1
|
Yanar KE, Gür C, Değirmençay Ş, Aydın Ö, Aktaş MS, Baysal S. Insulin-like growth factor-1 expression levels in pro-inflammatory response in calves with neonatal systemic inflammatory response syndrome. Vet Immunol Immunopathol 2024; 268:110706. [PMID: 38159440 DOI: 10.1016/j.vetimm.2023.110706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
The objective of this study was to investigate the mRNA expression of insulin-like growth factor-1 (IGF-1), pro-inflammatory cytokines (IL-1β, IL-6, IL-18, and TNF-α), serum immunoglobulin profiles (IgG and IgM), and lipid peroxidation status (MDA) in relation to pro-inflammatory cytokines. A case-controlled, prospective, and observational investigation was completed on 85 calves. Total RNA was isolated from whole blood samples of both the SIRS and healthy calves, followed by reverse transcription into cDNA. The resulting cDNAs were mixed with iTaq Universal SYBR Green Supermix and primers specific to the relevant genes using the Rotor-Gene Q instrument. After the reaction was completed, gene expressions were normalised against β-actin using the 2-ΔΔCT method. The mRNA levels of pro-inflammatory cytokines namely (IL-1β [SIRS: 2.15 ± 0.55, Control: 1.13 ± 0.62; P = 0.001], IL-6 [SIRS: 2.82 ± 0.52, Control: 0.91 ± 0.11; P < 0.001], IL-18 [SIRS: 1.92 ± 0.41, Control: 0.99 ± 0.13; P < 0.001], and TNF-α [SIRS: 2.59 ± 0.28, Control: 0.93 ± 0.09; P < 0.001]) and IGF-1 (SIRS: 3.55 ± 0.55, Control: 0.91 ± 0.15; P < 0.001) were up-regulated in calves with SIRS, while serum IgG (SIRS: 4.16 ± 0.26, Control: 1.73 ± 0.17; P < 0.001), IgM (SIRS: 1.55 ± 0.11, Control: 1.09 ± 0.13; P < 0.001), and MDA levels (SIRS: 41.12 ± 3.48, Control: 3.76 ± 0.81; P < 0.001) increased significantly in these calves. Furthermore, significant (P < 0.01) positive correlations were found in calves with SIRS in relation to the expression levels of IL-1β, IL-6, IL-18, TNF-α, IGF-1, serum immunoglobulins, and MDA levels. These results suggest that IGF-1 could be a valuable pro-inflammatory marker, considering its high positive correlation with the expression levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-18, and TNF-α) and markers (MDA, IgG, and IgM) in calves with SIRS.
Collapse
Affiliation(s)
- Kerim Emre Yanar
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Cihan Gür
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Şükrü Değirmençay
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Ömer Aydın
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mustafa Sinan Aktaş
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Sümeyye Baysal
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
2
|
Hamilton OS, Iob E, Ajnakina O, Kirkbride JB, Steptoe A. Immune-neuroendocrine patterning and response to stress. A latent profile analysis in the English longitudinal study of ageing. Brain Behav Immun 2024; 115:600-608. [PMID: 37967661 DOI: 10.1016/j.bbi.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/10/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023] Open
Abstract
Psychosocial stress exposure can disturb communication signals between the immune, nervous, and endocrine systems that are intended to maintain homeostasis. This dysregulation can provoke a negative feedback loop between each system that has high pathological risk. Here, we explore patterns of immune-neuroendocrine activity and the role of stress. Using data from the English Longitudinal Study of Ageing (ELSA), we first identified the latent structure of immune-neuroendocrine activity (indexed by high sensitivity C-reactive protein [CRP], fibrinogen [Fb], hair cortisol [cortisol], and insulin growth-factor-1 [IGF-1]), within a population-based cohort using latent profile analysis (LPA). Then, we determined whether life stress was associated with membership of different immune-neuroendocrine profiles. We followed 4,934 male and female participants, with a median age of 65 years, over a four-year period (2008-2012). A three-class LPA solution offered the most parsimonious fit to the underlying immune-neuroendocrine structure in the data, with 36 %, 40 %, and 24 % of the population belonging to profiles 1 (low-risk), 2 (moderate-risk), and 3 (high-risk), respectively. After adjustment for genetic predisposition, sociodemographics, lifestyle, and health, higher exposure to stress was associated with a 61 % greater risk of belonging to the high-risk profile (RRR: 1.61; 95 %CI = 1.23-2.12, p = 0.001), but not the moderate-risk profile (RRR = 1.10, 95 %CI = 0.89-1.35, p = 0.401), as compared with the low-risk profile four years later. Our findings extend existing knowledge on psychoneuroimmunological processes, by revealing how inflammation and neuroendocrine activity cluster in a representative sample of older adults, and how stress exposure was associated with immune-neuroendocrine responses over time.
Collapse
Affiliation(s)
- Odessa S Hamilton
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London WC1E 7HB, UK; Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London, UK; Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK.
| | - Eleonora Iob
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London WC1E 7HB, UK; Social, Genetic & Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Memory Lane, London SE5 8AF, UK
| | - Olesya Ajnakina
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - James B Kirkbride
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London, UK
| | - Andrew Steptoe
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London WC1E 7HB, UK
| |
Collapse
|
3
|
Huang J, Siyar S, Sharma R, Herrig I, Wise L, Aidt S, List E, Kopchick JJ, Puri V, Lee KY. Adipocyte Subpopulations Mediate Growth Hormone-induced Lipolysis and Glucose Tolerance in Male Mice. Endocrinology 2023; 164:bqad151. [PMID: 37897489 DOI: 10.1210/endocr/bqad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023]
Abstract
In adipose tissue, growth hormone (GH) stimulates lipolysis, leading to an increase in plasma free fatty acid levels and a reduction in insulin sensitivity. In our previous studies, we have found that GH increases lipolysis by reducing peroxisome proliferator-activated receptor γ (PPARγ) transcription activity, leading to a reduction of tat-specific protein 27 (FSP27, also known as CIDEC) expression. In previous studies, our laboratory uncovered 3 developmentally distinct subpopulations of white adipocytes. In this manuscript, we show that one of the subpopulations, termed type 2 adipocytes, has increased GH-induced signaling and lipolysis compared to other adipocyte subtypes. To assess the physiological role of GH-mediated lipolysis mediated by this adipocyte subpopulation, we specifically expressed human FSP27 (hFSP27) transgene in type 2 adipocytes (type2Ad-hFSP27tg mice). Systemically, male type2Ad-hFSP27tg mice displayed reduced serum glycerol release and nonesterified fatty acids levels after acute GH treatment, and improvement in acute, but not chronic, GH-induced glucose intolerance. Furthermore, we demonstrate that type2Ad-hFSP27tg mice displayed improved hepatic insulin signaling. Taken together, these results indicate that this adipocyte subpopulation is a critical regulator of the GH-mediated lipolytic and metabolic response. Thus, further investigation of adipocyte subpopulations may provide novel treatment strategies to regulate GH-induced glucose intolerance in patients with growth and metabolic disorders.
