1
|
Sundar Rajan V, Levin S, McCauley M, Williams M, Rouzina I, Wilhelmsson L, Westerlund F. Force-induced melting and S-DNA pathways for DNA overstretching exhibit distinct kinetics. Nucleic Acids Res 2025; 53:gkae1183. [PMID: 39657777 PMCID: PMC11724298 DOI: 10.1093/nar/gkae1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
It is widely appreciated that double stranded DNA (dsDNA) is subjected to strong and dynamic mechanical forces in cells. Under increasing tension B-DNA, the most stable double-stranded (ds) form of DNA, undergoes cooperative elongation into a mixture of S-DNA and single stranded DNA (ssDNA). Despite significant effort, the structure, energetics, kinetics and the biological role of S-DNA remains obscure. We here stretch 60 base pair (bp) dsDNA oligonucleotides with a variable number of tricyclic cytosine, tC, modifications using optical tweezers. We observe multiple fast cooperative and reversible two-state transitions between B-DNA and S-DNA. Notably, tC modifications increase the transition force, while reducing the transition extension and free energy due to progressively increasing fraying of the dsDNA ends. We quantify the average number of bps undergoing the B-to-S transition, as well as the free energies and rates. This allows us to reconstruct the B-to-S free energy profiles in absence of force. We conclude that S-DNA is an entirely force-induced state, and that the B-to-S transition is much faster than internal dsDNA melting. We hypothesize that S-DNA may have a role as a transient intermediate in, for example, molecular motor-induced local dsDNA strand separation.
Collapse
Affiliation(s)
- Vinoth Sundar Rajan
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Sune Levin
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Micah J McCauley
- Department of Physics, Northeastern University, Boston, MA 02115,, USA
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, MA 02115,, USA
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Fredrik Westerlund
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
2
|
Scalvini B, Heling LWHJ, Sheikhhassani V, Sunderlikova V, Tans SJ, Mashaghi A. Cytosolic Interactome Protects Against Protein Unfolding in a Single Molecule Experiment. Adv Biol (Weinh) 2023; 7:e2300105. [PMID: 37409427 DOI: 10.1002/adbi.202300105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/13/2023] [Indexed: 07/07/2023]
Abstract
Single molecule techniques are particularly well suited for investigating the processes of protein folding and chaperone assistance. However, current assays provide only a limited perspective on the various ways in which the cellular environment can influence the folding pathway of a protein. In this study, a single molecule mechanical interrogation assay is developed and used to monitor protein unfolding and refolding within a cytosolic solution. This allows to test the cumulative topological effect of the cytoplasmic interactome on the folding process. The results reveal a stabilization against forced unfolding for partial folds, which are attributed to the protective effect of the cytoplasmic environment against unfolding and aggregation. This research opens the possibility of conducting single molecule molecular folding experiments in quasi-biological environments.
Collapse
Affiliation(s)
- Barbara Scalvini
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
| | - Laurens W H J Heling
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
| | - Vahid Sheikhhassani
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
| | | | - Sander J Tans
- AMOLF, Science Park 104, Amsterdam, 1098 XG, The Netherlands
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
| |
Collapse
|
3
|
Singh A, Maity A, Singh N. Structure and Dynamics of dsDNA in Cell-like Environments. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1587. [PMID: 36359677 PMCID: PMC9689892 DOI: 10.3390/e24111587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/01/2023]
Abstract
Deoxyribonucleic acid (DNA) is a fundamental biomolecule for correct cellular functioning and regulation of biological processes. DNA's structure is dynamic and has the ability to adopt a variety of structural conformations in addition to its most widely known double-stranded DNA (dsDNA) helix structure. Stability and structural dynamics of dsDNA play an important role in molecular biology. In vivo, DNA molecules are folded in a tightly confined space, such as a cell chamber or a channel, and are highly dense in solution; their conformational properties are restricted, which affects their thermodynamics and mechanical properties. There are also many technical medical purposes for which DNA is placed in a confined space, such as gene therapy, DNA encapsulation, DNA mapping, etc. Physiological conditions and the nature of confined spaces have a significant influence on the opening or denaturation of DNA base pairs. In this review, we summarize the progress of research on the stability and dynamics of dsDNA in cell-like environments and discuss current challenges and future directions. We include studies on various thermal and mechanical properties of dsDNA in ionic solutions, molecular crowded environments, and confined spaces. By providing a better understanding of melting and unzipping of dsDNA in different environments, this review provides valuable guidelines for predicting DNA thermodynamic quantities and for designing DNA/RNA nanostructures.
Collapse
|
4
|
The Development of Single Molecule Force Spectroscopy: From Polymer Biophysics to Molecular Machines. Q Rev Biophys 2022; 55:e9. [PMID: 35916314 DOI: 10.1017/s0033583522000087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Meyer AC, Karbach M, Lu P, Müller G. Mechanical response to tension and torque of molecular chains via statistically interacting particles associated with extension, contraction, twist, and supercoiling. Phys Rev E 2022; 105:064502. [PMID: 35854540 DOI: 10.1103/physreve.105.064502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
A methodology for the statistical mechanical analysis of polymeric chains under tension introduced previously is extended to include torque. The response of individual bonds between monomers or of entire groups of monomers to a combination of tension and torque involves, in the framework of this method of analysis, the (thermal or mechanical) activation of a specific mix of statistically interacting particles carrying quanta of extension or contraction and quanta of twist or supercoiling. The methodology, which is elucidated in applications of increasing complexity, is capable of describing the conversion between twist chirality and plectonemic chirality in quasistatic processes. The control variables are force or extension and torque or linkage (a combination of twist and writhe). The versatility of this approach is demonstrated in two applications relevant and promising for double-stranded DNA under controlled tension and torque. One application describes conformational transformations between (native) B-DNA, (underwound) S-DNA, and (overwound) P-DNA in accord with experimental data. The other application describes how the conversion between a twisted chain and a supercoiled chain accommodates variations of linkage and excess length in a buckling transition.
Collapse
Affiliation(s)
- Aaron C Meyer
- Department of Physics, University of Rhode Island, Kingston Rhode Island 02881, USA
| | - Michael Karbach
- Fachgruppe Physik, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany
| | - Ping Lu
- Department of Physics, Stetson University, DeLand, Florida 32723, USA
| | - Gerhard Müller
- Department of Physics, University of Rhode Island, Kingston Rhode Island 02881, USA
| |
Collapse
|
6
|
Abstract
Single nucleic acid molecules form hairpins that may stabilize secondary and tertiary structures as well as perform enzymatic and other chemical functions. Considerable progress has been made in the effort to understand the contributions of various factors to the stability of a given hairpin sequence. For a given sequence, it is possible to compute both the most likely structural arrangements and their associated free energies over a range of experimental conditions. However, there are many observed hairpin irregularities for which the energies and function are not well understood. Here we examine the irregular RNA Transactivation Response (TAR) hairpin from the HIV-1 genome. Using single molecule optical tweezers, the hairpin is force unfolded, revealing the overall unfolding free energy and the character of the transition state. These measurements allow the construction of a simple energy landscape from unfolding measurements, which can be directly compared to a theoretical landscape. This method is easily adapted to other structures, including the effects of noncanonical bases and even ligand binding.
Collapse
|
7
|
Pant K, Anderson B, Perdana H, Malinowski MA, Win AT, Pabst C, Williams MC, Karpel RL. The role of the C-domain of bacteriophage T4 gene 32 protein in ssDNA binding and dsDNA helix-destabilization: Kinetic, single-molecule, and cross-linking studies. PLoS One 2018; 13:e0194357. [PMID: 29634784 PMCID: PMC5892887 DOI: 10.1371/journal.pone.0194357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/01/2018] [Indexed: 11/19/2022] Open
Abstract
The model single-stranded DNA binding protein of bacteriophage T4, gene 32 protein (gp32) has well-established roles in DNA replication, recombination, and repair. gp32 is a single-chain polypeptide consisting of three domains. Based on thermodynamics and kinetics measurements, we have proposed that gp32 can undergo a conformational change where the acidic C-terminal domain binds internally to or near the single-stranded (ss) DNA binding surface in the core (central) domain, blocking ssDNA interaction. To test this model, we have employed a variety of experimental approaches and gp32 variants to characterize this conformational change. Utilizing stopped-flow methods, the association kinetics of wild type and truncated forms of gp32 with ssDNA were measured. When the C-domain is present, the log-log plot of k vs. [NaCl] shows a positive slope, whereas when it is absent (*I protein), there is little rate change with salt concentration, as expected for this model.A gp32 variant lacking residues 292-296 within the C-domain, ΔPR201, displays kinetic properties intermediate between gp32 and *I. The single molecule force-induced DNA helix-destabilizing activitiesas well as the single- and double-stranded DNA affinities of ΔPR201 and gp32 truncated at residue 295 also fall between full-length protein and *I. Finally, chemical cross-linking of recombinant C-domain and gp32 lacking both N- and C-terminal domains is inhibited by increasing concentrations of a short single-stranded oligonucleotide, and the salt dependence of cross-linking mirrors that expected for the model. Taken together, these results provide the first evidence in support of this model that have been obtained through structural probes.
