1
|
Komikawa T, Okochi M, Tanaka M. Exploration and analytical techniques for membrane curvature-sensing proteins in bacteria. J Bacteriol 2025; 207:e0048224. [PMID: 40135904 PMCID: PMC12004969 DOI: 10.1128/jb.00482-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
The mechanism by which cells regulate protein localization is an important topic in the field of bacterial biology. In certain instances, the morphology of the biological membrane has been demonstrated to function as a spatial cue for the subcellular localization of proteins. These proteins are capable of sensing membrane curvature and are involved in a number of physiological functions such as cytokinesis and the formation of membrane-bound organelles. This review presents recent advances in the in vitro evaluation of curvature-sensing properties using artificially controlled membranes and purified proteins, as well as microscopic live cell assays. However, these evaluation methodologies often require sophisticated experiments, and the number of identified curvature sensors remains limited. Thus, we present a comprehensive exploration of recently reported curvature-sensing proteins. Subsequently, we summarize the known curvature-sensing proteins in bacteria, in conjunction with the analytical methodologies employed in this field. Finally, future prospects and further requirements in the study of curvature-sensing proteins are discussed.
Collapse
Affiliation(s)
- Takumi Komikawa
- School of Materials and Chemical Technology, Institute of Science Tokyo, Yokohama, Kanagawa, Japan
| | - Mina Okochi
- School of Materials and Chemical Technology, Institute of Science Tokyo, Meguro, Tokyo, Japan
| | - Masayoshi Tanaka
- School of Materials and Chemical Technology, Institute of Science Tokyo, Yokohama, Kanagawa, Japan
| |
Collapse
|
2
|
Grasso EM, Eliezer D. Investigating Complexin-Membrane Interactions Using NMR and Optical Methods. Methods Mol Biol 2025; 2887:17-52. [PMID: 39806144 DOI: 10.1007/978-1-0716-4314-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Complexins are a family of small presynaptic proteins that regulate neurotransmitter release at nerve terminals and are highly conserved in evolution. While direct interactions with SNARE proteins are critical for all complexin functions, binding of their disordered C-terminal domains (CTD) to membranes, especially to synaptic vesicle membranes, is essential for the ability of complexin to inhibit vesicle release. Furthermore, while some complexin CTDs possess an endogenous affinity for membranes, other complexin isoforms are subject to lipidation at their C-termini, which is presumed to confer additional membrane binding. Therefore, an in depth understanding of complexin-membrane interactions is required to elucidate the mechanistic basis for their inhibitory activity. Here we describe protocols for characterizing complexin-membrane interactions using solution state nuclear magnetic resonance (NMR) spectroscopy as well as single molecule total-internal reflection fluorescence (TIRF) methods, along with protocols for generating isotopically labeled samples of unmodified and farnesylated complexins and for characterizing synthetic lipid vesicles using dynamic light scattering (DLS).
Collapse
Affiliation(s)
- Emily M Grasso
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Colussi A, Almeida-Souza L, McMahon HT. A single-particle analysis method for detecting membrane remodelling and curvature sensing. J Cell Sci 2024; 137:jcs263533. [PMID: 39324332 PMCID: PMC11574359 DOI: 10.1242/jcs.263533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
In biology, shape and function are related. Therefore, it is important to understand how membrane shape is generated, stabilised and sensed by proteins and how this relates to organelle function. Here, we present an assay that can detect curvature preference and membrane remodelling with free-floating liposomes using protein concentrations in physiologically relevant ranges. The assay reproduced known curvature preferences of BAR domains and allowed the discovery of high-curvature preference for the PH domain of AKT and the FYVE domain of HRS (also known as HGS). In addition, our method reproduced the membrane vesiculation activity of the ENTH domain of epsin-1 (EPN1) and showed similar activity for the ANTH domains of PiCALM and Hip1R. Finally, we found that the curvature sensitivity of the N-BAR domain of endophilin inversely correlates to membrane charge and that deletion of its N-terminal amphipathic helix increased its curvature specificity. Thus, our method is a generally applicable qualitative method for assessing membrane curvature sensing and remodelling by proteins.
Collapse
Affiliation(s)
- Adeline Colussi
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Leonardo Almeida-Souza
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Harvey T McMahon
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
4
|
Singh A, Nice JB, Wu M, Brown AC, Wittenberg NJ. Multivariate Analysis of Individual Bacterial Outer Membrane Vesicles Using Fluorescence Microscopy. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:352-361. [PMID: 38817321 PMCID: PMC11134603 DOI: 10.1021/cbmi.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 06/01/2024]
Abstract
Gram-negative bacteria produce outer membrane vesicles (OMVs) that play a critical role in cell-cell communication and virulence. OMVs have emerged as promising therapeutic agents for various biological applications such as vaccines and targeted drug delivery. However, the full potential of OMVs is currently constrained by inherent heterogeneities, such as size and cargo differences, and traditional ensemble assays are limited in their ability to reveal OMV heterogeneity. To overcome this issue, we devised an innovative approach enabling the identification of various characteristics of individual OMVs. This method, employing fluorescence microscopy, facilitates the detection of variations in size and surface markers. To demonstrate our method, we utilize the oral bacterium Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) which produces OMVs with a bimodal size distribution. As part of its virulence, A. actinomycetemcomitans secretes leukotoxin (LtxA) in two forms: soluble and surface associated with the OMVs. We observed a correlation between the size and toxin presence where larger OMVs were much more likely to possess LtxA compared to the smaller OMVs. In addition, we noted that, among the smallest OMVs (<100 nm diameter), the fractions that are toxin positive range from 0 to 30%, while the largest OMVs (>200 nm diameter) are between 70 and 100% toxin positive.
Collapse
Affiliation(s)
- Aarshi
N. Singh
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Justin B Nice
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Meishan Wu
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Angela C. Brown
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Nathan J. Wittenberg
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
5
|
Zhang X, Malle MG, Thomsen RP, Sørensen RS, Sørensen EW, Hatzakis NS, Kjems J. Deconvoluting the Effect of Cell-Penetrating Peptides for Enhanced and Controlled Insertion of Large-Scale DNA Nanopores. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18422-18433. [PMID: 38573069 DOI: 10.1021/acsami.3c18636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
DNA nanopores have emerged as powerful tools for molecular sensing, but the efficient insertion of large DNA nanopores into lipid membranes remains challenging. In this study, we investigate the potential of cell-penetrating peptides (CPPs), specifically SynB1 and GALA, to enhance the insertion efficiency of large DNA nanopores. We constructed SynB1- or GALA-functionalized DNA nanopores with an 11 nm inner diameter and visualized and quantified their membrane insertion using a TIRF microscopy-based single-liposome assay. The results demonstrated that incorporating an increasing number of SynB1 or GALA peptides into the DNA nanopore significantly enhanced the membrane perforation. Kinetic analysis revealed that the DNA nanopore scaffold played a role in prearranging the CPPs, which facilitated membrane interaction and pore formation. Notably, the use of pH-responsive GALA peptides allowed highly efficient and pH-controlled insertion of large DNA pores. Furthermore, single-channel recording elucidated that the insertion process of single GALA-modified nanopores into planar lipid bilayers was dynamic, likely forming transient large toroidal pores. Overall, our study highlights the potential of CPPs as insertion enhancers for DNA nanopores, which opens avenues for improved molecule sensing and the controlled release of cargo molecules.
Collapse
Affiliation(s)
- Xialin Zhang
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark
| | | | - Rasmus P Thomsen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark
| | | | | | - Nikos S Hatzakis
- Department of Chemistry, University of Copenhagen, Copenhagen 2100, Denmark
- Novonordisk Center for Protein Research, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark
| |
Collapse
|
6
|
Almeida E Silva G, Galvão Wakui V, Kato L, Marquezin CA. Spectroscopic behavior of bufotenine and bufotenine N-oxide: Solvent and pH effects and interaction with biomembrane models. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184304. [PMID: 38408695 DOI: 10.1016/j.bbamem.2024.184304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Bufotenine is a fluorescent analog of Dimethyltryptamine (DMT) that has been widely studied due to its psychedelic properties and biological activity. However, little is known about its spectroscopic properties in different media. Thus, we present in this work, for the first time, the spectroscopic behavior of bufotenine and bufotenine N-oxide by means of their fluorescence properties. Both molecules exhibit changes in optical absorption and emission spectra with variations in pH of the medium and in different solvents. Assays in the presence of biomembranes models, like micelles and liposomes, were also performed. In surfactants titration experiments, the spectral shift observed in fluorescence shows the interaction of both molecules with pre-micellar structures and with micelles. Steady state anisotropy measurements show that both bufotenine and bufotenine N-oxide, in the studied concentration range, interact with liposomes without causing changes in the fluidity of the lipid bilayer. These results can be useful in studies that aim at searching for new compounds, inspired by bufotenine and bufotenine N-oxide, with relevant pharmacological activities and also in studies that use these molecules as markers of psychiatric disorders.
Collapse
Affiliation(s)
| | - Vinícius Galvão Wakui
- Instituto de Química, Universidade Federal de Goiás, CEP 74690-900, Goiânia, GO, Brazil
| | - Lucília Kato
- Instituto de Química, Universidade Federal de Goiás, CEP 74690-900, Goiânia, GO, Brazil
| | - Cássia A Marquezin
- Instituto de Física, Universidade Federal de Goiás, CEP 74690-900, Goiânia, GO, Brazil.
| |
Collapse
|
7
|
Granek R, Hoffmann I, Kelley EG, Nagao M, Vlahovska PM, Zilman A. Dynamic structure factor of undulating vesicles: finite-size and spherical geometry effects with application to neutron spin echo experiments. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:12. [PMID: 38355850 DOI: 10.1140/epje/s10189-023-00400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 02/16/2024]
Abstract
We consider the dynamic structure factor (DSF) of quasi-spherical vesicles and present a generalization of an expression that was originally formulated by Zilman and Granek (ZG) for scattering from isotropically oriented quasi-flat membrane plaquettes. The expression is obtained in the form of a multi-dimensional integral over the undulating membrane surface. The new expression reduces to the original stretched exponential form in the limit of sufficiently large vesicles, i.e., in the micron range or larger. For much smaller unilamellar vesicles, deviations from the asymptotic, stretched exponential equation are noticeable even if one assumes that the Seifert-Langer leaflet density mode is completely relaxed and membrane viscosity is neglected. To avoid the need for an exhaustive numerical integration while fitting to neutron spin echo (NSE) data, we provide a useful approximation for polydisperse systems that tests well against the numerical integration of the complete expression. To validate the new expression, we performed NSE experiments on variable-size vesicles made of a POPC/POPS lipid mixture and demonstrate an advantage over the original stretched exponential form or other manipulations of the original ZG expression that have been deployed over the years to fit the NSE data. In particular, values of the membrane bending rigidity extracted from the NSE data using the new approximations were insensitive to the vesicle radii and scattering wavenumber and compared very well with expected values of the effective bending modulus ([Formula: see text]) calculated from results in the literature. Moreover, the generalized scattering theory presented here for an undulating quasi-spherical shell can be easily extended to other models for the membrane undulation dynamics beyond the Helfrich Hamiltonian and thereby provides the foundation for the study of the nanoscale dynamics in more complex and biologically relevant model membrane systems.