Collapse
Affiliation(s)
- Jun Huang
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Sohana Siyar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Rita Sharma
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Isabella Herrig
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Lauren Wise
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Spencer Aidt
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Edward List
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Kevin Y Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
4
|
Hamilton OS, Iob E, Ajnakina O, Kirkbride JB, Steptoe A. Immune-Neuroendocrine Patterning and Response to Stress. A latent profile analysis in the English Longitudinal Study of Ageing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.07.23292378. [PMID: 37461452 PMCID: PMC10350138 DOI: 10.1101/2023.07.07.23292378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Psychosocial stress exposure can disturb communication signals between the immune, nervous, and endocrine systems that are intended to maintain homeostasis. This dysregulation can provoke a negative feedback loop between each system that has high pathological risk. Here, we explore patterns of immune-neuroendocrine activity and the role of stress. Using data from the English Longitudinal Study of Ageing (ELSA), we first identified the latent structure of immune-neuroendocrine activity (indexed by high sensitivity C-reactive protein [CRP], fibrinogen [Fb], hair cortisol [cortisol], and insulin growth-factor-1 [IGF-1]), within a population-based cohort using latent profile analysis (LPA). Then, we determined whether life stress was associated with membership of different immune-neuroendocrine profiles. We followed 4,934 male and female participants with a median age of 65 years over a four-year period (2008-2012). A three-class LPA solution offered the most parsimonious fit to the underlying immune-neuroendocrine structure in the data, with 36%, 40%, and 24% of the population belonging to profiles 1 (low-risk), 2 (moderate-risk), and 3 (high-risk), respectively. After adjustment for genetic predisposition, sociodemographics, lifestyle, and health, higher exposure to stress was associated with a 61% greater risk of belonging to the high-risk profile (RRR: 1.61; 95%CI=1.23-2.12, p=0.001), but not the moderate-risk profile (RRR=1.10, 95%CI=0.89-1.35, p=0.401), as compared with the low-risk profile four years later. Our findings extend existing knowledge on psychoneuroimmunological processes, by revealing how inflammation and neuroendocrine activity cluster in a representative sample of older adults, and how stress exposure was associated with immune-neuroendocrine responses over time.
Collapse
Affiliation(s)
- Odessa S. Hamilton
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London WC1E 7HB, UK
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London, UK
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Eleonora Iob
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London WC1E 7HB, UK
- Social, Genetic & Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Memory Lane, London SE5 8AF, UK
| | - Olesya Ajnakina
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - James B. Kirkbride
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London, UK
| | - Andrew Steptoe
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London WC1E 7HB, UK
| |
Collapse
|
5
|
Huang Z, Xiao L, Xiao Y, Chen C. The Modulatory Role of Growth Hormone in Inflammation and Macrophage Activation. Endocrinology 2022; 163:6607489. [PMID: 35695371 DOI: 10.1210/endocr/bqac088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/19/2022]
Abstract
Inflammation is a body's response to remove harmful stimuli and heal tissue damage, which is involved in various physiology and pathophysiology conditions. If dysregulated, inflammation may lead to significant negative impacts. Growth hormone (GH) has been shown responsible for not only body growth but also critical in the modulation of inflammation. In this review, we summarize the current clinical and animal studies about the complex and critical role of GH in inflammation. Briefly, GH excess or deficiency may lead to pathological inflammatory status. In inflammatory diseases, GH may serve as an inflammatory modulator to control the disease progression and promote disease resolution. The detailed mechanisms and signaling pathways of GH on inflammation, with a focus on the modulation of macrophage polarization, are carefully discussed with potential direction for future investigations.
Collapse
Affiliation(s)
- Zhengxiang Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, QUT, Brisbane, QLD 4000, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), QUT, Brisbane, QLD 4000, Australia
| | - Lan Xiao
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, QUT, Brisbane, QLD 4000, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), QUT, Brisbane, QLD 4000, Australia
| | - Yin Xiao
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, QUT, Brisbane, QLD 4000, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), QUT, Brisbane, QLD 4000, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
6
|
Narduzzi L, Buisson C, Morvan ML, Marchand A, Audran M, Le Bouc Y, Varlet-Marie E, Ericsson M, Le Bizec B, Dervilly G. Coupling Complete Blood Count and Steroidomics to Track Low Doses Administration of Recombinant Growth Hormone: An Anti-Doping Perspective. Front Mol Biosci 2021; 8:683675. [PMID: 34179089 PMCID: PMC8222787 DOI: 10.3389/fmolb.2021.683675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/20/2021] [Indexed: 11/23/2022] Open
Abstract
Growth Hormone (GH) under its human recombinant homologue (rhGH), may be abused by athletes to take advantage of its well-known anabolic and lipolytic properties; hence it is prohibited in sports by the World Anti-Doping Agency. Due to the rapid turnover of rhGH, anti-doping screening tests have turned to monitor two endocrine biomarkers (IGF-I and P-III-NP), but unfortunately, they show population-wise variability, limiting the identification rate of rhGH users. Previous studies have evidenced the numerous effects of GH on human physiology, especially in hematopoiesis and steroidogenesis. In this work, aiming to discover novel physiological rhGH biomarkers, we analyzed the complete blood count and the steroidomics profile of healthy, physically active, young males treated either with EPO + rhGH or EPO + placebo. The time-trends of these two physiological routes have been analyzed through geometric trajectory analysis (GTA) and OPLS-DA. Individuals supplemented with micro-doses of rhGH exhibited different leukopoietic and steroidal profiles compared to the control population, suggesting a role of the rhGH in both pathways. In the article, hypotheses on the observed differences are discussed according to the most recent literature and compared to results in animal models. The use of leukopoietic and steroidal biomarkers together with endocrine biomarkers (IGF-1 and P-III-NP) allows to correctly classify over 98% of samples with no false positives, miss-classifying only one single sample (false negative) over a total of 56; a promising result, if compared to the current rhGH detection strategies.