Collapse
Affiliation(s)
- Kiran Pant
- Department of Physics, Northeastern University, Dana Research Center, Boston, Massachusetts, United States of America
| | - Brian Anderson
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Hilltop Circle, Baltimore, Maryland, United States of America
| | - Hendrik Perdana
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Hilltop Circle, Baltimore, Maryland, United States of America
| | - Matthew A. Malinowski
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Hilltop Circle, Baltimore, Maryland, United States of America
| | - Aye T. Win
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Hilltop Circle, Baltimore, Maryland, United States of America
| | - Christopher Pabst
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Hilltop Circle, Baltimore, Maryland, United States of America
| | - Mark C. Williams
- Department of Physics, Northeastern University, Dana Research Center, Boston, Massachusetts, United States of America
- Center for Interdisciplinary Research on Complex Systems, Northeastern University, Dana Research Center, Boston, Massachusetts, United States of America
| | - Richard L. Karpel
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Hilltop Circle, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
8
|
Naufer MN, Murison DA, Rouzina I, Beuning PJ, Williams MC. Single-molecule mechanochemical characterization of E. coli pol III core catalytic activity. Protein Sci 2017; 26:1413-1426. [PMID: 28263430 PMCID: PMC5477539 DOI: 10.1002/pro.3152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/15/2022]
Abstract
Pol III core is the three‐subunit subassembly of the E. coli replicative DNA polymerase III holoenzyme. It contains the catalytic polymerase subunit α, the 3′ → 5′ proofreading exonuclease ε, and a subunit of unknown function, θ. We employ optical tweezers to characterize pol III core activity on a single DNA substrate. We observe polymerization at applied template forces F < 25 pN and exonucleolysis at F > 30 pN. Both polymerization and exonucleolysis occur as a series of short bursts separated by pauses. For polymerization, the initiation rate after pausing is independent of force. In contrast, the exonucleolysis initiation rate depends strongly on force. The measured force and concentration dependence of exonucleolysis initiation fits well to a two‐step reaction scheme in which pol III core binds bimolecularly to the primer‐template junction, then converts at rate k2 into an exo‐competent conformation. Fits to the force dependence of kinit show that exo initiation requires fluctuational opening of two base pairs, in agreement with temperature‐ and mismatch‐dependent bulk biochemical assays. Taken together, our results support a model in which the pol and exo activities of pol III core are effectively independent, and in which recognition of the 3′ end of the primer by either α or ε is governed by the primer stability. Thus, binding to an unstable primer is the primary mechanism for mismatch recognition during proofreading, rather than an alternative model of duplex defect recognition.
Collapse
Affiliation(s)
- M Nabuan Naufer
- Department of Physics, Northeastern University, Boston, Massachusetts, 02115
| | - David A Murison
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, 43210
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, Massachusetts, 02115
| |
Collapse
|
9
|
Single-molecule studies of high-mobility group B architectural DNA bending proteins. Biophys Rev 2016; 9:17-40. [PMID: 28303166 PMCID: PMC5331113 DOI: 10.1007/s12551-016-0236-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 11/23/2022] Open
Abstract
Protein–DNA interactions can be characterized and quantified using single molecule methods such as optical tweezers, magnetic tweezers, atomic force microscopy, and fluorescence imaging. In this review, we discuss studies that characterize the binding of high-mobility group B (HMGB) architectural proteins to single DNA molecules. We show how these studies are able to extract quantitative information regarding equilibrium binding as well as non-equilibrium binding kinetics. HMGB proteins play critical but poorly understood roles in cellular function. These roles vary from the maintenance of chromatin structure and facilitation of ribosomal RNA transcription (yeast high-mobility group 1 protein) to regulatory and packaging roles (human mitochondrial transcription factor A). We describe how these HMGB proteins bind, bend, bridge, loop and compact DNA to perform these functions. We also describe how single molecule experiments observe multiple rates for dissociation of HMGB proteins from DNA, while only one rate is observed in bulk experiments. The measured single-molecule kinetics reveals a local, microscopic mechanism by which HMGB proteins alter DNA flexibility, along with a second, much slower macroscopic rate that describes the complete dissociation of the protein from DNA.
Collapse
|
10
|
Almaqwashi AA, Paramanathan T, Rouzina I, Williams MC. Mechanisms of small molecule-DNA interactions probed by single-molecule force spectroscopy. Nucleic Acids Res 2016; 44:3971-88. [PMID: 27085806 PMCID: PMC4872107 DOI: 10.1093/nar/gkw237] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/24/2016] [Indexed: 12/31/2022] Open
Abstract
There is a wide range of applications for non-covalent DNA binding ligands, and optimization of such interactions requires detailed understanding of the binding mechanisms. One important class of these ligands is that of intercalators, which bind DNA by inserting aromatic moieties between adjacent DNA base pairs. Characterizing the dynamic and equilibrium aspects of DNA-intercalator complex assembly may allow optimization of DNA binding for specific functions. Single-molecule force spectroscopy studies have recently revealed new details about the molecular mechanisms governing DNA intercalation. These studies can provide the binding kinetics and affinity as well as determining the magnitude of the double helix structural deformations during the dynamic assembly of DNA–ligand complexes. These results may in turn guide the rational design of intercalators synthesized for DNA-targeted drugs, optical probes, or integrated biological self-assembly processes. Herein, we survey the progress in experimental methods as well as the corresponding analysis framework for understanding single molecule DNA binding mechanisms. We discuss briefly minor and major groove binding ligands, and then focus on intercalators, which have been probed extensively with these methods. Conventional mono-intercalators and bis-intercalators are discussed, followed by unconventional DNA intercalation. We then consider the prospects for using these methods in optimizing conventional and unconventional DNA-intercalating small molecules.
Collapse
Affiliation(s)
- Ali A Almaqwashi
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | | | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
11
|
Kim C, Lee OC, Kim JY, Sung W, Lee NK. Dynamic Release of Bending Stress in Short dsDNA by Formation of a Kink and Forks. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Kim C, Lee OC, Kim JY, Sung W, Lee NK. Dynamic Release of Bending Stress in Short dsDNA by Formation of a Kink and Forks. Angew Chem Int Ed Engl 2015; 54:8943-7. [PMID: 26046547 PMCID: PMC4744731 DOI: 10.1002/anie.201502055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 11/21/2022]
Abstract
Bending with high curvature is one of the major mechanical properties of double-stranded DNA (dsDNA) that is essential for its biological functions. The emergence of a kink arising from local melting in the middle of dsDNA has been suggested as a mechanism of releasing the energy cost of bending. Herein, we report that strong bending induces two types of short dsDNA deformations, induced by two types of local melting, namely, a kink in the middle and forks at the ends, which we demonstrate using D-shaped DNA nanostructures. The two types of deformed dsDNA structures dynamically interconvert on a millisecond timescale. The transition from a fork to a kink is dominated by entropic contribution (anti-Arrhenius behavior), while the transition from a kink to a fork is dominated by enthalpic contributions. The presence of mismatches in dsDNA accelerates kink formation, and the transition from a kink to a fork is removed when the mismatch size is three base pairs.
