1
|
Xu M, Li LP, He X, Lu XZ, Bi XY, Li Q, Xue XR. Metformin induction of heat shock factor 1 activation and the mitochondrial unfolded protein response alleviate cardiac remodeling in spontaneously hypertensive rats. FASEB J 2024; 38:e23654. [PMID: 38717442 DOI: 10.1096/fj.202400070r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/30/2024] [Accepted: 04/23/2024] [Indexed: 06/07/2024]
Abstract
Heart failure and cardiac remodeling are both characterized by mitochondrial dysfunction. Healthy mitochondria are required for adequate contractile activity and appropriate regulation of cell survival. In the mammalian heart, enhancement of the mitochondrial unfolded protein response (UPRmt) is cardioprotective under pressure overload conditions. We explored the UPRmt and the underlying regulatory mechanism in terms of hypertension-induced cardiac remodeling and the cardioprotective effect of metformin. Male spontaneously hypertensive rats and angiotensin II-treated neonatal rat cardiomyocytes were used to induce cardiac hypertrophy. The results showed that hypertension induced the formation of aberrant mitochondria, characterized by a reduced mtDNA/nDNA ratio and swelling, as well as lower levels of mitochondrial complexes I to V and inhibition of the expression of one protein subunit of each of complexes I to IV. Such changes eventually enlarged cardiomyocytes and increased cardiac fibrosis. Metformin treatment increased the mtDNA/nDNA ratio and regulated the UPRmt, as indicated by increased expression of activating transcription factor 5, Lon protease 1, and heat shock protein 60, and decreased expression of C/EBP homologous protein. Thus, metformin improved mitochondrial ultrastructure and function in spontaneously hypertensive rats. In vitro analyses revealed that metformin reduced the high levels of angiotensin II-induced mitochondrial reactive oxygen species in such animals and stimulated nuclear translocation of heat shock factor 1 (HSF1). Moreover, HSF1 small-interfering RNA reduced the metformin-mediated improvements in mitochondrial morphology and the UPRmt by suppressing hypertrophic signals and cardiomyocyte apoptosis. These results suggest that HSF1/UPRmt signaling contributes to the beneficial effects of metformin. Metformin-mediated targeting of mitochondrial protein homeostasis and modulation of HSF1 levels have potential therapeutic implications in terms of cardiac remodeling.
Collapse
Affiliation(s)
- Man Xu
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University Affiliated People's Hospital, Xi'an, Shaanxi, China
| | - Li-Peng Li
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University Affiliated People's Hospital, Xi'an, Shaanxi, China
| | - Xi He
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xing-Zhu Lu
- Department of Pharmacy, Second Affiliated Hospital of Xi'an Jiaotong University Medical School, Xi'an, Shaanxi, China
| | - Xue-Yuan Bi
- Department of Pharmacy, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qi Li
- Department of Science and Education, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University Affiliated People's Hospital, Xi'an, China
| | - Xiao-Rong Xue
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University Affiliated People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Papachristodoulou A, Heidegger I, Virk RK, Di Bernardo M, Kim JY, Laplaca C, Picech F, Schäfer G, De Castro GJ, Hibshoosh H, Loda M, Klocker H, Rubin MA, Zheng T, Benson MC, McKiernan JM, Dutta A, Abate-Shen C. Metformin Overcomes the Consequences of NKX3.1 Loss to Suppress Prostate Cancer Progression. Eur Urol 2024; 85:361-372. [PMID: 37659962 PMCID: PMC10902192 DOI: 10.1016/j.eururo.