1
|
Garelja M, Alexander T, Walker C, Hay D. Extracellular bimolecular fluorescence complementation for investigating membrane protein dimerization: a proof of concept using class B GPCRs. Biosci Rep 2024; 44:BSR20240449. [PMID: 39361899 PMCID: PMC11499381 DOI: 10.1042/bsr20240449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024] Open
Abstract
Bimolecular fluorescence complementation (BiFC) methodology uses split fluorescent proteins to detect interactions between proteins in living cells. To date, BiFC has been used to investigate receptor dimerization by splitting the fluorescent protein between the intracellular portions of different receptor components. We reasoned that attaching these split proteins to the extracellular N-terminus instead may improve the flexibility of this methodology and reduce the likelihood of impaired intracellular signal transduction. As a proof-of-concept, we used receptors for calcitonin gene-related peptide, which comprise heterodimers of either the calcitonin or calcitonin receptor-like receptor in complex with an accessory protein (receptor activity-modifying protein 1). We created fusion constructs in which split mVenus fragments were attached to either the C-termini or N-termini of receptor subunits. The resulting constructs were transfected into Cos7 and HEK293S cells, where we measured cAMP production in response to ligand stimulation, cell surface expression of receptor complexes, and BiFC fluorescence. Additionally, we investigated ligand-dependent internalization in HEK293S cells. We found N-terminal fusions were better tolerated with regards to cAMP signaling and receptor internalization. N-terminal fusions also allowed reconstitution of functional fluorescent mVenus proteins; however, fluorescence yields were lower than with C-terminal fusion. Our results suggest that BiFC methodologies can be applied to the receptor N-terminus, thereby increasing the flexibility of this approach, and enabling further insights into receptor dimerization.
Collapse
Affiliation(s)
- Michael L. Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Tyla I. Alexander
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Christopher S. Walker
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Debbie L. Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Kawata S, Mukai Y, Nishimura Y, Takahashi T, Saitoh N. Green fluorescent cAMP indicator of high speed and specificity suitable for neuronal live-cell imaging. Proc Natl Acad Sci U S A 2022; 119:e2122618119. [PMID: 35867738 PMCID: PMC9282276 DOI: 10.1073/pnas.2122618119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a canonical intracellular messenger playing diverse roles in cell functions. In neurons, cAMP promotes axonal growth during early development, and mediates sensory transduction and synaptic plasticity after maturation. The molecular cascades of cAMP are well documented, but its spatiotemporal profiles associated with neuronal functions remain hidden. Hence, we developed a genetically encoded cAMP indicator based on a bacterial cAMP-binding protein. This indicator "gCarvi" monitors [cAMP]i at 0.2 to 20 µM with a subsecond time resolution and a high specificity over cyclic guanosine monophosphate (cGMP). gCarvi can be converted to a ratiometric probe for [cAMP]i quantification and its expression can be specifically targeted to various subcellular compartments. Monomeric gCarvi also enables simultaneous multisignal monitoring in combination with other indicators. As a proof of concept, simultaneous cAMP/Ca2+ imaging in hippocampal neurons revealed a tight linkage of cAMP to Ca2+ signals. In cerebellar presynaptic boutons, forskolin induced nonuniform cAMP elevations among boutons, which positively correlated with subsequent increases in the size of the recycling pool of synaptic vesicles assayed using FM dye. Thus, the cAMP domain in presynaptic boutons is an important determinant of the synaptic strength.