Collapse
Affiliation(s)
- Luca Narduzzi
- Laboratoire D’Etude des Résidus et Contaminants Dans Les Aliments (LABERCA), Oniris, INRΑe, Nantes -44307, France
| | - Corinne Buisson
- Département des Analyzes, Agence Française de Lutte Contre le Dopage (AFLD), Châtenay-Malabry, French Anti-Doping Agency, Paris, France
| | - Marie-Line Morvan
- Laboratoire D’Etude des Résidus et Contaminants Dans Les Aliments (LABERCA), Oniris, INRΑe, Nantes -44307, France
| | - Alexandre Marchand
- Département des Analyzes, Agence Française de Lutte Contre le Dopage (AFLD), Châtenay-Malabry, French Anti-Doping Agency, Paris, France
| | - Michel Audran
- Département des Analyzes, Agence Française de Lutte Contre le Dopage (AFLD), Châtenay-Malabry, French Anti-Doping Agency, Paris, France
| | - Yves Le Bouc
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine (CRSA), Paris, France
| | - Emmanuelle Varlet-Marie
- Institut des Biomolécules Max Mousseron (IBMM), Centre Hospitalier Universitaire de Montpellier, Montpellie, France
| | - Magnus Ericsson
- Département des Analyzes, Agence Française de Lutte Contre le Dopage (AFLD), Châtenay-Malabry, French Anti-Doping Agency, Paris, France
| | - Bruno Le Bizec
- Laboratoire D’Etude des Résidus et Contaminants Dans Les Aliments (LABERCA), Oniris, INRΑe, Nantes -44307, France
| | - Gaud Dervilly
- Laboratoire D’Etude des Résidus et Contaminants Dans Les Aliments (LABERCA), Oniris, INRΑe, Nantes -44307, France
| |
Collapse
|
7
|
Insulin-Like Growth Factor 1 Related to Chronic Low-Grade Inflammation in Patients with Obesity and Early Change of its Levels After Laparoscopic Sleeve Gastrectomy. Obes Surg 2021; 30:3326-3332. [PMID: 32410151 DOI: 10.1007/s11695-020-04473-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Insulin-like growth factor 1 (IGF1) and insulin-like growth factor binding protein (IGFBP) have an influence on metabolism. However, changes in metabolism after sleeve gastrectomy (SG) are not clearly known. This study investigated the change in IGFBP3 levels in obesity after bariatric surgery. METHODS We evaluated 36 patients with obesity (14 males, aged 31.36 ± 7.06 years and 22 females, aged 32.55 ± 11.40 years) at baseline and 3 months after SG. Changes in their IGF1, IGFBP3, and IGF1/IGFBP3 ratios and glucose-lipid metabolic, inflammation, and oxidative stress parameters were measured. Enzyme-linked immunosorbent assay was used to measure their IGF1 and IGFBP3 levels. RESULTS (1) IGFBP3 levels were negatively associated with waist circumference (WC) and waist-to-hip ratio (r = - 0.482, P = 0.043; r = - 0.503, P = 0.033); total IGF1 levels were negatively associated with body mass index and WC (r = - 0.569, P = 0.014; r = - 0.470, P = 0.048); and free IGF1 levels were negatively related to tumor necrosis factor (TNF)-α level independent of age (r = - 0.544, P = 0.020). Free IGF1 levels were negatively associated with uric acid, interleukin-6 (IL-6), IL-8, and TNF-α levels (r = - 0.646, P = 0.032; r = - 0.667, P = 0.025; r = - 0.641, P = 0.033; r = - 0.733, P = 0.010) and positively associated with superoxide dismutase activity (r = 0.635, P = 0.036) in females; this relation was not significant in males (all P > 0.05). Total IGF1 was also negatively associated with C-reactive protein (CRP) level in females (r = - 0.671, P = 0.024). (2) IGFBP3 level significantly decreased at 3 months after bariatric surgery in females (P < 0.001) but not in males (P = 0.815). Total IGF1 level significantly decreased after bariatric surgery (P = 0.048); the change was also significant in females (P = 0.014) but not in males (P = 0.626). Free IGF1 level after bariatric surgery was not statistically different between males (P = 0.605) and females (P = 0.628). (3) In females, the change in IGFBP3 level was associated with a change in high-density lipoprotein cholesterol and free fatty acid levels (r = 0.607, P = 0.003; r = 0.546, P = 0.016), and a change in total IGF1 level was associated with a change in CRP level (r = 0.664, P = 0.009). CONCLUSION IGF1 level was related to chronic low-grade inflammation and oxidative stress in obesity, especially in females. IGFBP3 and IGF1 levels decreased in obesity after SG, especially in females. Changes in IGF/IGFBP3 levels were associated with a change in the inflammatory state after surgery.
Collapse
|
8
|
Chronic inflammation and the growth hormone/insulin-like growth factor-1 axis. Cent Eur J Immunol 2021; 45:469-475. [PMID: 33613096 PMCID: PMC7882400 DOI: 10.5114/ceji.2020.103422] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022] Open
Abstract
Interactions between growth hormone (GH), insulin-like growth factor-1 (IGF-1), and the immune system are complex, bidirectional, but not fully explained. Current reviews based on numerous studies have indicated that chronic inflammation could suppress the GH/IGF-1 axis via several mechanisms such as relative GH and/or IGF-1 insufficiency, peripheral resistance to GH and/or IGF-1 resulting from down-regulation of GH and IGF-1 receptors, disruption in the GH/IGF-1 signalling pathways, dysregulation of IGF binding proteins (IGFBPs), reduced IGF bioavailability, and modified gene regulation due to changes in the microRNA system. It is well-known that relationships between the immune system and the GH/IGF-1 axis are mutual and GH as well as IGF-1 could modulate inflammatory response and the activity of systemic inflammation. Available data indicate that the GH/IGF-1 axis exerts both pro-inflammatory and anti-inflammatory effects. Pro-inflammatory cytokines such as interleukin-6 (IL-6), tumour necrosis factor-a (TNF-α), and interleukin-1b (IL-b) are some of the most significant factors, besides malnutrition, chronic stress, and prolonged use of glucocorticoids, which impair the activity of the GH/IGF-1 axis, and consequently lead to growth retardation in children suffering from childhood-onset chronic inflammatory diseases. In this review, we discuss the mechanisms underlying the impact of chronic inflammation on the GH/IGF-1 axis and growth processes during childhood and adolescence, based on a number of experimental and human studies.