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/30/2023] [Accepted: 07/26/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND The antidiabetic drug metformin has known anticancer effects related to its antioxidant activity; however, its clinical benefit for prostate cancer (PCa) has thus far been inconclusive. Here, we investigate whether the efficacy of metformin in PCa is related to the expression status of NKX3.1, a prostate-specific homeobox gene that functions in mitochondria to protect the prostate from aberrant oxidative stress. OBJECTIVE To investigate the relationship of NKX3.1 expression and metformin efficacy in PCa. DESIGN, SETTING, AND PARTICIPANTS Functional studies were performed in vivo and in vitro in genetically engineered mouse models and human LNCaP cells, and organotypic cultures having normal or reduced/absent levels of NKX3.1. Correlative studies were performed using two independent retrospective tissue microarray cohorts of radical prostatectomies and a retrospective cohort of prostate biopsies from patients on active surveillance. INTERVENTION Metformin was administered before or after the induction of oxidative stress by treatment with paraquat. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Functional endpoints included analyses of histopathology, tumorigenicity, and mitochondrial function. Correlative endpoints include Kaplan-Meier curves and Cox proportional hazard regression models. RESULTS AND LIMITATIONS Metformin reversed the adverse consequences of NKX3.1 deficiency following oxidative stress in vivo and in vitro, as evident by reduced tumorigenicity and restored mitochondrial function. Patients with low NKX3.1 expression showed a significant clinical benefit from taking metformin. CONCLUSIONS Metformin can overcome the adverse consequences of NKX3.1 loss for PCa progression by protecting against oxidative stress and promoting normal mitochondrial function. These functional activities and clinical correlates were observed only with low NKX3.1 expression. Thus, the clinical benefit of metformin in PCa may depend on the status of NKX3.1 expression. PATIENT SUMMARY Prostate cancer patients with low NKX3.1 are likely to benefit most from metformin treatment to delay disease progression in a precision interception paradigm.
Collapse
Affiliation(s)
- Alexandros Papachristodoulou
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, Innsbruck, AT, Austria
| | - Renu K Virk
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Matteo Di Bernardo
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Jaime Y Kim
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Caroline Laplaca
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Florencia Picech
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Georg Schäfer
- Department of Pathology, Medical University Innsbruck, Innsbruck, AT, Austria
| | - Guarionex Joel De Castro
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Hanina Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Helmut Klocker
- Department of Urology, Medical University Innsbruck, Innsbruck, AT, Austria
| | - Mark A Rubin
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Tian Zheng
- Department of Statistics, Columbia University, New York, NY, USA
| | - Mitchell C Benson
- Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - James M McKiernan
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Aditya Dutta
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Cory Abate-Shen
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
Perazza F, Leoni L, Colosimo S, Musio A, Bocedi G, D’Avino M, Agnelli G, Nicastri A, Rossetti C, Sacilotto F, Marchesini G, Petroni ML, Ravaioli F. Metformin and the Liver: Unlocking the Full Therapeutic Potential. Metabolites 2024; 14:186. [PMID: 38668314 PMCID: PMC11052067 DOI: 10.3390/metabo14040186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Metformin is a highly effective medication for managing type 2 diabetes mellitus. Recent studies have shown that it has significant therapeutic benefits in various organ systems, particularly the liver. Although the effects of metformin on metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis are still being debated, it has positive effects on cirrhosis and anti-tumoral properties, which can help prevent the development of hepatocellular carcinoma. Furthermore, it has been proven to improve insulin resistance and dyslipidaemia, commonly associated with liver diseases. While more studies are needed to fully determine the safety and effectiveness of metformin use in liver diseases, the results are highly promising. Indeed, metformin has a terrific potential for extending its full therapeutic properties beyond its traditional use in managing diabetes.