Collapse
Affiliation(s)
- Seiko Kawata
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yuki Mukai
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yumi Nishimura
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Tomoyuki Takahashi
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Naoto Saitoh
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| |
Collapse
|
3
|
Computational investigation of the dynamic control of cAMP signaling by PDE4 isoform types. Biophys J 2022; 121:2693-2711. [PMID: 35717559 DOI: 10.1016/j.bpj.2022.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a generic signaling molecule that, through precise control of its signaling dynamics, exerts distinct cellular effects. Consequently, aberrant cAMP signaling can have detrimental effects. Phosphodiesterase 4 (PDE4) enzymes profoundly control cAMP signaling and comprise different isoform types of which the enzymatic activity is modulated by differential feedback mechanisms. Because these feedback dynamics are non-linear and occur coincidentally, their effects are difficult to examine experimentally, but can be well simulated computationally. Through understanding the role of PDE4 isoform types in regulating cAMP signaling, PDE4-targeted therapeutic strategies can be better specified. Here, we established a computational model to study how feedback mechanisms on different PDE4 isoform types lead to dynamic, isoform-specific control of cAMP signaling. Ordinary differential equations describing cAMP dynamics were implemented in the VirtualCell (VCell) environment. Simulations indicated that long PDE4 isoforms exert the most profound control on oscillatory cAMP signaling, as opposed to the PDE4-mediated control of single cAMP input pulses. Moreover, elevating cAMP levels or decreasing PDE4 levels revealed different effects on downstream signaling. Together these results underline that cAMP signaling is distinctly regulated by different PDE4 isoform types and that this isoform-specificity should be considered in both computational and experimental follow-up studies to better define PDE4 enzymes as therapeutic targets in diseases in which cAMP signaling is aberrant.
Collapse
|
4
|
Absolute measurement of cellular activities using photochromic single-fluorophore biosensors and intermittent quantification. Nat Commun 2022; 13:1850. [PMID: 35387971 PMCID: PMC8986857 DOI: 10.1038/s41467-022-29508-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Genetically-encoded biosensors based on a single fluorescent protein are widely used to visualize analyte levels or enzymatic activities in cells, though usually to monitor relative changes rather than absolute values. We report photochromism-enabled absolute quantification (PEAQ) biosensing, a method that leverages the photochromic properties of biosensors to provide an absolute measure of the analyte concentration or activity. We develop proof-of-concept photochromic variants of the popular GCaMP family of Ca2+ biosensors, and show that these can be used to resolve dynamic changes in the absolute Ca2+ concentration in live cells. We also develop intermittent quantification, a technique that combines absolute aquisitions with fast fluorescence acquisitions to deliver fast but fully quantitative measurements. We also show how the photochromism-based measurements can be expanded to situations where the absolute illumination intensities are unknown. In principle, PEAQ biosensing can be applied to other biosensors with photochromic properties, thereby expanding the possibilities for fully quantitative measurements in complex and dynamic systems. Biosensors often report relative rather than absolute values. Here the authors report a method that utilises the photochromic properties of biosensors to provide an absolute measure of the analyte concentration or activity: photochromism-enabled absolute quantification (PEAQ) biosensing.
Collapse
|
5
|
Lacivita E, Niso M, Mastromarino M, Garcia Silva A, Resch C, Zeug A, Loza MI, Castro M, Ponimaskin E, Leopoldo M. Knowledge-Based Design of Long-Chain Arylpiperazine Derivatives Targeting Multiple Serotonin Receptors as Potential Candidates for Treatment of Autism Spectrum Disorder. ACS Chem Neurosci 2021; 12:1313-1327. [PMID: 33792287 DOI: 10.1021/acschemneuro.0c00647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Autism spectrum disorder (ASD) includes a group of neurodevelopmental disorders characterized by core symptoms such as impaired social interaction and communication, repetitive and stereotyped behaviors, and restricted interests. To date, there are no effective treatments for these core symptoms. Several studies have shown that the brain serotonin (5-HT) neurotransmission system is altered in both ASD patients and animal models of the disease. Multiple pieces of evidence suggest that targeting 5-HT receptors may treat the core symptoms of ASD and associated intellectual disabilities. In fact, stimulation of the 5-HT1A receptor reduces repetitive and restricted behaviors; blockade of the 5-HT2A receptor reduces both learning deficits and repetitive behavior, and activation of the 5-HT7 receptor improves cognitive performances and reduces repetitive behavior. On such a basis, we have designed novel arylpiperazine derivatives pursuing unprecedently reported activity profiles: dual 5-HT7/5-HT1A receptor agonist properties and mixed 5-HT7 agonist/5-HT1A agonist/5-HT2A antagonist properties. Seventeen new compounds were synthesized and tested in radioligand binding assay at the target receptors. We have identified the dual 5-HT1AR/5-HT7R agonists 8c and 29 and the mixed 5-HT1AR agonist/5-HT7R agonist/5-HT2AR antagonist 20b. These compounds are metabolically stable in vitro and have suitable central nervous system druglike properties.