Collapse
Affiliation(s)
- Rony Granek
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
| | - Ingo Hoffmann
- Institut Laue-Langevin (ILL), 71 Avenue des Martys, 38042, Grenoble, CEDEX 9, France.
| | - Elizabeth G Kelley
- Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA.
| | - Michihiro Nagao
- Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA
| | - Petia M Vlahovska
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, 60208, USA
| | - Anton Zilman
- Department of Physics, University of Toronto, 60 St George St, Toronto, ON, M5S 1A7, Canada
| |
Collapse
|
8
|
Negi G, Sharma A, Chaudhary M, Gupta D, Harshan KH, Parveen N. SARS-CoV-2 Binding to Terminal Sialic Acid of Gangliosides Embedded in Lipid Membranes. ACS Infect Dis 2023; 9:1346-1361. [PMID: 37145972 DOI: 10.1021/acsinfecdis.3c00106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Multiple recent reports indicate that the S protein of SARS-CoV-2 specifically interacts with membrane receptors and attachment factors other than ACE2. They likely have an active role in cellular attachment and entry of the virus. In this article, we examined the binding of SARS-CoV-2 particles to gangliosides embedded in supported lipid bilayers (SLBs), mimicking the cell membrane-like environment. We show that the virus specifically binds to sialylated (sialic acid (SIA)) gangliosides, i.e., GD1a, GM3, and GM1, as determined from the acquired single-particle fluorescence images using a time-lapse total internal reflection fluorescence (TIRF) microscope. The data of virus binding events, the apparent binding rate constant, and the maximum virus coverage on the ganglioside-rich SLBs show that the virus particles have a higher binding affinity toward the GD1a and GM3 compared to the GM1 ganglioside. Enzymatic hydrolysis of the SIA-Gal bond of the gangliosides confirms that the SIA sugar unit of GD1a and GM3 is essential for virus attachment to the SLBs and even the cell surface sialic acid is critical for the cellular attachment of the virus. The structural difference between GM3/GD1a and GM1 is the presence of SIA at the main or branched chain. We conclude that the number of SIA per ganglioside can weakly influence the initial binding rate of SARS-CoV-2 particles, whereas the terminal or more exposed SIA is critical for the virus binding to the gangliosides in SLBs.
Collapse
Affiliation(s)
- Geetanjali Negi
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| | - Anurag Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| | - Monika Chaudhary
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| | - Divya Gupta
- CSIR-Centre for Cellular and Molecular Biology, 500007 Hyderabad, India
| | - Krishnan H Harshan
- CSIR-Centre for Cellular and Molecular Biology, 500007 Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagma Parveen
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| |
Collapse
|
9
|
Singh AN, Nice JB, Brown AC, Wittenberg NJ. Identifying size-dependent toxin sorting in bacterial outer membrane vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539273. [PMID: 37205353 PMCID: PMC10187208 DOI: 10.1101/2023.05.03.539273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Gram-negative bacteria produce outer membrane vesicles (OMVs) that play a critical role in cell-cell communication and virulence. Despite being isolated from a single population of bacteria, OMVs can exhibit heterogeneous size and toxin content, which can be obscured by assays that measure ensemble properties. To address this issue, we utilize fluorescence imaging of individual OMVs to reveal size-dependent toxin sorting. Our results showed that the oral bacterium Aggregatibacter actinomycetemcomitans (A.a.) produces OMVs with a bimodal size distribution, where larger OMVs were much more likely to possess leukotoxin (LtxA). Among the smallest OMVs (< 100 nm diameter), the fraction that are toxin positive ranges from 0-30%, while the largest OMVs (> 200 nm diameter) are between 70-100% toxin positive. Our single OMV imaging method provides a non-invasive way to observe OMV surface heterogeneity at the nanoscale level and determine size-based heterogeneities without the need for OMV fraction separation.
Collapse
Affiliation(s)
- Aarshi N. Singh
- Department of Chemistry, Lehigh University, Bethlehem, PA, U.S.A
| | - Justin B Nice
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, U.S.A
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, U.S.A
| | | |
Collapse
|
10
|
Andersson A, Fornasier M, Makasewicz K, Pálmadóttir T, Linse S, Sparr E, Jönsson P. Single-vesicle intensity and colocalization fluorescence microscopy to study lipid vesicle fusion, fission, and lipid exchange. Front Mol Neurosci 2022; 15:1007699. [PMID: 36533132 PMCID: PMC9751204 DOI: 10.3389/fnmol.2022.1007699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/18/2022] [Indexed: 12/19/2023] Open
Abstract
Interactions of lipid vesicles play important roles in a large variety of functions and dysfunctions in the human body. Vital for several biochemical functions is the interaction between monomeric proteins and lipid membranes, and the induced phenomena such as fusion between vesicles and cell membranes, lipid exchange between the membranes, or vesicle fission. Identification of single events and their frequency of occurrence would provide valuable information about protein-lipid interactions in both healthy and degenerative pathways. In this work, we present a single-vesicle intensity and colocalization fluorescence microscopy assay with a custom-written MATLAB analysis program. The assay can be used to study lipid exchange as well as vesicle fusion and fission between two vesicle populations labeled with different fluorescent dyes. Vesicles from the two populations are first mixed and docked to a glass surface. The sample is then simultaneously imaged using two separate wavelength channels monitoring intensity changes and colocalization of vesicles from the two populations. The monomeric pre-synaptic protein α-synuclein (α-syn) and small unilamellar vesicles consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phospho-L-serine, (DOPS), and monosialotetrahexosylganglioside (GM1) were used as a model system to evaluate the method. From our analysis, neither α-syn induced fusion nor lipid exchange was observed for vesicles consisting of DOPC:DOPS (7:3). However, including 10% GM1 in the vesicles resulted in a 91% increase of the number of vesicles within 10 min, combined with a 57% decrease in the average fluorescence intensity per vesicle, indicating that approximately half of the vesicles underwent fission. The method facilitates the study of lipid vesicle fusion, fission, and lipid exchange under controlled conditions. It also allows these events to be studied for systems with more complex composition including exosomes and lipid-based drug carriers, to enable a better understanding of their physicochemical properties.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peter Jönsson
- Department of Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Uzun HD, Vázquez-Hernández M, Bandow JE, Pomorski TG. In vitro Assay to Evaluate Cation Transport of Ionophores. Bio Protoc 2022; 12:e4552. [PMID: 36532682 PMCID: PMC9724011 DOI: 10.21769/bioprotoc.4552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022] Open
Abstract
Ion homeostasis is a fundamental regulator of cellular processes and depends upon lipid membranes, which function as ion permeability barriers. Ionophores facilitate ion transport across cell membranes and offer a way to manipulate cellular ion composition. Here, we describe a calcein quenching assay based on large unilamellar vesicles that we used to evaluate divalent cation transport of the ionophore 4-Br-A23187. This assay can be used to study metal transport by ionophores and membrane proteins, under well-defined conditions. This protocol was validated in: Proteomics (2022), DOI: 10.1002/pmic.202200061 Graphical abstract.
Collapse
Affiliation(s)
- Huriye D. Uzun
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
,
Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
,
Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
,
*For correspondence:
| |
Collapse
|
12
|
Quinn SD, Dresser L, Graham S, Conteduca D, Shepherd J, Leake MC. Crowding-induced morphological changes in synthetic lipid vesicles determined using smFRET. Front Bioeng Biotechnol 2022; 10:958026. [PMID: 36394015 PMCID: PMC9650091 DOI: 10.3389/fbioe.2022.958026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/13/2022] [Indexed: 12/02/2022] Open
Abstract
Lipid vesicles are valuable mesoscale molecular confinement vessels for studying membrane mechanics and lipid-protein interactions, and they have found utility among bio-inspired technologies, including drug delivery vehicles. While vesicle morphology can be modified by changing the lipid composition and introducing fusion or pore-forming proteins and detergents, the influence of extramembrane crowding on vesicle morphology has remained under-explored owing to a lack of experimental tools capable of capturing morphological changes on the nanoscale. Here, we use biocompatible polymers to simulate molecular crowding in vitro, and through combinations of FRET spectroscopy, lifetime analysis, dynamic light scattering, and single-vesicle imaging, we characterize how crowding regulates vesicle morphology. We show that both freely diffusing and surface-tethered vesicles fluorescently tagged with the DiI and DiD FRET pair undergo compaction in response to modest concentrations of sorbitol, polyethylene glycol, and Ficoll. A striking observation is that sorbitol results in irreversible compaction, whereas the influence of high molecular weight PEG-based crowders was found to be reversible. Regulation of molecular crowding allows for precise control of the vesicle architecture in vitro, with vast implications for drug delivery and vesicle trafficking systems. Furthermore, our observations of vesicle compaction may also serve to act as a mechanosensitive readout of extramembrane crowding.
Collapse
Affiliation(s)
- Steven D. Quinn
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Lara Dresser
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
| | - Sarah Graham
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
| | - Donato Conteduca
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
| | - Jack Shepherd
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Mark C. Leake
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
13
|
Houser JR, Cho HW, Hayden CC, Yang NX, Wang L, Lafer EM, Thirumalai D, Stachowiak JC. Molecular mechanisms of steric pressure generation and membrane remodeling by disordered proteins. Biophys J 2022; 121:3320-3333. [PMID: 36016498 PMCID: PMC9515369 DOI: 10.1016/j.bpj.2022.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/18/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022] Open
Abstract
Cellular membranes, which are densely crowded by proteins, take on an elaborate array of highly curved shapes. Steric pressure generated by protein crowding plays a significant role in shaping membrane surfaces. It is increasingly clear that many proteins involved in membrane remodeling contain substantial regions of intrinsic disorder. These domains have large hydrodynamic radii, suggesting that they may contribute significantly to steric congestion on membrane surfaces. However, it has been unclear to what extent they are capable of generating steric pressure, owing to their conformational flexibility. To address this gap, we use a recently developed sensor based on Förster resonance energy transfer to measure steric pressure generated at membrane surfaces by the intrinsically disordered domain of the endocytic protein, AP180. We find that disordered domains generate substantial steric pressure that arises from both entropic and electrostatic components. Interestingly, this steric pressure is largely invariant with the molecular weight of the disordered domain, provided that coverage of the membrane surface is held constant. Moreover, equivalent levels of steric pressure result in equivalent degrees of membrane remodeling, regardless of protein molecular weight. This result, which is consistent with classical polymer scaling relationships for semi-dilute solutions, helps to explain the molecular and physical origins of steric pressure generation by intrinsically disordered domains. From a physiological perspective, these findings suggest that a broad range of membrane-associated disordered domains are likely to play a significant and previously unknown role in controlling membrane shape.
