objects. However, its quantitative application to cells has been largely limited due to the complex interferometric pattern caused by multiple reflections on internal or thin structures like lamellipodia. Here we introduce 3D reflection interference contrast nanoscopy, 3D-RICN, which combines information from multiple illumination wavelengths and aperture angles to characterize the lamellipodial region of an adherent cell in terms of its distance from the surface and its thickness. We validate this new method by comparing data obtained on fixed cells imaged with atomic force microscopy and quantitative phase imaging. We show that as expected, cells adhering to micropatterns exhibit a radial symmetry for the lamellipodial thickness. We demonstrate that the substrate-lamellipod distance may be as high as 100 nm. We also show how the method applies to living cells, opening the way for label-free dynamical study of cell structures with nanometric resolution.
Collapse
Affiliation(s)
| | | | - Anaïs Sadoun
- Aix Marseille Univ , CNRS, INSERM, LAI , Marseille 13288 , France
| | - Yannick Hamon
- Aix Marseille Univ , CNRS, INSERM, CIML , Marseille 13288 , France
| | | | - Kheya Sengupta
- Aix Marseille Univ , CNRS, CINAM , Marseille 13288 , France
| | - Laurent Limozin
- Aix Marseille Univ , CNRS, INSERM, LAI , Marseille 13288 , France
| |
Collapse
|
11
|
Benard E, Nunès JA, Limozin L, Sengupta K. T Cells on Engineered Substrates: The Impact of TCR Clustering Is Enhanced by LFA-1 Engagement. Front Immunol 2018; 9:2085. [PMID: 30279692 PMCID: PMC6154019 DOI: 10.3389/fimmu.2018.02085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/23/2018] [Indexed: 12/15/2022] Open
Abstract
We created APC-mimetic synthetic substrates to study the impact of ligand clustering on T cell activation and spreading. The substrates exhibit antibodies directed against the TCR-complex in the form of a patterned array of sub micrometric dots surrounded by a fluid supported lipid bilayer (SLB) which may itself be functionalized with another bio-molecule. We show that for T cell adhesion mediated by T cell receptor (TCR) alone, in the patterned, but not in the corresponding homogeneous controls, the TCR, ZAP-70 and actin are present in the form of clusters or patches that co-localize with the ligand-dots. However, global cell scale parameters like cell area and actin distribution are only weakly impacted by ligand clustering. In presence of ICAM-1 - the ligand of the T cell integrin LFA-1 - on the SLB, the TCR is still clustered due to the patterning of its ligands, but now global parameters are also impacted. The actin organization changes to a peripheral ring, resembling the classical actin distribution seen on homogeneous substrates, the patterned membrane topography disappears and the membrane is flat, whereas the cell area increases significantly. These observations taken together point to a possible pivotal role for LFA-1 in amplifying the effect of TCR-clustering. No such effect is evident for co-engagement of CD28, affected via its ligand B7.2. Unlike on ICAM-1, on B7.2 cell spreading and actin organization are similar for homogeneous and patterned substrates. However, TCR and ZAP-70 clusters are still formed in the patterned case. These results indicate complementary role for LFA-1 and CD28 in the regulation and putative coupling of TCR micro-clusters to actin. The engineered substrates presented here clearly have the potential to act as platform for fundamental research in immune cell biology, as well as translational analyses in immunotherapy, for example to screen molecules for their role in T cell adhesion/activation.
Collapse
Affiliation(s)
| | - Jacques A Nunès
- CNRS, UMR7258, Centre de Recherche en Cancerologie de Marseille, Immunity and Cancer Team, Institut Paoli-Calmettes, Inserm, U1068, Aix-Marseille Université UM 105, Marseille, France
| | - Laurent Limozin
- LAI, CNRS UMR 7333, INSERM UMR 1067, Aix-Marseille Université, Marseille, France
| | - Kheya Sengupta
- CNRS, CINaM UMR 7325, Aix-Marseille Université, Marseille, France
| |
Collapse
|
12
|
Musilova I, Andrys C, Krejsek J, Drahosova M, Zednikova B, Pliskova L, Zemlickova H, Jacobsson B, Kacerovsky M. Amniotic fluid pentraxins: Potential early markers for identifying intra-amniotic inflammatory complications in preterm pre-labor rupture of membranes. Am J Reprod Immunol 2017; 79:e12789. [PMID: 29193454 DOI: 10.1111/aji.12789] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022] Open
Abstract
In this study, pentraxin 3 (PTX3), C-reactive protein (CRP), and serum amyloid P component (SAP) concentrations in the amniotic fluid of women with preterm pre-labor rupture of membranes (PPROM) were evaluated based on evidence of microbial invasion of the amniotic cavity (MIAC), intra-amniotic inflammation (IAI), and microbial-associated IAI. A total of 149 women with PPROM were included in this study. Amniotic fluid samples were obtained by transabdominal amniocentesis. Amniotic fluid PTX3, SAP, and CRP concentrations were assessed using enzyme-linked immunosorbent assay. PTX3 and CRP concentrations were higher in women with MIAC, IAI, and microbial-associated IAI than in women without these conditions. SAP concentrations were only higher in the presence of IAI and microbial-associated IAI. Amniotic fluid PTX3 concentrations of 11 ng/mL were found to be the best value for identifying the presence of microbial-associated IAI and IAI in women with PPROM. To conclude, amniotic fluid pentraxins are involved in intra-amniotic inflammatory responses in pregnancies complicated by PPROM.
Collapse
Affiliation(s)
- Ivana Musilova
- Department of Obstetrics and Gynecology, Faculty of Medicine Hradec Kralove, University Hospital Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Department of Clinical Immunology and Allergy, Faculty of Medicine Hradec Kralove, University Hospital Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergy, Faculty of Medicine Hradec Kralove, University Hospital Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Marcela Drahosova
- Department of Clinical Immunology and Allergy, Faculty of Medicine Hradec Kralove, University Hospital Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Barbora Zednikova
- Department of Clinical Immunology and Allergy, Faculty of Medicine Hradec Kralove, University Hospital Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Lenka Pliskova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Helena Zemlickova
- Institute of Clinical Microbiology, Faculty of Medicine Hradec Kralove, University Hospital in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.,Division of Health Data and Digitalisation, Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, Faculty of Medicine Hradec Kralove, University Hospital Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
13
|
Zhao ZL, Liu ZY, Du J, Xu GK, Feng XQ. A Dynamic Biochemomechanical Model of Geometry-Confined Cell Spreading. Biophys J 2017; 112:2377-2386. [PMID: 28591610 DOI: 10.1016/j.bpj.2017.04.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 01/09/2023] Open
Abstract
Cell spreading is involved in many physiological and pathological processes. The spreading behavior of a cell significantly depends on its microenvironment, but the biochemomechanical mechanisms of geometry-confined cell spreading remain unclear. A dynamic model is here established to investigate the spreading of cells confined in a finite region with different geometries, e.g., rectangle, ellipse, triangle, and L-shape. This model incorporates both biophysical and biochemical mechanisms, including actin polymerization, integrin-mediated binding, plasma viscoelasticity, and the elasticity of membranes and microtubules. We simulate the dynamic configurational evolution of a cell under different geometric microenvironments, including the angular distribution of microtubule forces and the deformation of the nucleus. The results indicate that the positioning of the cell-division plane is affected by its boundary confinement: a cell divides in a plane perpendicular to its minimal principal axis of inertia of area. In addition, the effects of such physical factors as the adhesive bond density, membrane tension, and microtubule number are examined on the cell spreading dynamics. The theoretical predictions show a good agreement with relevant experimental results. This work sheds light on the geometry-confined spreading dynamics of cells and holds potential applications in regulating cell division and designing cell-based sensors.