Collapse
|
9
|
Abstract
Acromegaly is characterized by Growth Hormone (GH) and Insulin-like Growth Factor 1 (IGF-1) excess. Uncontrolled acromegaly is associated with a strongly increased risk of cardiovascular disease (CVD), and numerous cardiovascular risk factors remain present after remission. GH and IGF-1 have numerous effects on the immune and cardiovascular system. Since endothelial damage and systemic inflammation are strongly linked to the development of CVD, and have been suggested to be present in both controlled as uncontrolled acromegaly, they may explain the presence of both micro- and macrovascular dysfunction in these patients. In addition, these changes seem to be only partially reversible after remission, as illustrated by the often reported presence of endothelial dysfunction and microvascular damage in controlled acromegaly. Previous studies suggest that insulin resistance, oxidative stress, and endothelial dysfunction are involved in the development of CVD in acromegaly. Not surprisingly, these processes are associated with systemic inflammation and respond to GH/IGF-1 normalizing treatment.
Collapse
Affiliation(s)
- Thalijn L C Wolters
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands.
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - Adrianus R M M Hermus
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - Romana T Netea-Maier
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Jain A, Gupta S, Bhansali A, Gupta M, Jain A, Bhaskar N, Kaur RK. Impact of concurrent diabetes on periodontal health in patients with acromegaly. Sci Rep 2020; 10:19170. [PMID: 33154456 PMCID: PMC7645583 DOI: 10.1038/s41598-020-76067-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 10/23/2020] [Indexed: 11/09/2022] Open
Abstract
Previous studies have suggested excess GH/IGF1 secretion in patients with acromegaly is protective for periodontal health. Diabetes is prevalent comorbidity in patients of acromegaly and is associated with worsening of periodontal disease. The present study evaluates the periodontal health and cytokines status in treatment-naive active acromegaly patients with and without diabetes. Eleven patients, each of acromegaly with and without diabetes and 20 healthy controls were enrolled. Periodontal parameters were assessed. GCF and blood samples for IL-6, TGF-β1, and PDGF were obtained. Serum GH, IGF1, HbA1c, pituitary hormones and MRI sella were performed in patients with acromegaly. There was no significant difference in periodontal status of patients with acromegaly and healthy controls. However, a significant increase in serum IL-6 (p = 0.019) and TGF-β1 (p = 0.025) levels in patients with acromegaly was observed and all patients had concurrent hypogonadism. Nevertheless, the patients with acromegaly having diabetes had modestly higher CAL and PD and serum IL-6 levels (p = 0.051), but it could not exert adverse effects on periodontal health in presence of GH/IGF1 excess. GH/IGF1 excess did not exert a protective effect on periodontal status in acromegaly, possibly due to concurrent hypogonadism and opposing cytokines; however, it could mask the ill-effects of diabetes on periodontal health.
Collapse
Affiliation(s)
- Akanksha Jain
- Department of Periodontics, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Shipra Gupta
- Unit of Periodontics, Oral Health Sciences Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anil Bhansali
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mili Gupta
- Department of Biochemistry, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Ashish Jain
- Department of Periodontics, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Sector-25, Chandigarh, 160014, India.
| | - Nandini Bhaskar
- Department of Periodontics, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Rose Kanwaljeet Kaur
- Department of Periodontics, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Sector-25, Chandigarh, 160014, India
| |
Collapse
|
11
|
Maternal undernutrition results in altered renal pro-inflammatory gene expression concomitant with hypertension in adult male offspring that is ameliorated following pre-weaning growth hormone treatment. J Dev Orig Health Dis 2020; 10:459-468. [PMID: 31347485 DOI: 10.1017/s2040174418000922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An adverse early life environment is associated with increased cardiovascular disease in offspring. Work in animal models has shown that maternal undernutrition (UN) during pregnancy leads to hypertension in adult offspring, with effects thought to be mediated in part via altered renal function. We have previously shown that growth hormone (GH) treatment of UN offspring during the pre-weaning period can prevent the later development of cardiometabolic disorders. However, the mechanistic basis for these observations is not well defined. The present study examined the impact of GH treatment on renal inflammatory markers in adult male offspring as a potential mediator of these reversal effects. Female Sprague-Dawley rats were fed either a chow diet fed ad libitum (CON) or at 50% of CON intake (UN) during pregnancy. All dams were fed the chow diet ad libitum during lactation. CON and UN pups received saline (CON-S/UN-S) or GH (2.5 µg/g/day; CON-GH/UN-GH) from postnatal day 3 until weaning (p21). Post-weaning males were fed a standard chow diet for the remainder of the study (150 days). Histological analysis was performed to examine renal morphological characteristics, and gene expression of inflammatory and vascular markers were assessed. There was evidence of renal hypotrophy and reduced nephron number in the UN-S group. Tumour necrosis factor-α, monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecular-1 and vascular cell adhesion molecule-1 gene expression was increased in UN-S offspring and normalized in the UN-GH group. These findings indicate that pre-weaning GH treatment has the potential to normalize some of the adverse renal and cardiovascular sequelae that arise as a consequence of poor maternal nutrition.