Collapse
Affiliation(s)
- Enza Lacivita
- Dipartimento di Farmacia−Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| | - Mauro Niso
- Dipartimento di Farmacia−Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| | - Margherita Mastromarino
- Dipartimento di Farmacia−Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| | - Andrea Garcia Silva
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS). Universidade de Santiago de Compostela. Avda. de Barcelona, s/n, 15782 Santiago de Compostela, Spain
| | - Cibell Resch
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Andre Zeug
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - María I. Loza
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS). Universidade de Santiago de Compostela. Avda. de Barcelona, s/n, 15782 Santiago de Compostela, Spain
| | - Marián Castro
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS). Universidade de Santiago de Compostela. Avda. de Barcelona, s/n, 15782 Santiago de Compostela, Spain
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Marcello Leopoldo
- Dipartimento di Farmacia−Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| |
Collapse
|
6
|
Distinct temporal integration of noradrenaline signaling by astrocytic second messengers during vigilance. Nat Commun 2020; 11:471. [PMID: 31980655 PMCID: PMC6981284 DOI: 10.1038/s41467-020-14378-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 12/17/2019] [Indexed: 01/12/2023] Open
Abstract
Astrocytes may function as mediators of the impact of noradrenaline on neuronal function. Activation of glial α1-adrenergic receptors triggers rapid astrocytic Ca2+ elevation and facilitates synaptic plasticity, while activation of β-adrenergic receptors elevates cAMP levels and modulates memory consolidation. However, the dynamics of these processes in behaving mice remain unexplored, as do the interactions between the distinct second messenger pathways. Here we simultaneously monitored astrocytic Ca2+ and cAMP and demonstrate that astrocytic second messengers are regulated in a temporally distinct manner. In behaving mice, we found that while an abrupt facial air puff triggered transient increases in noradrenaline release and large cytosolic astrocytic Ca2+ elevations, cAMP changes were not detectable. By contrast, repeated aversive stimuli that lead to prolonged periods of vigilance were accompanied by robust noradrenergic axonal activity and gradual sustained cAMP increases. Our findings suggest distinct astrocytic signaling pathways can integrate noradrenergic activity during vigilance states to mediate distinct functions supporting memory. Astrocytic GPCRs activate Ca2+ and cAMP signaling pathways, however, the in vivo dynamics of the two second messengers have not been fully been characterized. The authors demonstrate distinct noradrenaline-induced astrocytic Ca2+ and cAMP dynamics during startle and fear conditioning.
Collapse
|
7
|
Hogendorf AS, Hogendorf A, Popiołek-Barczyk K, Ciechanowska A, Mika J, Satała G, Walczak M, Latacz G, Handzlik J, Kieć-Kononowicz K, Ponimaskin E, Schade S, Zeug A, Bijata M, Kubicki M, Kurczab R, Lenda T, Staroń J, Bugno R, Duszyńska B, Pilarski B, Bojarski AJ. Fluorinated indole-imidazole conjugates: Selective orally bioavailable 5-HT 7 receptor low-basicity agonists, potential neuropathic painkillers. Eur J Med Chem 2019; 170:261-275. [PMID: 30904783 DOI: 10.1016/j.ejmech.2019.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
Abstract
The 5-HT7 receptor has recently gained much attention due to its involvement in multiple physiological functions and diseases. The insufficient quality of the available molecular probes prompted design of fluorinated 3-(1-alkyl-1H-imidazol-5-yl)-1H-indoles as a new generation of selective 5-HT7 receptor agonists. A potent and drug-like agonist, 3-(1-ethyl-1H-imidazol-5-yl)-5-iodo-4-fluoro-1H-indole (AGH-192, 35, Ki 5-HT7R = 4 nM), was identified by optimizing the halogen bond formation with Ser5.42 as the supposed partner. The compound was characterized by excellent water solubility, high selectivity over related CNS targets, high metabolic stability, oral bioavailability and low cytotoxicity. Rapid absorption into the blood, medium half-life and a high peak concentration in the brain Cmax = 1069 ng/g were found after i.p. (2.5 mg/kg) administration in mice. AGH-192 may thus serve as the long-sought tool compound in the study of 5-HT7 receptor function, as well as a potential analgesic, indicated by the antinociceptive effect observed in a mouse model of neuropathic pain.