Collapse
Affiliation(s)
- Justin R Houser
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Hyun Woo Cho
- Department of Chemistry, Seoul National University of Science and Technology, Seoul, South Korea
| | - Carl C Hayden
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Noel X Yang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Liping Wang
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Eileen M Lafer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Dave Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
14
|
Veit S, Paweletz LC, Bohr SSR, Menon AK, Hatzakis NS, Pomorski TG. Single Vesicle Fluorescence-Bleaching Assay for Multi-Parameter Analysis of Proteoliposomes by Total Internal Reflection Fluorescence Microscopy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29659-29667. [PMID: 35748880 PMCID: PMC11194769 DOI: 10.1021/acsami.2c07454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reconstitution of membrane proteins into model membranes is an essential approach for their functional analysis under chemically defined conditions. Established model-membrane systems used in ensemble average measurements are limited by sample heterogeneity and insufficient knowledge of lipid and protein content at the single vesicle level, which limits quantitative analysis of vesicle properties and prevents their correlation with protein activity. Here, we describe a versatile total internal reflection fluorescence microscopy-based bleaching protocol that permits parallel analysis of multiple parameters (physical size, tightness, unilamellarity, membrane protein content, and orientation) of individual proteoliposomes prepared with fluorescently tagged membrane proteins and lipid markers. The approach makes use of commercially available fluorophores including the commonly used nitrobenzoxadiazole dye and may be applied to deduce functional molecular characteristics of many types of reconstituted fluorescently tagged membrane proteins.
Collapse
Affiliation(s)
- Sarina Veit
- Department
of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Laura Charlotte Paweletz
- Department
of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Søren S.-R. Bohr
- Department
of Chemistry & Nano-Science Center, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Anant K. Menon
- Department
of Biochemistry, Weill Cornell Medical College, New York, New York 10065, United States
| | - Nikos S. Hatzakis
- Department
of Chemistry & Nano-Science Center, University of Copenhagen, Copenhagen DK-2100, Denmark
- NovoNordisk
Foundation Center for Protein Research,Copenhagen DK-2200, Denmark
| | - Thomas Günther Pomorski
- Department
of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum 44801, Germany
- Department
of Plant and Environmental Sciences, University
of Copenhagen,Frederiksberg C DK-1871, Denmark
| |
Collapse
|
15
|
Insights into Membrane Curvature Sensing and Membrane Remodeling by Intrinsically Disordered Proteins and Protein Regions. J Membr Biol 2022; 255:237-259. [PMID: 35451616 PMCID: PMC9028910 DOI: 10.1007/s00232-022-00237-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022]
Abstract
Cellular membranes are highly dynamic in shape. They can rapidly and precisely regulate their shape to perform various cellular functions. The protein’s ability to sense membrane curvature is essential in various biological events such as cell signaling and membrane trafficking. As they are bound, these curvature-sensing proteins may also change the local membrane shape by one or more curvature driving mechanisms. Established curvature-sensing/driving mechanisms rely on proteins with specific structural features such as amphipathic helices and intrinsically curved shapes. However, the recent discovery and characterization of many proteins have shattered the protein structure–function paradigm, believing that the protein functions require a unique structural feature. Typically, such structure-independent functions are carried either entirely by intrinsically disordered proteins or hybrid proteins containing disordered regions and structured domains. It is becoming more apparent that disordered proteins and regions can be potent sensors/inducers of membrane curvatures. In this article, we outline the basic features of disordered proteins and regions, the motifs in such proteins that encode the function, membrane remodeling by disordered proteins and regions, and assays that may be employed to investigate curvature sensing and generation by ordered/disordered proteins.
Collapse
|
16
|
Münter R, Stavnsbjerg C, Christensen E, Thomsen ME, Stensballe A, Hansen AE, Parhamifar L, Kristensen K, Simonsen JB, Larsen JB, Andresen TL. Unravelling Heterogeneities in Complement and Antibody Opsonization of Individual Liposomes as a Function of Surface Architecture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106529. [PMID: 35187804 DOI: 10.1002/smll.202106529] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Coating nanoparticles with poly(ethylene glycol) (PEG) is widely used to achieve long-circulating properties after infusion. While PEG reduces binding of opsonins to the particle surface, immunogenic anti-PEG side-effects show that PEGylated nanoparticles are not truly "stealth" to surface active proteins. A major obstacle for understanding the complex interplay between opsonins and nanoparticles is the averaging effects of the bulk assays that are typically applied to study protein adsorption to nanoparticles. Here, a microscopy-based method for directly quantifying opsonization at the single nanoparticle level is presented. Various surface coatings are investigated on liposomes, including PEG, and show that opsonization by both antibodies and complement C3b is highly dependent on the surface chemistry. It is further demonstrated that this opsonization is heterogeneous, with opsonized and non-opsonized liposomes co-existing in the same ensemble. Surface coatings modify the percentage of opsonized liposomes and/or opsonin surface density on the liposomes, with strikingly different patterns for antibodies and complement. Thus, this assay provides mechanistic details about opsonization at the single nanoparticle level previously inaccessible to established bulk assays.
Collapse
Affiliation(s)
- Rasmus Münter
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Camilla Stavnsbjerg
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Esben Christensen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Mikkel E Thomsen
- Department of Health Science and Technology, Aalborg University, Aalborg Ø, 9220, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg Ø, 9220, Denmark
| | - Anders E Hansen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Ladan Parhamifar
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Kasper Kristensen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Jens B Simonsen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Jannik B Larsen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Thomas L Andresen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
17
|
Wichmann N, Lund PM, Hansen MB, Hjørringgaard CU, Larsen JB, Kristensen K, Andresen TL, Simonsen JB. Applying flow cytometry to identify the modes of action of membrane-active peptides in a label-free and high-throughput fashion. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183820. [PMID: 34813768 DOI: 10.1016/j.bbamem.2021.183820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/29/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Membrane-active peptides (MAPs) have several potential therapeutic uses, including as antimicrobial drugs. Many traditional methods used to evaluate the membrane interactions of MAPs have limited applicability. Low-throughput methods, such as microscopy, provide detailed information but often rely on fluorophore-labeled MAPs, and high-throughput assays, such as the calcein release assay, cannot assess the mechanism behind the disruption of vesicular-based lipid membranes. Here we present a flow cytometric assay that provides detailed information about the peptide-lipid membrane interactions on single artificial lipid vesicles while being high-throughput (1000-2000 vesicles/s) and based on label-free MAPs. We synthesized and investigated six MAPs with different modes of action to evaluate the versatility of the assay. The assay is based on the flow cytometric readouts from artificial lipid vesicles, including the fluorescence from membrane-anchored and core-encapsulated fluorophores, and the vesicle concentration. From these parameters, we were able to distinguish between MAPs that induce vesicle solubilization, permeation (pores/membrane distortion), and aggregation or fusion. Our flow cytometry findings have been verified by traditional methods, including the calcein release assay, dynamic light scattering, and fluorescence microscopy on giant unilamellar vesicles. We envision that the presented flow cytometric assay can be used for various types of peptide-lipid membrane studies, e.g. to identify new antibiotics. Moreover, the assay can easily be expanded to derive additional valuable information.
Collapse
Affiliation(s)
- Nanna Wichmann
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Philip M Lund
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Morten B Hansen
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Claudia U Hjørringgaard
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jannik B Larsen
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kasper Kristensen
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Jens B Simonsen
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
18
|
Quantifying the heterogeneity of enzymatic dePEGyaltion of liposomal nanocarrier systems. Eur J Pharm Biopharm 2022; 171:80-89. [PMID: 35021105 DOI: 10.1016/j.ejpb.2021.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022]
Abstract
Lipid nanoparticles have been clinically successful in particular recently within the vaccine field, but better tools are needed to analyze heterogeneities at the single particle level to progress drug delivery designs to the next level. Especially, liposomal nanocarriers are becoming increasingly complex e.g. by employing environmental cues for shedding their protective PEG layer, however a detailed mechanistic understanding of how the dePEGylation varies from liposome-to-liposome is still missing. Here we present the development of a fluorescence microscopy based assay capable of detecting the enzyme mediated dePEGylation of individual liposomes. We employ this methodology to understand how enzyme type-, concentration- and incubation time, in addition to liposome size, affects the dePEGylation at the single particle level.
Collapse
|
19
|
Cawley JL, Blauch ME, Collins SM, Nice JB, Xie Q, Jordan LR, Brown AC, Wittenberg NJ. Nanoarrays of Individual Liposomes and Bacterial Outer Membrane Vesicles by Liftoff Nanocontact Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103338. [PMID: 34655160 PMCID: PMC8678320 DOI: 10.1002/smll.202103338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Analytical characterization of small biological particles, such as extracellular vesicles (EVs), is complicated by their extreme heterogeneity in size, lipid, membrane protein, and cargo composition. Analysis of individual particles is essential for illuminating particle property distributions that are obscured by ensemble measurements. To enable high-throughput analysis of individual particles, liftoff nanocontact printing (LNCP) is used to define hexagonal antibody and toxin arrays that have a 425 nm dot size, on average, and 700 nm periodicity. The LNCP process is rapid, simple, and does not require access to specialized nanofabrication tools. These densely packed, highly ordered arrays are used to capture liposomes and bacterial outer membrane vesicles on the basis of their surface biomarkers, with a maximum of one particle per array dot, resulting in densely packed arrays of particles. Despite the high particle density, the underlying antibody or toxin array ensured that neighboring individual particles are optically resolvable. Provided target particle biomarkers and suitable capture molecules are identified, this approach can be used to generate high density arrays of a wide variety of small biological particles, including other types of EVs like exosomes.