Collapse
|
12
|
Soler Palacios B, Nieto C, Fajardo P, González de la Aleja A, Andrés N, Dominguez-Soto Á, Lucas P, Cuenda A, Rodríguez-Frade JM, Martínez-A C, Villares R, Corbí ÁL, Mellado M. Growth Hormone Reprograms Macrophages toward an Anti-Inflammatory and Reparative Profile in an MAFB-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2020; 205:776-788. [PMID: 32591394 DOI: 10.4049/jimmunol.1901330] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/24/2020] [Indexed: 12/12/2022]
Abstract
Growth hormone (GH), a pleiotropic hormone secreted by the pituitary gland, regulates immune and inflammatory responses. In this study, we show that GH regulates the phenotypic and functional plasticity of macrophages both in vitro and in vivo. Specifically, GH treatment of GM-CSF-primed monocyte-derived macrophages promotes a significant enrichment of anti-inflammatory genes and dampens the proinflammatory cytokine profile through PI3K-mediated downregulation of activin A and upregulation of MAFB, a critical transcription factor for anti-inflammatory polarization of human macrophages. These in vitro data correlate with improved remission of inflammation and mucosal repair during recovery in the acute dextran sodium sulfate-induced colitis model in GH-overexpressing mice. In this model, in addition to the GH-mediated effects on other immune cells, we observed that macrophages from inflamed gut acquire an anti-inflammatory/reparative profile. Overall, these data indicate that GH reprograms inflammatory macrophages to an anti-inflammatory phenotype and improves resolution during pathologic inflammatory responses.
Collapse
Affiliation(s)
- Blanca Soler Palacios
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Concha Nieto
- Departamento de Biología Molecular y Celular, Centro de Investigaciones Biológicas/Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Pilar Fajardo
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Arturo González de la Aleja
- Departamento de Biología Molecular y Celular, Centro de Investigaciones Biológicas/Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Nuria Andrés
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Ángeles Dominguez-Soto
- Departamento de Biología Molecular y Celular, Centro de Investigaciones Biológicas/Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Pilar Lucas
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Ana Cuenda
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - José Miguel Rodríguez-Frade
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Carlos Martínez-A
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Ricardo Villares
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Ángel L Corbí
- Departamento de Biología Molecular y Celular, Centro de Investigaciones Biológicas/Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Mario Mellado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| |
Collapse
|
13
|
Fleming T, Balderas-Márquez JE, Epardo D, Ávila-Mendoza J, Carranza M, Luna M, Harvey S, Arámburo C, Martínez-Moreno CG. Growth Hormone Neuroprotection Against Kainate Excitotoxicity in the Retina is Mediated by Notch/PTEN/Akt Signaling. Invest Ophthalmol Vis Sci 2020; 60:4532-4547. [PMID: 31675424 DOI: 10.1167/iovs.19-27473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In the retina, growth hormone (GH) promotes axonal growth, synaptic restoration, and protective actions against excitotoxicity. Notch signaling pathway is critical for neural development and participates in the retinal neuroregenerative process. We investigated the interaction of GH with Notch signaling pathway during its neuroprotective effect against excitotoxic damage in the chicken retina. Methods Kainate (KA) was used as excitotoxic agent and changes in the mRNA expression of several signaling markers were determined by qPCR. Also, changes in phosphorylation and immunoreactivity were determined by Western blotting. Histology and immunohistochemistry were performed for morphometric analysis. Overexpression of GH was performed in the quail neuroretinal-derived immortalized cell line (QNR/D) cell line. Exogenous GH was administered to retinal primary cell cultures to study the activation of signaling pathways. Results KA disrupted the retinal cytoarchitecture and induced significant cell loss in several retinal layers, but the coaddition of GH effectively prevented these adverse effects. We showed that GH upregulates the Notch signaling pathway during neuroprotection leading to phosphorylation of the PI3K/Akt signaling pathways through downregulation of PTEN. In contrast, cotreatment of GH with the Notch signaling inhibitor, DAPT, prevented its neuroprotective effect against KA. We identified binding sites in Notch1 and Notch2 genes for STAT5. Also, GH prevented Müller cell transdifferentiation and downregulated Sox2, FGF2, and PCNA after cotreatment with KA. Additionally, GH modified TNF receptors immunoreactivity suggesting anti-inflammatory actions. Conclusions Our data indicate that the neuroprotective effects of GH against KA injury in the retina are mediated through the regulation of Notch signaling. Additionally, anti-inflammatory and antiproliferative effects were observed.
Collapse
Affiliation(s)
- Thomas Fleming
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México.,Department of Physiology, University of Alberta, Edmonton, Canada
| | - Jerusa E Balderas-Márquez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - David Epardo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - José Ávila-Mendoza
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
14
|
Fornari R, Marocco C, Francomano D, Fittipaldi S, Lubrano C, Bimonte VM, Donini LM, Nicolai E, Aversa A, Lenzi A, Greco EA, Migliaccio S. Insulin growth factor-1 correlates with higher bone mineral density and lower inflammation status in obese adult subjects. Eat Weight Disord 2018; 23:375-381. [PMID: 28271457 DOI: 10.1007/s40519-017-0362-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/10/2017] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Obesity is a severe public health problem worldwide, leading to an insulin-resistant state in liver, adipose, and muscle tissue, representing a risk factor for type 2 diabetes mellitus, cardiovascular diseases, and cancer. We have shown that abdominal obesity is associated with homeostasis derangement, linked to several hormonal and paracrine factors. Data regarding potential link between GH/IGF1 axis, bone mineral density, and inflammation in obesity are lacking. Thus, aim of this study was to evaluate correlation among IGF-1, BMD, and inflammation in obese individuals. METHODS The study included 426 obese subjects, mean age 44.8 ± 14 years; BMI 34.9 ± 6.1. Exclusion criteria were chronic medical conditions, use of medications affecting bone metabolism, hormonal and nutritional status, recent weight loss, and prior bariatric surgery. Patients underwent measurements of BMD and body composition by DEXA and were evaluated for hormonal, metabolic profile, and inflammatory markers. RESULTS In this population, IGF-1 was inversely correlated with abdominal FM% (p < 0.001, r 2 = 0.12) and directly correlated with osteocalcin (OSCA) (p < 0.002, r 2 = 0.14). A negative correlation was demonstrated between IGF-1 levels and nonspecific inflammatory index, such as fibrinogen (p < 0.01, r 2 = 0.04) and erythrocyte sedimentation rate (p < 0.0001, r 2 = 0.03). IGF-1 was directly correlated with higher BMD, at both lumbar (p < 0.02, r 2 = 0.03) and femoral site (p < 0.04, r 2 = 0.03). CONCLUSIONS In conclusion, our results show that higher levels of serum IGF-1 in obese patients correlate with lower inflammatory pattern and better skeletal health, as demonstrated by higher BMD and osteocalcin levels. These results lead to speculate the existence of a bone-adipose-muscle interplay modulating energy homeostasis, glucose, bone metabolism, and chronic inflammation in individuals affected by abdominal obesity.
