1
|
Zhu JW, Yan J, Zhang ZH, Wang TQ. Mild liver injury following withdrawal of long-term prednisone therapy: A case report. World J Gastroenterol 2025; 31:102135. [PMID: 39877714 PMCID: PMC11718648 DOI: 10.3748/wjg.v31.i4.102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Liver injury manifesting as hepatic enzyme abnormalities, has been occasionally identified to be a feature of primary or secondary Addison's disease, an uncommon endocrine disease characterized by adrenal insufficiency. There have been no more than 30 reported cases of liver injury explicitly attributed to Addison's disease. Liver injury resulting from adrenal insufficiency due to glucocorticoid withdrawal is exceptionally rarer. CASE SUMMARY A 42-year-old man presented with fatigue and mildly elevated transaminases. Laboratory investigations and imaging studies excluded common etiologies of liver injury. Based on the fact that the patient discontinued long-term therapy with prednisone approximately 2 weeks before he was found to have elevated transaminase levels and the observation that his cortisol was lower than the normal value, he was diagnosed as having hypertransaminasemia secondary to adrenal insufficiency caused by glucocorticoid withdrawal. The patient was infused intravenously with compound diisopropylamine dichloroacctate and compound glycyrrhizin, and his transaminase levels returned to normal after 1 week. Approximately 2 years later, the patient received hydroprednisone treatment for 2 days in an endoscopic sinus surgery. Eight days after he discontinued the hydroprednisone treatment, he developed symptoms reminiscent of glucocorticoid withdrawal syndrome. These symptoms resolved spontaneously after 1 week. Intriguingly, the patient did not develop hepatic dysfunction this time. CONCLUSION The present case, showing some unusual clinical features, highlights the importance of education of clinicians and patients to avoid improper discontinuation of glucocorticoid therapy and complete history taking for prompt recognition.
Collapse
Affiliation(s)
- Jing-Wen Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Jun Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhi-Han Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Tian-Qi Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
2
|
Liu Y, Tang X, Yuan H, Gao R. Naringin Inhibits Macrophage Foam Cell Formation by Regulating Lipid Homeostasis and Metabolic Phenotype. Nutrients 2024; 16:1321. [PMID: 38732567 PMCID: PMC11085135 DOI: 10.3390/nu16091321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Imbalances in lipid uptake and efflux and inflammation are major contributors to foam cell formation, which is considered a therapeutic target to protect against atherosclerosis. Naringin, a citrus flavonoid abundant in citrus fruits, has been reported to exert an antiatherogenic function, but its pharmacological mechanism is unclear. Naringin treatment effectively inhibits foam cell formation in THP-1 and RAW264.7 macrophages. In this study, mechanically, naringin maintained lipid homeostasis within macrophages through downregulation of the key genes for lipid uptake (MSR1 and CD36) and the upregulation of ABCA1, ABCG1 and SR-B1, which are responsible for cholesterol efflux. Meanwhile, naringin significantly decreased the cholesterol synthesis-related genes and increased the genes involved in cholesterol metabolism. Subsequently, the results showed that ox-LDL-induced macrophage inflammatory responses were inhibited by naringin by reducing the proinflammatory cytokines IL-1β, IL-6 and TNF-α, and increasing the anti- inflammatory cytokine IL-10, which was further verified by the downregulation of pro-inflammatory and chemokine-related genes. Additionally, we found that naringin reprogrammed the metabolic phenotypes of macrophages by suppressing glycolysis and promoting lipid oxidation metabolism to restore macrophage phenotypes and functions. These results suggest that naringin is a potential drug for the treatment of AS as it inhibits macrophage foam cell formation by regulating metabolic phenotypes and inflammation.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing 100142, China; (Y.L.); (X.T.); (H.Y.)
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiaohan Tang
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing 100142, China; (Y.L.); (X.T.); (H.Y.)
| | - Hailong Yuan
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing 100142, China; (Y.L.); (X.T.); (H.Y.)
| | - Rong Gao
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing 100142, China; (Y.L.); (X.T.); (H.Y.)
| |
Collapse
|
3
|
Imamovic M, Bäcklund N, Lundstedt S, Brattsand G, Aardal E, Olsson T, Dahlqvist P. Confounding effects of liquorice, hydrocortisone, and blood contamination on salivary cortisol but not cortisone. Endocr Connect 2023; 12:e220324. [PMID: 36383173 PMCID: PMC9782436 DOI: 10.1530/ec-22-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 11/17/2022]
Abstract
Objective To determine the effects of liquorice consumption, topical hydrocortisone, and blood contamination on salivary cortisol and cortisone concentrations. Design and methods Thirty healthy volunteers were randomized to a low, medium, or high dose of liquorice. Late-night saliva samples were collected using a Salivette® collection device at baseline, during 1 week of daily liquorice consumption, and during 4 weeks' washout. Saliva sampling was also performed before and after the application of topical hydrocortisone on the skin. Furthermore, in a subgroup (n = 16), saliva and venous blood were collected from each individual and mixed to achieve graded blood contamination in saliva. Salivary cortisol and cortisone were analyzed with liquid chromatography-tandem mass spectrometry. Results Significant increases in salivary cortisol concentrations were observed during medium- (+49%) and high-dose (+97%) liquorice intake, which returned to baseline 4 days after liquorice withdrawal. Topical hydrocortisone on fingers holding the collection swab increased salivary cortisol concentrations >1000-fold with concomitant pronounced elevation of the cortisol:cortisone ratio. Salivary cortisol increased significantly after contamination with blood ≥0.5%. Visual examination could safely detect these samples. Salivary cortisone concentrations were unaffected by liquorice consumption and blood contamination, and only marginally affected by topical hydrocortisone. Conclusion Liquorice, topical hydrocortisone, and blood contamination may all cause elevated salivary cortisol concentrations. Improved sampling instructions and visual examination of the sample may minimize these risks. Salivary cortisone is essentially unaffected by the different preanalytical confounders and may be used as a first-line screening test for Cushing's syndrome.
Collapse
Affiliation(s)
- Marcus Imamovic
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Nils Bäcklund
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | - Göran Brattsand
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Elisabeth Aardal
- Department of Clinical Chemistry and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Tommy Olsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Per Dahlqvist
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Sarcoidosis is a chronic multisystemic inflammatory disease of unknown aetiology with a wide range of highly variable clinical manifestations and unpredictable disease course. Sarcoidosis patients may present with specific organ-related symptoms involving functional impairments, and less specific symptoms. The decision whether and when to treat a sarcoidosis patient with pharmacotherapy depends on two major factors: risk of organ failure and/or death and impairment of quality of life. This decision is complex and not standardized. RECENT FINDINGS Glucocorticoids (GCs) are recommended as initial treatment, when needed. Subsequent GC-sparing alternatives frequently follow. Comorbidities or adverse drug reactions (ADRs) from drugs used in sarcoidosis treatment are sometimes very hard to differentiate from symptoms associated with the disease itself, which may cause diagnostic dilemmas. An ideal approach to minimalize ADRs would involve genetic screening prior to prescribing certain 'high-risk drugs' and therapeutic drug monitoring during treatment. Pharmacogenomic testing aims to guide appropriate selection of medicines, with the potential of reducing unnecessary polypharmacy while improving clinical outcomes. SUMMARY A multidisciplinary approach to the management of sarcoidosis may avoid unnecessary ADRs. It is important to consider the possibility of drug-induced damage in sarcoidosis, especially if the clinical situation deteriorates after the introduction of a particular drug.
Collapse
Affiliation(s)
- Marjolein Drent
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Science, Maastricht University, Maastricht
- ILD Center of Excellence, Department of Respiratory Medicine, St. Antonius Hospital, Nieuwegein
- ILD Care Foundation Research Team, Ede
| | - Naomi T. Jessurun
- ILD Care Foundation Research Team, Ede
- Netherlands Pharmacovigilance Centre Lareb, ‘s-Hertogenbosch
| | - Petal A. Wijnen
- ILD Care Foundation Research Team, Ede
- Central Diagnostic Laboratory, Department of Clinical Chemistry, MUMC, Maastricht, The Netherlands
| | - Otto Bekers
- Central Diagnostic Laboratory, Department of Clinical Chemistry, MUMC, Maastricht, The Netherlands
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Science, Maastricht University, Maastricht
- ILD Care Foundation Research Team, Ede
| |
Collapse
|
5
|
Volmrich AM, Cuénant LM, Forghani I, Hsieh SL, Shapiro LT. ABCD1 Gene Mutations: Mechanisms and Management of Adrenomyeloneuropathy. Appl Clin Genet 2022; 15:111-123. [PMID: 35983253 PMCID: PMC9381027 DOI: 10.2147/tacg.s359479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/06/2022] [Indexed: 01/05/2023] Open
Abstract
Pathogenic variants in the ABCD1 gene on the X chromosome may result in widely heterogenous phenotypes, including adrenomyeloneuropathy (AMN). Affected males typically present in their third or fourth decade of life with progressive lower limb weakness and spasticity, and may develop signs and symptoms of adrenal insufficiency and/or cerebral demyelination. Heterozygous females may be asymptomatic, but may develop a later-onset and more slowly progressive spastic paraparesis. In this review, we describe the clinical presentation of AMN, as well as its diagnosis and management. The role of rehabilitative therapies and options for management of spasticity are highlighted.