Collapse
Affiliation(s)
- Adam S Hogendorf
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 30-343 Kraków, Poland
| | - Agata Hogendorf
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 30-343 Kraków, Poland
| | | | - Agata Ciechanowska
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 30-343 Kraków, Poland
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 30-343 Kraków, Poland
| | - Grzegorz Satała
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 30-343 Kraków, Poland
| | - Maria Walczak
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Jadwiga Handzlik
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Evgeni Ponimaskin
- Center of Physiology, Hannover Medical School, 1 Carl-Neuberg Street, 30625 Hannover, Germany
| | - Sophie Schade
- Center of Physiology, Hannover Medical School, 1 Carl-Neuberg Street, 30625 Hannover, Germany
| | - Andre Zeug
- Center of Physiology, Hannover Medical School, 1 Carl-Neuberg Street, 30625 Hannover, Germany
| | - Monika Bijata
- Center of Physiology, Hannover Medical School, 1 Carl-Neuberg Street, 30625 Hannover, Germany; Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warszawa, Poland
| | - Maciej Kubicki
- Adam Mickiewicz University, Faculty of Chemistry, 89b Umultowska Street, 61-614 Poznań, Poland
| | - Rafał Kurczab
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 30-343 Kraków, Poland
| | - Tomasz Lenda
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 30-343 Kraków, Poland
| | - Jakub Staroń
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 30-343 Kraków, Poland
| | - Ryszard Bugno
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 30-343 Kraków, Poland
| | - Beata Duszyńska
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 30-343 Kraków, Poland
| | | | - Andrzej J Bojarski
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 30-343 Kraków, Poland.
| |
Collapse
|
8
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
9
|
Yamao M, Aoki K, Yukinawa N, Ishii S, Matsuda M, Naoki H. Two New FRET Imaging Measures: Linearly Proportional to and Highly Contrasting the Fraction of Active Molecules. PLoS One 2016; 11:e0164254. [PMID: 27780260 PMCID: PMC5079603 DOI: 10.1371/journal.pone.0164254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/11/2016] [Indexed: 11/18/2022] Open
Abstract
We developed two new FRET imaging measures for intramolecular FRET biosensors, called linearly proportional (LP) and highly contrasting (HC) measures, which can be easily calculated by the fluorescence intensities of donor and acceptor as a ratio between their weighted sums. As an alternative to the conventional ratiometric measure, which non-linearly depends on the fraction of active molecule, we first developed the LP measure, which is linearly proportional to the fraction of active molecules. The LP measure inherently unmixes bleed-through signals and is robust against fluorescence noise. By extending the LP measure, we furthermore designed the HC measure, which provides highly contrasting images of the molecular activity, more than the ratiometric measure. In addition to their advantages, these measures are insensitive to the biosensor expression level, which is a fundamental property of the ratiometric measure. Using artificial data and FRET imaging data, we showed that the LP measure effectively represents the fraction of active molecules and that the HC measure improves visual interpretability by providing high contrast images of molecular activity. Therefore, the LP and HC measures allow us to gain more quantitative and qualitative insights from FRET imaging than the ratiometric measure.