Collapse
Affiliation(s)
- Federica Perazza
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Laura Leoni
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Santo Colosimo
- Doctorate School of Nutrition Science, University of Milan, 20122 Milan, Italy;
| | | | - Giulia Bocedi
- U.O. Diabetologia, Ospedale C. Magati, Scandiano, 42019 Reggio Emilia, Italy;
| | - Michela D’Avino
- S.C. Endocrinologia Arcispedale Santa Maria Nuova, 42123 Reggio Emilia, Italy;
| | - Giulio Agnelli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Alba Nicastri
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Chiara Rossetti
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Federica Sacilotto
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Giulio Marchesini
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Maria Letizia Petroni
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Federico Ravaioli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
- Division of Hepatobiliary and Immunoallergic Diseases, Department of Internal Medicine, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
4
|
Mujammami M, Aleidi SM, Buzatto AZ, Alshahrani A, AlMalki RH, Benabdelkamel H, Al Dubayee M, Li L, Aljada A, Abdel Rahman AM. Lipidomics Profiling of Metformin-Induced Changes in Obesity and Type 2 Diabetes Mellitus: Insights and Biomarker Potential. Pharmaceuticals (Basel) 2023; 16:1717. [PMID: 38139843 PMCID: PMC10747765 DOI: 10.3390/ph16121717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Metformin is the first-line oral medication for treating type 2 diabetes mellitus (T2DM). In the current study, an untargeted lipidomic analytical approach was used to investigate the alterations in the serum lipidome of a cohort of 89 participants, including healthy lean controls and obese diabetic patients, and to examine the alterations associated with metformin administration. A total of 115 lipid molecules were significantly dysregulated (64 up-regulated and 51 down-regulated) in the obese compared to lean controls. However, the levels of 224 lipid molecules were significantly dysregulated (125 up-regulated and 99 down-regulated) in obese diabetic patients compared to the obese group. Metformin administration in obese diabetic patients was associated with significant dysregulation of 54 lipid molecule levels (20 up-regulated and 34 down-regulated). Levels of six molecules belonging to five lipid subclasses were simultaneously dysregulated by the effects of obesity, T2DM, and metformin. These include two putatively annotated triacylglycerols (TGs), one plasmenyl phosphatidylcholine (PC), one phosphatidylglycerol (PGs), one sterol lipid (ST), and one Mannosyl-phosphoinositol ceramide (MIPC). This study provides new insights into our understanding of the lipidomics alterations associated with obesity, T2DM, and metformin and offers a new platform for potential biomarkers for the progression of diabetes and treatment response in obese patients.
Collapse
Affiliation(s)
- Muhammad Mujammami
- University Diabetes Center, Medical City, King Saud University, Riyadh 11472, Saudi Arabia;
- Endocrinology and Diabetes Unit, Department of Medicine, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Shereen M. Aleidi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | | | - Awad Alshahrani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (A.A.); (M.A.D.)
| | - Reem H. AlMalki
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia;
| | - Mohammed Al Dubayee
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (A.A.); (M.A.D.)
| | - Liang Li
- The Metabolomics Innovation Center (TMIC), Edmonton, AB T6G 1C9, Canada; (A.Z.B.); (L.L.)
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11461, Saudi Arabia
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11461, Saudi Arabia
| |
Collapse
|
5
|
Rabah HM, Mohamed DA, Mariah RA, Abd El-Khalik SR, Khattab HA, AbuoHashish NA, Abdelsattar AM, Raslan MA, Farghal EE, Eltokhy AK. Novel insights into the synergistic effects of selenium nanoparticles and metformin treatment of letrozole - induced polycystic ovarian syndrome: targeting PI3K/Akt signalling pathway, redox status and mitochondrial dysfunction in ovarian tissue. Redox Rep 2023; 28:2160569. [PMID: 36661246 PMCID: PMC9870018 DOI: 10.1080/13510002.2022.2160569] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) has a series of reproductive and metabolic consequences. Although the link between PCOS, IR, and obesity, their impact on the pathogenesis of PCOS has yet to be determined. Dysfunction of PI3K/AKT pathway has been reported as the main cause of IR in PCOS. This study purposed to explore the effects of selenium nanoparticles (SeNPs) alone and combined with metformin (MET) in a PCOS-IR rat model. METHODS After 3 weeks of treatment with SeNPs and/or MET, biochemical analysis of glycemic & lipid profiles, and serum reproductive hormones was performed. Inflammatory, oxidative stress, and mitochondrial dysfunction markers were determined colormetrically. The expression of PI3K and Akt genes were evaluated by Real-time PCR. Histopathological examination and Immunohistochemical analysis of Ki-67 expression were performed. RESULTS The results showed that treatment with SeNPs and/or MET significantly attenuated insulin sensitivity, lipid profile, sex hormones levels, inflammatory, oxidative stress and mitochondrial functions markers. Additionally, PI3K and Akt genes expression were significantly upregulated with improved ovarian histopathological changes. CONCLUSION Combined SeNPs and MET therapy could be potential therapeutic agent for PCOS-IR model via modulation of the PI3K/Akt pathway, enhancing anti-inflammatory and anti-oxidant properties and altered mitochondrial functions. HighlightsThe strong relationship between obesity, insulin resistance, and polycystic ovarian syndrome.Disturbance of the PI3K/Akt signaling pathway is involved in the progression of polycystic ovary syndrome-insulin resistance (PCOS-IR).In PCOS-IR rats, combined SeNPs and metformin therapy considerably alleviated IR by acting on the PI3K/Akt signaling pathway.The combination of SeNPs and metformin clearly repaired ovarian polycystic pathogenesis and improved hormonal imbalance in PCOS-IR rats.