Collapse
Affiliation(s)
- Alyssa M Volmrich
- Department of Physical Medicine & Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lauren M Cuénant
- Department of Physical Medicine & Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Irman Forghani
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sharon L Hsieh
- MD/MPH Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lauren T Shapiro
- Department of Physical Medicine & Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
- Correspondence: Lauren T Shapiro, Department of Physical Medicine & Rehabilitation; University of Miami Miller School of Medicine, P.O. Box 016960 (C-206), Miami, FL, 33101, USA, Tel +1 305 243-6605, Fax +1 305 243-4650, Email
| |
Collapse
|
6
|
Lopresti AL, Smith SJ, Drummond PD. Modulation of the hypothalamic-pituitary-adrenal (HPA) axis by plants and phytonutrients: a systematic review of human trials. Nutr Neurosci 2021; 25:1704-1730. [PMID: 33650944 DOI: 10.1080/1028415x.2021.1892253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The hypothalamic-pituitary-adrenal (HPA) axis plays a central role in the stress response. Plants, herbs, spices, and plant-based nutrients may influence HPA-axis activity. OBJECTIVE To evaluate randomised controlled, human trials assessing the effects of single plants or phytonutrients on HPA-axis related hormones. METHODS A systematic review of PubMed, Cochrane library, and the Cumulative Index to Nursing and Allied Health Literature was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Inclusion criteria comprised of human, randomised controlled studies with a control intervention examining the effects of a single herb, spice, plant, or extract on pre- and post-changes in blood, saliva, urine, or hair concentrations of cortisol, cortisone, corticotrophin-releasing hormone, or adrenocorticotropic hormone. Databases were searched from inception until October 2020. RESULTS Fifty-two studies were identified examining the effects of ashwagandha, Korean ginseng, St John's Wort, cannabidiol, Rhodiola rosea, curcumin, cherry juice, asparagus, Jiaogulan, Black cohosh, Siberian ginseng, Bacopa monnieri, blueberries, green tea, Caralluma fimbriata, cashew apple juice, melon, American ginseng, Ginkgo biloba, grape juice, grapefruit juice, rosella, hops, mangosteen, holy basil, and pomegranate juice. Due to significant variability in study designs, the effect of phytonutrients on HPA-axis activity in humans was unclear. The most consistent finding was a morning, cortisol-lowering effect from ashwagandha supplementation. CONCLUSION For most phytonutrients, the effects of supplementation on HPA-axis activity in humans is unclear. Before more definitive conclusions about the effects of phytonutrients on the HPA-axis can be made, further research is required.
Collapse
Affiliation(s)
- Adrian L Lopresti
- Clinical Research Australia, Perth, Australia.,College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
| | - Stephen J Smith
- Clinical Research Australia, Perth, Australia.,College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
| | - Peter D Drummond
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
| |
Collapse
|
7
|
Husebye ES, Pearce SH, Krone NP, Kämpe O. Adrenal insufficiency. Lancet 2021; 397:613-629. [PMID: 33484633 DOI: 10.1016/s0140-6736(21)00136-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Adrenal insufficiency can arise from a primary adrenal disorder, secondary to adrenocorticotropic hormone deficiency, or by suppression of adrenocorticotropic hormone by exogenous glucocorticoid or opioid medications. Hallmark clinical features are unintentional weight loss, anorexia, postural hypotension, profound fatigue, muscle and abdominal pain, and hyponatraemia. Additionally, patients with primary adrenal insufficiency usually develop skin hyperpigmentation and crave salt. Diagnosis of adrenal insufficiency is usually delayed because the initial presentation is often non-specific; physician awareness must be improved to avoid adrenal crisis. Despite state-of-the-art steroid replacement therapy, reduced quality of life and work capacity, and increased mortality is reported in patients with primary or secondary adrenal insufficiency. Active and repeated patient education on managing adrenal insufficiency, including advice on how to increase medication during intercurrent illness, medical or dental procedures, and profound stress, is required to prevent adrenal crisis, which occurs in about 50% of patients with adrenal insufficiency after diagnosis. It is good practice for physicians to provide patients with a steroid card, parenteral hydrocortisone, and training for parenteral hydrocortisone administration, in case of vomiting or severe illness. New modes of glucocorticoid delivery could improve the quality of life in some patients with adrenal insufficiency, and further advances in oral and parenteral therapy will probably emerge in the next few years.
Collapse
Affiliation(s)
- Eystein S Husebye
- Department of Clinical Science and KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway; Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Simon H Pearce
- Department of Endocrinology, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nils P Krone
- Academic Unit of Child Health, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK; Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Olle Kämpe
- Department of Clinical Science and KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway; Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Center of Molecular Medicine, and Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Yang L, Jiang Y, Zhang Z, Hou J, Tian S, Liu Y. The anti-diabetic activity of licorice, a widely used Chinese herb. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113216. [PMID: 32763420 DOI: 10.1016/j.jep.2020.113216] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A great deal of valuable experience has been accumulated in the traditional Chinese medicine (TCM) system for the treatment of "Xiaoke" disease which is known as diabetes mellitus now. As the most-commonly used Chinese herb, licorice has been used in TCM for more than two thousand years. It is often used in combination with other herbs to treat metabolic disorders, especially diabetes mellitus. AIM OF THE STUDY To summarize the characteristics, mechanisms, and clinical use of licorice and its active components for treating diabetes mellitus. METHODS PubMed, Web of Science, Research Gate, Science Direct, Google Scholar, and Academic Journals were used as information sources by the inclusion of the search terms 'diabetes', 'licorice', 'licorice extracts', 'flavonoids', 'triterpenoids', and their combinations, mainly from 2005 to 2019. RESULTS Licorice extracts, five flavonoids and three triterpenoids isolated from licorice possess great antidiabetic activities in vivo and in vitro. This was done by several mechanisms such as increasing the appetency and sensitivity of insulin receptor site to insulin, enhancing the use of glucose in different tissues and organs, clearing away the free radicals and resist peroxidation, correcting the metabolic disorder of lipid and protein, and improving microcirculation in the body. Multiple signaling pathways, including the PI3K/Akt, AMPK, AGE-RAGE, MAPK, NF-кB, and NLRP3 signaling pathways, are targets of the licorice compounds. CONCLUSION Licorice and its metabolites have a great therapeutic potential for the treatment of diabetes mellitus. However, a better understanding of their pharmacological mechanisms is needed for evaluating its efficacy and safety.
Collapse
Affiliation(s)
- Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, PA, 15261, USA
| | - Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jiaming Hou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shaokai Tian
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
9
|
van Keulen BJ, Dolan CV, van der Voorn B, Andrew R, Walker BR, Hulshoff Pol H, Boomsma DI, Rotteveel J, Finken MJJ. Sexual dimorphism in cortisol metabolism throughout pubertal development: a longitudinal study. Endocr Connect 2020; 9:542-551. [PMID: 32413849 PMCID: PMC7354723 DOI: 10.1530/ec-20-0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Sex differences in disease susceptibility might be explained by sexual dimorphism in hypothalamic-pituitary-adrenal axis activity, which has been postulated to emerge during puberty. However, studies conducted thus far lacked an assessment of Tanner pubertal stage. This study aimed to assess the contribution of pubertal development to sexual dimorphism in cortisol production and metabolism. METHODS Participants (n = 218) were enrolled from a population-based Netherlands Twin Register. At the ages of 9, 12 and 17 years, Tanner pubertal stage was assessed and early morning urine samples were collected. Cortisol metabolites were measured with GC-MS/MS and ratios were calculated, representing cortisol metabolism enzyme activities, such as A-ring reductases, 11β-HSDs and CYP3A4. Cortisol production and metabolism parameters were compared between sexes for pre-pubertal (Tanner stage 1), early pubertal (Tanner stage 2-3) and late-pubertal (Tanner stage 4-5) stages. RESULTS Cortisol metabolite excretion rate decreased with pubertal maturation in both sexes, but did not significantly differ between sexes at any pubertal stage, although in girls a considerable decrease was observed between early and late-pubertal stage (P < 0.001). A-ring reductase activity was similar between sexes at pre- and early pubertal stages and was lower in girls than in boys at late-pubertal stage. Activities of 11β-HSDs were similar between sexes at pre-pubertal stage and favored cortisone in girls at early and late-pubertal stages. Cytochrome P450 3A4 activity did not differ between sexes. CONCLUSIONS Prepubertally, sexes were similar in cortisol parameters. During puberty, as compared to boys, in girls the activities of A-ring reductases declined and the balance between 11β-HSDs progressively favored cortisone. In addition, girls showed a considerable decrease in cortisol metabolite excretion rate between early and late-pubertal stages. Our findings suggest that the sexual dimorphism in cortisol may either be explained by rising concentrations of sex steroids or by puberty-induced changes in body composition.