Collapse
Affiliation(s)
- Cheolhee Kim
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Republic of Korea)
| | - O-chul Lee
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Republic of Korea)
| | - Jae-Yeol Kim
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Republic of Korea)
| | - Wokyung Sung
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Republic of Korea)
- IBS Center for Self-assembly and Complexity, Pohang 790-784 (Republic of Korea)
| | - Nam Ki Lee
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Republic of Korea).
| |
Collapse
|
13
|
Wu H, Wang W, Naiyer N, Fichtenbaum E, Qualley DF, McCauley MJ, Gorelick RJ, Rouzina I, Musier-Forsyth K, Williams MC. Single aromatic residue location alters nucleic acid binding and chaperone function of FIV nucleocapsid protein. Virus Res 2014; 193:39-51. [PMID: 24915282 PMCID: PMC4252577 DOI: 10.1016/j.virusres.2014.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/28/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
Feline immunodeficiency virus (FIV) is a retrovirus that infects domestic cats, and is an excellent animal model for human immunodeficiency virus type 1 (HIV-1) pathogenesis. The nucleocapsid (NC) protein is critical for replication in both retroviruses. FIV NC has several structural features that differ from HIV-1 NC. While both NC proteins have a single conserved aromatic residue in each of the two zinc fingers, the aromatic residue on the second finger of FIV NC is located on the opposite C-terminal side relative to its location in HIV-1 NC. In addition, whereas HIV-1 NC has a highly charged cationic N-terminal tail and a relatively short C-terminal extension, the opposite is true for FIV NC. To probe the impact of these differences on the nucleic acid (NA) binding and chaperone properties of FIV NC, we carried out ensemble and single-molecule assays with wild-type (WT) and mutant proteins. The ensemble studies show that FIV NC binding to DNA is strongly electrostatic, with a higher effective charge than that observed for HIV-1 NC. The C-terminal basic domain contributes significantly to the NA binding capability of FIV NC. In addition, the non-electrostatic component of DNA binding is much weaker for FIV NC than for HIV-1 NC. Mutation of both aromatic residues in the zinc fingers to Ala (F12A/W44A) further increases the effective charge of FIV NC and reduces its non-electrostatic binding affinity. Interestingly, switching the location of the C-terminal aromatic residue to mimic the HIV-1 NC sequence (N31W/W44A) reduces the effective charge of FIV NC and increases its non-electrostatic binding affinity to values similar to HIV-1 NC. Consistent with the results of these ensemble studies, single-molecule DNA stretching studies show that while WT FIV NC has reduced stacking capability relative to HIV-1 NC, the aromatic switch mutant recovers the ability to intercalate between the DNA bases. Our results demonstrate that altering the position of a single aromatic residue switches the binding mode of FIV NC from primarily electrostatic binding to more non-electrostatic binding, conferring upon it NA interaction properties comparable to that of HIV-1 NC.
Collapse
Affiliation(s)
- Hao Wu
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Wei Wang
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Nada Naiyer
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Eric Fichtenbaum
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Dominic F Qualley
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Micah J McCauley
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ioulia Rouzina
- University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA
| | - Karin Musier-Forsyth
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Mark C Williams
- Northeastern University, Department of Physics, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Hsieh SS, Wu FH, Tsai MJ. DNA stretching on the wall surfaces in curved microchannels with different radii. NANOSCALE RESEARCH LETTERS 2014; 9:382. [PMID: 25147488 PMCID: PMC4134334 DOI: 10.1186/1556-276x-9-382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 07/27/2014] [Indexed: 06/03/2023]
Abstract
DNA molecule conformation dynamics and stretching were made on semi-circular surfaces with different radii (500 to 5,000 μm) in microchannels measuring 200 μm × 200 μm in cross section. Five different buffer solutions - 1× Tris-acetate-EDTA (TAE), 1× Tris-borate-EDTA (TBE), 1× Tris-EDTA (TE), 1× Tris-phosphate-EDTA (TPE), and 1× Tris-buffered saline (TBS) solutions - were used with a variety of viscosity such as 40, 60, and 80 cP, with resultant 10(-4) ≤ Re ≤ 10(-3) and the corresponding 5 ≤ Wi ≤ 12. The test fluids were seeded with JOJO-1 tracer particles for flow visualization and driven through the test channels via a piezoelectric (PZT) micropump. Micro particle image velocimetry (μPIV) measuring technique was applied for the centered-plane velocity distribution measurements. It is found that the radius effect on the stretch ratio of DNA dependence is significant. The stretch ratio becomes larger as the radius becomes small due to the larger centrifugal force. Consequently, the maximum stretch was found at the center of the channel with a radius of 500 μm.
Collapse
Affiliation(s)
- Shou-Shing Hsieh
- Department of Mechanical and Electromechanical Engineering, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan
| | - Fong-He Wu
- Department of Mechanical and Electromechanical Engineering, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan
| | - Ming-Ju Tsai
- Department of Mechanical and Electromechanical Engineering, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan
| |
Collapse
|
15
|
Bosaeus N, El-Sagheer AH, Brown T, Åkerman B, Nordén B. Force-induced melting of DNA--evidence for peeling and internal melting from force spectra on short synthetic duplex sequences. Nucleic Acids Res 2014; 42:8083-91. [PMID: 24838568 PMCID: PMC4081069 DOI: 10.1093/nar/gku441] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Overstretching of DNA occurs at about 60-70 pN when a torsionally unconstrained double-stranded DNA molecule is stretched by its ends. During the transition, the contour length increases by up to 70% without complete strand dissociation. Three mechanisms are thought to be involved: force-induced melting into single-stranded DNA where either one or both strands carry the tension, or a B-to-S transition into a longer, still base-paired conformation. We stretch sequence-designed oligonucleotides in an effort to isolate the three processes, focusing on force-induced melting. By introducing site-specific inter-strand cross-links in one or both ends of a 64 bp AT-rich duplex we could repeatedly follow the two melting processes at 5 mM and 1 M monovalent salt. We find that when one end is sealed the AT-rich sequence undergoes peeling exhibiting hysteresis at low and high salt. When both ends are sealed the AT sequence instead undergoes internal melting. Thirdly, the peeling melting is studied in a composite oligonucleotide where the same AT-rich sequence is concatenated to a GC-rich sequence known to undergo a B-to-S transition rather than melting. The construct then first melts in the AT-rich part followed at higher forces by a B-to-S transition in the GC-part, indicating that DNA overstretching modes are additive.
Collapse
Affiliation(s)
- Niklas Bosaeus
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg S41296, Sweden
| | - Afaf H El-Sagheer
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Tom Brown
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Björn Åkerman
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg S41296, Sweden
| | - Bengt Nordén
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg S41296, Sweden
| |
Collapse
|
16
|
Heller I, Hoekstra TP, King GA, Peterman EJG, Wuite GJL. Optical tweezers analysis of DNA-protein complexes. Chem Rev 2014; 114:3087-119. [PMID: 24443844 DOI: 10.1021/cr4003006] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Iddo Heller
- Department of Physics and Astronomy and LaserLaB Amsterdam, VU University Amsterdam , De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Jeon JH, Sung W. An effective mesoscopic model of double-stranded DNA. J Biol Phys 2014; 40:1-14. [PMID: 24306264 PMCID: PMC3923960 DOI: 10.1007/s10867-013-9333-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/11/2013] [Indexed: 11/26/2022] Open
Abstract
Watson and Crick's epochal presentation of the double helix structure in 1953 has paved the way to intense exploration of DNA's vital functions in cells. Also, recent advances of single molecule techniques have made it possible to probe structures and mechanics of constrained DNA at length scales ranging from nanometers to microns. There have been a number of atomistic scale quantum chemical calculations or molecular level simulations, but they are too computationally demanding or analytically unfeasible to describe the DNA conformation and mechanics at mesoscopic levels. At micron scales, on the other hand, the wormlike chain model has been very instrumental in describing analytically the DNA mechanics but lacks certain molecular details that are essential in describing the hybridization, nano-scale confinement, and local denaturation. To fill this fundamental gap, we present a workable and predictive mesoscopic model of double-stranded DNA where the nucleotides beads constitute the basic degrees of freedom. With the inter-strand stacking given by an interaction between diagonally opposed monomers, the model explains with analytical simplicity the helix formation and produces a generalized wormlike chain model with the concomitant large bending modulus given in terms of the helical structure and stiffness. It also explains how the helical conformation undergoes overstretch transition to the ladder-like conformation at a force plateau, in agreement with the experiment.