Collapse
Affiliation(s)
- Zi-Long Zhao
- AML, Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, China; Center for Nano and Micro Mechanics, Tsinghua University, Beijing, China
| | - Zong-Yuan Liu
- AML, Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, China; Center for Nano and Micro Mechanics, Tsinghua University, Beijing, China
| | - Jing Du
- AML, Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, China
| | - Guang-Kui Xu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, China
| | - Xi-Qiao Feng
- AML, Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, China; Center for Nano and Micro Mechanics, Tsinghua University, Beijing, China.
| |
Collapse
|
14
|
Zheng X, Chen M, Meng X, Chu X, Cai C, Zou F. Phosphorylation of dynamin-related protein 1 at Ser616 regulates mitochondrial fission and is involved in mitochondrial calcium uniporter-mediated neutrophil polarization and chemotaxis. Mol Immunol 2017; 87:23-32. [DOI: 10.1016/j.molimm.2017.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 11/28/2022]
|
15
|
Slater TW, Finkielsztein A, Mascarenhas LA, Mehl LC, Butin-Israeli V, Sumagin R. Neutrophil Microparticles Deliver Active Myeloperoxidase to Injured Mucosa To Inhibit Epithelial Wound Healing. THE JOURNAL OF IMMUNOLOGY 2017; 198:2886-2897. [PMID: 28242649 DOI: 10.4049/jimmunol.1601810] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/29/2017] [Indexed: 12/19/2022]
Abstract
Neutrophil (PMN) infiltration of the intestinal mucosa often leads to severe epithelial injury; however, how this process occurs is unclear. This article describes a novel mechanism whereby membrane-derived microparticles released by tissue infiltrating PMNs (PMN-MPs) serve as shuttles to protect and deliver active mediators to locally modulate cellular function during inflammation. Specifically, myeloperoxidase (MPO), which is abundantly expressed in PMN azurophilic granules and is used for microbial killing, was found to be mobilized to the PMN surface and subsequently released in association with PMN-MPs upon PMN activation and binding to intestinal epithelial cells (IECs). The enzymatic activity of PMN-MP-associated MPO was enhanced compared with soluble protein, leading to potent inhibition of wound closure following PMN-MP binding to IECs. Importantly, localized microinjection of PMN-MPs into wounded colonic mucosa was sufficient to impair epithelial wound healing in vivo. PMN-MP/MPO-dependent inhibition of IEC wound healing was due to impaired IEC migration and proliferation, resulting from impeded actin dynamics, cell spreading, and cell cycle arrest. Thus, our findings provide new insight into mechanisms governing PMN-induced tissue injury and implicate PMN-MPs and MPO as important regulators of cellular function.
Collapse
Affiliation(s)
- Thomas W Slater
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Ariel Finkielsztein
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Lorraine A Mascarenhas
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Lindsey C Mehl
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Veronika Butin-Israeli
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Ronen Sumagin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
16
|
Dillard P, Pi F, Lellouch AC, Limozin L, Sengupta K. Nano-clustering of ligands on surrogate antigen presenting cells modulates T cell membrane adhesion and organization. Integr Biol (Camb) 2016; 8:287-301. [PMID: 26887857 DOI: 10.1039/c5ib00293a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We investigate the adhesion and molecular organization of the plasma membrane of T lymphocytes interacting with a surrogate antigen presenting cell comprising glass supported ordered arrays of antibody (α-CD3) nano-dots dispersed in a non-adhesive matrix of polyethylene glycol (PEG). The local membrane adhesion and topography, as well as the distribution of the T cell receptors (TCRs) and the kinase ZAP-70, are influenced by dot-geometry, whereas the cell spreading area is determined by the overall average density of the ligands rather than specific characteristics of the dots. TCR clusters are recruited preferentially to the nano-dots and the TCR cluster size distribution has a weak dot-size dependence. On the patterns, the clusters are larger, more numerous, and more enriched in TCRs, as compared to the homogeneously distributed ligands at comparable concentrations. These observations support the idea that non-ligated TCRs residing in the non-adhered parts of the proximal membrane are able to diffuse and enrich the existing clusters at the ligand dots. However, long distance transport is impaired and cluster centralization in the form of a central supramolecular cluster (cSMAC) is not observed. Time-lapse imaging of early cell-surface contacts indicates that the ZAP-70 microclusters are directly recruited to the site of the antibody dots and this process is concomitant with membrane adhesion. These results together point to a complex interplay of adhesion, molecular organization and activation in response to spatially modulated stimulation.
Collapse
Affiliation(s)
- Pierre Dillard
- Aix-Marseille Université, CNRS, CINaM-UMR 7325, Marseille, 13288, France. and Laboratoire Adhésion & Inflammation Aix-Marseille Université\Inserm U1067\CNRS-UMR7333, Marseille 13288, France.
| | - Fuwei Pi
- Aix-Marseille Université, CNRS, CINaM-UMR 7325, Marseille, 13288, France.
| | - Annemarie C Lellouch
- Laboratoire Adhésion & Inflammation Aix-Marseille Université\Inserm U1067\CNRS-UMR7333, Marseille 13288, France.
| | - Laurent Limozin
- Laboratoire Adhésion & Inflammation Aix-Marseille Université\Inserm U1067\CNRS-UMR7333, Marseille 13288, France.
| | - Kheya Sengupta
- Aix-Marseille Université, CNRS, CINaM-UMR 7325, Marseille, 13288, France.
| |
Collapse
|
17
|
Henry SJ, Chen CS, Crocker JC, Hammer DA. Protrusive and Contractile Forces of Spreading Human Neutrophils. Biophys J 2016; 109:699-709. [PMID: 26287622 DOI: 10.1016/j.bpj.2015.05.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/30/2015] [Accepted: 05/26/2015] [Indexed: 12/20/2022] Open
Abstract
Human neutrophils are mediators of innate immunity and undergo dramatic shape changes at all stages of their functional life cycle. In this work, we quantified the forces associated with a neutrophil's morphological transition from a nonadherent, quiescent sphere to its adherent and spread state. We did this by tracking, with high spatial and temporal resolution, the cell's mechanical behavior during spreading on microfabricated post-array detectors printed with the extracellular matrix protein fibronectin. Two dominant mechanical regimes were observed: transient protrusion and steady-state contraction. During spreading, a wave of protrusive force (75 ± 8 pN/post) propagates radially outward from the cell center at a speed of 206 ± 28 nm/s. Once completed, the cells enter a sustained contractile state. Although post engagement during contraction was continuously varying, posts within the core of the contact zone were less contractile (-20 ± 10 pN/post) than those residing at the geometric perimeter (-106 ± 10 pN/post). The magnitude of the protrusive force was found to be unchanged in response to cytoskeletal inhibitors of lamellipodium formation and myosin II-mediated contractility. However, cytochalasin B, known to reduce cortical tension in neutrophils, slowed spreading velocity (61 ± 37 nm/s) without significantly reducing protrusive force. Relaxation of the actin cortical shell was a prerequisite for spreading on post arrays as demonstrated by stiffening in response to jasplakinolide and the abrogation of spreading. ROCK and myosin II inhibition reduced long-term contractility. Function blocking antibody studies revealed haptokinetic spreading was induced by β2 integrin ligation. Neutrophils were found to moderately invaginate the post arrays to a depth of ∼1 μm as measured from spinning disk confocal microscopy. Our work suggests a competition of adhesion energy, cortical tension, and the relaxation of cortical tension is at play at the onset of neutrophil spreading.