Collapse
Affiliation(s)
- Britt J van Keulen
- Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Endocrinology, Amsterdam, The Netherlands
- Correspondence should be addressed to B J van Keulen:
| | - Conor V Dolan
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bibian van der Voorn
- Department of Pediatric Endocrinology, Sophia Kinderziekenhuis, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ruth Andrew
- Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK
| | - Brian R Walker
- Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Hilleke Hulshoff Pol
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joost Rotteveel
- Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Endocrinology, Amsterdam, The Netherlands
| | - Martijn J J Finken
- Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Endocrinology, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Martin BR, Reshamwala G, Short M. Treatment of a Woman With Glycyrrhiza glabra for Acute Sinusitis: A Case Report. J Chiropr Med 2018; 17:268-274. [PMID: 30846920 PMCID: PMC6391234 DOI: 10.1016/j.jcm.2018.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 11/18/2022] Open
Abstract
Objective Clinical Features Intervention and Outcome Conclusion
Collapse
Affiliation(s)
- Brett R. Martin
- Corresponding author: Brett R. Martin DC, MSAc, MPH, 6698 68th Avenue N, Pinellas Park, FL 33781. Tel.: +1 630 254 4804.
| | | | | |
Collapse
|
11
|
Esposito D, Pasquali D, Johannsson G. Primary Adrenal Insufficiency: Managing Mineralocorticoid Replacement Therapy. J Clin Endocrinol Metab 2018; 103:376-387. [PMID: 29156052 DOI: 10.1210/jc.2017-01928] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/10/2017] [Indexed: 12/28/2022]
Abstract
CONTEXT Mineralocorticoid (MC) replacement therapy in patients with primary adrenal insufficiency (PAI) was introduced more than 60 years ago. Still, there are limited data on how MC substitution should be optimized, because MC dosing regimens have only been systematically investigated in a few studies. We review the management of current standard MC replacement therapy in PAI and its plausible impact on outcome. DESIGN Using PubMed, we conducted a systematic review of the literature from 1939 to 2017, with the following keywords: adrenal insufficiency, MC deficiency, aldosterone, cardiovascular disease, hypertension, and heart failure. RESULTS The current standard treatment consists of fludrocortisone (FC) given once daily in the morning, aiming at normotension, normokalemia, and plasma renin activity in the upper normal range. Available data suggest that patients with PAI may be underreplaced with FC as symptoms and signs indicating chronic MC underreplacement, such as salt craving and postural dizziness persist, in many treated patients with PAI. Data acquired from large registry-based studies show that glucocorticoid doses for replacement in PAI are higher than those estimated from endogenous production. Glucocorticoid overreplacement may reduce the need of MC replacement but may also be a consequence of inadequate MC replacement. CONCLUSIONS The commonly used MC replacement in PAI may not be adequate in some patients. Insufficient MC substitution may be responsible for poor cardiometabolic outcome and the failure to restore well-being adequately in patients with PAI. Well-designed studies oriented at optimizing MC replacement therapy are urgently needed.
Collapse
Affiliation(s)
- Daniela Esposito
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Daniela Pasquali
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Gudmundur Johannsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
12
|
Group 4: Replacement therapy for adrenal insufficiency. ANNALES D'ENDOCRINOLOGIE 2017; 78:525-534. [DOI: 10.1016/j.ando.2017.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Dean M, Murphy BT, Burdette JE. Phytosteroids beyond estrogens: Regulators of reproductive and endocrine function in natural products. Mol Cell Endocrinol 2017; 442:98-105. [PMID: 27986590 PMCID: PMC5276729 DOI: 10.1016/j.mce.2016.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/18/2022]
Abstract
Foods and botanical supplements can interfere with the endocrine system through the presence of phytosteroids - chemicals that interact with steroids receptors. Phytoestrogens are well studied, but compounds such as kaempferol, apigenin, genistein, ginsenoside Rf, and glycyrrhetinic acid have been shown to interact with non-estrogen nuclear receptors. These compounds can have agonist, antagonist, or mixed agonist/antagonist activity depending on compound, receptor, cell line or tissue, and concentration. Some phytosteroids have also been shown to inhibit steroid metabolizing enzymes, resulting in biological effects through altered endogenous steroid concentrations. An interesting example, compound A (4-[1-chloro-2-(methylamino)ethyl]phenyl acetate hydrochloride (1:1)) is a promising selective glucocorticoid receptor modulator (SGRM) based on a phytosteroid isolated from Salsola tuberculatiformis Botschantzev. Given that $6.9 billion of herbal supplements are sold each year, is clear that further identification and characterization of phytosteroids is needed to ensure the safe and effective use of botanical supplements.
Collapse
Affiliation(s)
- Matthew Dean
- Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Brian T Murphy
- Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
14
|
Rauseo AM, Llanos-Chea F, Jaggi S, Jaber T, Orlander PR. An Unusual Etiology Of Hypokalemic Paralysis Secondary To Mineralocorticoid Excess In A Patient With Addison Disease. AACE Clin Case Rep 2017. [DOI: 10.4158/ep161470.cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Öztürk M, Altay V, Hakeem KR, Akçiçek E. Economic Importance. LIQUORICE 2017. [PMCID: PMC7120331 DOI: 10.1007/978-3-319-74240-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The beneficial effects of liquorice in treating chills, colds, and coughs have been fully discussed in Ayurveda, as well as in the texts of ancient Egyptians, Greeks, and Romans. The plant has been prescribed for dropsy during the period of famous Hippocrates. The reason being that it was quite helpful as thirst-quenching drugs (Biondi et al. in J Nat Prod 68:1099–1102, 2005; Mamedov and Egamberdieva in Herbals and human health-phytochemistry. Springer Nature Publishers, 41 pp, 2017). No doubt, the clinical use of liquorice in modern medicine started around 1930; Pedanios Dioscorides of Anazarba (Adana), first century AD-Father of Pharmacists, mentions that it is highly effective in the treatment of stomach and intestinal ulcers. In Ayurveda, people in ancient Hindu culture have used it for improving sexual vigor.
Collapse
Affiliation(s)
- Münir Öztürk
- Department of Botany and Center for Environmental Studies, Ege University, Izmir, Turkey
| | - Volkan Altay
- Department of Biology, Faculty of Science and Arts, Mustafa Kemal University, Hatay, Turkey
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eren Akçiçek
- Department of Gastroenterology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
16
|
Pharmacokinetic Herb-Drug Interactions: Insight into Mechanisms and Consequences. Eur J Drug Metab Pharmacokinet 2016; 41:93-108. [PMID: 26311243 DOI: 10.1007/s13318-015-0296-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Herbal medicines are currently in high demand, and their popularity is steadily increasing. Because of their perceived effectiveness, fewer side effects and relatively low cost, they are being used for the management of numerous medical conditions. However, they are capable of affecting the pharmacokinetics and pharmacodynamics of coadministered conventional drugs. These interactions are particularly of clinically relevance when metabolizing enzymes and xenobiotic transporters, which are responsible for the fate of many drugs, are induced or inhibited, sometimes resulting in unexpected outcomes. This article discusses the general use of herbal medicines in the management of several ailments, their concurrent use with conventional therapy, mechanisms underlying herb-drug interactions (HDIs) as well as the drawbacks of herbal remedy use. The authors also suggest means of surveillance and safety monitoring of herbal medicines. Contrary to popular belief that "herbal medicines are totally safe," we are of the view that they are capable of causing significant toxic effects and altered pharmaceutical outcomes when coadministered with conventional medicines. Due to the paucity of information as well as sometimes conflicting reports on HDIs, much more research in this field is needed. The authors further suggest the need to standardize and better regulate herbal medicines in order to ensure their safety and efficacy when used alone or in combination with conventional drugs.