Collapse
Affiliation(s)
- Rachele Fornari
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Nutrition, University "Sapienza", Rome, Italy
| | - Chiara Marocco
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Nutrition, University "Sapienza", Rome, Italy
| | - Davide Francomano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Nutrition, University "Sapienza", Rome, Italy
| | | | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Nutrition, University "Sapienza", Rome, Italy
| | - Viviana M Bimonte
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University "Foro Italico", Largo Lauro De Bosis 6, 00135, Rome, Italy
| | - Lorenzo M Donini
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Nutrition, University "Sapienza", Rome, Italy
| | | | - Antonio Aversa
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Nutrition, University "Sapienza", Rome, Italy
| | - Emanuela A Greco
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Nutrition, University "Sapienza", Rome, Italy
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University "Foro Italico", Largo Lauro De Bosis 6, 00135, Rome, Italy.
| |
Collapse
|
15
|
Growth Hormone Resistance-Special Focus on Inflammatory Bowel Disease. Int J Mol Sci 2017; 18:ijms18051019. [PMID: 28486400 PMCID: PMC5454932 DOI: 10.3390/ijms18051019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/25/2022] Open
Abstract
Growth hormone (GH) plays major anabolic and catabolic roles in the body and is important for regulating several aspects of growth. During an inflammatory process, cells may develop a state of GH resistance during which their response to GH stimulation is limited. In this review, we will emphasize specific mechanisms governing the formation of GH resistance in the active phase of inflammatory bowel disease. The specific molecular effects mediated through individual inflammatory mediators and processes will be highlighted to provide an overview of the transcriptional, translational and post-translational inflammation-mediated impacts on the GH receptor (GHR) along with the impacts on GH-induced intracellular signaling. We also will review GH’s effects on mucosal healing and immune cells in the context of experimental colitis, human inflammatory bowel disease and in patients with short bowel syndrome.
Collapse
|
16
|
van der Lely AJ, Jönsson P, Wilton P, Åkerblad AC, Cara J, Ghigo E. Treatment with high doses of pegvisomant in 56 patients with acromegaly: experience from ACROSTUDY. Eur J Endocrinol 2016; 175:239-45. [PMID: 27401863 DOI: 10.1530/eje-16-0008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/07/2016] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To investigate the characteristics of patients who need more or less pegvisomant (PEGV) to normalize serum IGF-I. DESIGN ACROSTUDY is a global noninterventional safety surveillance study of long-term treatment outcomes in patients treated with PEGV. As of June, 2014, ACROSTUDY included data on 2016 patients. All patients treated for at least 6weeks at a dose above 30mg/day and who had two consecutive normal serum IGF-I values were included in the 'high'-dose group (H; n=56; mean daily dose 44±12.5; median dose 40, 35-60 (10-90%)). Patients with two consecutive normal IGF-I values and who never received a PEGV dose above 10mg/day were included in the 'low'-dose group (L; n=368; mean daily dose 7.5±2.5; median dose 8.6, 4.3-10 (10-90%)). RESULTS Patients in the H group were significantly younger (median 47 vs 52years) and had a significantly higher BMI (median 31.8 vs 26.5kg/m(2)). They had more diabetes (55% vs 21%), sleep apnea (25% vs 14 %) and more hypertension (61% vs 43%). The incidence of (serious) adverse events was low and was not different between the groups. CONCLUSIONS Patients who need more PEGV to normalize IGF-I have more aggressive disease, as they are younger, have higher baseline IGF-I levels, more hypertension, more sleep apnea and diabetes and are more overweight. A better understanding of this dose-efficacy relationship of PEGV might avoid inappropriate dosing and prevent serum IGF-I levels from remaining unnecessarily uncontrolled.
Collapse
Affiliation(s)
| | - Peter Jönsson
- Pfizer Endocrine CarePfizer Health AB, Sollentuna, Sweden
| | | | | | - José Cara
- Endocrine CarePfizer Inc., New York, New York, USA
| | | |
Collapse
|
17
|
Effects of elastic band resistance training and nutritional supplementation on muscle quality and circulating muscle growth and degradation factors of institutionalized elderly women: the Vienna Active Ageing Study (VAAS). Eur J Appl Physiol 2016; 116:885-97. [PMID: 26931422 PMCID: PMC4834098 DOI: 10.1007/s00421-016-3344-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/11/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE Regular resistance exercise training and a balanced diet may counteract the age-related muscular decline on a molecular level. The aim of this study was to investigate the influence of elastic band resistance training and nutritional supplementation on circulating muscle growth and degradation factors, physical performance and muscle quality (MQ) of institutionalized elderly. METHODS Within the Vienna Active Ageing Study, 91 women aged 83.6 (65.0-92.2) years were randomly assigned to one of the three intervention groups (RT, resistance training; RTS, resistance training plus nutritional supplementation; CT, cognitive training). Circulating levels of myostatin, activin A, follistatin, IGF-1 and GDF-15, as well as MQ and functional parameters were tested at baseline as well as after 3 and 6 months of intervention. RESULTS MQ of lower extremities significantly increased in the RT group (+14 %) and RTS group (+12 %) after 6 months. Performance improved in the RT and RTS groups for chair stand test (RT: +18 %; RTS: +15 %). Follistatin increased only in the RT group (+18 %) in the latter phase of the intervention, accompanied by a decrease in the activin A-to-follistatin ratio (-7 %). IGF-1, myostatin and GDF-15 levels were not affected by the intervention. CONCLUSION Our data confirm that strength training improves physical performance and MQ even in very old institutionalized women. This amelioration appears to be mediated by blocking muscle degradation pathways via follistatin rather than inducing muscle growth through the IGF-1 pathway. As plasma levels of biomarkers reflect an overall status of various organ systems, future studies of tissue levels are suggested.