Collapse
Affiliation(s)
- Steven J Henry
- Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - John C Crocker
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Daniel A Hammer
- Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania; Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
18
|
Matsuzaki T, Ito K, Masuda K, Kakinuma E, Sakamoto R, Iketaki K, Yamamoto H, Suganuma M, Kobayashi N, Nakabayashi S, Tanii T, Yoshikawa HY. Quantitative Evaluation of Cancer Cell Adhesion to Self-Assembled Monolayer-Patterned Substrates by Reflection Interference Contrast Microscopy. J Phys Chem B 2016; 120:1221-7. [PMID: 26845066 DOI: 10.1021/acs.jpcb.5b11870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adhesion of cancer cells with different metastatic potential and anticancer drug resistance has been quantitatively evaluated by using self-assembled monolayer (SAM)-patterned substrates and reflection interference contrast microscopy (RICM). Cell-adhesive SAM spots with optimized diameter could prevent cell-cell adhesion and thus allowed the systematic evaluation of statistically reliable numbers of contact area between single cancer cells and substrates by RICM. The statistical image analysis revealed that highly metastatic mouse melanoma cells showed larger contact area than lowly metastatic cells. We also found that both cancer cell types exhibited distinct transition from the "strong" to "weak" adhesion states with increase in the concentration of (-)-epigallocatechin gallate (EGCG), which is known to exhibit cancer preventive activity. Mathematical analysis of the adhesion transition revealed that adhesion of the highly metastatic mouse melanoma cells showed more EGCG tolerance than that of lowly metastatic cells. Moreover, time-lapse RICM observation revealed that EGCG weakened cancer cell adhesion in a stepwise manner, probably via focal adhesion complex. These results clearly indicate that contact area can be used as a quantitative measure for the determination of cancer phenotypes and their drug resistance, which will provide physical insights into the mechanism of cancer metastasis and cancer prevention.
Collapse
Affiliation(s)
| | | | - Kentaro Masuda
- School of Science and Engineering, Waseda University , Okubo 3-4-1, Shinjuku, Tokyo 169-855, Japan
| | - Eisuke Kakinuma
- School of Science and Engineering, Waseda University , Okubo 3-4-1, Shinjuku, Tokyo 169-855, Japan
| | - Rumi Sakamoto
- School of Science and Engineering, Waseda University , Okubo 3-4-1, Shinjuku, Tokyo 169-855, Japan
| | | | - Hideaki Yamamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University , 6-3 Aramakiazaaoba, Aoba, Sendai, Miyagi 980-8578, Japan
| | | | | | | | - Takashi Tanii
- School of Science and Engineering, Waseda University , Okubo 3-4-1, Shinjuku, Tokyo 169-855, Japan
| | | |
Collapse
|
19
|
Immobilized IL-8 Triggers Phagocytosis and Dynamic Changes in Membrane Microtopology in Human Neutrophils. Ann Biomed Eng 2015; 43:2207-19. [PMID: 25582838 DOI: 10.1007/s10439-014-1242-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 12/29/2014] [Indexed: 10/24/2022]
Abstract
The interaction of leukocytes with surface bound ligands can be limited by the location of the molecules relative to the surface topology of the cell. In this report, we examine the dynamic response of neutrophils to IL-8-fractalkine chimera immobilized on bead surfaces, taking into account changes in receptor occupancy resulting from changes in surface topography. As a readout for receptor signaling, we observe the dynamics of calcium release in neutrophils following contact with the IL-8 coated surface. After a delay that depended on the initial area of contact and the surface density of IL-8, the cell began to phagocytose the IL-8 coated bead. This appeared to be a pre-requisite for release of calcium, which typically followed shortly after the initiation of phagocytosis. In separate experiments, effective kinetic coefficients for the formation of bonds between immobilized IL-8 and receptors on the cell surface were determined. Using these coefficients, we were able to estimate the number of bound receptors in the nascent contact zone. Kinetic modeling of the signaling response predicted that cell spreading and a concomitant increase in the density of occupied receptors would be required for the experimentally observed calcium dynamics. Postulating that there is an increase in receptor occupancy resulting from smoothing of the cell surface as it is stretched over the bead enabled us to obtain model predictions consistent with experimental observations. This study reveals the likely importance of membrane microtopology as a rate-limiting property and potential means of regulation of cell responses stimulated by two-dimensional surface interactions.
Collapse
|
20
|
Ligand-mediated friction determines morphodynamics of spreading T cells. Biophys J 2014; 107:2629-38. [PMID: 25468342 DOI: 10.1016/j.bpj.2014.10.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/03/2014] [Accepted: 10/28/2014] [Indexed: 11/22/2022] Open
Abstract
Spreading of T cells on antigen presenting cells is a crucial initial step in immune response. Spreading occurs through rapid morphological changes concomitant with the reorganization of surface receptors and of the cytoskeleton. Ligand mobility and frictional coupling of receptors to the cytoskeleton were separately recognized as important factors but a systematic study to explore their biophysical role in spreading was hitherto missing. To explore the impact of ligand mobility, we prepared chemically identical substrates on which molecules of anti-CD3 (capable of binding and activating the T cell receptor complex), were either immobilized or able to diffuse. We quantified the T cell spreading area and cell edge dynamics using quantitative reflection interference contrast microscopy, and imaged the actin distribution. On mobile ligands, as compared to fixed ligands, the cells spread much less, the actin is centrally, rather than peripherally distributed and the edge dynamics is largely altered. Blocking myosin-II or adding molecules of ICAM1 on the substrate largely abrogates these differences. We explain these observations by building a model based on the balance of forces between activation-dependent actin polymerization and actomyosin-generated tension on one hand, and on the frictional coupling of the ligand-receptor complexes with the actin cytoskeleton, the membrane and the substrate, on the other hand. Introducing the measured edge velocities in the model, we estimate the coefficient of frictional coupling between T Cell receptors or LFA-1 and the actin cytoskeleton. Our results provide for the first time, to our knowledge, a quantitative framework bridging T cell-specific biology with concepts developed for integrin-based mechanisms of spreading.
Collapse
|
21
|
Celik E, Faridi MH, Kumar V, Deep S, Moy VT, Gupta V. Agonist leukadherin-1 increases CD11b/CD18-dependent adhesion via membrane tethers. Biophys J 2014; 105:2517-27. [PMID: 24314082 DOI: 10.1016/j.bpj.2013.10.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/09/2013] [Accepted: 10/18/2013] [Indexed: 01/13/2023] Open
Abstract
Integrin CD11b/CD18 is a key adhesion receptor that mediates leukocyte migration and immune functions. Leukadherin-1 (LA1) is a small molecule agonist that enhances CD11b/CD18-dependent cell adhesion to its ligand ICAM-1. Here, we used single-molecule force spectroscopy to investigate the biophysical mechanism by which LA1-activated CD11b/CD18 mediates leukocyte adhesion. Between the two distinct populations of CD11b/CD18:ICAM-1 complex that participate in cell adhesion, the cytoskeleton(CSK)-anchored elastic elements and the membrane tethers, we found that LA1 enhanced binding of CD11b/CD18 on K562 cells to ICAM-1 via the formation of long membrane tethers, whereas Mn(2+) additionally increased ICAM-1 binding via CSK-anchored bonds. LA1 activated wild-type and LFA1(-/-) neutrophils also showed longer detachment distances and time from ICAM-1-coated atomic force microscopy tips, but significantly lower detachment force, as compared to the Mn(2+)-activated cells, confirming that LA1 primarily increased membrane-tether bonds to enhance CD11b/CD18:ICAM-1 binding, whereas Mn(2+) induced additional CSK-anchored bond formation. The results suggest that the two types of agonists differentially activate integrins and couple them to the cellular machinery, providing what we feel are new insights into signal mechanotransduction by such agents.
Collapse
Affiliation(s)
- Emrah Celik
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | | | | |
Collapse
|
22
|
Meijer M, Rijkers GT, van Overveld FJ. Neutrophils and emerging targets for treatment in chronic obstructive pulmonary disease. Expert Rev Clin Immunol 2014; 9:1055-68. [PMID: 24168412 DOI: 10.1586/1744666x.2013.851347] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by a decreased airflow due to airway narrowing that, once it occurs, is not fully reversible. The disease usually is progressive and associated with an enhanced inflammatory response in the lungs after exposure to noxious particles or gases. After removal of the noxious particles, the inflammation can continue in a self-sustaining manner. It has been established that improper activation of neutrophils lies at the core of the pathology. This paper provides an overview of the mechanisms by which neutrophils can induce the pulmonary damage of COPD. As the pathogenesis of COPD is slowly being unraveled, new points of intervention are discovered, some of which with promising results.
