1
|
Zhao Z, Zhu Y, Wan D. Exercise and tissue fibrosis: recent advances in therapeutic potential and molecular mechanisms. Front Endocrinol (Lausanne) 2025; 16:1557797. [PMID: 40182630 PMCID: PMC11965137 DOI: 10.3389/fendo.2025.1557797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Tissue fibrosis represents an aberrant repair process, occurring because of prolonged injury, sustained inflammatory response, or metabolic disorders. It is characterized by an excessive accumulation of extracellular matrix (ECM), resulting in tissue hardening, structural remodeling, and loss of function. This pathological phenomenon is a common feature in the end stage of numerous chronic diseases. Despite the advent of novel therapeutic modalities, including antifibrotic agents, these have only modest efficacy in reversing established fibrosis and are associated with adverse effects. In recent years, a growing body of research has demonstrated that exercise has significant benefits and potential in the treatment of tissue fibrosis. The anti-fibrotic effects of exercise are mediated by multiple mechanisms, including direct inhibition of fibroblast activation, reduction in the expression of pro-fibrotic factors such as transforming growth factor-β (TGF-β) and slowing of collagen deposition. Furthermore, exercise has been demonstrated to assist in maintaining the dynamic equilibrium of tissue repair, thereby indirectly reducing tissue damage and fibrosis. It can also help maintain the dynamic balance of tissue repair by improving metabolic disorders, exerting anti-inflammatory and antioxidant effects, regulating cellular autophagy, restoring mitochondrial function, activating stem cell activity, and reducing cell apoptosis, thereby indirectly alleviating tissue. This paper presents a review of the therapeutic potential of exercise and its underlying mechanisms for the treatment of a range of tissue fibrosis, including cardiac, pulmonary, renal, hepatic, and skeletal muscle. It offers a valuable reference point for non-pharmacological intervention strategies for the comprehensive treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Physical Education, Anyang Normal University, Anyang, Henan, China
| | - Yongjia Zhu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Dongfeng Wan
- School of Health, Shanghai Normal University Tianhua College, Shanghai, China
| |
Collapse
|
2
|
Aboudeya HM, Abdou AS, Attia MM, Shaker SA, Younis SA. Possible role of moderate exercise training in modulating gene expression of adipose tissue remodeling markers in obese male rats. SPORT SCIENCES FOR HEALTH 2024; 20:1291-1304. [DOI: 10.1007/s11332-024-01206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 04/03/2024] [Indexed: 01/05/2025]
|
3
|
Ahn C, Zhang T, Yang G, Rode T, Varshney P, Ghayur SJ, Chugh OK, Jiang H, Horowitz JF. Years of endurance exercise training remodel abdominal subcutaneous adipose tissue in adults with overweight or obesity. Nat Metab 2024; 6:1819-1836. [PMID: 39256590 DOI: 10.1038/s42255-024-01103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/09/2024] [Indexed: 09/12/2024]
Abstract
Abnormalities in the structure and metabolic function of abdominal subcutaneous adipose tissue (aSAT) underlie many obesity-related health complications. Endurance exercise improves cardiometabolic health in adults with overweight or obesity, but the effects of endurance training on aSAT are unclear. We included male and female participants who were regular exercisers with overweight or obesity who exercised for >2 years, and cross-sectionally compared them with well-matched non-exercisers with overweight or obesity. Here we show aSAT from exercisers has a higher capillary density, lower Col6a abundance and fewer macrophages compared with non-exercisers. This is accompanied by a greater abundance of angiogenic, ribosomal, mitochondrial and lipogenic proteins. The abundance of phosphoproteins involved in protein translation, lipogenesis and direct regulation of transcripts is also greater in aSAT collected from exercisers. Exploratory ex vivo experiments demonstrate greater angiogenic capacity and higher lipid-storage capacity in samples cultured from aSAT collected from exercisers versus non-exercisers. Regular exercise may play a role in remodelling aSAT structure and proteomic profile in ways that may contribute to preserved cardiometabolic health.