Collapse
|
17
|
Wang C, Huo X, Tian X, Xu M, Dong P, Luan Z, Wang X, Zhang B, Zhang B, Huang S, Deng S, Ma X. Inhibition of melatonin metabolism in humans induced by chemical components from herbs and effective prediction of this risk using a computational model. Br J Pharmacol 2016; 173:3261-3275. [PMID: 27588415 DOI: 10.1111/bph.13612] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/08/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Herbs which are widely used as food and medicine, are involved in many physiopathological processes. Melatonin is a human hormone, synthesized and secreted by the pineal gland, with a range of biological functions. Here, we have evaluated the potential influences of components extracted from common herbs on melatonin metabolism in humans. EXPERIMENTAL APPROACH An in vivo pharmacokinetic study involving 12 healthy subjects, in vitro incubations with human liver microsomes (HLMs) and recombinant human cytochrome P (CYP) isoenzymes and an in silico quantitative structure-activity relationship (QSAR) model analysis using comparative molecular field analysis and comparative molecular similarity indices analysis methods were employed to explore these interactions. KEY RESULTS After systematic screening of 66 common herbs, Angelica dahurica exhibited the most potent inhibition of melatonin metabolism in vitro. The in vivo pharmacokinetic study indicated inhibition of melatonin metabolism, with approximately 12- and 4-fold increases in the AUC and Cmax of melatonin in human subjects. Coumarins from A. dahurica, including imperatorin, isoimperatorin, phellopterin, 5-methoxypsoralen and 8-methoxypsoralen, markedly inhibited melatonin metabolism with Ki values of 14.5 nM, 38.8 nM, 6.34 nM, 5.34 nM and 18 nM respectively, through inhibition of CYP 1A2, 1A1 and 1B1 in HLMs. A QSAR model was established and satisfactorily predicted the potential risk of coumarins for inhibition of melatonin metabolism in vivo. CONCLUSION AND IMPLICATIONS Coumarins from A. dahurica inhibited melatonin metabolism in vivo and in vitro. Our findings provide vital guidance for the clinical use of melatonin.
Collapse
Affiliation(s)
- Chao Wang
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China.,Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaokui Huo
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Xiangge Tian
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Min Xu
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Peipei Dong
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Zhilin Luan
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Xiaobo Wang
- Department of Pharmacy and Traditional Chinese Medicine, Chinese People's Liberation Army 210 Hospital, Dalian, China
| | - Baojing Zhang
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shanshan Huang
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Sa Deng
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China
| | - Xiaochi Ma
- Academy of Integrative Medicine, College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Dalian Medical University, Dalian, China. .,Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
18
|
Del Corral P, Schurman RC, Kinza SS, Fitzgerald MJ, Kordick CA, Rusch JL, Nadolski JB. Salivary but not plasma cortisone tracks the plasma cortisol response to exercise: effect of time of day. J Endocrinol Invest 2016; 39:315-22. [PMID: 26243508 DOI: 10.1007/s40618-015-0367-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 07/21/2015] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The cortisol, cortisone, corticosterone, and CBG responses to exercise in the AM and PM have not been described. This study examined the response of these glucocorticoids and CBG to intense exercise in 12 endurance-trained men in plasma (Pl) and saliva (Sa). METHODS Each subject completed treadmill exercise in the morning and evening. Paired blood and Sa samples were obtained at rest before and after exercise. RESULTS Significant time effect existed for Pl-cortisol and Sa-cortisol from baseline in the AM and PM (p < 0.01). Pl-cortisone and CBG significantly increased in the PM (p < 0.01). Pl-corticosterone increased in the AM and PM (p < 0.01). Unlike Pl-cortisone, Sa-cortisone was significantly higher in the AM compared to the PM, increasing in the AM and PM (All p < 0.01). Strong associations were found between Pl-cortisol and Sa-cortisol (r = 0.81, p < 0.0001), Pl-cortisol and Sa-cortisone (r = 0.81, p < 0.0001). CONCLUSIONS (1) Intense EX induces a similar increase in Pl-cortisone (~90 %) and corticosterone (~200 %) in the AM and PM, whereas exercise increases CBG in the PM, but not in the AM; (2) vigorous exercise increases Sa-cortisone; (3) Sa-cortisone and cortisol are equally strongly correlated to Pl-cortisol, suggesting a significant role for Sa-cortisone as a novel marker of free cortisol during exercise.
Collapse
Affiliation(s)
- P Del Corral
- Department of Biological Sciences, College of Science, Benedictine University, 5700 College Rd, Lisle, IL, 60532, USA.
| | - R C Schurman
- Department of Biological Sciences, College of Science, Benedictine University, 5700 College Rd, Lisle, IL, 60532, USA
| | - S S Kinza
- Department of Biological Sciences, College of Science, Benedictine University, 5700 College Rd, Lisle, IL, 60532, USA
| | - M J Fitzgerald
- Department of Biological Sciences, College of Science, Benedictine University, 5700 College Rd, Lisle, IL, 60532, USA
| | - C A Kordick
- Department of Biological Sciences, College of Science, Benedictine University, 5700 College Rd, Lisle, IL, 60532, USA
| | - J L Rusch
- Department of Biological Sciences, College of Science, Benedictine University, 5700 College Rd, Lisle, IL, 60532, USA
| | - J B Nadolski
- Department of Mathematical and Computational Sciences, College of Science, Benedictine University, 5700 College Rd, Lisle, IL, 60532, USA
| |
Collapse
|
19
|
Bornstein SR, Allolio B, Arlt W, Barthel A, Don-Wauchope A, Hammer GD, Husebye ES, Merke DP, Murad MH, Stratakis CA, Torpy DJ. Diagnosis and Treatment of Primary Adrenal Insufficiency: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2016; 101:364-89. [PMID: 26760044 PMCID: PMC4880116 DOI: 10.1210/jc.2015-1710] [Citation(s) in RCA: 1023] [Impact Index Per Article: 113.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This clinical practice guideline addresses the diagnosis and treatment of primary adrenal insufficiency. PARTICIPANTS The Task Force included a chair, selected by The Clinical Guidelines Subcommittee of the Endocrine Society, eight additional clinicians experienced with the disease, a methodologist, and a medical writer. The co-sponsoring associations (European Society of Endocrinology and the American Association for Clinical Chemistry) had participating members. The Task Force received no corporate funding or remuneration in connection with this review. EVIDENCE This evidence-based guideline was developed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system to determine the strength of recommendations and the quality of evidence. CONSENSUS PROCESS The evidence used to formulate recommendations was derived from two commissioned systematic reviews as well as other published systematic reviews and studies identified by the Task Force. The guideline was reviewed and approved sequentially by the Endocrine Society's Clinical Guidelines Subcommittee and Clinical Affairs Core Committee, members responding to a web posting, and the Endocrine Society Council. At each stage, the Task Force incorporated changes in response to written comments. CONCLUSIONS We recommend diagnostic tests for the exclusion of primary adrenal insufficiency in all patients with indicative clinical symptoms or signs. In particular, we suggest a low diagnostic (and therapeutic) threshold in acutely ill patients, as well as in patients with predisposing factors. This is also recommended for pregnant women with unexplained persistent nausea, fatigue, and hypotension. We recommend a short corticotropin test (250 μg) as the "gold standard" diagnostic tool to establish the diagnosis. If a short corticotropin test is not possible in the first instance, we recommend an initial screening procedure comprising the measurement of morning plasma ACTH and cortisol levels. Diagnosis of the underlying cause should include a validated assay of autoantibodies against 21-hydroxylase. In autoantibody-negative individuals, other causes should be sought. We recommend once-daily fludrocortisone (median, 0.1 mg) and hydrocortisone (15-25 mg/d) or cortisone acetate replacement (20-35 mg/d) applied in two to three daily doses in adults. In children, hydrocortisone (∼8 mg/m(2)/d) is recommended. Patients should be educated about stress dosing and equipped with a steroid card and glucocorticoid preparation for parenteral emergency administration. Follow-up should aim at monitoring appropriate dosing of corticosteroids and associated autoimmune diseases, particularly autoimmune thyroid disease.