Collapse
Affiliation(s)
- Jae-Hyung Jeon
- />Department of Physics and PCTP, Pohang University of Science and Technology, Pohang, 790-784 Republic of Korea
| | - Wokyung Sung
- />Department of Physics and PCTP, Pohang University of Science and Technology, Pohang, 790-784 Republic of Korea
| |
Collapse
|
18
|
Bongini L, Melli L, Lombardi V, Bianco P. Transient kinetics measured with force steps discriminate between double-stranded DNA elongation and melting and define the reaction energetics. Nucleic Acids Res 2013; 42:3436-49. [PMID: 24353317 PMCID: PMC3950695 DOI: 10.1093/nar/gkt1297] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Under a tension of ∼65 pN, double-stranded DNA undergoes an overstretching transition from its basic (B-form) conformation to a 1.7 times longer conformation whose nature is only recently starting to be understood. Here we provide a structural and thermodynamic characterization of the transition by recording the length transient following force steps imposed on the λ-phage DNA with different melting degrees and temperatures (10–25°C). The shortening transient following a 20–35 pN force drop from the overstretching force shows a sequence of fast shortenings of double-stranded extended (S-form) segments and pauses owing to reannealing of melted segments. The lengthening transients following a 2–35 pN stretch to the overstretching force show the kinetics of a two-state reaction and indicate that the whole 70% extension is a B-S transition that precedes and is independent of melting. The temperature dependence of the lengthening transient shows that the entropic contribution to the B-S transition is one-third of the entropy change of thermal melting, reinforcing the evidence for a double-stranded S-form that maintains a significant fraction of the interstrand bonds. The cooperativity of the unitary elongation (22 bp) is independent of temperature, suggesting that structural factors, such as the nucleic acid sequence, control the transition.
Collapse
Affiliation(s)
- Lorenzo Bongini
- Laboratorio di Fisiologia, Dipartimento di Biologia, Università degli Studi di Firenze, Via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
| | | | | | | |
Collapse
|
19
|
Marko JF, Neukirch S. Global force-torque phase diagram for the DNA double helix: structural transitions, triple points, and collapsed plectonemes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:062722. [PMID: 24483501 PMCID: PMC3936674 DOI: 10.1103/physreve.88.062722] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Indexed: 06/01/2023]
Abstract
We present a free energy model for structural transitions of the DNA double helix driven by tensile and torsional stress. Our model is coarse grained and is based on semiflexible polymer descriptions of B-DNA, underwound L-DNA, and highly overwound P-DNA. The statistical-mechanical model of plectonemic supercoiling previously developed for B-DNA is applied to semiflexible polymer models of P- and L-DNA to obtain a model of DNA structural transitions in quantitative accord with experiment. We identify two distinct plectonemic states, one "inflated" by electrostatic repulsion and thermal fluctuations and the other "collapsed," with the two double helices inside the supercoils driven to close contact. We find that supercoiled B and L are stable only in the inflated form, while supercoiled P is always collapsed. We also predict the behavior and experimental signatures of highly underwound "Q"-DNA, the left-handed analog of P-DNA; as for P, supercoiled Q is always collapsed. Overstretched "S"-DNA and strand-separated "stress-melted" DNA are also included in our model, allowing prediction of a global phase diagram for forces up to 1000 pN and torques between ±60 pN nm, or, in terms of linking number density, from σ=-5 to +3.
Collapse
Affiliation(s)
- John F Marko
- Department of Physics and Astronomy and Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Sébastien Neukirch
- CNRS, UMR 7190, Institut Jean Le Rond d'Alembert, F-75005 Paris, France and UPMC Université Paris 06, UMR 7190, Institut Jean Le Rond d'Alembert, F-75005 Paris, France
| |
Collapse
|
20
|
Wu H, Mitra M, Naufer MN, McCauley MJ, Gorelick RJ, Rouzina I, Musier-Forsyth K, Williams MC. Differential contribution of basic residues to HIV-1 nucleocapsid protein's nucleic acid chaperone function and retroviral replication. Nucleic Acids Res 2013; 42:2525-37. [PMID: 24293648 PMCID: PMC3936775 DOI: 10.1093/nar/gkt1227] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) protein contains 15 basic residues located throughout its 55-amino acid sequence, as well as one aromatic residue in each of its two CCHC-type zinc finger motifs. NC facilitates nucleic acid (NA) rearrangements via its chaperone activity, but the structural basis for this activity and its consequences in vivo are not completely understood. Here, we investigate the role played by basic residues in the N-terminal domain, the N-terminal zinc finger and the linker region between the two zinc fingers. We use in vitro ensemble and single-molecule DNA stretching experiments to measure the characteristics of wild-type and mutant HIV-1 NC proteins, and correlate these results with cell-based HIV-1 replication assays. All of the cationic residue mutations lead to NA interaction defects, as well as reduced HIV-1 infectivity, and these effects are most pronounced on neutralizing all five N-terminal cationic residues. HIV-1 infectivity in cells is correlated most strongly with NC’s NA annealing capabilities as well as its ability to intercalate the DNA duplex. Although NC’s aromatic residues participate directly in DNA intercalation, our findings suggest that specific basic residues enhance these interactions, resulting in optimal NA chaperone activity.
Collapse
Affiliation(s)
- Hao Wu
- Department of Physics, Northeastern University, Boston, MA 02115, USA, Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA and Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chaurasiya KR, Ruslie C, Silva MC, Voortman L, Nevin P, Lone S, Beuning PJ, Williams MC. Polymerase manager protein UmuD directly regulates Escherichia coli DNA polymerase III α binding to ssDNA. Nucleic Acids Res 2013; 41:8959-68. [PMID: 23901012 PMCID: PMC3799427 DOI: 10.1093/nar/gkt648] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Replication by Escherichia coli DNA polymerase III is disrupted on encountering DNA damage. Consequently, specialized Y-family DNA polymerases are used to bypass DNA damage. The protein UmuD is extensively involved in modulating cellular responses to DNA damage and may play a role in DNA polymerase exchange for damage tolerance. In the absence of DNA, UmuD interacts with the α subunit of DNA polymerase III at two distinct binding sites, one of which is adjacent to the single-stranded DNA-binding site of α. Here, we use single molecule DNA stretching experiments to demonstrate that UmuD specifically inhibits binding of α to ssDNA. We predict using molecular modeling that UmuD residues D91 and G92 are involved in this interaction and demonstrate that mutation of these residues disrupts the interaction. Our results suggest that competition between UmuD and ssDNA for α binding is a new mechanism for polymerase exchange.
Collapse
Affiliation(s)
- Kathy R. Chaurasiya
- Department of Physics, Northeastern University, Boston, MA 02115, USA, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA and Department of Chemical Sciences, Bridgewater State University, Bridgewater, MA 02325, USA
| | - Clarissa Ruslie
- Department of Physics, Northeastern University, Boston, MA 02115, USA, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA and Department of Chemical Sciences, Bridgewater State University, Bridgewater, MA 02325, USA
| | - Michelle C. Silva
- Department of Physics, Northeastern University, Boston, MA 02115, USA, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA and Department of Chemical Sciences, Bridgewater State University, Bridgewater, MA 02325, USA
| | - Lukas Voortman
- Department of Physics, Northeastern University, Boston, MA 02115, USA, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA and Department of Chemical Sciences, Bridgewater State University, Bridgewater, MA 02325, USA
| | - Philip Nevin
- Department of Physics, Northeastern University, Boston, MA 02115, USA, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA and Department of Chemical Sciences, Bridgewater State University, Bridgewater, MA 02325, USA
| | - Samer Lone
- Department of Physics, Northeastern University, Boston, MA 02115, USA, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA and Department of Chemical Sciences, Bridgewater State University, Bridgewater, MA 02325, USA
| | - Penny J. Beuning
- Department of Physics, Northeastern University, Boston, MA 02115, USA, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA and Department of Chemical Sciences, Bridgewater State University, Bridgewater, MA 02325, USA
- *To whom correspondence should be addressed. Tel: +1 617 373 7323; Fax: +1 617 373 2943;
| | - Mark C. Williams
- Department of Physics, Northeastern University, Boston, MA 02115, USA, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA and Department of Chemical Sciences, Bridgewater State University, Bridgewater, MA 02325, USA
- *To whom correspondence should be addressed. Tel: +1 617 373 7323; Fax: +1 617 373 2943;
| |
Collapse
|
22
|
Abstract
In the last two decades, single-molecule force measurements using optical and magnetic tweezers and atomic force spectroscopy have dramatically expanded our knowledge of nucleic acids and proteins. These techniques characterize the force on a biomolecule required to produce a given molecular extension. When stretching long DNA molecules, the observed force–extension relationship exhibits a characteristic plateau at approximately 65 pN where the DNA may be extended to almost twice its B-DNA length with almost no increase in force. In the present review, I describe this transition in terms of the Poland–Scheraga model and summarize recent related studies.