Collapse
Affiliation(s)
- Cheehoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Tao Zhang
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Gayoung Yang
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Thomas Rode
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Pallavi Varshney
- Human Bioenergetics Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Sophia J Ghayur
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Olivia K Chugh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Hui Jiang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Lempicki MD, Gray JA, Abuna G, Murata RM, Divanovic S, McNamara CA, Meher AK. BAFF neutralization impairs the autoantibody-mediated clearance of dead adipocytes and aggravates obesity-induced insulin resistance. Front Immunol 2024; 15:1436900. [PMID: 39185417 PMCID: PMC11341376 DOI: 10.3389/fimmu.2024.1436900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
B cell-activating factor (BAFF) is a critical TNF-family cytokine that regulates homeostasis and peripheral tolerance of B2 cells. BAFF overproduction promotes autoantibody generation and autoimmune diseases. During obesity, BAFF is predominantly produced by white adipose tissue (WAT), and IgG autoantibodies against adipocytes are identified in the WAT of obese humans. However, it remains to be determined if the autoantibodies formed during obesity affect WAT remodeling and systemic insulin resistance. Here, we show that IgG autoantibodies are generated in high-fat diet (HFD)-induced obese mice that bind to apoptotic adipocytes and promote their phagocytosis by macrophages. Next, using murine models of obesity in which the gonadal WAT undergoes remodeling, we found that BAFF neutralization depleted IgG autoantibodies, increased the number of dead adipocytes, and exacerbated WAT inflammation and insulin resistance. RNA sequencing of the stromal vascular fraction from the WAT revealed decreased expression of immunoglobulin light-chain and heavy-chain variable genes suggesting a decreased repertoire of B cells after BAFF neutralization. Further, the B cell activation and the phagocytosis pathways were impaired in the WAT of BAFF-neutralized mice. In vitro, plasma IgG fractions from BAFF-neutralized mice reduced the phagocytic clearance of apoptotic adipocytes. Altogether, our study suggests that IgG autoantibodies developed during obesity, at least in part, dampens exacerbated WAT inflammation and systemic insulin resistance.
Collapse
Affiliation(s)
- Melissa D. Lempicki
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Jake A. Gray
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Gabriel Abuna
- School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Ramiro M. Murata
- School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Senad Divanovic
- Department of Pediatrics University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Coleen A. McNamara
- Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Akshaya K. Meher
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
5
|
Willows JW, Alshahal Z, Story NM, Alves MJ, Vidal P, Harris H, Rodrigo R, Stanford KI, Peng J, Reifsnyder PC, Harrison DE, David Arnold W, Townsend KL. Contributions of mouse genetic strain background to age-related phenotypes in physically active HET3 mice. Neurobiol Aging 2024; 136:58-69. [PMID: 38325031 DOI: 10.1016/j.neurobiolaging.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
We assessed aging hallmarks in skin, muscle, and adipose in the genetically diverse HET3 mouse, and generated a broad dataset comparing these to individual animal diagnostic SNPs from the 4 founding inbred strains of the HET3 line. For middle- and old-aged HET3 mice, we provided running wheel exercise to ensure our observations were not purely representative of sedentary animals, but age-related phenotypes were not improved with running wheel activity. Adipose tissue fibrosis, peripheral neuropathy, and loss of neuromuscular junction integrity were consistent phenotypes in older-aged HET3 mice regardless of physical activity, but aspects of these phenotypes were moderated by the SNP% contributions of the founding strains for the HET3 line. Taken together, the genetic contribution of founder strain SNPs moderated age-related phenotypes in skin and muscle innervation and were dependent on biological sex and chronological age. However, there was not a single founder strain (BALB/cJ, C57BL/6J, C3H/HeJ, DBA/2J) that appeared to drive more protection or disease-risk across aging in this mouse line, but genetic diversity in general was more protective.