Collapse
|
18
|
Antagonist of GH-releasing hormone receptors alleviates experimental ocular inflammation. Proc Natl Acad Sci U S A 2014; 111:18303-8. [PMID: 25489106 DOI: 10.1073/pnas.1421815112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Disruptions in immunity and occurrence of inflammation cause many eye diseases. The growth hormone-releasing hormone-growth hormone-insulin-like growth factor-1 (GHRH-GH-IGF1) axis exerts regulatory effects on the immune system. Its involvement in ocular inflammation remains to be investigated. Here we studied this signaling in endotoxin-induced uveitis (EIU) generated by LPS. The increase in GHRH receptor (GHRH-R) protein levels was parallel to the increase in mRNA levels of pituitary-specific transcription factor-1, GHRH-R splice variant 1, GHRH, and GH following LPS insult. Elevation of GHRH-R and GH receptor was localized on the epithelium of the iris and ciliary body, and GHRH-R was confined to the infiltrating macrophages and leukocytes in aqueous humor but not to those in stroma. Treatment with GHRH-R antagonist decreased LPS-stimulated surges of GH and IGF1 in aqueous humor and alleviated inflammation by reducing the infiltration of macrophages and leukocytes and the production of TNF-α, IL-1β, and monocyte chemotactic protein-1. Our results indicate that inflammation in the iris and ciliary body involves the activation of GHRH signaling, which affects the recruitment of immune cells and the production of proinflammatory mediators that contribute to EIU pathogenesis. Moreover, the results suggest that GHRH-R antagonists are potential therapeutic agents for the treatment of acute ocular inflammation.
Collapse
|
19
|
Baquedano E, Ruiz-Lopez AM, Sustarsic EG, Herpy J, List EO, Chowen JA, Frago LM, Kopchick JJ, Argente J. The absence of GH signaling affects the susceptibility to high-fat diet-induced hypothalamic inflammation in male mice. Endocrinology 2014; 155:4856-67. [PMID: 25237935 DOI: 10.1210/en.2014-1367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GH is important in metabolic control, and mice with disruption of the gene encoding the GH receptor (GHR) and GH binding protein (GHR-/- mice) are dwarf with low serum IGF-1 and insulin levels, high GH levels, and increased longevity, despite their obesity and altered lipid and metabolic profiles. Secondary complications of high-fat diet (HFD)-induced obesity are reported to be associated with hypothalamic inflammation and gliosis. Because GH and IGF-1 can modulate inflammatory processes, our objective was to evaluate the effect of HFD on hypothalamic inflammation/gliosis in the absence of GH signaling and determine how this correlates with changes in systemic metabolism. On normal chow, GHR-/- mice had a higher percentage of fat mass and increased circulating nonesterified free fatty acids levels compared with wild type (WT), and this was associated with increased hypothalamic TNF-α and phospho-JNK levels. After 7 weeks on a HFD, both WT and GHR-/- mice had increased weight gain, with GHR-/- mice having a greater rise in their percentage of body fat. In WT mice, HFD-induced weight gain was associated with increased hypothalamic levels of phospho-JNK and the microglial marker Iba-1 (ionized calcium-binding adapter molecule 1) but decreased cytokine production. Moreover, in GHR-/- mice, the HFD decreased hypothalamic inflammatory markers to WT levels with no indication of gliosis. Thus, the GH/IGF-1 axis is important in determining not only adipose tissue accrual but also the inflammatory response to HFD. However, how hypothalamic inflammation/gliosis is defined will determine whether it can be considered a common feature of HFD-induced obesity.
Collapse
Affiliation(s)
- Eva Baquedano
- Department of Pediatrics (E.B., A.M.R.-L., J.A.C., L.M.F., J.A.), Universidad Autónoma de Madrid; Department of Endocrinology, Hospital Infantil Universitario Niño Jesús 28009, Madrid, Spain; Instituto de Investigación Sanitaria Princesa; and Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28009 Madrid, Spain; and The Edison Biotechnology Institute (E.G.S., J.H., E.O.L., J.J.K.) and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Perng W, Gillman MW, Fleisch AF, Michalek RD, Watkins SM, Isganaitis E, Patti ME, Oken E. Metabolomic profiles and childhood obesity. Obesity (Silver Spring) 2014; 22:2570-8. [PMID: 25251340 PMCID: PMC4236243 DOI: 10.1002/oby.20901] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/21/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To identify metabolite patterns associated with childhood obesity, to examine relations of these patterns with measures of adiposity and cardiometabolic risk, and to evaluate associations with maternal peripartum characteristics. METHODS Untargeted metabolomic profiling was used to quantify metabolites in plasma of 262 children (6-10 years). Principal components analysis was used to consolidate 345 metabolites into 18 factors and identified two that differed between obese (BMI ≥ 95‰; n = 84) and lean children (BMI < 85‰; n = 150). The relations of these factors with adiposity (fat mass, BMI, skinfold thicknesses) and cardiometabolic biomarkers (HOMA-IR, triglycerides, leptin, adiponectin, hsCRP, IL-6) using multivariable linear regression was then investigated. Finally, the associations of maternal prepregnancy obesity, gestational weight gain, and gestational glucose tolerance with the offspring metabolite patterns was examined. RESULTS A branched-chain amino acid (BCAA)-related pattern and an androgen hormone pattern were higher in obese vs. lean children. Both patterns were associated with adiposity and worse cardiometabolic profiles. For example, each increment in the BCAA and androgen pattern scores corresponded with 6% (95% CI: 1, 13%) higher HOMA-IR. Children of obese mothers had 0.61 (0.13, 1.08) higher BCAA score than their counterparts. CONCLUSIONS BCAA and androgen metabolites were associated with adiposity and cardiometabolic risk during mid-childhood. Maternal obesity may contribute to altered offspring BCAA metabolism.