Collapse
|
23
|
Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching using fluorescence microscopy. Proc Natl Acad Sci U S A 2013; 110:3859-64. [PMID: 23431161 DOI: 10.1073/pnas.1213676110] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanical stress plays a key role in many genomic processes, such as DNA replication and transcription. The ability to predict the response of double-stranded (ds) DNA to tension is a cornerstone of understanding DNA mechanics. It is widely appreciated that torsionally relaxed dsDNA exhibits a structural transition at forces of ∼65 pN, known as overstretching, whereby the contour length of the molecule increases by ∼70%. Despite extensive investigation, the structural changes occurring in DNA during overstretching are still generating considerable debate. Three mechanisms have been proposed to account for the increase in DNA contour length during overstretching: strand unpeeling, localized base-pair breaking (yielding melting bubbles), and formation of S-DNA (strand unwinding, while base pairing is maintained). Here we show, using a combination of fluorescence microscopy and optical tweezers, that all three structures can exist, uniting the often contradictory dogmas of DNA overstretching. We visualize and distinguish strand unpeeling and melting-bubble formation using an appropriate combination of fluorescently labeled proteins, whereas remaining B-form DNA is accounted for by using specific fluorescent molecular markers. Regions of S-DNA are associated with domains where fluorescent probes do not bind. We demonstrate that the balance between the three structures of overstretched DNA is governed by both DNA topology and local DNA stability. These findings enhance our knowledge of DNA mechanics and stability, which are of fundamental importance to understanding how proteins modify the physical state of DNA.
Collapse
|
24
|
Wu H, Mitra M, McCauley MJ, Thomas JA, Rouzina I, Musier-Forsyth K, Williams MC, Gorelick RJ. Aromatic residue mutations reveal direct correlation between HIV-1 nucleocapsid protein's nucleic acid chaperone activity and retroviral replication. Virus Res 2013; 171:263-77. [PMID: 22814429 PMCID: PMC3745225 DOI: 10.1016/j.virusres.2012.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/02/2012] [Accepted: 07/07/2012] [Indexed: 10/28/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) protein plays an essential role in several stages of HIV-1 replication. One important function of HIV-1 NC is to act as a nucleic acid chaperone, in which the protein facilitates nucleic acid rearrangements important for reverse transcription and recombination. NC contains only 55 amino acids, with 15 basic residues and two zinc fingers, each having a single aromatic residue (Phe16 and Trp37). Despite its simple structure, HIV-1 NC appears to have optimal chaperone activity, including the ability to strongly aggregate nucleic acids, destabilize nucleic acid secondary structure, and facilitate rapid nucleic acid annealing. Here we combine single molecule DNA stretching experiments with ensemble solution studies of protein-nucleic acid binding affinity, oligonucleotide annealing, and nucleic acid aggregation to measure the characteristics of wild-type (WT) and aromatic residue mutants of HIV-1 NC that are important for nucleic acid chaperone activity. These in vitro results are compared to in vivo HIV-1 replication for viruses containing the same mutations. This work allows us to directly relate HIV-1 NC structure with its function as a nucleic acid chaperone in vitro and in vivo. We show that replacement of either aromatic residue with another aromatic residue results in a protein that strongly resembles WT NC. In contrast, single amino acid substitutions of either Phe16Ala or Trp37Ala significantly slow down NC's DNA interaction kinetics, while retaining some helix-destabilization capability. A double Phe16Ala/Trp37Ala substitution further reduces the latter activity. Surprisingly, the ensemble nucleic acid binding, annealing, and aggregation properties are not significantly altered for any mutant except the double aromatic substitution with Ala. Thus, elimination of a single aromatic residue from either zinc finger strongly reduces NC's chaperone activity as determined by single molecule DNA stretching experiments without significantly altering its ensemble-averaged biochemical properties. Importantly, the substitution of aromatic residues with Ala progressively decreases NC's nucleic acid chaperone activity while also progressively inhibiting viral replication. Taken together, these data support the critical role of HIV-1 NC's aromatic residues, and establish a direct and statistically significant correlation between nucleic acid chaperone activity and viral replication.
Collapse
Affiliation(s)
- Hao Wu
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Mithun Mitra
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Columbus, OH 43210, USA
| | - Micah J. McCauley
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - James A. Thomas
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ioulia Rouzina
- University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA
| | - Karin Musier-Forsyth
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Columbus, OH 43210, USA
| | - Mark C. Williams
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
25
|
McCauley MJ, Rueter EM, Rouzina I, Maher LJ, Williams MC. Single-molecule kinetics reveal microscopic mechanism by which High-Mobility Group B proteins alter DNA flexibility. Nucleic Acids Res 2012; 41:167-81. [PMID: 23143110 PMCID: PMC3592474 DOI: 10.1093/nar/gks1031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic High-Mobility Group B (HMGB) proteins alter DNA elasticity while facilitating transcription, replication and DNA repair. We developed a new single-molecule method to probe non-specific DNA interactions for two HMGB homologs: the human HMGB2 box A domain and yeast Nhp6Ap, along with chimeric mutants replacing neutral N-terminal residues of the HMGB2 protein with cationic sequences from Nhp6Ap. Surprisingly, HMGB proteins constrain DNA winding, and this torsional constraint is released over short timescales. These measurements reveal the microscopic dissociation rates of HMGB from DNA. Separate microscopic and macroscopic (or local and non-local) unbinding rates have been previously proposed, but never independently observed. Microscopic dissociation rates for the chimeric mutants (∼10 s−1) are higher than those observed for wild-type proteins (∼0.1–1.0 s−1), reflecting their reduced ability to bend DNA through short-range interactions, despite their increased DNA-binding affinity. Therefore, transient local HMGB–DNA contacts dominate the DNA-bending mechanism used by these important architectural proteins to increase DNA flexibility.
Collapse
Affiliation(s)
- Micah J McCauley
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Mixed-sequence DNA molecules undergo mechanical overstretching by approximately 70% at 60-70 pN. Since its initial discovery 15 y ago, a debate has arisen as to whether the molecule adopts a new form [Cluzel P, et al. (1996) Science 271:792-794; Smith SB, Cui Y, Bustamante C (1996) Science 271:795-799], or simply denatures under tension [van Mameren J, et al. (2009) Proc Natl Acad Sci USA 106:18231-18236]. Here, we resolve this controversy by using optical tweezers to extend small 60-64 bp single DNA duplex molecules whose base content can be designed at will. We show that when AT content is high (70%), a force-induced denaturation of the DNA helix ensues at 62 pN that is accompanied by an extension of the molecule of approximately 70%. By contrast, GC-rich sequences (60% GC) are found to undergo a reversible overstretching transition into a distinct form that is characterized by a 51% extension and that remains base-paired. For the first time, results proving the existence of a stretched basepaired form of DNA can be presented. The extension observed in the reversible transition coincides with that produced on DNA by binding of bacterial RecA and human Rad51, pointing to its possible relevance in homologous recombination.
Collapse
|
27
|
Two distinct overstretched DNA structures revealed by single-molecule thermodynamics measurements. Proc Natl Acad Sci U S A 2012; 109:8103-8. [PMID: 22532662 DOI: 10.1073/pnas.1109824109] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Double-stranded DNA is a dynamic molecule whose structure can change depending on conditions. While there is consensus in the literature about many structures DNA can have, the state of highly-stretched DNA is still not clear. Several groups have shown that DNA in the torsion-unconstrained B-form undergoes an "overstretching" transition at a stretching force of around 65 pN, which leads to approximately 1.7-fold elongation of the DNA contour length. Recent experiments have revealed that two distinct structural transitions are involved in the overstretching process: (i) a hysteretic "peeling" off one strand from its complementary strand, and (ii) a nonhysteretic transition that leads to an undetermined DNA structure. We report the first simultaneous determination of the entropy (ΔS) and enthalpy changes (ΔH) pertaining to these respective transitions. For the hysteretic peeling transition, we determined ΔS ∼ 20 cal/(K.mol) and ΔH ∼ 7 kcal/mol. In the case of the nonhysteretic transition, ΔS ∼ -3 cal/(K.mol) and ΔH ∼ 1 kcal/mol. Furthermore, the response of the transition force to salt concentration implies that the two DNA strands are spatially separated after the hysteretic peeling transition. In contrast, the corresponding response after the nonhysteretic transition indicated that the strands remained in close proximity. The selection between the two transitions depends on DNA base-pair stability, and it can be illustrated by a multidimensional phase diagram. Our results provide important insights into the thermodynamics of DNA overstretching and conformational structures of overstretched DNA that may play an important role in vivo.