Collapse
Affiliation(s)
- Jake W Willows
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Zahra Alshahal
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Naeemah M Story
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Michele J Alves
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Pablo Vidal
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Hallie Harris
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | - Rochelle Rodrigo
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Juan Peng
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | | | | | - W David Arnold
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Gliniak CM, Pedersen L, Scherer PE. Adipose tissue fibrosis: the unwanted houseguest invited by obesity. J Endocrinol 2023; 259:e230180. [PMID: 37855264 PMCID: PMC11648981 DOI: 10.1530/joe-23-0180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
The prevalence of obesity is increasing exponentially across the globe. The lack of effective treatment options for long-term weight loss has magnified the enormity of this problem. Studies continue to demonstrate that adipose tissue holds a biological memory, one of the most important determinant of long-term weight maintenance. This phenomenon is consistent with the metabolically dynamic role of adipose tissue: it adapts and expands to store for excess energy and serves as an endocrine organ capable of synthesizing a number of biologically active molecules that regulate metabolic homeostasis. An important component of the plasticity of adipose tissue is the extracellular matrix, essential for structural support, mechanical stability, cell signaling and function. Chronic obesity upends a delicate balance of extracellular matrix synthesis and degradation, and the ECM accumulates in such a way that prevents the plasticity and function of the diverse cell types in adipose tissue. A series of maladaptive responses among the cells in adipose tissue leads to inflammation and fibrosis, major mechanisms that explain the link between obesity and insulin resistance, risk of type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease. Adipose tissue fibrosis persists after weight loss and further enhances adipose tissue dysfunction if weight is regained. Here, we highlight the current knowledge of the cellular events governing adipose tissue ECM remodeling during the development of obesity. Our goal is to delineate the relationship more clearly between adipose tissue ECM and metabolic disease, an important step toward better defining the pathophysiology of dysfunctional adipose tissue.
Collapse
Affiliation(s)
- Christy M Gliniak
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Line Pedersen
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
7
|
Kuziel G, Moore BN, Arendt LM. Obesity and Fibrosis: Setting the Stage for Breast Cancer. Cancers (Basel) 2023; 15:cancers15112929. [PMID: 37296891 DOI: 10.3390/cancers15112929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity is a rising health concern and is linked to a worsened breast cancer prognosis. Tumor desmoplasia, which is characterized by elevated numbers of cancer-associated fibroblasts and the deposition of fibrillar collagens within the stroma, may contribute to the aggressive clinical behavior of breast cancer in obesity. A major component of the breast is adipose tissue, and fibrotic changes in adipose tissue due to obesity may contribute to breast cancer development and the biology of the resulting tumors. Adipose tissue fibrosis is a consequence of obesity that has multiple sources. Adipocytes and adipose-derived stromal cells secrete extracellular matrix composed of collagen family members and matricellular proteins that are altered by obesity. Adipose tissue also becomes a site of chronic, macrophage-driven inflammation. Macrophages exist as a diverse population within obese adipose tissue and mediate the development of fibrosis through the secretion of growth factors and matricellular proteins and interactions with other stromal cells. While weight loss is recommended to resolve obesity, the long-term effects of weight loss on adipose tissue fibrosis and inflammation within breast tissue are less clear. Increased fibrosis within breast tissue may increase the risk for tumor development as well as promote characteristics associated with tumor aggressiveness.
Collapse
Affiliation(s)
- Genevra Kuziel
- Cancer Biology Graduate Program, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA
| | - Brittney N Moore
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Lisa M Arendt
- Cancer Biology Graduate Program, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
8
|
Lohkamp KJ, van den Hoek AM, Solé-Guardia G, Lisovets M, Alves Hoffmann T, Velanaki K, Geenen B, Verweij V, Morrison MC, Kleemann R, Wiesmann M, Kiliaan AJ. The Preventive Effect of Exercise and Oral Branched-Chain Amino Acid Supplementation on Obesity-Induced Brain Changes in Ldlr−/−.Leiden Mice. Nutrients 2023; 15:nu15071716. [PMID: 37049556 PMCID: PMC10097391 DOI: 10.3390/nu15071716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Exercise and dietary interventions are promising approaches to tackle obesity and its obesogenic effects on the brain. We investigated the impact of exercise and possible synergistic effects of exercise and branched-chain amino acids (BCAA) supplementation on the brain and behavior in high-fat-diet (HFD)-induced obese Ldlr−/−.Leiden mice. Baseline measurements were performed in chow-fed Ldlr−/−.Leiden mice to assess metabolic risk factors, cognition, and brain structure using magnetic resonance imaging. Thereafter, a subgroup was sacrificed, serving as a healthy reference. The remaining mice were fed an HFD and divided into three groups: (i) no exercise, (ii) exercise, or (iii) exercise and dietary BCAA. Mice were followed for 6 months and aforementioned tests were repeated. We found that exercise alone changed cerebral blood flow, attenuated white matter loss, and reduced neuroinflammation compared to non-exercising HFD-fed mice. Contrarily, no favorable effects of exercise on the brain were found in combination with BCAA, and neuroinflammation was increased. However, cognition was slightly improved in exercising mice on BCAA. Moreover, BCAA and exercise increased the percentage of epididymal white adipose tissue and muscle weight, decreased body weight and fasting insulin levels, improved the circadian rhythm, and transiently improved grip strength. In conclusion, BCAA should be supplemented with caution, although beneficial effects on metabolism, behavior, and cognition were observed.