Collapse
Affiliation(s)
- Stefan R Bornstein
- Medizinische Klinik und Poliklinik III (S.R.B., A.B.), Universitätsklinikum Dresden, 01307 Dresden, Germany; Department of Endocrinology and Diabetes (S.R.B.), King's College London, London WC2R 2LS, United Kingdom; Department of Internal Medicine I (B.A.), Endocrine and Diabetes Unit, University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Heart Failure Center (B.A.), University of Würzburg, 97080 Würzburg, Germany; Centre for Endocrinology, Diabetes, and Metabolism (W.A.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Endokrinologikum Ruhr (A.B.), 44866 Bochum, Germany; Department of Pathology and Molecular Medicine (A.D.-W.), McMaster University, Hamilton, ON L8S 4L8, Canada; Hamilton Regional Laboratory Medicine Program (A.D.-W.), Hamilton, ON L8N 4A6, Canada; Department of Internal Medicine (G.D.H.), Division of Metabolism, Endocrinology, and Diabetes, and Cancer Center, University of Michigan, Ann Arbor, Michigan 48109; Department of Clinical Science, University of Bergen, and Department of Medicine, Haukeland University Hospital (E.S.H.), 5021 Bergen, Norway; National Institutes of Health Clinical Center (D.P.M.), Bethesda, Maryland 20814; Mayo Clinic, Division of Preventive Medicine (M.H.M.), Rochester, Minnesota 55905; Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.A.S.), National Institutes of Health, Bethesda, Maryland 20892; and Endocrine and Metabolic Unit (D.J.T.), Royal Adelaide Hospital, University of Adelaide, Adelaide SA 5000, Australia
| | - Bruno Allolio
- Medizinische Klinik und Poliklinik III (S.R.B., A.B.), Universitätsklinikum Dresden, 01307 Dresden, Germany; Department of Endocrinology and Diabetes (S.R.B.), King's College London, London WC2R 2LS, United Kingdom; Department of Internal Medicine I (B.A.), Endocrine and Diabetes Unit, University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Heart Failure Center (B.A.), University of Würzburg, 97080 Würzburg, Germany; Centre for Endocrinology, Diabetes, and Metabolism (W.A.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Endokrinologikum Ruhr (A.B.), 44866 Bochum, Germany; Department of Pathology and Molecular Medicine (A.D.-W.), McMaster University, Hamilton, ON L8S 4L8, Canada; Hamilton Regional Laboratory Medicine Program (A.D.-W.), Hamilton, ON L8N 4A6, Canada; Department of Internal Medicine (G.D.H.), Division of Metabolism, Endocrinology, and Diabetes, and Cancer Center, University of Michigan, Ann Arbor, Michigan 48109; Department of Clinical Science, University of Bergen, and Department of Medicine, Haukeland University Hospital (E.S.H.), 5021 Bergen, Norway; National Institutes of Health Clinical Center (D.P.M.), Bethesda, Maryland 20814; Mayo Clinic, Division of Preventive Medicine (M.H.M.), Rochester, Minnesota 55905; Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.A.S.), National Institutes of Health, Bethesda, Maryland 20892; and Endocrine and Metabolic Unit (D.J.T.), Royal Adelaide Hospital, University of Adelaide, Adelaide SA 5000, Australia
| | - Wiebke Arlt
- Medizinische Klinik und Poliklinik III (S.R.B., A.B.), Universitätsklinikum Dresden, 01307 Dresden, Germany; Department of Endocrinology and Diabetes (S.R.B.), King's College London, London WC2R 2LS, United Kingdom; Department of Internal Medicine I (B.A.), Endocrine and Diabetes Unit, University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Heart Failure Center (B.A.), University of Würzburg, 97080 Würzburg, Germany; Centre for Endocrinology, Diabetes, and Metabolism (W.A.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Endokrinologikum Ruhr (A.B.), 44866 Bochum, Germany; Department of Pathology and Molecular Medicine (A.D.-W.), McMaster University, Hamilton, ON L8S 4L8, Canada; Hamilton Regional Laboratory Medicine Program (A.D.-W.), Hamilton, ON L8N 4A6, Canada; Department of Internal Medicine (G.D.H.), Division of Metabolism, Endocrinology, and Diabetes, and Cancer Center, University of Michigan, Ann Arbor, Michigan 48109; Department of Clinical Science, University of Bergen, and Department of Medicine, Haukeland University Hospital (E.S.H.), 5021 Bergen, Norway; National Institutes of Health Clinical Center (D.P.M.), Bethesda, Maryland 20814; Mayo Clinic, Division of Preventive Medicine (M.H.M.), Rochester, Minnesota 55905; Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.A.S.), National Institutes of Health, Bethesda, Maryland 20892; and Endocrine and Metabolic Unit (D.J.T.), Royal Adelaide Hospital, University of Adelaide, Adelaide SA 5000, Australia
| | - Andreas Barthel
- Medizinische Klinik und Poliklinik III (S.R.B., A.B.), Universitätsklinikum Dresden, 01307 Dresden, Germany; Department of Endocrinology and Diabetes (S.R.B.), King's College London, London WC2R 2LS, United Kingdom; Department of Internal Medicine I (B.A.), Endocrine and Diabetes Unit, University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Heart Failure Center (B.A.), University of Würzburg, 97080 Würzburg, Germany; Centre for Endocrinology, Diabetes, and Metabolism (W.A.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Endokrinologikum Ruhr (A.B.), 44866 Bochum, Germany; Department of Pathology and Molecular Medicine (A.D.-W.), McMaster University, Hamilton, ON L8S 4L8, Canada; Hamilton Regional Laboratory Medicine Program (A.D.-W.), Hamilton, ON L8N 4A6, Canada; Department of Internal Medicine (G.D.H.), Division of Metabolism, Endocrinology, and Diabetes, and Cancer Center, University of Michigan, Ann Arbor, Michigan 48109; Department of Clinical Science, University of Bergen, and Department of Medicine, Haukeland University Hospital (E.S.H.), 5021 Bergen, Norway; National Institutes of Health Clinical Center (D.P.M.), Bethesda, Maryland 20814; Mayo Clinic, Division of Preventive Medicine (M.H.M.), Rochester, Minnesota 55905; Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.A.S.), National Institutes of Health, Bethesda, Maryland 20892; and Endocrine and Metabolic Unit (D.J.T.), Royal Adelaide Hospital, University of Adelaide, Adelaide SA 5000, Australia
| | - Andrew Don-Wauchope
- Medizinische Klinik und Poliklinik III (S.R.B., A.B.), Universitätsklinikum Dresden, 01307 Dresden, Germany; Department of Endocrinology and Diabetes (S.R.B.), King's College London, London WC2R 2LS, United Kingdom; Department of Internal Medicine I (B.A.), Endocrine and Diabetes Unit, University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Heart Failure Center (B.A.), University of Würzburg, 97080 Würzburg, Germany; Centre for Endocrinology, Diabetes, and Metabolism (W.A.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Endokrinologikum Ruhr (A.B.), 44866 Bochum, Germany; Department of Pathology and Molecular Medicine (A.D.-W.), McMaster University, Hamilton, ON L8S 4L8, Canada; Hamilton Regional Laboratory Medicine Program (A.D.-W.), Hamilton, ON L8N 4A6, Canada; Department of Internal Medicine (G.D.H.), Division of Metabolism, Endocrinology, and Diabetes, and Cancer Center, University of Michigan, Ann Arbor, Michigan 48109; Department of Clinical Science, University of Bergen, and Department of Medicine, Haukeland University Hospital (E.S.H.), 5021 Bergen, Norway; National Institutes of Health Clinical Center (D.P.M.), Bethesda, Maryland 20814; Mayo Clinic, Division of Preventive Medicine (M.H.M.), Rochester, Minnesota 55905; Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.A.S.), National Institutes of Health, Bethesda, Maryland 20892; and Endocrine and Metabolic Unit (D.J.T.), Royal Adelaide Hospital, University of Adelaide, Adelaide SA 5000, Australia
| | - Gary D Hammer
- Medizinische Klinik und Poliklinik III (S.R.B., A.B.), Universitätsklinikum Dresden, 01307 Dresden, Germany; Department of Endocrinology and Diabetes (S.R.B.), King's College London, London WC2R 2LS, United Kingdom; Department of Internal Medicine I (B.A.), Endocrine and Diabetes Unit, University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Heart Failure Center (B.A.), University of Würzburg, 97080 Würzburg, Germany; Centre for Endocrinology, Diabetes, and Metabolism (W.A.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Endokrinologikum Ruhr (A.B.), 44866 Bochum, Germany; Department of Pathology and Molecular Medicine (A.D.-W.), McMaster University, Hamilton, ON L8S 4L8, Canada; Hamilton Regional Laboratory Medicine Program (A.D.-W.), Hamilton, ON L8N 4A6, Canada; Department of Internal Medicine (G.D.H.), Division of Metabolism, Endocrinology, and Diabetes, and Cancer Center, University of Michigan, Ann Arbor, Michigan 48109; Department of Clinical Science, University of Bergen, and Department of Medicine, Haukeland University Hospital (E.S.H.), 5021 Bergen, Norway; National Institutes of Health Clinical Center (D.P.M.), Bethesda, Maryland 20814; Mayo Clinic, Division of Preventive Medicine (M.H.M.), Rochester, Minnesota 55905; Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.A.S.), National Institutes of Health, Bethesda, Maryland 20892; and Endocrine and Metabolic Unit (D.J.T.), Royal Adelaide Hospital, University of Adelaide, Adelaide SA 5000, Australia