Collapse
|
28
|
Liu N, Zhang W. Feeling Inter- or Intramolecular Interactions with the Polymer Chain as Probe: Recent Progress in SMFS Studies on Macromolecular Interactions. Chemphyschem 2012; 13:2238-56. [DOI: 10.1002/cphc.201200154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Indexed: 01/30/2023]
|
29
|
Vafabakhsh R, Lee KS, Ha T. Recent Advances in Studying Mechanical Properties of DNA. ADVANCES IN CHEMICAL PHYSICS 2012. [DOI: 10.1002/9781118197714.ch4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
30
|
Chaurasiya KR, Geertsema H, Cristofari G, Darlix JL, Williams MC. A single zinc finger optimizes the DNA interactions of the nucleocapsid protein of the yeast retrotransposon Ty3. Nucleic Acids Res 2012; 40:751-60. [PMID: 21917850 PMCID: PMC3258130 DOI: 10.1093/nar/gkr726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/09/2011] [Accepted: 08/23/2011] [Indexed: 12/18/2022] Open
Abstract
Reverse transcription in retroviruses and retrotransposons requires nucleic acid chaperones, which drive the rearrangement of nucleic acid conformation. The nucleic acid chaperone properties of the human immunodeficiency virus type-1 (HIV-1) nucleocapsid (NC) protein have been extensively studied, and nucleic acid aggregation, duplex destabilization and rapid binding kinetics have been identified as major components of its activity. However, the properties of other nucleic acid chaperone proteins, such as retrotransposon Ty3 NC, a likely ancestor of HIV-1 NC, are not well understood. In addition, it is unclear whether a single zinc finger is sufficient to optimize the properties characteristic of HIV-1 NC. We used single-molecule DNA stretching as a method for detailed characterization of Ty3 NC chaperone activity. We found that wild type Ty3 NC aggregates single- and double-stranded DNA, weakly stabilizes dsDNA, and exhibits rapid binding kinetics. Single-molecule studies in the presence of Ty3 NC mutants show that the N-terminal basic residues and the unique zinc finger at the C-terminus are required for optimum chaperone activity in this system. While the single zinc finger is capable of optimizing Ty3 NC's DNA interaction kinetics, two zinc fingers may be necessary in order to facilitate the DNA destabilization exhibited by HIV-1 NC.
Collapse
Affiliation(s)
- Kathy R. Chaurasiya
- Department of Physics, Northeastern University, Boston, MA, USA, Unité de Virologie Humaine INSERM 758, IFR 128 Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon, France and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA, USA
| | - Hylkje Geertsema
- Department of Physics, Northeastern University, Boston, MA, USA, Unité de Virologie Humaine INSERM 758, IFR 128 Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon, France and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA, USA
| | - Gaël Cristofari
- Department of Physics, Northeastern University, Boston, MA, USA, Unité de Virologie Humaine INSERM 758, IFR 128 Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon, France and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA, USA
| | - Jean-Luc Darlix
- Department of Physics, Northeastern University, Boston, MA, USA, Unité de Virologie Humaine INSERM 758, IFR 128 Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon, France and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA, USA
| | - Mark C. Williams
- Department of Physics, Northeastern University, Boston, MA, USA, Unité de Virologie Humaine INSERM 758, IFR 128 Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon, France and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA, USA
| |
Collapse
|
31
|
Laughton CA, Harris SA. The atomistic simulation of DNA. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2011. [DOI: 10.1002/wcms.46] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
32
|
Evans JD, Peddigari S, Chaurasiya KR, Williams MC, Martin SL. Paired mutations abolish and restore the balanced annealing and melting activities of ORF1p that are required for LINE-1 retrotransposition. Nucleic Acids Res 2011; 39:5611-21. [PMID: 21441536 PMCID: PMC3141268 DOI: 10.1093/nar/gkr171] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Retrotransposition amplifies LINE-1 (L1) to high copy number in mammalian genomes. The L1 protein encoded by ORF1 (ORF1p) is required for retrotransposition. This dependence on ORF1p was investigated by mutating three highly conserved residues, R238, R284 and Y318 to alanine, thereby inactivating retrotransposition. R284A and Y318A were rescued by further substituting the alanine with the appropriate conservative amino acid, e.g. lysine or phenylalanine, respectively, whereas R238K remained inactive. Quantification of the steady-state levels of L1 RNA and ORF1p failed to discriminate active from inactive variants, indicating loss of L1 retrotransposition resulted from loss of function rather than reduced expression. The two biochemical properties known for ORF1p are high-affinity RNA binding and nucleic acid chaperone activity. Only R238A/K exhibited significantly reduced RNA affinities. The nucleic acid chaperone activities of the remaining paired mutants were assessed by single-molecule DNA stretching and found to mirror retrotransposition activity. To further examine ORF1p chaperone function, their energetic barriers to DNA annealing and melting were derived from kinetic work. When plotted against each other, the ratio of these two activities distinguished functional from non-functional ORF1p variants. These findings enhance our understanding of the requirements for ORF1p in LINE-1 retrotransposition and, more generally, nucleic acid chaperone function.
Collapse
Affiliation(s)
- James D Evans
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
33
|
Oliver PM, Park JS, Vezenov D. Quantitative High-Resolution Sensing of DNA Hybridization Using Magnetic Tweezers with Evanescent Illumination. NANOSCALE 2011; 3:581-91. [PMID: 21103547 PMCID: PMC3379821 DOI: 10.1039/c0nr00479k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We applied the combined approach of evanescent nanometry and force spectroscopy using magnetic tweezers to quantify the degree of hybridization of a single synthetic single-stranded DNA oligomer to a resolution approaching a single-base. In this setup, the 200 nucleotide long DNA was covalently attached to the surface of an optically transparent solid support at one end and to the surface of a superparamagnetic fluorescent microsphere (force probe) at the other end. The force was applied to the probes using an electromagnet. The end-to-end molecular distance (i.e. out-of-image-plane position of the force probe) was determined from the intensity of the probe fluorescent image observed with total-internal reflectance microscopy. An equation of state for single stranded DNA molecules under tension (extensible freely jointed chain) was used to derive the penetration depth of the evanescent field and to calibrate the magnetic properties of the force probes. The parameters of the magnetic response of the force probes obtained from the equation of state remained constant when changing the penetration depth, indicating a robust calibration procedure. The results of such a calibration were also confirmed using independently measured probe-surface distances for probes mounted onto cantilevers of an atomic force microscope. Upon hybridization of the complementary 50 nucleotide-long oligomer to the surface-bound 200-mer, the changes in the force-distance curves were consistent with the quantitative conversion of 25% of the original single-stranded DNA to its double-stranded form, which was modeled as an elastic rod. The method presented here for quantifying the hybridization state of the single DNA molecules has potential for determining the degree of hybridization of individual molecules in a single molecule array with high accuracy.
Collapse
|
34
|
McCauley MJ, Williams MC. Measuring DNA-protein binding affinity on a single molecule using optical tweezers. Methods Mol Biol 2011; 749:305-315. [PMID: 21674381 DOI: 10.1007/978-1-61779-142-0_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
DNA-protein interactions may be observed on single molecules with a variety of techniques. However, quantifying the binding affinity is difficult and often requires many (∼100) individual events to characterize the interaction. We use a single λ DNA molecule that provides a lattice of binding sites for proteins. Extending and relaxing the tethered molecule reversibly melts DNA, allowing it to be converted between double-stranded (ds) and single-stranded (ss) forms. By monitoring changes in the properties of the DNA as a function of added protein concentration and fitting to binding models, the DNA-protein interaction may be characterized and quantified. As an example, the high mobility group protein HMGB1(box A + B) is observed to stabilize dsDNA. Measuring the strength of this effect allows us to determine the equilibrium association constant for HMGB1(box A + B) binding to dsDNA.