Collapse
Affiliation(s)
- Klara J. Lohkamp
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Anita M. van den Hoek
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands; (A.M.v.d.H.); (M.C.M.); (R.K.)
| | - Gemma Solé-Guardia
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Maria Lisovets
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Talissa Alves Hoffmann
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Konstantina Velanaki
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Bram Geenen
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Vivienne Verweij
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Martine C. Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands; (A.M.v.d.H.); (M.C.M.); (R.K.)
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands; (A.M.v.d.H.); (M.C.M.); (R.K.)
| | - Maximilian Wiesmann
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Amanda J. Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
- Correspondence:
| |
Collapse
|
9
|
Improta-Caria AC, Soci ÚPR, Rodrigues LF, Fernandes T, Oliveira EM. MicroRNAs Regulating Pathophysiological Processes in Obesity: The Impact of Exercise Training. CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2023.100648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
10
|
Tang L, Kang S, Yan W, Yu Y, Li J, Wang W, Ma Z, Fan X, Sun L. Low intensity pulsed ultrasound reduces liver inflammation caused by fatigue exercise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:1375. [PMID: 36859127 DOI: 10.1121/10.0017355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS) has been shown to have many benefits, such as inhibiting inflammation, stimulating cell proliferation and differentiation, promoting angiogenesis, and so on. So, can exercise fatigue induced liver inflammation be effectively relieved by LIPUS? If possible, what is the possible mechanism? This study first investigated the effect of different intensity exercise on liver inflammation. Rats were divided into three groups: normal control group, exercise fatigue group, and aerobic exercise group. The results showed that aerobic exercise increases both anti-inflammatory factors and pro-inflammatory factors, while fatigue exercise decreases anti-inflammatory factors and increases pro-inflammatory factors, leading to severe liver injury and fibrosis. Then, we investigated the therapeutic effect of LIPUS on liver inflammation caused by exercise fatigue. Starting from the 6th week, the liver was irradiated with LIPUS of 80 mW/cm2 for 20 min/d after daily exercise for 7 weeks. The results showed that LIPUS significantly decreased liver injury and fibrosis, significantly up-regulated the expression of STAT6, IL-13, and its receptors IL-13Rα1, and down regulated the expression of NF-κBp65 in exercise fatigue rats. These results indicate that LIPUS can reduce fatigue-induced liver inflammation, and the mechanism is related to the regulation of the IL-13/STAT6/NF-κBp65 pathway.
Collapse
Affiliation(s)
- Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Sufang Kang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenkang Yan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yanan Yu
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Jiaxiang Li
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Wanzhao Wang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhanke Ma
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiushan Fan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
11
|
Hu X, Sun A, Chen H, Yan X, Ding F, Zheng P, Li Z, Yan YE. Saponins from Panax japonicus alleviate adipose tissue fibrosis and metabolic dysfunction in high-fat-diet-induced obese mice. Biomarkers 2022; 27:784-794. [DOI: 10.1080/1354750x.2022.2122566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Xiaoqin Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Ao Sun
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Huijian Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xiyue Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Fei Ding
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Peng Zheng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Zhen Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - You-e Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| |
Collapse
|
12
|
de Sousa Neto IV, Durigan JLQ, da Silva ASR, de Cássia Marqueti R. Adipose Tissue Extracellular Matrix Remodeling in Response to Dietary Patterns and Exercise: Molecular Landscape, Mechanistic Insights, and Therapeutic Approaches. BIOLOGY 2022; 11:biology11050765. [PMID: 35625493 PMCID: PMC9138682 DOI: 10.3390/biology11050765] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 12/20/2022]
Abstract