Collapse
Affiliation(s)
- Jennie L Cawley
- Department of Chemistry, Lehigh University, 6 E Packer Ave, Bethlehem, PA, 18015, USA
| | - Megan E Blauch
- Department of Chemistry, Lehigh University, 6 E Packer Ave, Bethlehem, PA, 18015, USA
| | - Shannon M Collins
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, PA, 18015, USA
| | - Justin B Nice
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, PA, 18015, USA
| | - Qing Xie
- Department of Chemistry, Lehigh University, 6 E Packer Ave, Bethlehem, PA, 18015, USA
| | - Luke R Jordan
- Department of Chemistry, Lehigh University, 6 E Packer Ave, Bethlehem, PA, 18015, USA
| | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, PA, 18015, USA
| | - Nathan J Wittenberg
- Department of Chemistry, Lehigh University, 6 E Packer Ave, Bethlehem, PA, 18015, USA
| |
Collapse
|
20
|
Recent developments in membrane curvature sensing and induction by proteins. Biochim Biophys Acta Gen Subj 2021; 1865:129971. [PMID: 34333084 DOI: 10.1016/j.bbagen.2021.129971] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/11/2021] [Accepted: 07/25/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Membrane-bound intracellular organelles have characteristic shapes attributed to different local membrane curvatures, and these attributes are conserved across species. Over the past decade, it has been confirmed that specific proteins control the large curvatures of the membrane, whereas many others due to their specific structural features can sense the curvatures and bind to the specific geometrical cues. Elucidating the interplay between sensing and induction is indispensable to understand the mechanisms behind various biological processes such as vesicular trafficking and budding. SCOPE OF REVIEW We provide an overview of major classes of membrane proteins and the mechanisms of curvature sensing and induction. We then discuss the importance of membrane elastic characteristics to induce the membrane shapes similar to intracellular organelles. Finally, we survey recently available assays developed for studying the curvature sensing and induction by many proteins. MAJOR CONCLUSIONS Recent theoretical/computational modeling along with experimental studies have uncovered fascinating connections between lipid membrane and protein interactions. However, the phenomena of protein localization and synchronization to generate spatiotemporal dynamics in membrane morphology are yet to be fully understood. GENERAL SIGNIFICANCE The understanding of protein-membrane interactions is essential to shed light on various biological processes. This further enables the technological applications of many natural proteins/peptides in therapeutic treatments. The studies of membrane dynamic shapes help to understand the fundamental functions of membranes, while the medicinal roles of various macromolecules (such as proteins, peptides, etc.) are being increasingly investigated.
Collapse
|
21
|
Simonsen JB, Kromann EB. Pitfalls and opportunities in quantitative fluorescence-based nanomedicine studies - A commentary. J Control Release 2021; 335:660-667. [PMID: 34089794 DOI: 10.1016/j.jconrel.2021.05.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
Fluorescence-based techniques are prevalent in studies of nanomedicine-targeting to cells and tissues. However, fluorescence-based studies are rarely quantitative, thus prohibiting direct comparisons of nanomedicine-performance across studies. With this Commentary, we aim to provoke critical thinking about experimental design by treating some often-overlooked pitfalls in 'quantitative' fluorescence-based experimentation. Focusing on fluorescence-labeled nanoparticles, we cover mechanisms like solvent-interactions and fluorophore-dissociation, which disqualify the assumption that 'a higher fluorescence readout' translates directly to 'a better targeting efficacy'. With departure in recent literature, we propose guidelines for circumventing these pitfalls in studies of tissue-accumulation and cell-uptake, thus covering fluorescence-based techniques like bulk solution fluorescence measurements, fluorescence microscopy, flow cytometry, and infrared fluorescence imaging. With this, we hope to lay a foundation for more 'quantitative thinking' during experimental design, enabling (for example) the estimation and reporting of actual numbers of fluorescent nanoparticles accumulated in cells and organs.
Collapse
Affiliation(s)
- Jens B Simonsen
- Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark.
| | - Emil B Kromann
- Department of Health Technology, Section for Biomimetics, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
22
|
Aggregation-related quenching of LHCII fluorescence in liposomes revealed by single-molecule spectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 218:112174. [PMID: 33799009 DOI: 10.1016/j.jphotobiol.2021.112174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/04/2021] [Accepted: 03/21/2021] [Indexed: 11/20/2022]
Abstract
Incorporation of membrane proteins into reconstituted lipid membranes is a common approach for studying their structure and function relationship in a native-like environment. In this work, we investigated fluorescence properties of liposome-reconstituted major light-harvesting complexes of plants (LHCII). By utilizing liposome labelling with the fluorescent dye molecules and single-molecule microscopy techniques, we were able to study truly liposome-reconstituted LHCII and compare them with bulk measurements and liposome-free LHCII aggregates bound to the surface. Our results showed that fluorescence lifetime obtained in bulk and in single liposome measurements were correlated. The fluorescence lifetimes of LHCII were shorter for liposome-free LHCII than for reconstituted LHCII. In the case of liposome-reconstituted LHCII, fluorescence lifetime showed dependence on the protein density reminiscent to concentration quenching. The dependence of fluorescence lifetime of LHCII on the liposome size was not significant. Our results demonstrated that fluorescence quenching can be induced by LHCII - LHCII interactions in reconstituted membranes, most likely occurring via the same mechanism as photoprotective non-photochemical quenching in vivo.
Collapse
|
23
|
Clathrin senses membrane curvature. Biophys J 2021; 120:818-828. [PMID: 33524373 DOI: 10.1016/j.bpj.2020.12.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 11/21/2022] Open
Abstract
The ability of proteins to assemble at sites of high membrane curvature is essential to diverse membrane remodeling processes, including clathrin-mediated endocytosis. Multiple adaptor proteins within the clathrin pathway have been shown to sense regions of high membrane curvature, leading to local recruitment of the clathrin coat. Because clathrin triskelia do not bind to the membrane directly, it has remained unclear whether the clathrin coat plays an active role in sensing membrane curvature or is passively recruited by adaptor proteins. Using a synthetic tag to assemble clathrin directly on membrane surfaces, here we show that clathrin is a strong sensor of membrane curvature, comparable with previously studied adaptor proteins. Interestingly, this sensitivity arises from clathrin assembly rather than from the properties of unassembled triskelia, suggesting that triskelia have preferred angles of interaction, as predicted by earlier structural data. Furthermore, when clathrin is recruited by adaptors, its curvature sensitivity is amplified by 2- to 10-fold, such that the resulting protein complex is up to 100 times more likely to assemble on a highly curved surface compared with a flatter one. This exquisite sensitivity points to a synergistic relationship between the coat and its adaptor proteins, which enables clathrin to pinpoint sites of high membrane curvature, an essential step in ensuring robust membrane traffic. More broadly, these findings suggest that protein networks, rather than individual protein domains, are likely the most potent drivers of membrane curvature sensing.
Collapse
|
24
|
Guha A, McGuire ML, Leriche G, Yang J, Mayer M. A single-liposome assay that enables temperature-dependent measurement of proton permeability of extremophile-inspired lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183567. [PMID: 33476579 DOI: 10.1016/j.bbamem.2021.183567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Affiliation(s)
- Anirvan Guha
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Melissa L McGuire
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States of America
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States of America
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
25
|
Akama K, Noji H. Multiparameter single-particle motion analysis for homogeneous digital immunoassay. Analyst 2021; 146:1303-1310. [DOI: 10.1039/d0an02056g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Digital homogeneous non-enzymatic immunosorbent assay (digital Ho-Non ELISA) is a new class of digital immunoassay. In this paper, we developed a multiparameter single-particle motion analysis method for a highly sensitive digital Ho-Non ELISA.
Collapse
Affiliation(s)
- Kenji Akama
- Department of Applied Chemistry
- Graduate School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry
- Graduate School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| |
Collapse
|
26
|
Andresen TL, Larsen JB. Compositional inhomogeneity of drug delivery liposomes quantified at the single liposome level. Acta Biomater 2020; 118:207-214. [PMID: 33065286 DOI: 10.1016/j.actbio.2020.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022]
Abstract
Liposomes are the most used drug delivery vehicle and their therapeutic function is closely linked to their lipid composition. Since most liposome characterization is done using bulk techniques, providing only ensemble averages, the lipid composition of all liposomes within the same formulation are typically assumed to be identical. Here we image individual liposomes using confocal microscopy to quantify that liposomal drug delivery formulations, including multiple component mixtures mimicking Doxil, display more than 10-fold variation in their relative lipid composition. Since liposome function is tightly regulated by the physicochemical properties bestowed by the lipid composition, such significant variations could render only a fraction of liposomes therapeutically active. Additionally, we quantified how this degree of compositional inhomogeneity was modulated by liposome preparation method, the saturation state of the membrane lipid, and whether anti-fouling polyethylene glycol (PEG) conjugated lipids were added to the initial lipid mix or inserted after liposome formation. We believe the insights into the factors governing the degree of inhomogeneity offers the possibility for producing more uniform liposomal drug delivery systems, potentially increasing their therapeutic efficacy.
Collapse
Affiliation(s)
- Thomas Lars Andresen
- Center for Nanomedicine and Theranostics, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Jannik Bruun Larsen
- Center for Nanomedicine and Theranostics, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
27
|
Juan-Colás J, Dresser L, Morris K, Lagadou H, Ward RH, Burns A, Tear S, Johnson S, Leake MC, Quinn SD. The Mechanism of Vesicle Solubilization by the Detergent Sodium Dodecyl Sulfate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11499-11507. [PMID: 32870686 DOI: 10.1021/acs.langmuir.0c01810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Membrane solubilization by sodium dodecyl sulfate (SDS) is indispensable for many established biotechnological applications, including viral inactivation and protein extraction. Although the ensemble thermodynamics have been thoroughly explored, the underlying molecular dynamics have remained inaccessible, owing to major limitations of traditional measurement tools. Here, we integrate multiple advanced biophysical approaches to gain multiangle insight into the time-dependence and fundamental kinetic steps associated with the solubilization of single submicron sized vesicles in response to SDS. We find that the accumulation of SDS molecules on intact vesicles triggers biphasic solubilization kinetics comprising an initial vesicle expansion event followed by rapid lipid loss and micellization. Our findings support a general mechanism of detergent-induced membrane solubilization, and we expect that the framework of correlative biophysical technologies presented here will form a general platform for elucidating the complex kinetics of membrane perturbation induced by a wide variety of surfactants and disrupting agents.
Collapse
Affiliation(s)
- José Juan-Colás
- Department of Electronic Engineering, University of York, Heslington, York YO10 5DD, U.K
| | - Lara Dresser
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
| | - Katie Morris
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
| | - Hugo Lagadou
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
| | - Rebecca H Ward
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
| | - Amy Burns
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
| | - Steve Tear
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
| | - Steven Johnson
- Department of Electronic Engineering, University of York, Heslington, York YO10 5DD, U.K
- York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, U.K
| | - Mark C Leake
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
- Department of Biology, University of York, Heslington, York YO10 5DD, U.K
- York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, U.K
| | - Steven D Quinn
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
- York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
28
|
Hugentobler KG, Heinrich D, Berg J, Heberle J, Brzezinski P, Schlesinger R, Block S. Lipid Composition Affects the Efficiency in the Functional Reconstitution of the Cytochrome c Oxidase. Int J Mol Sci 2020; 21:ijms21196981. [PMID: 32977390 PMCID: PMC7583929 DOI: 10.3390/ijms21196981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022] Open
Abstract
The transmembrane protein cytochrome c oxidase (CcO) is the terminal oxidase in the respiratory chain of many aerobic organisms and catalyzes the reduction of dioxygen to water. This process maintains an electrochemical proton gradient across the membrane hosting the oxidase. CcO is a well-established model enzyme in bioenergetics to study the proton-coupled electron transfer reactions and protonation dynamics involved in these processes. Its catalytic mechanism is subject to ongoing intense research. Previous research, however, was mainly focused on the turnover of oxygen and electrons in CcO, while studies reporting proton turnover rates of CcO, that is the rate of proton uptake by the enzyme, are scarce. Here, we reconstitute CcO from R. sphaeroides into liposomes containing a pH sensitive dye and probe changes of the pH value inside single proteoliposomes using fluorescence microscopy. CcO proton turnover rates are quantified at the single-enzyme level. In addition, we recorded the distribution of the number of functionally reconstituted CcOs across the proteoliposome population. Studies are performed using proteoliposomes made of native lipid sources, such as a crude extract of soybean lipids and the polar lipid extract of E. coli, as well as purified lipid fractions, such as phosphatidylcholine extracted from soybean lipids. It is shown that these lipid compositions have only minor effects on the CcO proton turnover rate, but can have a strong impact on the reconstitution efficiency of functionally active CcOs. In particular, our experiments indicate that efficient functional reconstitution of CcO is strongly promoted by the addition of anionic lipids like phosphatidylglycerol and cardiolipin.