Collapse
Affiliation(s)
- Mariska Meijer
- Department of Science, University College Roosevelt, Lange Noordstraat 1, 4113 CB Middelburg, The Netherlands
| | | | | |
Collapse
|
23
|
Cox N, Pilling D, Gomer RH. Serum amyloid P: a systemic regulator of the innate immune response. J Leukoc Biol 2014; 96:739-43. [PMID: 24804675 DOI: 10.1189/jlb.1mr0114-068r] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The pentraxin SAP reduces neutrophil adhesion to ECM proteins, inhibits the differentiation of monocytes into fibrocytes, attenuates profibrotic macrophages, activates the complement pathway, and promotes phagocytosis of cell debris. Together, these effects of SAP regulate key aspects of inflammation and set a threshold for immune cell activation. Here, we present a review of SAP biology with an emphasis on SAP receptor interactions and how the effect of SAP on monocytes and macrophages has been explored to develop this protein as a therapeutic for renal and lung injuries. We also discuss how there remain many unanswered questions about the role of SAP in innate immunity.
Collapse
Affiliation(s)
- Nehemiah Cox
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Darrell Pilling
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
24
|
Kruss S, Erpenbeck L, Amschler K, Mundinger TA, Boehm H, Helms HJ, Friede T, Andrews RK, Schön MP, Spatz JP. Adhesion maturation of neutrophils on nanoscopically presented platelet glycoprotein Ibα. ACS NANO 2013; 7:9984-96. [PMID: 24093566 PMCID: PMC4122703 DOI: 10.1021/nn403923h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Neutrophilic granulocytes play a fundamental role in cardiovascular disease. They interact with platelet aggregates via the integrin Mac-1 and the platelet receptor glycoprotein Ibα (GPIbα). In vivo, GPIbα presentation is highly variable under different physiological and pathophysiological conditions. Here, we quantitatively determined the conditions for neutrophil adhesion in a biomimetic in vitro system, which allowed precise adjustment of the spacings between human GPIbα presented on the nanoscale from 60 to 200 nm. Unlike most conventional nanopatterning approaches, this method provided control over the local receptor density (spacing) rather than just the global receptor density. Under physiological flow conditions, neutrophils required a minimum spacing of GPIbα molecules to successfully adhere. In contrast, under low-flow conditions, neutrophils adhered on all tested spacings with subtle but nonlinear differences in cell response, including spreading area, spreading kinetics, adhesion maturation, and mobility. Surprisingly, Mac-1-dependent neutrophil adhesion was very robust to GPIbα density variations up to 1 order of magnitude. This complex response map indicates that neutrophil adhesion under flow and adhesion maturation are differentially regulated by GPIbα density. Our study reveals how Mac-1/GPIbα interactions govern cell adhesion and how neutrophils process the number of available surface receptors on the nanoscale. In the future, such in vitro studies can be useful to determine optimum therapeutic ranges for targeting this interaction.
Collapse
Affiliation(s)
- Sebastian Kruss
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, and Institute of Physical Chemistry, Heidelberg University, Heisenbergstraße 3, Stuttgart 70569, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, 40 Robert-Koch-Straße, Göttingen 37075, Germany
| | - Katharina Amschler
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, 40 Robert-Koch-Straße, Göttingen 37075, Germany
| | - Tabea A. Mundinger
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, and Institute of Physical Chemistry, Heidelberg University, Heisenbergstraße 3, Stuttgart 70569, Germany
| | - Heike Boehm
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, and Institute of Physical Chemistry, Heidelberg University, Heisenbergstraße 3, Stuttgart 70569, Germany
| | - Hans-Joachim Helms
- Department of Medical Statistics, University Medical Center Göttingen, 32 Humboldtallee, Göttingen 37073, Germany
| | - Tim Friede
- Department of Medical Statistics, University Medical Center Göttingen, 32 Humboldtallee, Göttingen 37073, Germany
| | - Robert K. Andrews
- Australian Center for Blood Diseases, Monash University, 89 Commercial Road, Melbourne 3004, Australia
| | - Michael P. Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, 40 Robert-Koch-Straße, Göttingen 37075, Germany
- Address correspondence to ,
| | - Joachim P. Spatz
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, and Institute of Physical Chemistry, Heidelberg University, Heisenbergstraße 3, Stuttgart 70569, Germany
- Address correspondence to ,
| |
Collapse
|
25
|
Serum amyloid P inhibits granulocyte adhesion. FIBROGENESIS & TISSUE REPAIR 2013; 6:2. [PMID: 23324174 PMCID: PMC3627900 DOI: 10.1186/1755-1536-6-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/07/2012] [Indexed: 12/28/2022]
Abstract
Background The extravasation of granulocytes (such as neutrophils) at a site of inflammation is a key aspect of the innate immune system. Signals from the site of inflammation upregulate granulocyte adhesion to the endothelium to initiate extravasation, and also enhance granulocyte adhesion to extracellular matrix proteins to facilitate granulocyte movement through the inflamed tissue. During the resolution of inflammation, other signals inhibit granulocyte adhesion to slow and ultimately stop granulocyte influx into the tissue. In a variety of inflammatory diseases such as acute respiratory distress syndrome, an excess infiltration of granulocytes into a tissue causes undesired collateral damage, and being able to reduce granulocyte adhesion and influx could reduce this damage. Results We found that serum amyloid P (SAP), a constitutive protein component of the blood, inhibits granulocyte spreading and granulocyte adhesion to extracellular matrix components. This indicates that in addition to granulocyte adhesion inhibitors that are secreted during the resolution of inflammation, a granulocyte adhesion inhibitor is present at all times in the blood. Although SAP affects adhesion, it does not affect the granulocyte adhesion molecules CD11b, CD62L, CD18, or CD44. SAP also has no effect on the production of hydrogen peroxide by resting or stimulated granulocytes, or N-formyl-methionine-leucine-phenylalanine (fMLP)-induced granulocyte migration. In mice treated with intratracheal bleomycin to induce granulocyte accumulation in the lungs, SAP injections reduced the number of granulocytes in the lungs. Conclusions We found that SAP, a constitutive component of blood, is a granulocyte adhesion inhibitor. We hypothesize that SAP allows granulocytes to sense whether they are in the blood or in a tissue.
Collapse
|
26
|
Klein K, Maier T, Hirschfeld-Warneken VC, Spatz JP. Marker-free phenotyping of tumor cells by fractal analysis of reflection interference contrast microscopy images. NANO LETTERS 2013; 13:5474-9. [PMID: 24079895 PMCID: PMC3831548 DOI: 10.1021/nl4030402] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/26/2013] [Indexed: 05/21/2023]
Abstract
Phenotyping of tumor cells by marker-free quantification is important for cancer diagnostics. For the first time, fractal analysis of reflection interference contrast microscopy images of single living cells was employed as a new method to distinguish between different nanoscopic membrane features of tumor cells. Since tumor progression correlates with a higher degree of chaos within the cell, it can be quantified mathematically by fractality. Our results show a high accuracy in identifying malignant cells with a failure chance of 3%, which is far better than today's applied methods.