Simple Summary Adipose tissue is considered a metabolic organ that adjusts overall energy homeostasis and critical hormones to the body’s needs. In conditions of caloric intake surpassing energy expenditure, lipid accumulation occurs with constant extracellular matrix deposition. Excess lipids and adipocyte hypertrophy may reduce extracellular matrix flexibility in conjunction with hypoxia and inflammation. These processes induce the development of adipose tissue fibrosis and correlated metabolic dysfunctions, such as insulin resistance. With the increasing rate of chronic diseases worldwide, it is essential to generate a more precise knowledge of fibrotic processes, as well as to create optimal models to study potential therapies to combat the harmful effects of extracellular matrix deposition. In this work, we focused on the physiological processes in the remodeling of adipose tissue fibrosis, along with their relevance to clinical indications. Furthermore, we emphasize understanding how lifestyle can alleviate adipocyte dysfunction. Several studies showed that a nutritionally balanced diet combined with exercise is a remarkable potential strategy for lipolytic activity, preventing rapid extracellular matrix expansion in parallel with insulin and glucose action improvements. Thus, the emerging beneficial role of exercise training and low-calorie diet on adipose tissue ECM remodeling is a topic that deserves attention from health professionals. Abstract The extracellular matrix (ECM) is a 3-dimensional network of molecules that play a central role in differentiation, migration, and survival for maintaining normal homeostasis. It seems that ECM remodeling is required for adipose tissue expansion. Despite evidence indicating that ECM is an essential component of tissue physiology, adipose tissue ECM has received limited attention. Hence, there is great interest in approaches to neutralize the harmful effects of ECM enlargement. This review compiles and discusses the current literature on adipose tissue ECM remodeling in response to different dietary patterns and exercise training. High-calorie diets result in substantial adipose tissue ECM remodeling, which in turn could lead to fibrosis (excess deposition of collagens, elastin, and fibronectin), inflammation, and the onset of metabolic dysfunction. However, combining a nutritionally balanced diet with exercise is a remarkable potential strategy for lipolytic activity, preventing rapid ECM expansion in different adipose tissue depots. Despite the distinct exercise modalities (aerobic or resistance exercise) reversing adipose tissue fibrosis in animal models, the beneficial effect on humans remains controversial. Defining molecular pathways and specific mechanisms that mediate the positive effects on adipose tissue, ECM is essential in developing optimized interventions to improve health and clinical outcomes.
Collapse
Affiliation(s)
- Ivo Vieira de Sousa Neto
- Molecular Analysis Laboratory, Faculty of Ceilândia, Universidade de Brasília, Brasília 70910-900, Brazil; or
- Correspondence:
| | | | - Adelino Sanchez Ramos da Silva
- Graduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil;
- School of Physical Education and Sport of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Rita de Cássia Marqueti
- Molecular Analysis Laboratory, Faculty of Ceilândia, Universidade de Brasília, Brasília 70910-900, Brazil; or
- Graduate Program in Rehabilitation Sciences, Universidade de Brasília, Brasília 70910-900, Brazil;
- Graduate Program in Health Sciences and Technology, Universidade de Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
13
|
Protective role of intergenerational paternal resistance training on fibrosis, inflammatory profile, and redox status in the adipose tissue of rat offspring fed with a high-fat diet. Life Sci 2022; 295:120377. [DOI: 10.1016/j.lfs.2022.120377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/29/2022]
|
14
|
Garritson JD, Boudina S. The Effects of Exercise on White and Brown Adipose Tissue Cellularity, Metabolic Activity and Remodeling. Front Physiol 2021; 12:772894. [PMID: 34795599 PMCID: PMC8593176 DOI: 10.3389/fphys.2021.772894] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence suggests a significant functional role of adipose tissue in maintaining whole-body metabolic health. It is well established that obesity leads to compositional and morphological changes in adipose tissue that can contribute to the development of cardiometabolic disorders. Thus, the function and size of adipocytes as well as perfusion and inflammation can significantly impact health outcomes independent of body mass index. Lifestyle interventions such as exercise can improve metabolic homeostasis and reduce the risk for developing cardiometabolic disorders. Adipose tissue displays remarkable plasticity in response to external stimuli such as dietary intervention and exercise. Here we review systemic and local effects of exercise that modulate white and brown adipose tissue cellularity, metabolic function and remodeling in humans and animals.
Collapse
Affiliation(s)
- Jacob D Garritson
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|