Collapse
Affiliation(s)
- Masataka Yamao
- Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Kazuhiro Aoki
- National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Naoto Yukinawa
- Okinawa Institute of Science and Technology Graduate University, Kunigami, Okinawa, Japan
| | - Shin Ishii
- Imaging Platform for Spatio-temporal Information, Kyoto University, Sakyo, Kyoto, Japan
- Graduate School of Informatics, Kyoto University, Sakyo, Kyoto, Japan
| | - Michiyuki Matsuda
- Imaging Platform for Spatio-temporal Information, Kyoto University, Sakyo, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| | - Honda Naoki
- Imaging Platform for Spatio-temporal Information, Kyoto University, Sakyo, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
- * E-mail:
| |
Collapse
|
10
|
Energy transfer from an individual silica nanoparticle to graphene quantum dots and resulting enhancement of photodetector responsivity. Sci Rep 2016; 6:27145. [PMID: 27250343 PMCID: PMC4889998 DOI: 10.1038/srep27145] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/16/2016] [Indexed: 12/18/2022] Open
Abstract
Förster resonance energy transfer (FRET), referred to as the transfer of the photon energy absorbed in donor to acceptor, has received much attention as an important physical phenomenon for its potential applications in optoelectronic devices as well as for the understanding of some biological systems. If one-atom-thick graphene is used for donor or acceptor, it can minimize the separation between donor and acceptor, thereby maximizing the FRET efficiency (EFRET). Here, we report first fabrication of a FRET system composed of silica nanoparticles (SNPs) and graphene quantum dots (GQDs) as donors and acceptors, respectively. The FRET from SNPs to GQDs with an EFRET of ∼78% is demonstrated from excitation-dependent photoluminescence spectra and decay curves. The photodetector (PD) responsivity (R) of the FRET system at 532 nm is enhanced by 100∼101/102∼103 times under forward/reverse biases, respectively, compared to the PD containing solely GQDs. This remarkable enhancement is understood by network-like current paths formed by the GQDs on the SNPs and easy transfer of the carriers generated from the SNPs into the GQDs due to their close attachment. The R is 2∼3 times further enhanced at 325 nm by the FRET effect.
Collapse
|
11
|
Abstract
Specific conformations of signaling proteins can serve as “signals” in signal transduction by being recognized by receptors.
Collapse
Affiliation(s)
- Peter Tompa
- VIB Structural Biology Research Center (SBRC)
- Brussels
- Belgium
- Vrije Universiteit Brussel
- Brussels
| |
Collapse
|
12
|
FRET-based genetically-encoded sensors for quantitative monitoring of metabolites. Biotechnol Lett 2015; 37:1919-28. [DOI: 10.1007/s10529-015-1873-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
|
13
|
Sgro AE, Schwab DJ, Noorbakhsh J, Mestler T, Mehta P, Gregor T. From intracellular signaling to population oscillations: bridging size- and time-scales in collective behavior. Mol Syst Biol 2015; 11:779. [PMID: 25617347 PMCID: PMC4332153 DOI: 10.15252/msb.20145352] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Collective behavior in cellular populations is coordinated by biochemical signaling networks within individual cells. Connecting the dynamics of these intracellular networks to the population phenomena they control poses a considerable challenge because of network complexity and our limited knowledge of kinetic parameters. However, from physical systems, we know that behavioral changes in the individual constituents of a collectively behaving system occur in a limited number of well-defined classes, and these can be described using simple models. Here, we apply such an approach to the emergence of collective oscillations in cellular populations of the social amoeba Dictyostelium discoideum. Through direct tests of our model with quantitative in vivo measurements of single-cell and population signaling dynamics, we show how a simple model can effectively describe a complex molecular signaling network at multiple size and temporal scales. The model predicts novel noise-driven single-cell and population-level signaling phenomena that we then experimentally observe. Our results suggest that like physical systems, collective behavior in biology may be universal and described using simple mathematical models.
Collapse
Affiliation(s)
- Allyson E Sgro
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - David J Schwab
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | - Troy Mestler
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA, USA
| | - Thomas Gregor
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| |
Collapse
|
14
|
Abstract
Cyclic nucleotides such as cGMP and cAMP play pivotal roles as second messengers in many biological processes. Upon stimulation of appropriate signal transduction pathways, the levels of these messengers change rapidly. Such variations in second messenger level may also be spatially restricted within the cell. To detect dynamic and local changes in second messengers, we need to study them in living cells with high spatial and temporal resolution. Focusing on cAMP, here we describe how imaging of an EPAC-based FRET sensor in single cells provides that spatiotemporal resolution.