Collapse
|
27
|
Sugiyama N, Asai Y, Yamauchi T, Kataoka T, Ikeda T, Iwai H, Sakurai T, Mizuguchi Y. Label-free characterization of living human induced pluripotent stem cells by subcellular topographic imaging technique using full-field quantitative phase microscopy coupled with interference reflection microscopy. BIOMEDICAL OPTICS EXPRESS 2012; 3:2175-83. [PMID: 23024911 PMCID: PMC3447559 DOI: 10.1364/boe.3.002175] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/02/2012] [Accepted: 08/19/2012] [Indexed: 05/20/2023]
Abstract
There is a need for a noninvasive technique to monitor living pluripotent stem cell condition without any labeling. We present an optical imaging technique that is able to capture information about optical path difference through the cell and cell adhesion properties simultaneously using a combination of quantitative phase microscopy (QPM) and interference reflection microscopy (IRM) techniques. As a novel application of QPM and IRM, this multimodal imaging technique demonstrated its ability to distinguish the undifferentiated status of human induced pluripotent stem (hiPS) cells quantitatively based on the variation of optical path difference between the nucleus and cytoplasm as well as hiPS cell-specific cell adhesion properties.
Collapse
Affiliation(s)
- Norikazu Sugiyama
- System Division, Hamamatsu Photonics K.K., 812 Joko-cho, Hamamatsu-city, Shizuoka, 431-3196, Japan
| | - Yasuyuki Asai
- ReproCELL Inc., 3-8-11 Shin-Yokohama, Kanagawa, 222-0033, Japan
| | - Toyohiko Yamauchi
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamamatsu-city, Shizuoka, 434-8601, Japan
| | - Takuji Kataoka
- System Division, Hamamatsu Photonics K.K., 812 Joko-cho, Hamamatsu-city, Shizuoka, 431-3196, Japan
| | - Takahiro Ikeda
- Pi Photonics Inc., 3-1-7 Wajiyama, Hamamatsu-city, Shizuoka, 432-8003, Japan
| | - Hidenao Iwai
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamamatsu-city, Shizuoka, 434-8601, Japan
| | - Takashi Sakurai
- Electronics-Inspired Interdisciplinary Research Institute, Toyohashi University of Technology, 1-1 Hibarigaoka, Tennpaku-cho, Toyohashi-city, Aichi, 441-8580, Japan
| | - Yoshinori Mizuguchi
- System Division, Hamamatsu Photonics K.K., 812 Joko-cho, Hamamatsu-city, Shizuoka, 431-3196, Japan
| |
Collapse
|
28
|
Abstract
Tremendous progress has been made in recent years in understanding the working of the living cell, including its micro-anatomy, signalling networks, and regulation of genes. However, an understanding of cellular phenomena using fundamental laws starting from first principles is still very far away. Part of the reason is that a cell is an active and exquisitely complex system where every part is linked to the other. Thus, it is difficult or even impossible to design experiments that selectively and exclusively probe a chosen aspect of the cell. Various kinds of idealised systems and cell models have been used to circumvent this problem. An important example is a giant unilamellar vesicle (GUV, also called giant liposome), which provides a cell-sized confined volume to study biochemical reactions as well as self-assembly processes that occur on the membrane. The GUV membrane can be designed suitably to present selected, correctly-oriented cell-membrane proteins, whose mobility is confined to two dimensions. Here, we present recent advances in GUV design and the use of GUVs as cell models that enable quantitative testing leading to insight into the working of real cells. We briefly recapitulate important classical concepts in membrane biophysics emphasising the advantages and limitations of GUVs. We then present results obtained over the last decades using GUVs, choosing the formation of membrane domains and cell adhesion as examples for in-depth treatment. Insight into cell adhesion obtained using micro-interferometry is treated in detail. We conclude by summarising the open questions and possible future directions.
Collapse
Affiliation(s)
- Susanne F Fenz
- Leiden Institute of Physics: Physics of Life Processes, Leiden University, The Netherlands
| | | |
Collapse
|
29
|
Taylor ZR, Keay JC, Sanchez ES, Johnson MB, Schmidtke DW. Independently controlling protein dot size and spacing in particle lithography. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:9656-63. [PMID: 22656270 DOI: 10.1021/la300806m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Particle lithography is a relatively simple, inexpensive technique used to pattern inorganics, metals, polymers, and biological molecules on the micro- and nanometer scales. Previously, we used particle lithography to create hexagonal patterns of protein dots in a protein resistant background of methoxy-poly(ethylene glycol)-silane (mPEG-sil). In this work, we describe a simple heating procedure to overcome a potential limitation of particle lithography: the simultaneous change in feature size and center-to-center spacing as the diameter of the spheres used in the lithographic mask is changed. Uniform heating was used to make single-diameter protein patterns with dot sizes of approximately 2-4 or 2-8 μm, depending on the diameter of the spheres used in the lithographic mask, while differential heating was used to make a continuous gradient of dot sizes of approximately 1-9 μm on a single surface. We demonstrate the applicability of these substrates by observing the differences in neutrophil spreading on patterned and unpatterned protein coated surfaces.
Collapse
Affiliation(s)
- Zachary R Taylor
- University of Oklahoma Bioengineering Center, 100 East Boyd, Norman, Oklahoma 73019, United States
| | | | | | | | | |
Collapse
|
30
|
Lam Hui K, Wang C, Grooman B, Wayt J, Upadhyaya A. Membrane dynamics correlate with formation of signaling clusters during cell spreading. Biophys J 2012; 102:1524-33. [PMID: 22500752 DOI: 10.1016/j.bpj.2012.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 01/31/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022] Open
Abstract
The morphology and duration of contacts between cells and adhesive surfaces play a key role in several biological processes, such as cell migration, cell differentiation, and the immune response. The interaction of receptors on the cell membrane with ligands on the adhesive surface leads to triggering of signaling pathways, which allow cytoskeletal rearrangement, and large-scale deformation of the cell membrane, which allows the cell to spread over the substrate. Despite numerous studies of cell spreading, the nanometer-scale dynamics of the membrane during formation of contacts, spreading, and initiation of signaling are not well understood. Using interference reflection microscopy, we study the kinetics of cell spreading at the micron scale, as well as the topography and fluctuations of the membrane at the nanometer scale during spreading of Jurkat T cells on antibody-coated substrates. We observed two modes of spreading, which were characterized by dramatic differences in membrane dynamics and topography. Formation of signaling clusters was closely related to the movement and morphology of the membrane in contact with the activating surface. Our results suggest that cell membrane morphology may be a critical constraint on signaling at the cell-substrate interface.
Collapse
Affiliation(s)
- King Lam Hui
- Department of Physics, University of Maryland, College Park, Maryland, USA
| | | | | | | | | |
Collapse
|
31
|
Hu X, Kuhn JR. Actin filament attachments for sustained motility in vitro are maintained by filament bundling. PLoS One 2012; 7:e31385. [PMID: 22359589 PMCID: PMC3281059 DOI: 10.1371/journal.pone.0031385] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/06/2012] [Indexed: 02/06/2023] Open
Abstract
We reconstructed cellular motility in vitro from individual proteins to investigate how actin filaments are organized at the leading edge. Using total internal reflection fluorescence microscopy of actin filaments, we tested how profilin, Arp2/3, and capping protein (CP) function together to propel thin glass nanofibers or beads coated with N-WASP WCA domains. Thin nanofibers produced wide comet tails that showed more structural variation in actin filament organization than did bead substrates. During sustained motility, physiological concentrations of Mg(2+) generated actin filament bundles that processively attached to the nanofiber. Reduction of total Mg(2+) abolished particle motility and actin attachment to the particle surface without affecting actin polymerization, Arp2/3 nucleation, or filament capping. Analysis of similar motility of microspheres showed that loss of filament bundling did not affect actin shell formation or symmetry breaking but eliminated sustained attachments between the comet tail and the particle surface. Addition of Mg(2+), Lys-Lys(2+), or fascin restored both comet tail attachment and sustained particle motility in low Mg(2+) buffers. TIRF microscopic analysis of filaments captured by WCA-coated beads in the absence of Arp2/3, profilin, and CP showed that filament bundling by polycation or fascin addition increased barbed end capture by WCA domains. We propose a model in which CP directs barbed ends toward the leading edge and polycation-induced filament bundling sustains processive barbed end attachment to the leading edge.