Collapse
Affiliation(s)
- Katharina Gloria Hugentobler
- Institute of Chemistry and Biochemistry, Emmy-Noether Group “Bionanointerfaces”, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany;
| | - Dorothea Heinrich
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany; (D.H.); (R.S.)
| | - Johan Berg
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden; (J.B.); (P.B.)
| | - Joachim Heberle
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany;
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden; (J.B.); (P.B.)
| | - Ramona Schlesinger
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany; (D.H.); (R.S.)
| | - Stephan Block
- Institute of Chemistry and Biochemistry, Emmy-Noether Group “Bionanointerfaces”, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany;
- Correspondence:
| |
Collapse
|
29
|
Larsen J, Rosholm KR, Kennard C, Pedersen SL, Munch HK, Tkach V, Sakon JJ, Bjørnholm T, Weninger KR, Bendix PM, Jensen KJ, Hatzakis NS, Uline MJ, Stamou D. How Membrane Geometry Regulates Protein Sorting Independently of Mean Curvature. ACS CENTRAL SCIENCE 2020; 6:1159-1168. [PMID: 32724850 PMCID: PMC7379390 DOI: 10.1021/acscentsci.0c00419] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Indexed: 05/06/2023]
Abstract
Biological membranes have distinct geometries that confer specific functions. However, the molecular mechanisms underlying the phenomenological geometry/function correlations remain elusive. We studied the effect of membrane geometry on the localization of membrane-bound proteins. Quantitative comparative experiments between the two most abundant cellular membrane geometries, spherical and cylindrical, revealed that geometry regulates the spatial segregation of proteins. The measured geometry-driven segregation reached 50-fold for membranes of the same mean curvature, demonstrating a crucial and hitherto unaccounted contribution by Gaussian curvature. Molecular-field theory calculations elucidated the underlying physical and molecular mechanisms. Our results reveal that distinct membrane geometries have specific physicochemical properties and thus establish a ubiquitous mechanistic foundation for unravelling the conserved correlations between biological function and membrane polymorphism.
Collapse
Affiliation(s)
- Jannik
B. Larsen
- Bionanotecnology
and Nanomedicine Laboratory, University
of Copenhagen, Copenhagen, Denmark
- Nano-Science
Center, University of Copenhagen, Copenhagen, Denmark
- Lundbeck
Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
- Department
of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Kadla R. Rosholm
- Bionanotecnology
and Nanomedicine Laboratory, University
of Copenhagen, Copenhagen, Denmark
- Nano-Science
Center, University of Copenhagen, Copenhagen, Denmark
- Lundbeck
Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
- Department
of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Celeste Kennard
- Department
of Chemical Engineering, University of South
Carolina, Columbia, South Carolina, United States
| | - Søren L. Pedersen
- Lundbeck
Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
- Department
of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Henrik K. Munch
- Lundbeck
Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
- Department
of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Vadym Tkach
- Bionanotecnology
and Nanomedicine Laboratory, University
of Copenhagen, Copenhagen, Denmark
- Nano-Science
Center, University of Copenhagen, Copenhagen, Denmark
- Lundbeck
Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
- Department
of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - John J. Sakon
- Department
of Physics, North Carolina State University, Raleigh, North Carolina, United States
| | - Thomas Bjørnholm
- Bionanotecnology
and Nanomedicine Laboratory, University
of Copenhagen, Copenhagen, Denmark
- Nano-Science
Center, University of Copenhagen, Copenhagen, Denmark
- Lundbeck
Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
- Department
of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Keith R. Weninger
- Department
of Physics, North Carolina State University, Raleigh, North Carolina, United States
| | | | - Knud J. Jensen
- Lundbeck
Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
- Department
of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Nikos S Hatzakis
- Bionanotecnology
and Nanomedicine Laboratory, University
of Copenhagen, Copenhagen, Denmark
- Nano-Science
Center, University of Copenhagen, Copenhagen, Denmark
- Lundbeck
Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
- Department
of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Mark J. Uline
- Center
for Geometrically Engineered Cellular Systems, University of Copenhagen, Copenhagen, Denmark
- Department
of Chemical Engineering, Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, United States
- (M.J.U.) E-mail:
| | - Dimitrios Stamou
- Bionanotecnology
and Nanomedicine Laboratory, University
of Copenhagen, Copenhagen, Denmark
- Nano-Science
Center, University of Copenhagen, Copenhagen, Denmark
- Lundbeck
Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
- Department
of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Center
for Geometrically Engineered Cellular Systems, University of Copenhagen, Copenhagen, Denmark
- (D.S.)
| |
Collapse
|
30
|
Tripartite phase separation of two signal effectors with vesicles priming B cell responsiveness. Nat Commun 2020; 11:848. [PMID: 32051419 PMCID: PMC7016142 DOI: 10.1038/s41467-020-14544-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 01/13/2020] [Indexed: 01/12/2023] Open
Abstract
Antibody-mediated immune responses rely on antigen recognition by the B cell antigen receptor (BCR) and the proper engagement of its intracellular signal effector proteins. Src homology (SH) 2 domain-containing leukocyte protein of 65 kDa (SLP65) is the key scaffold protein mediating BCR signaling. In resting B cells, SLP65 colocalizes with Cbl-interacting protein of 85 kDa (CIN85) in cytoplasmic granules whose formation is not fully understood. Here we show that effective B cell activation requires tripartite phase separation of SLP65, CIN85, and lipid vesicles into droplets via vesicle binding of SLP65 and promiscuous interactions between nine SH3 domains of the trimeric CIN85 and the proline-rich motifs (PRMs) of SLP65. Vesicles are clustered and the dynamical structure of SLP65 persists in the droplet phase in vitro. Our results demonstrate that phase separation driven by concerted transient interactions between scaffold proteins and vesicles is a cellular mechanism to concentrate and organize signal transducers. Antibody-mediated immune responses rely on antigen recognition by the B cell antigen receptor (BCR) and SLP65 is a key scaffold protein mediating BCR signaling. Here authors show that effective B cell activation requires tripartite phase separation of SLP65, CIN85, and lipid vesicles.
Collapse
|
31
|
Singh A, Marcoline FV, Veshaguri S, Kao AW, Bruchez M, Mindell JA, Stamou D, Grabe M. Protons in small spaces: Discrete simulations of vesicle acidification. PLoS Comput Biol 2019; 15:e1007539. [PMID: 31869334 PMCID: PMC6946529 DOI: 10.1371/journal.pcbi.1007539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/07/2020] [Accepted: 11/11/2019] [Indexed: 12/23/2022] Open
Abstract
The lumenal pH of an organelle is one of its defining characteristics and central to its biological function. Experiments have elucidated many of the key pH regulatory elements and how they vary from compartment-to-compartment, and continuum mathematical models have played an important role in understanding how these elements (proton pumps, counter-ion fluxes, membrane potential, buffering capacity, etc.) work together to achieve specific pH setpoints. While continuum models have proven successful in describing ion regulation at the cellular length scale, it is unknown if they are valid at the subcellular level where volumes are small, ion numbers may fluctuate wildly, and biochemical heterogeneity is large. Here, we create a discrete, stochastic (DS) model of vesicular acidification to answer this question. We used this simplified model to analyze pH measurements of isolated vesicles containing single proton pumps and compared these results to solutions from a continuum, ordinary differential equations (ODE)-based model. Both models predict similar parameter estimates for the mean proton pumping rate, membrane permeability, etc., but, as expected, the ODE model fails to report on the fluctuations in the system. The stochastic model predicts that pH fluctuations decrease during acidification, but noise analysis of single-vesicle data confirms our finding that the experimental noise is dominated by the fluorescent dye, and it reveals no insight into the true noise in the proton fluctuations. Finally, we again use the reduced DS model explore the acidification of large, lysosome-like vesicles to determine how stochastic elements, such as variations in proton-pump copy number and cycling between on and off states, impact the pH setpoint and fluctuations around this setpoint. Organelles harbor specific ion channels, transporters, and other molecular components that allow them to achieve specific intracellular ionic conditions required for their proper function. How all of these components work together to regulate these concentrations, such as maintaining a specific pH value, is complex, and continuum mathematical models have been helpful for evaluating different mechanisms and making quantitative predictions that can be tested experimentally. Nonetheless, organelles can be quite small and some contain only a handful of free protons—can continuum models accurately describe systems with so few molecules? We tested this by creating a discrete, stochastic (DS) model of vesicle acidification that tracks how all of these individual molecules in the vesicle change their state in time. When fitting experimental data, the DS model provides the same parameter estimates as a corresponding continuum model, indicating that both models are equally valid. However, the DS model additionally informs on the noise in the vesicle. When compared to the experimental noise in pH, we show that there is no agreement, because experimental fluctuations do not report on the true pH fluctuations, but rather they report on the fluctuations in reporter molecule protonation. Given experimental limitations, our result highlights the importance of DS models in predicting noise in organelles.