Collapse
|
15
|
Urbina M, Arroyo R, Lima L. 5-HT7 receptors and tryptophan hydroxylase in lymphocytes of rats: mitogen activation, physical restraint or treatment with reserpine. Neuroimmunomodulation 2014; 21:240-9. [PMID: 24603678 DOI: 10.1159/000357148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/06/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Serotonin (5-HT)7 receptors in lymphocytes play a relevant role as modulators of T cell functions and might be modified by stress protocols. The aims of this work were to evaluate: (i) the presence of 5-HT7 receptors in specific lymphocyte populations, (ii) the probable modifications of them by inflammatory stress with mitogen and (iii) the effects of physical and pharmacological stress. METHODS Blood lymphocytes were isolated by density gradients and differential adhesion to plastic. Concanavalin A (Con A) was systemically administered (500 μg/kg) or added to lymphocyte cultures (2.5 μg/ml, final volume 200 μl). Physical restraint was performed in Plexiglass boxes for 5 h per day for 5 days. Reserpine administration was 2.5 mg/kg for 3 days. Immunocytochemical labeling of CD4+, CD8+ and 5-HT7 receptors, and also tryptophan hydroxylase cells was performed. mRNA of 5-HT7 receptors was evaluated by RT-PCR. Controls were included for each protocol. RESULTS Con A treatment or culture exposure increased the number of lymphocytes expressing 5-HT7 receptors or tryptophan hydroxylase, as compared to absence of the mitogen. Receptors were present in 12-16% of total rat lymphocytes, in ∼10% of CD4+ and in ∼5% of CD8+ cells from control rats. CD4+ decreased, and CD8+ and 5-HT7 cells increased after physical restraint. Reserpine treatment elevated CD8+ and 5-HT7 cells. Con A and physical restraint, but not reserpine treatment, significantly augmented 5-HT7 receptor mRNA in lymphocytes. CONCLUSIONS Rat lymphocytes, expressing tryptophan hydroxylase, could synthesize 5-HT, functioning as a direct autocrine modulator. The modifications of CD4+, CD8+ and 5-HT7 receptors in lymphocytes by three stress protocols could have an impact on immune responses. In addition, the differential distribution of 5-HT7 receptors indicates potential specific physiopathological roles.
Collapse
Affiliation(s)
- Mary Urbina
- Laboratorio de Neuroquímica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | | | | |
Collapse
|
16
|
Kolodecik TR, Shugrue CA, Thrower EC, Levin LR, Buck J, Gorelick FS. Activation of soluble adenylyl cyclase protects against secretagogue stimulated zymogen activation in rat pancreaic acinar cells. PLoS One 2012; 7:e41320. [PMID: 22844459 PMCID: PMC3402497 DOI: 10.1371/journal.pone.0041320] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 06/20/2012] [Indexed: 01/11/2023] Open
Abstract
An early feature of acute pancreatitis is activation of zymogens, such as trypsinogen, within the pancreatic acinar cell. Supraphysiologic concentrations of the hormone cholecystokinin (CCK; 100 nM), or its orthologue cerulein (CER), induce zymogen activation and elevate levels of cAMP in pancreatic acinar cells. The two classes of adenylyl cyclase, trans-membrane (tmAC) and soluble (sAC), are activated by distinct mechanisms, localize to specific subcellular domains, and can produce locally high concentrations of cAMP. We hypothesized that sAC activity might selectively modulate acinar cell zymogen activation. sAC was identified in acinar cells by PCR and immunoblot. It localized to the apical region of the cell under resting conditions and redistributed intracellularly after treatment with supraphysiologic concentrations of cerulein. In cerulein-treated cells, pre-incubation with a trans-membrane adenylyl cyclase inhibitor did not affect zymogen activation or amylase secretion. However, treatment with a sAC inhibitor (KH7), or inhibition of a downstream target of cAMP, protein kinase A (PKA), significantly enhanced secretagogue-stimulated zymogen activation and amylase secretion. Activation of sAC with bicarbonate significantly inhibited secretagogue-stimulated zymogen activation; this response was decreased by inhibition of sAC or PKA. Bicarbonate also enhanced secretagogue-stimulated cAMP accumulation; this effect was inhibited by KH7. Bicarbonate treatment reduced secretagogue-stimulated acinar cell vacuolization, an early marker of pancreatitis. These data suggest that activation of sAC in the pancreatic acinar cell has a protective effect and reduces the pathologic activation of proteases during pancreatitis.