Collapse
Affiliation(s)
- Wei Perng
- Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Matthew W. Gillman
- Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Abby F. Fleisch
- Endocrinology Division, Boston Children’s Hospital, Boston, MA, USA
| | | | | | | | | | - Emily Oken
- Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| |
Collapse
|
21
|
Straub RH. Interaction of the endocrine system with inflammation: a function of energy and volume regulation. Arthritis Res Ther 2014; 16:203. [PMID: 24524669 PMCID: PMC3978663 DOI: 10.1186/ar4484] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During acute systemic infectious disease, precisely regulated release of energy-rich substrates (glucose, free fatty acids, and amino acids) and auxiliary elements such as calcium/phosphorus from storage sites (fat tissue, muscle, liver, and bone) are highly important because these factors are needed by an energy-consuming immune system in a situation with little or no food/water intake (sickness behavior). This positively selected program for short-lived infectious diseases is similarly applied during chronic inflammatory diseases. This review presents the interaction of hormones and inflammation by focusing on energy storage/expenditure and volume regulation. Energy storage hormones are represented by insulin (glucose/lipid storage and growth-related processes), insulin-like growth factor-1 (IGF-1) (muscle and bone growth), androgens (muscle and bone growth), vitamin D (bone growth), and osteocalcin (bone growth, support of insulin, and testosterone). Energy expenditure hormones are represented by cortisol (breakdown of liver glycogen/adipose tissue triglycerides/muscle protein, and gluconeogenesis; water retention), noradrenaline/adrenaline (breakdown of liver glycogen/adipose tissue triglycerides, and gluconeogenesis; water retention), growth hormone (glucogenic, lipolytic; has also growth-related aspects; water retention), thyroid gland hormones (increase metabolic effects of adrenaline/noradrenaline), and angiotensin II (induce insulin resistance and retain water). In chronic inflammatory diseases, a preponderance of energy expenditure pathways is switched on, leading to typical hormonal changes such as insulin/IGF-1 resistance, hypoandrogenemia, hypovitaminosis D, mild hypercortisolemia, and increased activity of the sympathetic nervous system and the renin-angiotensin-aldosterone system. Though necessary during acute inflammation in the context of systemic infection or trauma, these long-standing changes contribute to increased mortality in chronic inflammatory diseases.
Collapse
|
22
|
Madsen M, Fisker S, Feldt-Rasmussen U, Andreassen M, Kristensen LØ, Ørskov H, Jørgensen JOL. Circulating levels of pegvisomant and endogenous growth hormone during prolonged pegvisomant therapy in patients with acromegaly. Clin Endocrinol (Oxf) 2014; 80:92-100. [PMID: 23650996 DOI: 10.1111/cen.12239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 02/26/2013] [Accepted: 05/02/2013] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate whether pegvisomant treatment in acromegaly induces gradual elevations in endogenous serum growth hormone (GH) levels and whether serum pegvisomant levels predict the therapeutic outcome. PATIENTS AND METHODS Seventeen patients (6 women), mean age 46·3 years (range: 23·2-76·2), were studied. For each patient, four hospital visits were identified including 'active disease' (no treatment) and last follow-up. At each visit, 12 blood samples were drawn during 3 h including an oral glucose tolerance test (OGTT). Eight patients received a somatostatin analogue in addition to pegvisomant on the last visit. RESULTS Median (range) pegvisomant doses (mg/day) were 10 (10-10), 15 (10-15) and 15 (10-15) at visits 2, 3 and 4, respectively, and the mean duration of pegvisomant treatment was 17·5 ± 3·2 (SEM) months. Serum IGF-I changed significantly during the treatment period with the highest level at baseline and lowest levels at visits 3 and 4. GH levels increased in a dose-dependent manner during pegvisomant treatment and decreased at visit 4. Changes in IGF-I levels correlated negatively with changes in serum pegvisomant levels between visits. Serum pegvisomant at each visit correlated with baseline growth hormone levels, whereas no associations between serum pegvisomant and either dose, gender, age or body weight were found. CONCLUSIONS (1) Serum GH levels increased initially, but remained stable during prolonged pegvisomant treatment in patients with acromegaly, (2) serum pegvisomant levels predicted the reduction in serum IGF-I during treatment and (3) the interindividual variation in serum pegvisomant levels seems not predicted by either age, gender or body composition.
Collapse
Affiliation(s)
- Michael Madsen
- Department of Endocrinology and Internal Medicine MEA, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
23
|
Andreassen M, Frystyk J, Faber J, Kristensen LØ, Juul A. Growth hormone (GH) activity is associated with increased serum oestradiol and reduced Anti-Müllerian Hormone in healthy male volunteers treated with GH and a GH antagonist. Andrology 2013; 1:595-601. [DOI: 10.1111/j.2047-2927.2013.00096.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/07/2013] [Accepted: 04/16/2013] [Indexed: 11/27/2022]
Affiliation(s)
- M. Andreassen
- Department of Internal Medicine; Endocrine Unit; Herlev Hospital; University of Copenhagen; Herlev; Denmark
| | | | - J. Faber
- Department of Internal Medicine; Endocrine Unit; Herlev Hospital; University of Copenhagen; Herlev; Denmark
| | - L. Ø. Kristensen
- Department of Internal Medicine; Endocrine Unit; Herlev Hospital; University of Copenhagen; Herlev; Denmark
| | - A. Juul
- Department of Growth and Reproduction; Rigshospitalet; University of Copenhagen; Copenhagen; Denmark
| |
Collapse
|
24
|
Xue P, Wang Y, Yang J, Li Y. Effects of growth hormone replacement therapy on bone mineral density in growth hormone deficient adults: a meta-analysis. Int J Endocrinol 2013; 2013:216107. [PMID: 23690770 PMCID: PMC3652209 DOI: 10.1155/2013/216107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 03/08/2013] [Accepted: 03/13/2013] [Indexed: 11/17/2022] Open
Abstract
Objectives. Growth hormone deficiency patients exhibited reduced bone mineral density compared with healthy controls, but previous researches demonstrated uncertainty about the effect of growth hormone replacement therapy on bone in growth hormone deficient adults. The aim of this study was to determine whether the growth hormone replacement therapy could elevate bone mineral density in growth hormone deficient adults. Methods. In this meta-analysis, searches of Medline, Embase, and The Cochrane Library were undertaken to identify studies in humans of the association between growth hormone treatment and bone mineral density in growth hormone deficient adults. Random effects model was used for this meta-analysis. Results. A total of 20 studies (including one outlier study) with 936 subjects were included in our research. We detected significant overall association of growth hormone treatment with increased bone mineral density of spine, femoral neck, and total body, but some results of subgroup analyses were not consistent with the overall analyses. Conclusions. Our meta-analysis suggested that growth hormone replacement therapy could have beneficial influence on bone mineral density in growth hormone deficient adults, but, in some subject populations, the influence was not evident.
Collapse
Affiliation(s)
- Peng Xue
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, Hebei 050000, China
| | - Yan Wang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, Hebei 050000, China
| | - Jie Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050000, China
| | - Yukun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, Hebei 050000, China
- *Yukun Li:
| |
Collapse
|
25
|
|