Collapse
|
35
|
Fu H, Chen H, Zhang X, Qu Y, Marko JF, Yan J. Transition dynamics and selection of the distinct S-DNA and strand unpeeling modes of double helix overstretching. Nucleic Acids Res 2010; 39:3473-81. [PMID: 21177651 PMCID: PMC3082884 DOI: 10.1093/nar/gkq1278] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies have revealed two distinct pathways for the DNA overstretching transition near 65 pN: ‘unpeeling’ of one strand from the other, and a transition from B-DNA to an elongated double-stranded ‘S-DNA’ form. However, basic questions concerning the dynamics of these transitions, relative stability of the two competing overstretched states, and effects of nicks and free DNA ends on overstretching, remain open. In this study we report that: (i) stepwise extension changes caused by sequence-defined barriers occur during the strand-unpeeling transition, whereas rapid, sequence-independent extension fluctuations occur during the B to S transition; (ii) the secondary transition that often occurs following the overstretching transition is strand-unpeeling, during which the extension increases by 0.01–0.02 nm per base pair of S-DNA converted to single-stranded DNA at forces between 75 and 110 pN; (iii) even in the presence of nicks or free ends, S-DNA can be stable under physiological solution conditions; (iv) distribution of small GC-rich islands in a large DNA plays a key role in determining the transition pathways; and (v) in the absence of nicks or free ends, torsion-unconstrained DNA undergoes the overstretching transition via creation of S-DNA. Our study provides a new, high-resolution understanding of the competition between unpeeling and formation of S-DNA.
Collapse
Affiliation(s)
- Hongxia Fu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Department of Physics, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
36
|
Einert TR, Staple DB, Kreuzer HJ, Netz RR. A three-state model with loop entropy for the overstretching transition of DNA. Biophys J 2010; 99:578-87. [PMID: 20643077 DOI: 10.1016/j.bpj.2010.04.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/16/2010] [Accepted: 04/21/2010] [Indexed: 11/16/2022] Open
Abstract
We introduce a three-state model for a single DNA chain under tension that distinguishes among B-DNA, S-DNA, and M (molten or denatured) segments and at the same time correctly accounts for the entropy of molten loops, characterized by the exponent c in the asymptotic expression S approximately -c ln n for the entropy of a loop of length n. Force extension curves are derived exactly by employing a generalized Poland-Scheraga approach and then compared to experimental data. Simultaneous fitting to force-extension data at room temperature and to the denaturation phase transition at zero force is possible and allows us to establish a global phase diagram in the force-temperature plane. Under a stretching force, the effects of the stacking energy (entering as a domain-wall energy between paired and unpaired bases) and the loop entropy are separated. Therefore, we can estimate the loop exponent c independently from the precise value of the stacking energy. The fitted value for c is small, suggesting that nicks dominate the experimental force extension traces of natural DNA.
Collapse
Affiliation(s)
- Thomas R Einert
- Physik Department, Technische Universität München, Garching, Germany.
| | | | | | | |
Collapse
|
37
|
Řeha D, Voityuk AA, Harris SA. An in silico design for a DNA nanomechanical switch. ACS NANO 2010; 4:5737-5742. [PMID: 20828145 DOI: 10.1021/nn1014038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We have calculated how the charge transfer properties of DNA change in response to the application of an external stretching force. Since charge transfer occurs through the DNA π-stack, any disruption to this stacking causes dramatic changes in the transport properties of the biomolecule, as our calculations demonstrate. We therefore propose that the mechanical response of DNA to an applied stretching force might be used in the design of a nanomechanical switch.
Collapse
Affiliation(s)
- David Řeha
- Department of Biological Sciences, University of Essex, United Kingdom
| | | | | |
Collapse
|
38
|
Krichevsky O. DNA overstretched state: S-DNA form or force-induced melting? Phys Life Rev 2010; 7:350-2; discussion 358-61. [DOI: 10.1016/j.plrev.2010.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 07/20/2010] [Indexed: 11/28/2022]
|
39
|
Peterman EJ, Gross P. Biophysics of DNA–ligand interactions resolved by force. Phys Life Rev 2010; 7:344-5; discussion 358-61. [DOI: 10.1016/j.plrev.2010.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 06/22/2010] [Indexed: 11/26/2022]
|
40
|
McCauley MJ, Chaurasiya KR, Paramanathan T, Rouzina I, Williams MC. DNA stretching as a probe for nucleic acid interactions: Reply to Comments on "Biophysical characterization of DNA binding from single molecule force measurements" by Kathy R. Chaurasiya, Thayaparan Paramanathan, Micah J. McCauley, Mark C. Williams. Phys Life Rev 2010; 7:358-361. [PMID: 20922051 PMCID: PMC2948203 DOI: 10.1016/j.plrev.2010.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Micah J McCauley
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
41
|
Lipfert J, Klijnhout S, Dekker NH. Torsional sensing of small-molecule binding using magnetic tweezers. Nucleic Acids Res 2010; 38:7122-32. [PMID: 20624816 PMCID: PMC2978369 DOI: 10.1093/nar/gkq598] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
DNA-binding small molecules are widespread in the cell and heavily used in biological applications. Here, we use magnetic tweezers, which control the force and torque applied to single DNAs, to study three small molecules: ethidium bromide (EtBr), a well-known intercalator; netropsin, a minor-groove binding anti-microbial drug; and topotecan, a clinically used anti-tumor drug. In the low-force limit in which biologically relevant torques can be accessed (<10 pN), we show that ethidium intercalation lengthens DNA ∼1.5-fold and decreases the persistence length, from which we extract binding constants. Using our control of supercoiling, we measure the decrease in DNA twist per intercalation to be 27.3 ± 1° and demonstrate that ethidium binding delays the accumulation of torsional stress in DNA, likely via direct reduction of the torsional modulus and torque-dependent binding. Furthermore, we observe that EtBr stabilizes the DNA duplex in regimes where bare DNA undergoes structural transitions. In contrast, minor groove binding by netropsin affects neither the contour nor persistence length significantly, yet increases the twist per base of DNA. Finally, we show that topotecan binding has consequences similar to those of EtBr, providing evidence for an intercalative binding mode. These insights into the torsional consequences of ligand binding can help elucidate the effects of small-molecule drugs in the cellular environment.
Collapse
Affiliation(s)
- Jan Lipfert
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | | | | |
Collapse
|
42
|
Liu N, Bu T, Song Y, Zhang W, Li J, Zhang W, Shen J, Li H. The nature of the force-induced conformation transition of dsDNA studied by using single molecule force spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:9491-9496. [PMID: 20178341 DOI: 10.1021/la100037z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Single-stranded DNA binding proteins (SSB) interact with single-stranded DNA (ssDNA) specifically. Taking advantage of this character, we have employed Bacillus subtilis SSB protein to investigate the nature of force-induced conformation transition of double-stranded DNA (dsDNA) by using AFM-based single molecule force spectroscopy (SMFS) technique. Our results show that, when a dsDNA is stretched beyond its contour length, the dsDNA is partially melted, producing some ssDNA segments which can be captured by SSB proteins. We have also systematically investigated the effects of stretching length, waiting time, and salt concentration on the conformation transition of dsDNA and SSB-ssDNA interactions, respectively. Furthermore, the effect of proflavine, a DNA intercalator, on the SSB-DNA interactions has been investigated, and the results indicate that the proflavine-saturated dsDNA can be stabilized to the extent that the dsDNA will no longer melt into ssDNA under the mechanical force even up to 150 pN, and no SSB-DNA interactions are detectable.
Collapse
Affiliation(s)
- Ningning Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Chaurasiya KR, Paramanathan T, McCauley MJ, Williams MC. Biophysical characterization of DNA binding from single molecule force measurements. Phys Life Rev 2010; 7:299-341. [PMID: 20576476 DOI: 10.1016/j.plrev.2010.06.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/25/2022]
Abstract
Single molecule force spectroscopy is a powerful method that uses the mechanical properties of DNA to explore DNA interactions. Here we describe how DNA stretching experiments quantitatively characterize the DNA binding of small molecules and proteins. Small molecules exhibit diverse DNA binding modes, including binding into the major and minor grooves and intercalation between base pairs of double-stranded DNA (dsDNA). Histones bind and package dsDNA, while other nuclear proteins such as high mobility group proteins bind to the backbone and bend dsDNA. Single-stranded DNA (ssDNA) binding proteins slide along dsDNA to locate and stabilize ssDNA during replication. Other proteins exhibit binding to both dsDNA and ssDNA. Nucleic acid chaperone proteins can switch rapidly between dsDNA and ssDNA binding modes, while DNA polymerases bind both forms of DNA with high affinity at distinct binding sites at the replication fork. Single molecule force measurements quantitatively characterize these DNA binding mechanisms, elucidating small molecule interactions and protein function.