Collapse
Affiliation(s)
- Xiaohua Hu
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Jeffrey R. Kuhn
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
32
|
Lee D, Fong KP, King MR, Brass LF, Hammer DA. Differential dynamics of platelet contact and spreading. Biophys J 2012; 102:472-82. [PMID: 22325269 DOI: 10.1016/j.bpj.2011.10.056] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/19/2011] [Accepted: 10/18/2011] [Indexed: 11/27/2022] Open
Abstract
Platelet spreading is critical for hemostatic plug formation and thrombosis. However, the detailed dynamics of platelet spreading as a function of receptor-ligand adhesive interactions has not been thoroughly investigated. Using reflection interference contrast microscopy, we found that both adhesive interactions and PAR4 activation affect the dynamics of platelet membrane contact formation during spreading. The initial growth of close contact area during spreading was controlled by the combination of different immobilized ligands or PAR4 activation on fibrinogen, whereas the growth of the total area of spreading was independent of adhesion type and PAR4 signaling. We found that filopodia extend to their maximal length and then contract over time; and that filopodial protrusion and expansion were affected by PAR4 signaling. Upon PAR4 activation, the integrin α(IIb)β(3) mediated close contact to fibrinogen substrata and led to the formation of ringlike patterns in the platelet contact zone. A systematic study of platelet spreading of GPVI-, α(2)-, or β(3)-deficient platelets on collagen or fibrinogen suggests the integrin α(2) is indispensable for spreading on collagen. The platelet collagen receptors GPVI and α(2) regulate integrin α(IIb)β(3)-mediated platelet spreading on fibrinogen. This work elucidates quantitatively how receptor-ligand adhesion and biochemical signals synergistically control platelet spreading.
Collapse
Affiliation(s)
- Dooyoung Lee
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
33
|
Rossen NS, Hansen AJ, Selhuber-Unkel C, Oddershede LB. Arachidonic acid randomizes endothelial cell motion and regulates adhesion and migration. PLoS One 2011; 6:e25196. [PMID: 21966453 PMCID: PMC3179469 DOI: 10.1371/journal.pone.0025196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 08/30/2011] [Indexed: 11/18/2022] Open
Abstract
Cell adhesion and migration are essential for the evolution, organization, and repair of living organisms. An example of a combination of these processes is the formation of new blood vessels (angiogenesis), which is mediated by a directed migration and adhesion of endothelial cells (ECs). Angiogenesis is an essential part of wound healing and a prerequisite of cancerous tumor growth. We investigated the effect of the amphiphilic compound arachidonic acid (AA) on EC adhesion and migration by combining live cell imaging with biophysical analysis methods. AA significantly influenced both EC adhesion and migration, in either a stimulating or inhibiting fashion depending on AA concentration. The temporal evolution of cell adhesion area was well described by a two-phase model. In the first phase, the spreading dynamics were independent of AA concentration. In the latter phase, the spreading dynamics increased at low AA concentrations and decreased at high AA concentrations. AA also affected EC migration; though the instantaneous speed of individual cells remained independent of AA concentration, the individual cells lost their sense of direction upon addition of AA, thus giving rise to an overall decrease in the collective motion of a confluent EC monolayer into vacant space. Addition of AA also caused ECs to become more elongated, this possibly being related to incorporation of AA in the EC membrane thus mediating a change in the viscosity of the membrane. Hence, AA is a promising non-receptor specific regulator of wound healing and angiogenesis.
Collapse
|
34
|
Occlusive thrombi arise in mammals but not birds in response to arterial injury: evolutionary insight into human cardiovascular disease. Blood 2011; 118:3661-9. [PMID: 21816834 DOI: 10.1182/blood-2011-02-338244] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mammalian platelets are small, anuclear circulating cells that form tightly adherent, shear-resistant thrombi to prevent blood loss after vessel injury. Platelet thrombi that form in coronary and carotid arteries also underlie common vascular diseases such as myocardial infarction and stroke and are the target of drugs used to treat these diseases. Birds have high-pressure cardiovascular systems like mammals but generate nucleated thrombocytes rather than platelets. Here, we show that avian thrombocytes respond to many of the same activating stimuli as mammalian platelets but are unable to form shear-resistant aggregates ex vivo. Avian thrombocytes are larger than mammalian platelets, spread less efficiently on collagen, and express much lower levels of the α(₂b)β₃ integrin required for aggregate formation, features predicted to make thrombocyte aggregates less resistant than platelets are to the high fluid shear forces of the arterial vasculature. In vivo carotid vessel injury stimulates the formation of occlusive platelet thrombi in mice but not in the size- and flow-matched carotid artery of the Australian budgerigar. These studies indicate that unique physical and molecular features of mammalian platelets enable them to form shear-resistant arterial thrombi, an essential element in the pathogenesis of human cardiovascular diseases.
Collapse
|
35
|
Norman LL, Brugués J, Brugés J, Sengupta K, Sens P, Aranda-Espinoza H. Cell blebbing and membrane area homeostasis in spreading and retracting cells. Biophys J 2011; 99:1726-33. [PMID: 20858416 DOI: 10.1016/j.bpj.2010.07.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/15/2010] [Accepted: 07/16/2010] [Indexed: 10/19/2022] Open
Abstract
Cells remodel their plasma membrane and cytoskeleton during numerous physiological processes, including spreading and motility. Morphological changes require the cell to adjust its membrane tension on different timescales. While it is known that endo- and exocytosis regulate the cell membrane area in a timescale of 1 h, faster processes, such as abrupt cell detachment, require faster regulation of the plasma membrane tension. In this article, we demonstrate that cell blebbing plays a critical role in the global mechanical homeostasis of the cell through regulation of membrane tension. Abrupt cell detachment leads to pronounced blebbing (which slow detachment does not), and blebbing decreases with time in a dynamin-dependent fashion. Cells only start spreading after a lag period whose duration depends on the cell's blebbing activity. Our model quantitatively reproduces the monotonic decay of the blebbing activity and accounts for the lag phase in the spreading of blebbing cells.
Collapse
Affiliation(s)
- Leann L Norman
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | | | | | | | | | | |
Collapse
|
36
|
Norman L, Sengupta K, Aranda-Espinoza H. Blebbing dynamics during endothelial cell spreading. Eur J Cell Biol 2010; 90:37-48. [PMID: 21087809 DOI: 10.1016/j.ejcb.2010.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 09/03/2010] [Accepted: 09/20/2010] [Indexed: 12/01/2022] Open
Abstract
Cell spreading is a critical component of numerous physiological phenomena including cancer metastasis, embryonic development, and mitosis. We have previously illustrated that cellular blebs appear after abrupt cell-substrate detachment and play a critical role in regulating membrane tension; however, the dynamics of bleb-substrate interactions during spreading remains unclear. Here we explore the role of blebs during endothelial cell spreading using chemical and osmotic modifications to either induce or inhibit bleb formation. We track cell-substrate dynamics as well as individual blebs using surface sensitive microscopic techniques. Blebbing cells (both control and chemically induced) exhibit increased lag times prior to fast growth. Interestingly, lamellae appear later for blebbing compared to non-blebbing cells, and in all cases, lamellae signal the start of fast spreading. Our results indicate that cellular blebs play a key role in the early stage of cell spreading, first by controling the initial cell adhesion and then by presenting a dynamic inhibition of cell spreading until a lamella appears and fast spreading ensues.