| | - Eystein S Husebye
- Medizinische Klinik und Poliklinik III (S.R.B., A.B.), Universitätsklinikum Dresden, 01307 Dresden, Germany; Department of Endocrinology and Diabetes (S.R.B.), King's College London, London WC2R 2LS, United Kingdom; Department of Internal Medicine I (B.A.), Endocrine and Diabetes Unit, University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Heart Failure Center (B.A.), University of Würzburg, 97080 Würzburg, Germany; Centre for Endocrinology, Diabetes, and Metabolism (W.A.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Endokrinologikum Ruhr (A.B.), 44866 Bochum, Germany; Department of Pathology and Molecular Medicine (A.D.-W.), McMaster University, Hamilton, ON L8S 4L8, Canada; Hamilton Regional Laboratory Medicine Program (A.D.-W.), Hamilton, ON L8N 4A6, Canada; Department of Internal Medicine (G.D.H.), Division of Metabolism, Endocrinology, and Diabetes, and Cancer Center, University of Michigan, Ann Arbor, Michigan 48109; Department of Clinical Science, University of Bergen, and Department of Medicine, Haukeland University Hospital (E.S.H.), 5021 Bergen, Norway; National Institutes of Health Clinical Center (D.P.M.), Bethesda, Maryland 20814; Mayo Clinic, Division of Preventive Medicine (M.H.M.), Rochester, Minnesota 55905; Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.A.S.), National Institutes of Health, Bethesda, Maryland 20892; and Endocrine and Metabolic Unit (D.J.T.), Royal Adelaide Hospital, University of Adelaide, Adelaide SA 5000, Australia
| | - Deborah P Merke
- Medizinische Klinik und Poliklinik III (S.R.B., A.B.), Universitätsklinikum Dresden, 01307 Dresden, Germany; Department of Endocrinology and Diabetes (S.R.B.), King's College London, London WC2R 2LS, United Kingdom; Department of Internal Medicine I (B.A.), Endocrine and Diabetes Unit, University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Heart Failure Center (B.A.), University of Würzburg, 97080 Würzburg, Germany; Centre for Endocrinology, Diabetes, and Metabolism (W.A.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Endokrinologikum Ruhr (A.B.), 44866 Bochum, Germany; Department of Pathology and Molecular Medicine (A.D.-W.), McMaster University, Hamilton, ON L8S 4L8, Canada; Hamilton Regional Laboratory Medicine Program (A.D.-W.), Hamilton, ON L8N 4A6, Canada; Department of Internal Medicine (G.D.H.), Division of Metabolism, Endocrinology, and Diabetes, and Cancer Center, University of Michigan, Ann Arbor, Michigan 48109; Department of Clinical Science, University of Bergen, and Department of Medicine, Haukeland University Hospital (E.S.H.), 5021 Bergen, Norway; National Institutes of Health Clinical Center (D.P.M.), Bethesda, Maryland 20814; Mayo Clinic, Division of Preventive Medicine (M.H.M.), Rochester, Minnesota 55905; Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.A.S.), National Institutes of Health, Bethesda, Maryland 20892; and Endocrine and Metabolic Unit (D.J.T.), Royal Adelaide Hospital, University of Adelaide, Adelaide SA 5000, Australia
| | - M Hassan Murad
- Medizinische Klinik und Poliklinik III (S.R.B., A.B.), Universitätsklinikum Dresden, 01307 Dresden, Germany; Department of Endocrinology and Diabetes (S.R.B.), King's College London, London WC2R 2LS, United Kingdom; Department of Internal Medicine I (B.A.), Endocrine and Diabetes Unit, University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Heart Failure Center (B.A.), University of Würzburg, 97080 Würzburg, Germany; Centre for Endocrinology, Diabetes, and Metabolism (W.A.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Endokrinologikum Ruhr (A.B.), 44866 Bochum, Germany; Department of Pathology and Molecular Medicine (A.D.-W.), McMaster University, Hamilton, ON L8S 4L8, Canada; Hamilton Regional Laboratory Medicine Program (A.D.-W.), Hamilton, ON L8N 4A6, Canada; Department of Internal Medicine (G.D.H.), Division of Metabolism, Endocrinology, and Diabetes, and Cancer Center, University of Michigan, Ann Arbor, Michigan 48109; Department of Clinical Science, University of Bergen, and Department of Medicine, Haukeland University Hospital (E.S.H.), 5021 Bergen, Norway; National Institutes of Health Clinical Center (D.P.M.), Bethesda, Maryland 20814; Mayo Clinic, Division of Preventive Medicine (M.H.M.), Rochester, Minnesota 55905; Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.A.S.), National Institutes of Health, Bethesda, Maryland 20892; and Endocrine and Metabolic Unit (D.J.T.), Royal Adelaide Hospital, University of Adelaide, Adelaide SA 5000, Australia
| | - Constantine A Stratakis
- Medizinische Klinik und Poliklinik III (S.R.B., A.B.), Universitätsklinikum Dresden, 01307 Dresden, Germany; Department of Endocrinology and Diabetes (S.R.B.), King's College London, London WC2R 2LS, United Kingdom; Department of Internal Medicine I (B.A.), Endocrine and Diabetes Unit, University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Heart Failure Center (B.A.), University of Würzburg, 97080 Würzburg, Germany; Centre for Endocrinology, Diabetes, and Metabolism (W.A.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Endokrinologikum Ruhr (A.B.), 44866 Bochum, Germany; Department of Pathology and Molecular Medicine (A.D.-W.), McMaster University, Hamilton, ON L8S 4L8, Canada; Hamilton Regional Laboratory Medicine Program (A.D.-W.), Hamilton, ON L8N 4A6, Canada; Department of Internal Medicine (G.D.H.), Division of Metabolism, Endocrinology, and Diabetes, and Cancer Center, University of Michigan, Ann Arbor, Michigan 48109; Department of Clinical Science, University of Bergen, and Department of Medicine, Haukeland University Hospital (E.S.H.), 5021 Bergen, Norway; National Institutes of Health Clinical Center (D.P.M.), Bethesda, Maryland 20814; Mayo Clinic, Division of Preventive Medicine (M.H.M.), Rochester, Minnesota 55905; Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.A.S.), National Institutes of Health, Bethesda, Maryland 20892; and Endocrine and Metabolic Unit (D.J.T.), Royal Adelaide Hospital, University of Adelaide, Adelaide SA 5000, Australia
| | - David J Torpy
- Medizinische Klinik und Poliklinik III (S.R.B., A.B.), Universitätsklinikum Dresden, 01307 Dresden, Germany; Department of Endocrinology and Diabetes (S.R.B.), King's College London, London WC2R 2LS, United Kingdom; Department of Internal Medicine I (B.A.), Endocrine and Diabetes Unit, University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Heart Failure Center (B.A.), University of Würzburg, 97080 Würzburg, Germany; Centre for Endocrinology, Diabetes, and Metabolism (W.A.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Endokrinologikum Ruhr (A.B.), 44866 Bochum, Germany; Department of Pathology and Molecular Medicine (A.D.-W.), McMaster University, Hamilton, ON L8S 4L8, Canada; Hamilton Regional Laboratory Medicine Program (A.D.-W.), Hamilton, ON L8N 4A6, Canada; Department of Internal Medicine (G.D.H.), Division of Metabolism, Endocrinology, and Diabetes, and Cancer Center, University of Michigan, Ann Arbor, Michigan 48109; Department of Clinical Science, University of Bergen, and Department of Medicine, Haukeland University Hospital (E.S.H.), 5021 Bergen, Norway; National Institutes of Health Clinical Center (D.P.M.), Bethesda, Maryland 20814; Mayo Clinic, Division of Preventive Medicine (M.H.M.), Rochester, Minnesota 55905; Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.A.S.), National Institutes of Health, Bethesda, Maryland 20892; and Endocrine and Metabolic Unit (D.J.T.), Royal Adelaide Hospital, University of Adelaide, Adelaide SA 5000, Australia
| |
Collapse
|
20
|
Abstract
Liquorice foliage
Collapse
|
21
|
Hosseinzadeh H, Nassiri-Asl M. Pharmacological Effects of Glycyrrhiza spp. and Its Bioactive Constituents: Update and Review. Phytother Res 2015; 29:1868-86. [PMID: 26462981 DOI: 10.1002/ptr.5487] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/25/2015] [Accepted: 09/15/2015] [Indexed: 01/26/2023]
Abstract
The roots and rhizomes of various species of the perennial herb licorice (Glycyrrhiza) are used in traditional medicine for the treatment of several diseases. In experimental and clinical studies, licorice has been shown to have several pharmacological properties including antiinflammatory, antiviral, antimicrobial, antioxidative, antidiabetic, antiasthma, and anticancer activities as well as immunomodulatory, gastroprotective, hepatoprotective, neuroprotective, and cardioprotective effects. In recent years, several of the biochemical, molecular, and cellular mechanisms of licorice and its active components have also been demonstrated in experimental studies. In this review, we summarized the new phytochemical, pharmacological, and toxicological data from recent experimental and clinical studies of licorice and its bioactive constituents after our previous published review.