Collapse
Affiliation(s)
- Thomas R. Kolodecik
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Veterans Administration Connecticut Healthcare, West Haven, Connecticut, United States of America
| | - Christine A. Shugrue
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Veterans Administration Connecticut Healthcare, West Haven, Connecticut, United States of America
| | - Edwin C. Thrower
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Veterans Administration Connecticut Healthcare, West Haven, Connecticut, United States of America
| | - Lonny R. Levin
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Jochen Buck
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Fred S. Gorelick
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Veterans Administration Connecticut Healthcare, West Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
17
|
Salonikidis PS, Niebert M, Ullrich T, Bao G, Zeug A, Richter DW. An ion-insensitive cAMP biosensor for long term quantitative ratiometric fluorescence resonance energy transfer (FRET) measurements under variable physiological conditions. J Biol Chem 2011; 286:23419-31. [PMID: 21454618 DOI: 10.1074/jbc.m111.236869] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ratiometric measurements with FRET-based biosensors in living cells using a single fluorescence excitation wavelength are often affected by a significant ion sensitivity and the aggregation behavior of the FRET pair. This is an important problem for quantitative approaches. Here we report on the influence of physiological ion concentration changes on quantitative ratiometric measurements by comparing different FRET pairs for a cAMP-detecting biosensor. We exchanged the enhanced CFP/enhanced YFP FRET pair of an established Epac1-based biosensor by the fluorophores mCerulean/mCitrine. In the case of enhanced CFP/enhanced YFP, we showed that changes in proton, and (to a lesser extent) chloride ion concentrations result in incorrect ratiometric FRET signals, which may exceed the dynamic range of the biosensor. Calcium ions have no direct, but an indirect pH-driven effect by mobilizing protons. These ion dependences were greatly eliminated when mCerulean/mCitrine fluorophores were used. For such advanced FRET pairs the biosensor is less sensitive to changes in ion concentration and allows consistent cAMP concentration measurements under different physiological conditions, as occur in metabolically active cells. In addition, we verified that the described FRET pair exchange increased the dynamic range of the FRET efficiency response. The time window for stable experimental conditions was also prolonged by a faster biosensor expression rate in transfected cells and a greatly reduced tendency to aggregate, which reduces cytotoxicity. These properties were verified in functional tests in single cells co-expressing the biosensor and the 5-HT(1A) receptor.
Collapse
Affiliation(s)
- Petrus S Salonikidis
- Department of Neuro- and Sensory Physiology, University of Göttingen, 37073 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Woehler A, Wlodarczyk J, Neher E. Signal/noise analysis of FRET-based sensors. Biophys J 2011; 99:2344-54. [PMID: 20923670 DOI: 10.1016/j.bpj.2010.07.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022] Open
Abstract
Molecular sensors based on intramolecular Förster resonance energy transfer (FRET) have become versatile tools to monitor regulatory molecules in living tissue. However, their use is often compromised by low signal strength and excessive noise. We analyzed signal/noise (SNR) aspects of spectral FRET analysis methods, with the following conclusions: The most commonly used method (measurement of the emission ratio after a single short wavelength excitation) is optimal in terms of signal/noise, if only relative changes of this uncalibrated ratio are of interest. In the case that quantitative data on FRET efficiencies are required, these can be calculated from the emission ratio and some calibration parameters, but at reduced SNR. Lux-FRET, a recently described method for spectral analysis of FRET data, allows one to do so in three different ways, each based on a ratio of two out of three measured fluorescence signals (the donor and acceptor signal during a short-wavelength excitation and the acceptor signal during long wavelength excitation). Lux-FRET also allows for calculation of the total abundance of donor and acceptor fluorophores. The SNR for all these quantities is lower than that of the plain emission ratio due to unfavorable error propagation. However, if ligand concentration is calculated either from lux-FRET values or else, after its calibration, from the emission ratio, SNR for both analysis modes is very similar. Likewise, SNR values are similar, if the noise of these quantities is related to the expected dynamic range. We demonstrate these relationships based on data from an Epac-based cAMP sensor and discuss how the SNR changes with the FRET efficiency and the number of photons collected.