Collapse
Affiliation(s)
- Leann Norman
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
| | | | | |
Collapse
|
37
|
Diminished contact-dependent reinforcement of Syk activation underlies impaired thrombus growth in mice lacking Semaphorin 4D. Blood 2010; 116:5707-15. [PMID: 20855865 DOI: 10.1182/blood-2010-04-279943] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We recently reported that Semaphorin 4D (Sema4D) and its receptors are expressed on the platelet surface and showed that Sema4D((-/-)) mice have a selective defect in collagen-induced platelet aggregation and an impaired vascular injury response. Here we investigated the mechanisms involved, tested the role of platelet-platelet contacts in Sema4D-mediated events, and examined the relationship between Sema4D-dependent signaling and integrin α(IIb)β(3) outside-in signaling. The results show that spleen tyrosine kinase (Syk) activation, an early step in collagen signaling via the glycoprotein VI (GPVI)/FcRγ complex, is greatly reduced in Sema4D((-/-)) platelets and can be restored by adding soluble Sema4D. Earlier events, including FcRγ phosphorylation, occur normally; later events are impaired. In contrast, when engagement of α(IIb)β(3) was blocked, Sema4D((-/-)) and control platelets were indistinguishable in assays of Syk activation, adhesion, spreading on collagen, and activation of α(IIb)β(3). Finally, we found that, unlike the Sema4D knockout, α(IIb)β(3) blockade inhibited FcRγ phosphorylation and that stimulating aggregation with Mn(2+) failed to normalize Syk activation in the absence of Sema4D. Collectively, these results show that α(IIb)β(3) and Sema4D jointly promote collagen responses by amplifying Syk activation, partly by forming integrin-mediated contacts that enable the binding of Sema4D to its receptors and partly through integrin outside-in signaling. These 2 processes are interdependent, but distinguishable.
Collapse
|
38
|
Ryzhkov P, Prass M, Gummich M, Kühn JS, Oettmeier C, Döbereiner HG. Adhesion patterns in early cell spreading. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:194106. [PMID: 21386433 DOI: 10.1088/0953-8984/22/19/194106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mouse embryonic fibroblasts explore the chemical suitability before spreading on a given substrate. We find this early phase of cell spreading to be characterized by transient adhesion patches with a typical mean size of (1.0 ± 0.4) µm and a lifetime of (33 ± 12) s. Eventually, these patches fuse to initiate extensive spreading of the cell. We monitor cell adhesion using reflection interference contrast and total internal reflection fluorescence microscopy. Digital time lapse movies are analysed employing spatio-temporal correlation functions of adhesion patterns. Correlation length and time can be scaled to obtain a master curve at the fusion point.
Collapse
Affiliation(s)
- Pavel Ryzhkov
- Institut für Biophysik, Universität Bremen, Bremen, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Norman LL, Oetama RJ, Dembo M, Byfield F, Hammer DA, Levitan I, Aranda-Espinoza H. Modification of Cellular Cholesterol Content Affects Traction Force, Adhesion and Cell Spreading. Cell Mol Bioeng 2010; 3:151-162. [PMID: 21461187 DOI: 10.1007/s12195-010-0119-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cellular cholesterol is a critical component of the plasma membrane, and plays a key role in determining the physical properties of the lipid bilayer, such as elasticity, viscosity, and permeability. Surprisingly, it has been shown that cholesterol depletion increases cell stiffness, not due to plasma membrane stiffening, but rather, due to the interaction between the actin cytoskeleton and the plasma membrane. This indicates that traction stresses of the acto-myosin complex likely increase during cholesterol depletion. Here we use force traction microscopy to quantify the forces individual cells are exerting on the substrate, and total internal reflection fluorescence microscopy as well as interference reflection microscopy to observe cell-substrate adhesion and spreading. We show that single cells depleted of cholesterol produce larger traction forces and have large focal adhesions compared to untreated or cholesterol-enriched cells. Cholesterol depletion also causes a decrease in adhesion area for both single cells and monolayers. Spreading experiments illustrate a decrease in spreading area for cholesterol-depleted cells, and no effect on cholesterol-enriched cells. These results demonstrate that cholesterol plays an important role in controlling and regulating the cell-substrate interactions through the actin-plasma membrane complex, cell-cell adhesion, and spreading.
Collapse
Affiliation(s)
- Leann L Norman
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Limozin L, Sengupta K. Quantitative reflection interference contrast microscopy (RICM) in soft matter and cell adhesion. Chemphyschem 2010; 10:2752-68. [PMID: 19816893 DOI: 10.1002/cphc.200900601] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adhesion can be quantified by measuring the distance between the interacting surfaces. Reflection interference contrast microscopy (RICM), with its ability to measure inter-surface distances under water with nanometric precision and milliseconds time resolution, is ideally suited to studying the dynamics of adhesion in soft systems. Recent technical developments, which include innovative image analysis and the use of multi-coloured illumination, have led to renewed interest in this technique. Unambiguous quantitative measurements have been achieved for colloidal beads and model membranes, thus revealing new insights and applications. Quantification of data from cells shows exciting prospects. Herein, we review the basic principles and recent developments of RICM applied to studies of dynamical adhesion processes in soft matter and cell biology and provide practical hints to potential users.
Collapse
Affiliation(s)
- Laurent Limozin
- Adhesion and Inflammation, CNRS UMR 6212, Inserm U600, Aix-Marseille University, Luminy, Marseille, France.
| | | |
Collapse
|
41
|
Münter S, Sabass B, Selhuber-Unkel C, Kudryashev M, Hegge S, Engel U, Spatz JP, Matuschewski K, Schwarz US, Frischknecht F. Plasmodium Sporozoite Motility Is Modulated by the Turnover of Discrete Adhesion Sites. Cell Host Microbe 2009; 6:551-62. [DOI: 10.1016/j.chom.2009.11.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/21/2009] [Accepted: 11/19/2009] [Indexed: 01/19/2023]
|
42
|
Streicher P, Nassoy P, Bärmann M, Dif A, Marchi-Artzner V, Brochard-Wyart F, Spatz J, Bassereau P. Integrin reconstituted in GUVs: a biomimetic system to study initial steps of cell spreading. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2291-300. [PMID: 19665445 DOI: 10.1016/j.bbamem.2009.07.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 07/10/2009] [Accepted: 07/27/2009] [Indexed: 10/20/2022]
Abstract
A novel in vitro membrane system mimicking the first steps of integrin-mediated cell spreading has been developed and characterized. We have reconstituted the transmembrane alpha(IIb)beta(3) integrin into giant unilamellar vesicles (GUVs). The reconstitution process has been validated by analyzing protein incorporation and biological activity by checking the specific interaction of GUVs containing integrin with quantum dots (QD) or surfaces coated with the integrin receptor tri-peptide RGD.(1) The spreading dynamics of integrin-functionalized GUVs onto fibrinogen-coated surfaces has been monitored by Reflection Interference Contrast Microscopy (RICM). Our results are quantitatively consistent with a theoretical model based on a dewetting process coupled to binder diffusion and provide a comprehensive description of the following sequence: i) nucleation and growth of adhesive patches coupled to the diffusion of the adhesive proteins to these adhesive zones ii) fusion of patches and formation of an adhesive ring iii) complete spreading of the GUV by dewetting of the central liquid film from the border to form an adhesive circular patch that is not significantly enriched in integrins, as compared to the unbound membrane. This finding is consistent with the recognized role of the actin cytoskeleton in stabilizing focal complexes and focal adhesions in a cell-extracellular matrix contact. These very large unilamellar integrin-containing vesicles provide a unique artificial system, which could be further developed towards realistic cell mimic and used to study the complexity of integrin-mediated cell spreading.