Collapse
Affiliation(s)
- Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, P.O. Box: 341197-5981, Qazvin, Iran
| |
Collapse
|
22
|
Dai DW, Singh I, Hershman JM. Lozenge-Induced Hypermineralcorticoid State--A Unique Case of Licorice Lozenges Resulting in Hypertension and Hypokalemia. J Clin Hypertens (Greenwich) 2015. [PMID: 26212733 DOI: 10.1111/jch.12633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- David W Dai
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare Systems, Los Angeles, CA
| | - Ishita Singh
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare Systems, Los Angeles, CA
| | - Jerome M Hershman
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare Systems, Los Angeles, CA
| |
Collapse
|
23
|
Quinkler M, Oelkers W, Remde H, Allolio B. Mineralocorticoid substitution and monitoring in primary adrenal insufficiency. Best Pract Res Clin Endocrinol Metab 2015; 29:17-24. [PMID: 25617169 DOI: 10.1016/j.beem.2014.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Patients with primary adrenal insufficiency usually show pronounced impairment of aldosterone secretion and, therefore, require also mineralocorticoid replacement for full recovery. Clinical signs of mineralocorticoid deficiency comprise hypotension, weakness, salt craving and electrolyte disturbances (hyperkalemia, hyponatremia). Mineralocorticoid deficiency is confirmed by demonstration of profoundly decreased aldosterone and highly elevated plasma renin activity (PRA). Standard replacement consists of 9α-fluorocortisol (fludrocortisone) given once daily as a single oral dose (0.05-0.2 mg). Monitoring of mineralocorticoid replacement consists of clinical assessment (well-being, physical examination, blood pressure, electrolyte measurements) and measurement of PRA aiming at a PRA level in the upper normal range. Current replacement regimens may often be associated with mild hypovolemia. Dose adjustments are frequently needed in pregnancy to compensate for the anti-mineralocorticoid activity of progesterone and in high ambient temperature to avoid sodium depletion. In arterial hypertension a dose reduction is usually recommended, but monitoring for hyperkalemia is required.
Collapse
Affiliation(s)
- Marcus Quinkler
- Endocrinology in Charlottenburg, Berlin, Germany; Charité University Medicine, Berlin, Germany.
| | | | - Hanna Remde
- Charité University Medicine, Berlin, Germany
| | - Bruno Allolio
- Endocrinology and Diabetes Unit, Department of Internal Medicine I, University Hospital of Wuerzburg, Germany.
| |
Collapse
|
24
|
Abstract
Adrenal insufficiency (glucocorticoid deficiency) comprises a group of rare diseases, including primary adrenal insufficiency, secondary adrenal insufficiency and congenital adrenal hyperplasia. Lifesaving glucocorticoid therapy was introduced over 60 years ago, but since then a number of advances in treatment have taken place. Specifically, little is known about short- and long-term treatment effects, and morbidity and mortality. Over the past decade, systematic cohort and registry studies have described reduced health-related quality of life, an unfavourable metabolic profile and increased mortality in patients with adrenal insufficiency, which may relate to unphysiological glucocorticoid replacement. This has led to the development of new modes of replacement that aim to mimic normal glucocorticoid physiology. Here, evidence for the inadequacy of conventional glucocorticoid therapy and recent developments in treatment are reviewed, with an emphasis on primary adrenal insufficiency.
Collapse
Affiliation(s)
- Marianne Øksnes
- Department of Clinical Science, University of Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | | | - Kristian Løvås
- Department of Clinical Science, University of Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
25
|
Oksnes M, Björnsdottir S, Isaksson M, Methlie P, Carlsen S, Nilsen RM, Broman JE, Triebner K, Kämpe O, Hulting AL, Bensing S, Husebye ES, Løvås K. Continuous subcutaneous hydrocortisone infusion versus oral hydrocortisone replacement for treatment of addison's disease: a randomized clinical trial. J Clin Endocrinol Metab 2014; 99:1665-74. [PMID: 24517155 DOI: 10.1210/jc.2013-4253] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT Conventional glucocorticoid replacement therapy fails to mimic the physiological cortisol rhythm, which may have implications for morbidity and mortality in patients with Addison's disease. OBJECTIVE The objective of the study was to compare the effects of continuous sc hydrocortisone infusion (CSHI) with conventional oral hydrocortisone (OHC) replacement therapy. DESIGN, PATIENTS, AND INTERVENTIONS This was a prospective crossover, randomized, multicenter clinical trial comparing 3 months of treatment with thrice-daily OHC vs CSHI. From Norway and Sweden, 33 patients were enrolled from registries and clinics. All patients were assessed at baseline and after 8 and 12 weeks in each treatment arm. MAIN OUTCOME MEASURES The morning ACTH level was the primary outcome measure. Secondary outcome measures were effects on metabolism, health-related quality of life (HRQoL), sleep, and safety. RESULTS CSHI yielded normalization of morning ACTH and cortisol levels, and 24-hour salivary cortisol curves resembled the normal circadian variation. Urinary concentrations of glucocorticoid metabolites displayed a normal pattern with CSHI but were clearly altered with OHC. Several HRQoL indices in the vitality domain improved over time with CSHI. No benefit was found for either treatments for any subjective (Pittsburgh Sleep Quality Index questionnaire) or objective (actigraphy) sleep parameters. CONCLUSION CSHI safely brought ACTH and cortisol toward normal circadian levels without adversely affecting glucocorticoid metabolism in the way that OHC did. Positive effects on HRQoL were noted with CSHI, indicating that physiological glucocorticoid replacement therapy may be beneficial and that CSHI might become a treatment option for patients poorly controlled on conventional therapy.
Collapse
Affiliation(s)
- Marianne Oksnes
- Department of Clinical Science (M.Ø., P.M., K.T., K.L., E.S.H.), University of Bergen, N-5009 Bergen, Norway; Department of Medicine (M.Ø., K.L., E.S.H.) and Centre for Clinical Research, Haukeland University Hospital, N-5021 Bergen, Norway (R.M.N.); Department of Molecular Medicine and Surgery (S.Bj., A.-L.H., S.Be.), Karolinska Institutet, SE-171 77 Stockholm, Sweden; Departments of Medical Sciences (M.I., S.B., O.K.) and Neuroscience and Psychiatry (J.-E.B.), Uppsala University, SE-751 05 Uppsala, Sweden; and Department of Medicine (S.C.), Stavanger University Hospital, N-4068 Stavanger, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Husebye ES, Allolio B, Arlt W, Badenhoop K, Bensing S, Betterle C, Falorni A, Gan EH, Hulting AL, Kasperlik-Zaluska A, Kämpe O, Løvås K, Meyer G, Pearce SH. Consensus statement on the diagnosis, treatment and follow-up of patients with primary adrenal insufficiency. J Intern Med 2014; 275:104-15. [PMID: 24330030 DOI: 10.1111/joim.12162] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Primary adrenal insufficiency (PAI), or Addison's disease, is a rare, potentially deadly, but treatable disease. Most cases of PAI are caused by autoimmune destruction of the adrenal cortex. Consequently, patients with PAI are at higher risk of developing other autoimmune diseases. The diagnosis of PAI is often delayed by many months, and most patients present with symptoms of acute adrenal insufficiency. Because PAI is rare, even medical specialists in this therapeutic area rarely manage more than a few patients. Currently, the procedures for diagnosis, treatment and follow-up of this rare disease vary greatly within Europe. The common autoimmune form of PAI is characterized by the presence of 21-hydroxylase autoantibodies; other causes should be sought if no autoantibodies are detected. Acute adrenal crisis is a life-threatening condition that requires immediate treatment. Standard replacement therapy consists of multiple daily doses of hydrocortisone or cortisone acetate combined with fludrocortisone. Annual follow-up by an endocrinologist is recommended with the focus on optimization of replacement therapy and detection of new autoimmune diseases. Patient education to enable self-adjustment of dosages of replacement therapy and crisis prevention is particularly important in this disease. The authors of this document have collaborated within an EU project (Euadrenal) to study the pathogenesis, describe the natural course and improve the treatment for Addison's disease. Based on a synthesis of this research, the available literature, and the views and experiences of the consortium's investigators and key experts, we now attempt to provide a European Expert Consensus Statement for diagnosis, treatment and follow-up.