Collapse
Affiliation(s)
- Apeksha Singh
- College of Letters and Science, University of California Berkeley, Berkeley, California, United States of America
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Frank V. Marcoline
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (FVM); (MG)
| | - Salome Veshaguri
- Bionanotecnology and Nanomedicine Laboratory, University of Copenhagen, Copenhagen, Denmark
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Nano-Science Center, University of Copenhagen, Copenhagen, Denmark
- Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| | - Aimee W. Kao
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Marcel Bruchez
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Joseph A. Mindell
- Membrane Transport Biophysics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dimitrios Stamou
- Bionanotecnology and Nanomedicine Laboratory, University of Copenhagen, Copenhagen, Denmark
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Nano-Science Center, University of Copenhagen, Copenhagen, Denmark
- Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael Grabe
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (FVM); (MG)
| |
Collapse
|
32
|
Zeno WF, Snead WT, Thatte AS, Stachowiak JC. Structured and intrinsically disordered domains within Amphiphysin1 work together to sense and drive membrane curvature. SOFT MATTER 2019; 15:8706-8717. [PMID: 31621751 PMCID: PMC6934260 DOI: 10.1039/c9sm01495k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cellular membranes undergo remodeling during many cellular processes including endocytosis, cytoskeletal protrusion, and organelle biogenesis. During these events, specialized proteins sense and amplify fluctuations in membrane curvature to create stably curved architectures. Amphiphysin1 is a multi-domain protein containing an N-terminal crescent-shaped BAR (Bin/Amphiphysin/Rvs) domain and a C-terminal domain that is largely disordered. When studied in isolation, the BAR domain of Amphiphysin1 senses membrane curvature and generates membrane tubules. However, the disordered domain has been largely overlooked in these studies. Interestingly, our recent work has demonstrated that the disordered domain is capable of substantially amplifying the membrane remodeling ability of the BAR domain. However, the physical mechanisms responsible for these effects are presently unclear. Here we elucidated the functional role of the disordered domain by gradually truncating it, creating a family of mutant proteins, each of which contained the BAR domain and a fraction of the disordered domain. Using quantitative fluorescence and electron microscopy, our results indicate that the disordered domain contributes to membrane remodeling by making it more difficult for the protein to bind to and assemble on flat membrane surfaces. Specifically, we found that the disordered domain began to significantly impact membrane remodeling when its projected area exceeded that of the BAR domain. Once this threshold was crossed, steric interactions with the membrane surface and with neighboring disordered domains gave rise to increased curvature sensing and membrane vesiculation, respectively. These findings provide insight into the synergy between structured and disordered domains, each of which play important biophysical roles in membrane remodeling.
Collapse
Affiliation(s)
- Wade F Zeno
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Wilton T Snead
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Ajay S Thatte
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA. and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
33
|
Quantitative accounting of dye leakage and photobleaching in single lipid vesicle measurements: Implications for biomacromolecular interaction analysis. Colloids Surf B Biointerfaces 2019; 182:110338. [DOI: 10.1016/j.colsurfb.2019.06.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/08/2019] [Accepted: 06/28/2019] [Indexed: 02/05/2023]
|
34
|
Single Proteoliposome High-Content Analysis Reveals Differences in the Homo-Oligomerization of GPCRs. Biophys J 2019; 115:300-312. [PMID: 30021106 DOI: 10.1016/j.bpj.2018.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 11/23/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) control vital cellular signaling pathways. GPCR oligomerization is proposed to increase signaling diversity. However, many reports have arrived at disparate conclusions regarding the existence, stability, and stoichiometry of GPCR oligomers, partly because of cellular complexity and ensemble averaging of intrareconstitution heterogeneities that complicate the interpretation of oligomerization data. To overcome these limitations, we exploited fluorescence-microscopy-based high-content analysis of single proteoliposomes. This allowed multidimensional quantification of intrinsic monomer-monomer interactions of three class A GPCRs (β2-adrenergic receptor, cannabinoid receptor type 1, and opsin). Using a billion-fold less protein than conventional assays, we quantified oligomer stoichiometries, association constants, and the influence of two ligands and membrane curvature on oligomerization, revealing key similarities and differences for three GPCRs with decidedly different physiological functions. The assays introduced here will assist with the quantitative experimental observation of oligomerization for transmembrane proteins in general.
Collapse
|
35
|
Zeno WF, Thatte AS, Wang L, Snead WT, Lafer EM, Stachowiak JC. Molecular Mechanisms of Membrane Curvature Sensing by a Disordered Protein. J Am Chem Soc 2019; 141:10361-10371. [PMID: 31180661 DOI: 10.1021/jacs.9b03927] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability of proteins to sense membrane curvature is essential for the initiation and assembly of curved membrane structures. Established mechanisms of curvature sensing rely on proteins with specific structural features. In contrast, it has recently been discovered that intrinsically disordered proteins, which lack a defined three-dimensional fold, can also be potent sensors of membrane curvature. How can an unstructured protein sense the structure of the membrane surface? Many disordered proteins that associate with membranes have two key physical features: a high degree of conformational entropy and a high net negative charge. Binding of such proteins to membrane surfaces results simultaneously in a decrease in conformational entropy and an increase in electrostatic repulsion by anionic lipids. Here we show that each of these effects gives rise to a distinct mechanism of curvature sensing. Specifically, as the curvature of the membrane increases, the steric hindrance between the disordered protein and membrane is reduced, leading to an increase in chain entropy. At the same time, increasing membrane curvature increases the average separation between anionic amino acids and lipids, creating an electrostatic preference for curved membranes. Using quantitative imaging of membrane vesicles, our results demonstrate that long disordered amino acid chains with low net charge sense curvature predominately through the entropic mechanism. In contrast, shorter, more highly charged amino acid chains rely largely on the electrostatic mechanism. These findings provide a roadmap for predicting and testing the curvature sensitivity of the large and diverse set of disordered proteins that function at cellular membranes.
Collapse
Affiliation(s)
- Wade F Zeno
- Department of Biomedical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Ajay S Thatte
- Department of Biomedical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Liping Wang
- Department of Biochemistry and Structural Biology , The University of Texas Health Science Center at San Antonio , San Antonio , Texas 78229 , United States
| | - Wilton T Snead
- Department of Biomedical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Eileen M Lafer
- Department of Biochemistry and Structural Biology , The University of Texas Health Science Center at San Antonio , San Antonio , Texas 78229 , United States
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States.,Institute for Cellular and Molecular Biology , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
36
|
Simonsen JB, Larsen JB, Hempel C, Eng N, Fossum A, Andresen TL. Unique Calibrators Derived from Fluorescence‐Activated Nanoparticle Sorting for Flow Cytometric Size Estimation of Artificial Vesicles: Possibilities and Limitations. Cytometry A 2019; 95:917-924. [DOI: 10.1002/cyto.a.23797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/08/2019] [Accepted: 05/06/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Jens B. Simonsen
- Department of Health TechnologyTechnical University of Denmark Kongens Lyngby DK‐2800 Denmark
| | - Jannik B. Larsen
- Department of Health TechnologyTechnical University of Denmark Kongens Lyngby DK‐2800 Denmark
| | - Casper Hempel
- Department of Health TechnologyTechnical University of Denmark Kongens Lyngby DK‐2800 Denmark
| | | | - Anna Fossum
- Biotech Research and Innovation Centre (BRIC)University of Copenhagen Copenhagen DK‐2200 Denmark
| | - Thomas L. Andresen
- Department of Health TechnologyTechnical University of Denmark Kongens Lyngby DK‐2800 Denmark
| |
Collapse
|
37
|
Biochemical studies of membrane fusion at the single-particle level. Prog Lipid Res 2019; 73:92-100. [PMID: 30611882 DOI: 10.1016/j.plipres.2019.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 01/21/2023]
Abstract
To study membrane fusion mediated by synaptic proteins, proteoliposomes have been widely used for in vitro ensemble measurements with limited insights into the fusion mechanism. Single-particle techniques have proven to be powerful in overcoming the limitations of traditional ensemble methods. Here, we summarize current single-particle methods in biophysical and biochemical studies of fusion mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and other synaptic proteins, together with their advantages and limitations.
Collapse
|
38
|
Deo R, Kushwah MS, Kamerkar SC, Kadam NY, Dar S, Babu K, Srivastava A, Pucadyil TJ. ATP-dependent membrane remodeling links EHD1 functions to endocytic recycling. Nat Commun 2018; 9:5187. [PMID: 30518883 PMCID: PMC6281616 DOI: 10.1038/s41467-018-07586-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 11/02/2018] [Indexed: 01/30/2023] Open
Abstract
Endocytic and recycling pathways generate cargo-laden transport carriers by membrane fission. Classical dynamins, which generate transport carriers during endocytosis, constrict and cause fission of membrane tubes in response to GTP hydrolysis. Relatively, less is known about the ATP-binding Eps15-homology domain-containing protein1 (EHD1), a dynamin family member that functions at the endocytic-recycling compartment. Here, we show using cross complementation assays in C. elegans that EHD1's membrane binding and ATP hydrolysis activities are necessary for endocytic recycling. Further, we show that ATP-bound EHD1 forms membrane-active scaffolds that bulge tubular model membranes. ATP hydrolysis promotes scaffold self-assembly, causing the bulge to extend and thin down intermediate regions on the tube. On tubes below 25 nm in radius, such thinning leads to scission. Molecular dynamics simulations corroborate this scission pathway. Deletion of N-terminal residues causes defects in stable scaffolding, scission and endocytic recycling. Thus, ATP hydrolysis-dependent membrane remodeling links EHD1 functions to endocytic recycling.
Collapse
Affiliation(s)
- Raunaq Deo
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Manish S Kushwah
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Sukrut C Kamerkar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Nagesh Y Kadam
- Indian Institute of Science Education and Research, Sector 81, S.A.S Nagar, Mohali, 140306, Punjab, India
| | - Srishti Dar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Kavita Babu
- Indian Institute of Science Education and Research, Sector 81, S.A.S Nagar, Mohali, 140306, Punjab, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Thomas J Pucadyil
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India.
| |
Collapse
|
39
|
Snead WT, Zeno WF, Kago G, Perkins RW, Richter JB, Zhao C, Lafer EM, Stachowiak JC. BAR scaffolds drive membrane fission by crowding disordered domains. J Cell Biol 2018; 218:664-682. [PMID: 30504247 PMCID: PMC6363457 DOI: 10.1083/jcb.201807119] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/12/2018] [Accepted: 11/08/2018] [Indexed: 01/01/2023] Open
Abstract
Cylindrical protein scaffolds are thought to stabilize membrane tubules, preventing membrane fission. In contrast, Snead et al. find that when scaffold proteins assemble, bulky disordered domains within them become acutely concentrated, generating steric pressure that destabilizes tubules, driving fission. Cellular membranes are continuously remodeled. The crescent-shaped bin-amphiphysin-rvs (BAR) domains remodel membranes in multiple cellular pathways. Based on studies of isolated BAR domains in vitro, the current paradigm is that BAR domain–containing proteins polymerize into cylindrical scaffolds that stabilize lipid tubules. But in nature, proteins that contain BAR domains often also contain large intrinsically disordered regions. Using in vitro and live cell assays, here we show that full-length BAR domain–containing proteins, rather than stabilizing membrane tubules, are instead surprisingly potent drivers of membrane fission. Specifically, when BAR scaffolds assemble at membrane surfaces, their bulky disordered domains become crowded, generating steric pressure that destabilizes lipid tubules. More broadly, we observe this behavior with BAR domains that have a range of curvatures. These data suggest that the ability to concentrate disordered domains is a key driver of membrane remodeling and fission by BAR domain–containing proteins.