Collapse
Affiliation(s)
- Kathy R Chaurasiya
- Department of Physics, Northeastern University, 111 Dana Research Center, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
44
|
Marenduzzo D, Orlandini E, Seno F, Trovato A. Different pulling modes in DNA overstretching: a theoretical analysis. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:051926. [PMID: 20866280 DOI: 10.1103/physreve.81.051926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 03/23/2010] [Indexed: 05/29/2023]
Abstract
We study the thermally driven denaturation of a double-stranded polymer in the presence of a stretching force via Monte-Carlo simulations. When one strand only is stretched, the denaturation transition is first order, while when both strands are stretched, melting is second order. By revisiting the Poland-Scheraga model for DNA melting, we show that at room temperature, the most likely scenario is that DNA melts as it overstretches. Our results are in general agreement with the most recent experiments and suggest how varying temperature and stretching mode may help settle the question whether S-DNA exists or not.
Collapse
Affiliation(s)
- D Marenduzzo
- SUPA, School of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, Scotland
| | | | | | | |
Collapse
|
45
|
Carrillo JMY, Dobrynin AV. Effect of the Electrostatic Interactions on Stretching of Semiflexible and Biological Polyelectrolytes. Macromolecules 2010. [DOI: 10.1021/ma902304x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jan-Michael Y. Carrillo
- Polymer Program, Institute of Materials Science and Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3136
| | - Andrey V. Dobrynin
- Polymer Program, Institute of Materials Science and Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3136
| |
Collapse
|
46
|
Murade CU, Subramaniam V, Otto C, Bennink ML. Force spectroscopy and fluorescence microscopy of dsDNA-YOYO-1 complexes: implications for the structure of dsDNA in the overstretching region. Nucleic Acids Res 2010; 38:3423-31. [PMID: 20129944 PMCID: PMC2879515 DOI: 10.1093/nar/gkq034] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
When individual dsDNA molecules are stretched beyond their B-form contour length, they reveal a structural transition in which the molecule extends 1.7 times its contour length. The nature of this transition is still a subject of debate. In the first model, the DNA helix unwinds and combined with the tilting of the base pairs (which remain intact), results in a stretched form of DNA (also known as S-DNA). In the second model the base pairs break resulting effectively in two single-strands, which is referred to as force-induced melting. Here a combination of optical tweezers force spectroscopy with fluorescence microscopy was used to study the structure of dsDNA in the overstretching regime. When dsDNA was stretched in the presence of 10 nM YOYO-1 an initial increase in total fluorescence intensity of the dye–DNA complex was observed and at an extension where the dsDNA started to overstretch the fluorescence intensity leveled off and ultimately decreased when stretched further into the overstretching region. Simultaneous force spectroscopy and fluorescence polarization microscopy revealed that the orientation of dye molecules did not change significantly in the overstretching region (78.0°± 3.2°). These results presented here clearly suggest that, the structure of overstretched dsDNA can be explained accurately by force induced melting.
Collapse
Affiliation(s)
- Chandrashekhar U Murade
- Department of Biophysical Engineering, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
| | | | | | | |
Collapse
|
47
|
Qualley DF, Stewart-Maynard KM, Wang F, Mitra M, Gorelick RJ, Rouzina I, Williams MC, Musier-Forsyth K. C-terminal domain modulates the nucleic acid chaperone activity of human T-cell leukemia virus type 1 nucleocapsid protein via an electrostatic mechanism. J Biol Chem 2010; 285:295-307. [PMID: 19887455 PMCID: PMC2804176 DOI: 10.1074/jbc.m109.051334] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 10/30/2009] [Indexed: 12/14/2022] Open
Abstract
Retroviral nucleocapsid (NC) proteins are molecular chaperones that facilitate nucleic acid (NA) remodeling events critical in viral replication processes such as reverse transcription. Surprisingly, the NC protein from human T-cell leukemia virus type 1 (HTLV-1) is an extremely poor NA chaperone. Using bulk and single molecule methods, we find that removal of the anionic C-terminal domain (CTD) of HTLV-1 NC results in a protein with chaperone properties comparable with that of other retroviral NCs. Increasing the ionic strength of the solution also improves the chaperone activity of full-length HTLV-1 NC. To determine how the CTD negatively modulates the chaperone activity of HTLV-1 NC, we quantified the thermodynamics and kinetics of wild-type and mutant HTLV-1 NC/NA interactions. The wild-type protein exhibits very slow dissociation kinetics, and removal of the CTD or mutations that eliminate acidic residues dramatically increase the protein/DNA interaction kinetics. Taken together, these results suggest that the anionic CTD interacts with the cationic N-terminal domain intramolecularly when HTLV-1 NC is not bound to nucleic acids, and similar interactions occur between neighboring molecules when NC is NA-bound. The intramolecular N-terminal domain-CTD attraction slows down the association of the HTLV-1 NC with NA, whereas the intermolecular interaction leads to multimerization of HTLV-1 NC on the NA. The latter inhibits both NA/NC aggregation and rapid protein dissociation from single-stranded DNA. These features make HTLV-1 NC a poor NA chaperone, despite its robust duplex destabilizing capability.
Collapse
Affiliation(s)
- Dominic F. Qualley
- From the Departments of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | | | - Fei Wang
- the Department of Physics, Northeastern University, Boston, Massachusetts 02115, and
| | - Mithun Mitra
- From the Departments of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Robert J. Gorelick
- the AIDS and Cancer Virus Program, Science Applications International Corporation-Frederick, Inc., NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Ioulia Rouzina
- the Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Mark C. Williams
- the Department of Physics, Northeastern University, Boston, Massachusetts 02115, and
| | - Karin Musier-Forsyth
- From the Departments of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
48
|
Niewieczerzał S, Cieplak M. Stretching and twisting of the DNA duplexes in coarse-grained dynamical models. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:474221. [PMID: 21832500 DOI: 10.1088/0953-8984/21/47/474221] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Three coarse-grained molecular dynamics models of the double-stranded DNA are proposed and compared in the context of single molecule mechanical manipulation such as twisting and various schemes of stretching-unzipping, shearing, two-strand stretching and stretching of only one strand. The models differ in the number of effective beads (between two and five) representing each nucleotide. They all show similar behaviour, but the bigger the resolution, the more details in the force patterns. The models incorporate the effective Lennard-Jones potentials in the couplings between two strands and harmonic potentials to describe the structure of a single strand. The force patterns are shown to depend on the sequence studied. In particular, both shearing and unzipping for an all-AT sequence lead to lower forces than for an all-CG sequence. The unzipping patterns and the corresponding scenario diagrams for the contact rupture events are found to reflect the sequential information if the temperature is moderate and initial transients are discarded. The derived torque-force phase diagram is found to be qualitatively consistent with experiments and all-atom simulations.
Collapse
Affiliation(s)
- Szymon Niewieczerzał
- Institute of Physics, Polish Academy of Science, Aleja Lotników 32/48, 02-668 Warsaw, Poland
| | | |
Collapse
|
49
|
Li H, Gisler T. Overstretching of a 30 bp DNA duplex studied with steered molecular dynamics simulation: effects of structural defects on structure and force-extension relation. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2009; 30:325-332. [PMID: 19847465 DOI: 10.1140/epje/i2009-10524-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 07/07/2009] [Accepted: 09/25/2009] [Indexed: 05/28/2023]
Abstract
Single-molecule experiments on polymeric DNA show that the molecule can be overstretched at nearly constant force by about 70% beyond its relaxed contour length. In this publication we use steered molecular dynamics (MD) simulation to study the effect of structural defects on force-extension curves and structures at high elongation in a 30 base pair duplex pulled by its torsionally unconstrained 5' -5' ends. The defect-free duplex shows a plateau in the force-extension curve at 120 pN in which large segments with inclined and paired bases ("S-DNA") near both ends of the duplex coexist with a central B-type segment separated from the former by small denaturation bubbles. In the presence of a base mismatch or a nick, force-extension curves are very similar to the ones of the defect-free duplex. For the duplex with a base mismatch, S-type segments with highly inclined base pairs are not observed; rather, the overstretched duplex consists of B-type segments separated by denaturation bubbles. The nicked duplex evolves, via a two-step transition, into a two-domain structure characterized by a large S-type segment coexisting with several short S-type segments which are separated by short denaturation bubbles. Our results suggest that in the presence of nicks the force-extension curve of highly elongated duplex DNA might reflect locally highly inhomogeneous stretching.
Collapse
Affiliation(s)
- H Li
- Universität Konstanz, Fachbereich Physik, 78457 Konstanz, Germany
| | | |
Collapse
|
50
|
|