Collapse
Affiliation(s)
- E S Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Qiao X, Ji S, Yu SW, Lin XH, Jin HW, Duan YK, Zhang LR, Guo DA, Ye M. Identification of key licorice constituents which interact with cytochrome P450: evaluation by LC/MS/MS cocktail assay and metabolic profiling. AAPS JOURNAL 2013; 16:101-13. [PMID: 24254844 DOI: 10.1208/s12248-013-9544-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/28/2013] [Indexed: 11/30/2022]
Abstract
Licorice has been shown to affect the activities of several cytochrome P450 enzymes. This study aims to identify the key constituents in licorice which may affect these activities. Bioactivity assay was combined with metabolic profiling to identify these compounds in several complex licorice extracts. Firstly, the inhibition potencies of 40 pure licorice compounds were tested using an liquid chromatography/tandem mass spectrometry cocktail method. Significant inhibitors of human P450 isozymes 1A2, 2C9, 2C19, 2D6, and 3A4 were then selected for examination of their structural features by molecular docking to determine their molecular interaction with several P450 isozymes. Based on the present in vitro inhibition findings, along with our previous in vivo metabolic studies and the prevalence of individual compounds in licorice extract, we identified several licorice constituents, viz., liquiritigenin, isoliquiritigenin, together with seven isoprenylated flavonoids and arylcoumarins, which could be key components responsible for the herb-drug interaction between cytochrome P450 and licorice. In addition, hydrophilic flavonoid glycosides and saponins may be converted into these P450 inhibitors in vivo. These studies represent a comprehensive examination of the potential effects of licorice components on the metabolic activities of P450 enzymes.
Collapse
Affiliation(s)
- Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Adrenal insufficiency may be caused by the destruction or altered function of the adrenal gland with a primary deficit in cortisol secretion (primary adrenal insufficiency) or by hypothalamic-pituitary pathologies determining a deficit of ACTH (secondary adrenal insufficiency). The clinical picture is determined by the glucocorticoid deficit, which may in some conditions be accompanied by a deficit of mineralcorticoids and adrenal androgens. The substitutive treatment is aimed at reducing the signs and symptoms of the disease as well as at preventing the development of an addisonian crisis, a clinical emergency characterized by hypovolemic shock. The oral substitutive treatment should attempt at mimicking the normal circadian profile of cortisol secretion, by using the lower possible doses able to guarantee an adequate quality of life to patients. The currently available hydrocortisone or cortisone acetate preparations do not allow an accurate reproduction of the physiological secretion pattern of cortisol. A novel dual-release formulation of hydrocortisone, recently approved by EMEA, represents an advancement in the optimization of the clinical management of patients with adrenal insufficiency. Future clinical trials of immunomodulation or immunoprevention will test the possibility to delay (or prevent) the autoimmune destruction of the adrenal gland in autoimmune Addison's disease.
Collapse
Affiliation(s)
- Alberto Falorni
- Department of Internal Medicine, Section of Internal Medicine and Endocrine and Metabolic Sciences, University of Perugia, Via E. Dal Pozzo, Perugia, 06126, Italy.
| | | | | |
Collapse
|
29
|
Won CS, Oberlies NH, Paine MF. Mechanisms underlying food-drug interactions: inhibition of intestinal metabolism and transport. Pharmacol Ther 2012; 136:186-201. [PMID: 22884524 DOI: 10.1016/j.pharmthera.2012.08.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 07/23/2012] [Indexed: 12/21/2022]
Abstract
Food-drug interaction studies are critical to evaluate appropriate dosing, timing, and formulation of new drug candidates. These interactions often reflect prandial-associated changes in the extent and/or rate of systemic drug exposure. Physiologic and physicochemical mechanisms underlying food effects on drug disposition are well-characterized. However, biochemical mechanisms involving drug metabolizing enzymes and transport proteins remain underexplored. Several plant-derived beverages have been shown to modulate enzymes and transporters in the intestine, leading to altered pharmacokinetic (PK) and potentially negative pharmacodynamic (PD) outcomes. Commonly consumed fruit juices, teas, and alcoholic drinks contain phytochemicals that inhibit intestinal cytochrome P450 and phase II conjugation enzymes, as well as uptake and efflux transport proteins. Whereas myriad phytochemicals have been shown to inhibit these processes in vitro, translation to the clinic has been deemed insignificant or undetermined. An overlooked prerequisite for elucidating food effects on drug PK is thorough knowledge of causative bioactive ingredients. Substantial variability in bioactive ingredient composition and activity of a given dietary substance poses a challenge in conducting robust food-drug interaction studies. This confounding factor can be addressed by identifying and characterizing specific components, which could be used as marker compounds to improve clinical trial design and quantitatively predict food effects. Interpretation and integration of data from in vitro, in vivo, and in silico studies require collaborative expertise from multiple disciplines, from botany to clinical pharmacology (i.e., plant to patient). Development of more systematic methods and guidelines is needed to address the general lack of information on examining drug-dietary substance interactions prospectively.
Collapse
Affiliation(s)
- Christina S Won
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7569, USA
| | | | | |
Collapse
|
30
|
Fasinu PS, Bouic PJ, Rosenkranz B. An overview of the evidence and mechanisms of herb-drug interactions. Front Pharmacol 2012; 3:69. [PMID: 22557968 PMCID: PMC3339338 DOI: 10.3389/fphar.2012.00069] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/05/2012] [Indexed: 12/22/2022] Open
Abstract
Despite the lack of sufficient information on the safety of herbal products, their use as alternative and/or complementary medicine is globally popular. There is also an increasing interest in medicinal herbs as precursor for pharmacological actives. Of serious concern is the concurrent consumption of herbal products and conventional drugs. Herb-drug interaction (HDI) is the single most important clinical consequence of this practice. Using a structured assessment procedure, the evidence of HDI presents with varying degree of clinical significance. While the potential for HDI for a number of herbal products is inferred from non-human studies, certain HDIs are well established through human studies and documented case reports. Various mechanisms of pharmacokinetic HDI have been identified and include the alteration in the gastrointestinal functions with consequent effects on drug absorption; induction and inhibition of metabolic enzymes and transport proteins; and alteration of renal excretion of drugs and their metabolites. Due to the intrinsic pharmacologic properties of phytochemicals, pharmacodynamic HDIs are also known to occur. The effects could be synergistic, additive, and/or antagonistic. Poor reporting on the part of patients and the inability to promptly identify HDI by health providers are identified as major factors limiting the extensive compilation of clinically relevant HDIs. A general overview and the significance of pharmacokinetic and pharmacodynamic HDI are provided, detailing basic mechanism, and nature of evidence available. An increased level of awareness of HDI is necessary among health professionals and drug discovery scientists. With the increasing number of plant-sourced pharmacological actives, the potential for HDI should always be assessed in the non-clinical safety assessment phase of drug development process. More clinically relevant research is also required in this area as current information on HDI is insufficient for clinical applications.
Collapse
Affiliation(s)
- Pius S. Fasinu
- Division of Pharmacology, Faculty of Health Sciences, University of StellenboschCape Town, South Africa
| | - Patrick J. Bouic
- Division of Medical Microbiology, Faculty of Health Sciences, University of StellenboschCape Town, South Africa
- Synexa Life Sciences, Montague GardensCape Town, South Africa
| | - Bernd Rosenkranz
- Division of Pharmacology, Faculty of Health Sciences, University of StellenboschCape Town, South Africa
| |
Collapse
|