Collapse
Affiliation(s)
- Wilton T Snead
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX
| | - Wade F Zeno
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX
| | - Grace Kago
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX
| | - Ryan W Perkins
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX
| | - J Blair Richter
- Department of Biochemistry and Structural Biology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Chi Zhao
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX
| | - Eileen M Lafer
- Department of Biochemistry and Structural Biology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX .,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX
| |
Collapse
|
40
|
Tutkus M, Akhtar P, Chmeliov J, Görföl F, Trinkunas G, Lambrev PH, Valkunas L. Fluorescence Microscopy of Single Liposomes with Incorporated Pigment-Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14410-14418. [PMID: 30380887 DOI: 10.1021/acs.langmuir.8b02307] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reconstitution of transmembrane proteins into liposomes is a widely used method to study their behavior under conditions closely resembling the natural ones. However, this approach does not allow precise control of the liposome size, reconstitution efficiency, and the actual protein-to-lipid ratio in the formed proteoliposomes, which might be critical for some applications and/or interpretation of data acquired during the spectroscopic measurements. Here, we present a novel strategy employing methods of proteoliposome preparation, fluorescent labeling, purification, and surface immobilization that allow us to quantify these properties using fluorescence microscopy at the single-liposome level and for the first time apply it to study photosynthetic pigment-protein complexes LHCII. We show that LHCII proteoliposome samples, even after purification with a density gradient, always contain a fraction of nonreconstituted protein and are extremely heterogeneous in both protein density and liposome sizes. This strategy enables quantitative analysis of the reconstitution efficiency of different protocols and precise fluorescence spectroscopic study of various transmembrane proteins in a controlled nativelike environment.
Collapse
Affiliation(s)
- Marijonas Tutkus
- Department of Molecular Compound Physics , Centre for Physical Sciences and Technology , Saulėtekio Avenue 3 , LT-10257 Vilnius , Lithuania
| | - Parveen Akhtar
- Biological Research Centre , Hungarian Academy of Sciences , Temesvári körút 62 , 6726 Szeged , Hungary
| | - Jevgenij Chmeliov
- Department of Molecular Compound Physics , Centre for Physical Sciences and Technology , Saulėtekio Avenue 3 , LT-10257 Vilnius , Lithuania
- Institute of Chemical Physics, Faculty of Physics , Vilnius University , Saulėtekio Avenue 9-III , LT-10222 Vilnius , Lithuania
| | - Fanni Görföl
- Biological Research Centre , Hungarian Academy of Sciences , Temesvári körút 62 , 6726 Szeged , Hungary
| | - Gediminas Trinkunas
- Department of Molecular Compound Physics , Centre for Physical Sciences and Technology , Saulėtekio Avenue 3 , LT-10257 Vilnius , Lithuania
| | - Petar H Lambrev
- Biological Research Centre , Hungarian Academy of Sciences , Temesvári körút 62 , 6726 Szeged , Hungary
| | - Leonas Valkunas
- Department of Molecular Compound Physics , Centre for Physical Sciences and Technology , Saulėtekio Avenue 3 , LT-10257 Vilnius , Lithuania
- Institute of Chemical Physics, Faculty of Physics , Vilnius University , Saulėtekio Avenue 9-III , LT-10222 Vilnius , Lithuania
| |
Collapse
|
41
|
Jackman JA, Costa VV, Park S, Real ALCV, Park JH, Cardozo PL, Ferhan AR, Olmo IG, Moreira TP, Bambirra JL, Queiroz VF, Queiroz-Junior CM, Foureaux G, Souza DG, Ribeiro FM, Yoon BK, Wynendaele E, De Spiegeleer B, Teixeira MM, Cho NJ. Therapeutic treatment of Zika virus infection using a brain-penetrating antiviral peptide. NATURE MATERIALS 2018; 17:971-977. [PMID: 30349030 DOI: 10.1038/s41563-018-0194-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/11/2018] [Indexed: 05/22/2023]
Abstract
Zika virus is a mosquito-borne virus that is associated with neurodegenerative diseases, including Guillain-Barré syndrome1 and congenital Zika syndrome2. As Zika virus targets the nervous system, there is an urgent need to develop therapeutic strategies that inhibit Zika virus infection in the brain. Here, we have engineered a brain-penetrating peptide that works against Zika virus and other mosquito-borne viruses. We evaluated the therapeutic efficacy of the peptide in a lethal Zika virus mouse model exhibiting systemic and brain infection. Therapeutic treatment protected against mortality and markedly reduced clinical symptoms, viral loads and neuroinflammation, as well as mitigated microgliosis, neurodegeneration and brain damage. In addition to controlling systemic infection, the peptide crossed the blood-brain barrier to reduce viral loads in the brain and protected against Zika-virus-induced blood-brain barrier injury. Our findings demonstrate how engineering strategies can be applied to develop peptide therapeutics and support the potential of a brain-penetrating peptide to treat neurotropic viral infections.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Vivian V Costa
- Immunopharmacology Lab, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
- Center for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
- Research Group in Arboviral Diseases, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Soohyun Park
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ana Luiza C V Real
- Neurobiochemistry Lab, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Jae Hyeon Park
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Pablo L Cardozo
- Neurobiochemistry Lab, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Isabella G Olmo
- Neurobiochemistry Lab, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Thaiane P Moreira
- Research Group in Arboviral Diseases, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
- Host-Interaction Microorganism Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jordana L Bambirra
- Research Group in Arboviral Diseases, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
- Host-Interaction Microorganism Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Victoria F Queiroz
- Research Group in Arboviral Diseases, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
- Host-Interaction Microorganism Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso M Queiroz-Junior
- Cardiac Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Giselle Foureaux
- Cardiac Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danielle G Souza
- Host-Interaction Microorganism Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fabiola M Ribeiro
- Neurobiochemistry Lab, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Bo Kyeong Yoon
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Evelien Wynendaele
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Mauro M Teixeira
- Immunopharmacology Lab, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
- Center for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
42
|
Snead WT, Stachowiak JC. A Tethered Vesicle Assay for High-Throughput Quantification of Membrane Fission. Methods Enzymol 2018; 611:559-582. [PMID: 30471700 PMCID: PMC6279246 DOI: 10.1016/bs.mie.2018.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Membrane fission, which divides membrane surfaces into separate compartments, is essential to diverse cellular processes including membrane trafficking and cell division. Quantitative assays are needed to elucidate the physical mechanisms by which proteins drive membrane fission. Toward this goal, several experimental tools have been developed, including visualizing fission products using electron microscopy, measuring membrane shedding from a lipid reservoir, and observing fission of individual membrane tubes pulled from giant vesicles. However, no existing assay of membrane fission provides a quantitative, high-throughput measure of the distribution of vesicle curvatures generated by fission-driving proteins. Toward addressing this challenge, here we describe a novel approach that uses confocal fluorescence imaging to quantify the diameter distribution of membrane vesicles that have been tethered to a coverslip surface following exposure to fission-driving proteins. We employ this assay to measure the progressive appearance of high curvature fission products upon exposure of vesicles to increasing protein concentration. Results from this approach are in quantitative agreement with measurements from electron microscopy, but can be collected with considerably greater throughput, enabling examination of a broad range of experimental conditions. Using the tethered vesicle approach, we have recently found that membrane-bound intrinsically disordered proteins are surprisingly potent drivers of membrane fission. The capacity to drive fission arises from steric pressure generated when disordered domains with large hydrodynamic radii bind to membranes at high local densities. More broadly, the experimental tools described here have the potential to improve our mechanistic understanding of membrane fission in diverse biophysical contexts.
Collapse
Affiliation(s)
- Wilton T Snead
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
43
|
Rupert DLM, Mapar M, Shelke GV, Norling K, Elmeskog M, Lötvall JO, Block S, Bally M, Agnarsson B, Höök F. Effective Refractive Index and Lipid Content of Extracellular Vesicles Revealed Using Optical Waveguide Scattering and Fluorescence Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8522-8531. [PMID: 29923735 DOI: 10.1021/acs.langmuir.7b04214] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Extracellular vesicles (EVs) are generating a growing interest because of the key roles they play in various biological processes and because of their potential use as biomarkers in clinical diagnostics and as efficient carriers in drug-delivery and gene-therapy applications. Their full exploitation, however, depends critically on the possibility to classify them into different subpopulations, a task that in turn relies on efficient means to identify their unique biomolecular and physical signatures. Because of the large heterogeneity of EV samples, such information remains rather elusive, and there is accordingly a need for new and complementary characterization schemes that can help expand the library of distinct EV features. In this work, we used surface-sensitive waveguide scattering microscopy with single EV resolution to characterize two subsets of similarly sized EVs that were preseparated based on their difference in buoyant density. Unexpectedly, the scattering intensity distribution revealed that the scattering intensity of the high-density (HD) population was on an average a factor of three lower than that of the low-density (LD) population. By further labeling the EV samples with a self-inserting lipid-membrane dye, the scattering and fluorescence intensities from EVs could be simultaneously measured and correlated at the single-particle level. The labeled HD sample exhibited not only lower fluorescence and scattering intensities but also lower effective refractive index ( n ≈ 1.35) compared with the LD EVs ( n ≈ 1.38), indicating that both the lipid and protein contents were indeed lower in the HD EVs. Although separation in density gradients of similarly sized EVs is usually linked to differences in biomolecular content, we suggest based on these observations that the separation rather reflects the ability of the solute of the gradient to penetrate the lipid membrane enclosing the EVs, that is, the two gradient bands are more likely because of the differences in membrane permeability than to differences in biomolecular content of the EVs.