Collapse
Affiliation(s)
- Pia Streicher
- Institut Curie, Centre de Recherche, Université Pierre et Marie Curie, F-75248 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sengupta K, Moyen E, Macé M, Benoliel AM, Pierres A, Thibaudau F, Masson L, Limozin L, Bongrand P, Hanbücken M. Large-scale ordered plastic nanopillars for quantitative live-cell imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:449-453. [PMID: 19189324 DOI: 10.1002/smll.200800836] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Kheya Sengupta
- Centre Interdisciplinaire de Nanosciences de Marseille CINaM UPR CNRS 3118, Aix-Marseille Université Campus de Luminy 13288 Marseille cedex 9, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhao D, Meng X, Cai C, Yuan C, Zou F. Temperature pretreatment alters the polarization response of human neutrophils to the chemoattractant N-formyl-Met-Leu-Phe. Inflammation 2009; 32:47-56. [PMID: 19067145 DOI: 10.1007/s10753-008-9101-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neutrophils present a polarized morphology upon stimulation of chemoattractants, which play a vital role in host-defense mechanisms. Many studies have been published on neutrophil polarization, in which three different temperatures pretreatment (4 degrees C, 25 degrees C and 37 degrees C) have been used. However, no study has investigated whether different temperature pretreatments affect neutrophil polarization. In the current study, we examined the effects of 4 degrees C, 25 degrees C and 37 degrees C pretreatment temperatures on short-term (1 or 3 min) chemoattractant-induced polarization. Human neutrophils were polarized upon the stimulation of N-formyl-Met-Leu-Phe (fMLP) after pretreated by different temperature. The morphological changes of the neutrophils were investigated under the microscopy. The F-actin polymerization was determined by immunological histological chemistry. There were more head-tail polarized cells (>50% of the cells) in the 25 degrees C and 37 degrees C pretreatment groups than in the 4 degrees C group (32.4%). The average lengths of the pseudopod were 3.2 +/- 1.1 microm (n = 17), 5.3 +/- 2.1 microm (n = 12) and 7.4 +/- 2.7 microm (n = 21) in the 4 degrees C, 25 degrees C and 37 degrees C pretreatment groups, respectively; the 4 degrees C and 37 degrees C pretreatment groups were statistically different (P < 0.05). Additionally, there was a statistically significant difference in the pseudopod extension rate among the three groups, as well as the Lamellipod percentage between the 4 degrees C group and the other two groups within 1 min of stimulation with fMLP. This study demonstrates that different temperature pretreatments affect neutrophil polarization upon short-term stimulation with fMLP.
Collapse
Affiliation(s)
- Dongliang Zhao
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | | | | | | | | |
Collapse
|
45
|
Khismatullin DB. Chapter 3 The Cytoskeleton and Deformability of White Blood Cells. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)64003-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Reister-Gottfried E, Sengupta K, Lorz B, Sackmann E, Seifert U, Smith AS. Dynamics of specific vesicle-substrate adhesion: from local events to global dynamics. PHYSICAL REVIEW LETTERS 2008; 101:208103. [PMID: 19113383 DOI: 10.1103/physrevlett.101.208103] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Indexed: 05/27/2023]
Abstract
We present a synergistic combination of simulations and experimental data on the dynamics of membrane adhesion. We show that a change in either the density or the strength of the bonds results in very different dynamics. Such behavior is explained by introducing an effective binding affinity that emerges as a result of the competition between the strength of the chemical bonds and the environment defined by the fluctuating membrane.
Collapse
|
47
|
Smith AS, Sengupta K, Goennenwein S, Seifert U, Sackmann E. Force-induced growth of adhesion domains is controlled by receptor mobility. Proc Natl Acad Sci U S A 2008; 105:6906-11. [PMID: 18463289 PMCID: PMC2383988 DOI: 10.1073/pnas.0801706105] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Indexed: 01/08/2023] Open
Abstract
In living cells, adhesion structures have the astonishing ability to grow and strengthen under force. Despite the rising evidence of the importance of this phenomenon, little is known about the underlying mechanism. Here, we show that force-induced adhesion-strengthening can occur purely because of the thermodynamic response to the elastic deformation of the membrane, even in the absence of the actively regulated cytoskeleton of the cell, which was hitherto deemed necessary. We impose pN-forces on two fluid membranes, locally pre-adhered by RGD-integrin binding. One of the binding partners is always mobile whereas the mobility of the other can be switched on or off. Immediate passive strengthening of adhesion structures occurs in both cases. When both binding partners are mobile, strengthening is aided by lateral movement of intact bonds as a transient response to force-induced membrane-deformation. By extending our microinterferometric technique to the suboptical regime, we show that the adhesion, as well as the resistance to force-induced de-adhesion, is greatly enhanced when both, rather than only one, of the binding partners are mobile. We formulate a theory that explains our observations by linking the macroscopic shape deformation with the microscopic formation of bonds, which further elucidates the importance of receptor mobility. We propose this fast passive response to be the first-recognition that triggers signaling events leading to mechanosensing in living cells.
Collapse
Affiliation(s)
- Ana-Suncana Smith
- II. Institut für Theoretische Physik II, Universität Stuttgart, Pfaffenwaldring 57/III, D-70550 Stuttgart, Germany.
| | | | | | | | | |
Collapse
|
48
|
Seriburi P, McGuire S, Shastry A, Böhringer KF, Meldrum DR. Measurement of the Cell−Substrate Separation and the Projected Area of an Individual Adherent Cell Using Electric Cell−Substrate Impedance Sensing. Anal Chem 2008; 80:3677-83. [DOI: 10.1021/ac800036c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Pahnit Seriburi
- Microscale Life Sciences Center, University of Washington, Seattle, Washington 98195
| | - Shawn McGuire
- Microscale Life Sciences Center, University of Washington, Seattle, Washington 98195
| | - Ashutosh Shastry
- Microscale Life Sciences Center, University of Washington, Seattle, Washington 98195
| | - Karl F. Böhringer
- Microscale Life Sciences Center, University of Washington, Seattle, Washington 98195
| | - Deirdre R. Meldrum
- Microscale Life Sciences Center, University of Washington, Seattle, Washington 98195
| |
Collapse
|
49
|
Limozin L, Sengupta K. Modulation of vesicle adhesion and spreading kinetics by hyaluronan cushions. Biophys J 2007; 93:3300-13. [PMID: 17631530 PMCID: PMC2025668 DOI: 10.1529/biophysj.107.105544] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The adhesion of giant unilamellar phospholipid vesicles to planar substrates coated with extracellular matrix mimetic cushions of hyaluronan is studied using quantitative reflection interference contrast microscopy. The absolute height of the vesicle membrane at the vicinity of the substrate is measured by considering, for the first time, the refractive indices of the reflecting media. The thickness of the cushion is varied in the range of approximately 50-100 nm, by designing various coupling strategies. On bare protein-coated substrates, the vesicles spread fast (0.5 s) and form a uniform adhesion disk, with the average membrane height approximately 4 nm. On thick hyaluronan cushions (>80 nm), the membrane height is approximately the same as the thickness of the cushion, implying that the vesicle lies on top of the cushion. On a thin and inhomogeneous hyaluronan cushion, the adhesion is modified but not prevented. The spreading is slow ( approximately 20 s) compared to the no-cushion case. The average membrane height is approximately 10 nm and the adhesion disk is studded with blisterlike structures. Observations with fluorescent hyaluronan indicate that the polymer is compressed under, rather than expelled from, the adhesion disk. The adhesion energy density is approximately threefold higher in the no-cushion case (1.2 microJ/m(2)) as compared to the thin-cushion case (0.54 microJ/m(2)). In the thin-cushion case, the presence of short ( approximately 4 nm) glyco-polymers on the vesicles results in a hitherto unreported stable partial adhesion state--the membrane height ranges from zero to approximately 250 nm. The minimal model system presented here mimics in vitro the hyaluronan-modulated early stages of cell adhesion, and demonstrates that the presence of a polymer cushion influences both the final equilibrium adhesion-state and the spreading kinetics.
Collapse
Affiliation(s)
- Laurent Limozin
- Adhésion Cellulaire, Centre National de Recherche Scientifique UMR 6212, INSERM U600, Université de Mediterranée, Luminy, Marseille, France
| | | |
Collapse
|