Collapse
Affiliation(s)
- Andrew Woehler
- DFG Research Center for the Molecular Physiology of the Brain, Göttingen, Germany
| | | | | |
Collapse
|
19
|
Tian Q, Oberhofer M, Ruppenthal S, Scholz A, Buschmann V, Tsutsui H, Miyawaki A, Zeug A, Lipp P, Kaestner L. Optical Action Potential Screening on Adult Ventricular Myocytes as an Alternative QT-screen. Cell Physiol Biochem 2011; 27:281-90. [DOI: 10.1159/000327954] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2011] [Indexed: 11/19/2022] Open
|
20
|
McCranor BJ, Thompson RB. Long wavelength fluorescence lifetime standards for front-face fluorometry. J Fluoresc 2010; 20:435-40. [PMID: 19953311 PMCID: PMC2896289 DOI: 10.1007/s10895-009-0565-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
With the increased development and use of fluorescence lifetime-based sensors, fiber optic sensors, fluorescence lifetime imaging microscopy (FLIM), and plate and array readers, , calibration standards are essential to ensure the proper function of these devices and accurate results. For many devices that utilize a "front face excitation" geometry where the excitation is nearly coaxial with the direction of emission, scattering-based lifetime standards are problematic and fluorescent lifetime standards are necessary. As more long wavelength (red and near-infrared) fluorophores are used to avoid background autofluorescence, the lack of lifetime standards in this wavelength range has only become more apparent . We describe an approach to developing lifetime standards in any wavelength range, based on Förster resonance energy transfer (FRET). These standards are bright, highly reproducible, have a broad decrease in observed lifetime, and an emission wavelength in the red to near infrared making them well suited for the laboratory and field applications as well. This basic approach can be extended to produce lifetime standards for other wavelength regimes.
Collapse
Affiliation(s)
- Bryan J. McCranor
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201-1503, USA
| | - Richard B. Thompson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201-1503, USA
| |
Collapse
|
21
|
H(2)O(2)-mediated modulation of cytosolic signaling and organelle function in rat hippocampus. Pflugers Arch 2009; 458:937-52. [PMID: 19430810 PMCID: PMC2719740 DOI: 10.1007/s00424-009-0672-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 04/06/2009] [Accepted: 04/07/2009] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species (ROS) released from (dys-)functioning mitochondria contribute to normal and pathophysiological cellular signaling by modulating cytosolic redox state and redox-sensitive proteins. To identify putative redox targets involved in such signaling, we exposed hippocampal neurons to hydrogen peroxide (H2O2). Redox-sensitive dyes indicated that externally applied H2O2 may oxidize intracellular targets in cell cultures and acute tissue slices. In cultured neurons, H2O2 (EC50 118 µM) induced an intracellular Ca2+ rise which could still be evoked upon Ca2+ withdrawal and mitochondrial uncoupling. It was, however, antagonized by thapsigargin, dantrolene, 2-aminoethoxydiphenyl borate, and high levels of ryanodine, which identifies the endoplasmic reticulum (ER) as the intracellular Ca2+ store involved. Intracellular accumulation of endogenously generated H2O2—provoked by inhibiting glutathione peroxidase—also released Ca2+ from the ER, as did extracellular generation of superoxide. Phospholipase C (PLC)-mediated metabotropic signaling was depressed in the presence of H2O2, but cytosolic cyclic adenosine-5′-monophosphate (cAMP) levels were not affected. H2O2 (0.2–5 mM) moderately depolarized mitochondria, halted their intracellular trafficking in a Ca2+- and cAMP-independent manner, and directly oxidized cellular nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2). In part, the mitochondrial depolarization reflects uptake of Ca2+ previously released from the ER. We conclude that H2O2 releases Ca2+ from the ER via both ryanodine and inositol trisphosphate receptors. Mitochondrial function is not markedly impaired even by millimolar concentrations of H2O2. Such modulation of Ca2+ signaling and organelle interaction by ROS affects the efficacy of PLC-mediated metabotropic signaling and may contribute to the adjustment of neuronal function to redox conditions and metabolic supply.
Collapse
|