Collapse
Affiliation(s)
- Déborah L M Rupert
- Department of Physics , Chalmers University of Technology , 41296 Gothenburg , Sweden
| | - Mokhtar Mapar
- Department of Physics , Chalmers University of Technology , 41296 Gothenburg , Sweden
| | - Ganesh Vilas Shelke
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition , University of Gothenburg , 40530 Gothenburg , Sweden
| | - Karin Norling
- Department of Physics , Chalmers University of Technology , 41296 Gothenburg , Sweden
| | - Mathias Elmeskog
- Department of Physics , Chalmers University of Technology , 41296 Gothenburg , Sweden
| | - Jan O Lötvall
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition , University of Gothenburg , 40530 Gothenburg , Sweden
| | - Stephan Block
- Department of Physics , Chalmers University of Technology , 41296 Gothenburg , Sweden
| | - Marta Bally
- Department of Physics , Chalmers University of Technology , 41296 Gothenburg , Sweden
- Institut Curie, Centre de Recherche, CNRS, UMR168, Physico-Chimie Curie , Paris 75016 , France
| | - Björn Agnarsson
- Department of Physics , Chalmers University of Technology , 41296 Gothenburg , Sweden
| | - Fredrik Höök
- Department of Physics , Chalmers University of Technology , 41296 Gothenburg , Sweden
| |
Collapse
|
44
|
Pucadyil TJ. A novel fluorescence microscopic approach to quantitatively analyse protein-induced membrane remodelling. J Biosci 2018. [DOI: 10.1007/s12038-018-9767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
45
|
Pucadyil TJ. A novel fluorescence microscopic approach to quantitatively analyse protein-induced membrane remodelling. J Biosci 2018; 43:431-435. [PMID: 30002262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Membrane remodelling or the bending and rupture of the lipid bilayer occurs during diverse cellular processes such as cell division, synaptic transmission, vesicular transport, organelle biogenesis and sporulation. These activities are brought about by the localized change in membrane curvature, which in turn causes lipid-packing stress, of a planar lipid bilayer by proteins. For instance, vesicular transport processes are typically characterized by the cooperative recruitment of proteins that induce budding of a planar membrane and catalyse fission of the necks of membrane buds to release vesicles. The analysis of such membrane remodelling reactions has traditionally been restricted to electron microscopy-based approaches or force spectroscopic analysis of membrane tethers pulled from liposome-based model membrane systems. Our recent work has demonstrated the facile creation of tubular model membrane systems of supported membrane tubes (SMrTs), which mimic late-stage intermediates of typical vesicular transport reactions. This review addresses the nature of such an assay system and a fluorescence-intensity-based analysis of changes in tube dimensions that is indicative of the membrane remodelling capacity of proteins.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India,
| |
Collapse
|
46
|
Mortensen KI, Tassone C, Ehrlich N, Andresen TL, Flyvbjerg H. How To Characterize Individual Nanosize Liposomes with Simple Self-Calibrating Fluorescence Microscopy. NANO LETTERS 2018; 18:2844-2851. [PMID: 29614230 DOI: 10.1021/acs.nanolett.7b05312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanosize lipid vesicles are used extensively at the interface between nanotechnology and biology, e.g., as containers for chemical reactions at minute concentrations and vehicles for targeted delivery of pharmaceuticals. Typically, vesicle samples are heterogeneous as regards vesicle size and structural properties. Consequently, vesicles must be characterized individually to ensure correct interpretation of experimental results. Here we do that using dual-color fluorescence labeling of vesicles-of their lipid bilayers and lumens, separately. A vesicle then images as two spots, one in each color channel. A simple image analysis determines the total intensity and width of each spot. These four data all depend on the vesicle radius in a simple manner for vesicles that are spherical, unilamellar, and optimal encapsulators of molecular cargo. This permits identification of such ideal vesicles. They in turn enable calibration of the dual-color fluorescence microscopy images they appear in. Since this calibration is not a separate experiment but an analysis of images of vesicles to be characterized, it eliminates the potential source of error that a separate calibration experiment would have been. Nonideal vesicles in the same images were characterized by how their four data violate the calibrated relationship established for ideal vesicles. In this way, our method yields size, shape, lamellarity, and encapsulation efficiency of each imaged vesicle. Applying this procedure to extruded samples of vesicles, we found that, contrary to common assumptions, only a fraction of vesicles are ideal.
Collapse
Affiliation(s)
- Kim I Mortensen
- Department of Micro- and Nanotechnology , Technical University of Denmark , Kongens Lyngby , DK-2800 , Denmark
| | - Chiara Tassone
- Department of Micro- and Nanotechnology , Technical University of Denmark , Kongens Lyngby , DK-2800 , Denmark
| | - Nicky Ehrlich
- Department of Micro- and Nanotechnology , Technical University of Denmark , Kongens Lyngby , DK-2800 , Denmark
| | - Thomas L Andresen
- Department of Micro- and Nanotechnology , Technical University of Denmark , Kongens Lyngby , DK-2800 , Denmark
| | - Henrik Flyvbjerg
- Department of Micro- and Nanotechnology , Technical University of Denmark , Kongens Lyngby , DK-2800 , Denmark
| |
Collapse
|
47
|
Konishi T, Takahashi Y. Lipoproteins comprise at least 10 different classes in rats, each of which contains a unique set of proteins as the primary component. PLoS One 2018; 13:e0192955. [PMID: 29462161 PMCID: PMC5819787 DOI: 10.1371/journal.pone.0192955] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 02/01/2018] [Indexed: 01/08/2023] Open
Abstract
Although lipoproteins are conventionally separated into a few classes using density gradient centrifugation, there may be a much higher number of physical classes that differ in origin or phase. Comprehensive knowledge of the classes of lipoproteins is rather limited, which hinders both the study of their functions and the identification of the primary causes of related diseases. This study aims to determine the number of classes of lipoproteins that can be practically distinguishable and identify the differences between them. We separated rat serum samples by gel filtration. The elution was continuously monitored for triglyceride (TG), cholesterol, and protein, and fractionated for further SDS–PAGE and immunological detection of apoprotein A-I (ApoA1) and apoprotein B (ApoB). The elution patterns were analyzed using a parsimonious method, i.e., the estimation of the least number of classes. Ten classes were recognized that contained different amounts of TG and cholesterol, as well as a unique protein content. Each of the classes contained much more protein than that observed previously, especially in low-density lipoproteins (LDL) classes. In particular, two major antiproteases formed complexes with specific classes of LDL; because these classes exclusively carry cholesterol and antiproteases, they may lead to the progression of atheroma by supplying materials that enlarge fatty streaks and protecting thrombi from enzymatic digestion. The separated classes may have specific biological functions. The attribution of protein species to certain classes will help understand the functions. A distinction among lipoprotein classes may provide important information in the field of vascular pathology.
Collapse
Affiliation(s)
- Tomokazu Konishi
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita, Japan
- * E-mail:
| | - Yoko Takahashi
- Division of Food Function Research, Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
48
|
Kabbani AM, Kelly CV. The Detection of Nanoscale Membrane Bending with Polarized Localization Microscopy. Biophys J 2017; 113:1782-1794. [PMID: 29045872 PMCID: PMC5647545 DOI: 10.1016/j.bpj.2017.07.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/20/2017] [Accepted: 07/25/2017] [Indexed: 11/22/2022] Open
Abstract
The curvature of biological membranes at the nanometer scale is critically important for vesicle trafficking, organelle morphology, and disease propagation. The initiation of membrane bending occurs at a length scale that is irresolvable by most superresolution optical microscopy methods. Here, we report the development of polarized localization microscopy (PLM), a pointillist optical imaging technique for the detection of nanoscale membrane curvature in correlation with single-molecule dynamics and molecular sorting. PLM combines polarized total internal reflection fluorescence microscopy and single-molecule localization microscopy to reveal membrane orientation with subdiffraction-limited resolution without reducing localization precision by point spread function manipulation. Membrane curvature detection with PLM requires fewer localization events to detect curvature than three-dimensional single-molecule localization microscopy (e.g., photoactivated localization microscopy or stochastic optical reconstruction microscopy), which enables curvature detection 10× faster via PLM. With rotationally confined lipophilic fluorophores and the polarized incident fluorescence excitation, membrane-bending events are revealed with superresolution. Engineered hemispherical membrane curvature with a radius ≥24 nm was detected with PLM, and individual fluorophore localization precision was 13 ± 5 nm. Further, deciphering molecular mobility as a function of membrane topology was enabled. The diffusion coefficient of individual DiI molecules was 25 ± 5× higher in planar supported lipid bilayers than within nanoscale membrane curvature. Through the theoretical foundation and experimental demonstration provided here, PLM is poised to become a powerful technique for revealing the underlying biophysical mechanisms of membrane bending at physiological length scales.
Collapse
Affiliation(s)
- Abir M Kabbani
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan
| | - Christopher V Kelly
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan.
| |
Collapse
|
49
|
Chabanon M, Stachowiak JC, Rangamani P. Systems biology of cellular membranes: a convergence with biophysics. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28475297 PMCID: PMC5561455 DOI: 10.1002/wsbm.1386] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/02/2017] [Accepted: 02/21/2017] [Indexed: 12/12/2022]
Abstract
Systems biology and systems medicine have played an important role in the last two decades in shaping our understanding of biological processes. While systems biology is synonymous with network maps and '-omics' approaches, it is not often associated with mechanical processes. Here, we make the case for considering the mechanical and geometrical aspects of biological membranes as a key step in pushing the frontiers of systems biology of cellular membranes forward. We begin by introducing the basic components of cellular membranes, and highlight their dynamical aspects. We then survey the functions of the plasma membrane and the endomembrane system in signaling, and discuss the role and origin of membrane curvature in these diverse cellular processes. We further give an overview of the experimental and modeling approaches to study membrane phenomena. We close with a perspective on the converging futures of systems biology and membrane biophysics, invoking the need to include physical variables such as location and geometry in the study of cellular membranes. WIREs Syst Biol Med 2017, 9:e1386. doi: 10.1002/wsbm.1386 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Morgan Chabanon
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
50
|
Membrane Curvature and Lipid Composition Synergize To Regulate N-Ras Anchor Recruitment. Biophys J 2017; 113:1269-1279. [PMID: 28738989 DOI: 10.1016/j.bpj.2017.06.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 11/22/2022] Open
Abstract
Proteins anchored to membranes through covalently linked fatty acids and/or isoprenoid groups play crucial roles in all forms of life. Sorting and trafficking of lipidated proteins has traditionally been discussed in the context of partitioning to membrane domains of different lipid composition. We recently showed that membrane shape/curvature can in itself mediate the recruitment of lipidated proteins. However, exactly how membrane curvature and composition synergize remains largely unexplored. Here we investigated how three critical structural parameters of lipids, namely acyl chain saturation, headgroup size, and acyl chain length, modulate the capacity of membrane curvature to recruit lipidated proteins. As a model system we used the lipidated minimal membrane anchor of the GTPase, N-Ras (tN-Ras). Our data revealed complex synergistic effects, whereby tN-Ras binding was higher on planar DOPC than POPC membranes, but inversely higher on curved POPC than DOPC membranes. This variation in the binding to both planar and curved membranes leads to a net increase in the recruitment by membrane curvature of tN-Ras when reducing the acyl chain saturation state. Additionally, we found increased recruitment by membrane curvature of tN-Ras when substituting PC for PE, and when decreasing acyl chain length from 14 to 12 carbons (DMPC versus DLPC). However, these variations in recruitment ability had different origins, with the headgroup size primarily influencing tN-Ras binding to planar membranes whereas the change in acyl chain length primarily affected binding to curved membranes. Molecular field theory calculations recapitulated these findings and revealed lateral pressure as an underlying biophysical mechanism dictating how curvature and composition synergize to modulate recruitment of lipidated proteins. Our findings suggest that the different compositions of cellular compartments could modulate the potency of membrane curvature to recruit lipidated proteins and thereby synergistically regulate the trafficking and sorting of lipidated proteins.
Collapse
|