Collapse
Affiliation(s)
- Hanem M. Rabah
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Darin A. Mohamed
- Histopathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Reham A. Mariah
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Haidy A. Khattab
- Medical Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | | - Mohamed A. Raslan
- Gynecology and Obstetrics Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman E. Farghal
- Clinical and Chemical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira K. Eltokhy
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt, Amira K. Eltokhy ; Medical Biochemistry Department, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, Egypt
| |
Collapse
|
6
|
Ponce-Lopez T, González Álvarez Tostado JA, Dias F, Montiel Maltez KH. Metformin Prevents NDEA-Induced Memory Impairments Associated with Attenuating Beta-Amyloid, Tumor Necrosis Factor-Alpha, and Interleukin-6 Levels in the Hippocampus of Rats. Biomolecules 2023; 13:1289. [PMID: 37759689 PMCID: PMC10526195 DOI: 10.3390/biom13091289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
N-nitrosodiethylamine (NDEA) is a potential carcinogen known to cause liver tumors and chronic inflammation, diabetes, cognitive problems, and signs like Alzheimer's disease (AD) in animals. This compound is classified as probably carcinogenic to humans. Usual sources of exposure include food, beer, tobacco, personal care products, water, and medications. AD is characterized by cognitive decline, amyloid-β (Aβ) deposit, tau hyperphosphorylation, and cell loss. This is accompanied by neuroinflammation, which involves release of microglial cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin 1β (IL-1β), by nuclear factor kappa B (NF-κB) upregulation; each are linked to AD progression. Weak PI3K/Akt insulin-signaling inhibits IRS-1 phosphorylation, activates GSK3β and promotes tau hyperphosphorylation. Metformin, an antihyperglycemic agent, has potent anti-inflammatory efficacy. It reduces proinflammatory cytokines such as IL-6, IL-1β, and TNF-α via NF-κB inhibition. Metformin also reduces reactive oxidative species (ROS) and modulates cognitive disorders reported due to brain insulin resistance links. Our study examined how NDEA affects spatial memory in Wistar rats. We found that all NDEA doses tested impaired memory. The 80 µg/kg dose of NDEA increased levels of Aβ1-42, TNF-α, and IL-6 in the hippocampus, which correlated with memory loss. Nonetheless, treatment with 100 mg/kg of metformin attenuated the levels of pro-inflammatory cytokines and Aβ1-42, and enhanced memory. It suggests that metformin may protect against NDEA-triggered memory issues and brain inflammation.
Collapse
Affiliation(s)
- Teresa Ponce-Lopez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Avenida Universidad Anáhuac 46, Lomas Anáhuac, Huixquilucan C.P. 52786, Estado de México, Mexico
| | | | | | | |
Collapse
|
7
|
Barroso E, Montori-Grau M, Wahli W, Palomer X, Vázquez-Carrera M. Striking a gut-liver balance for the antidiabetic effects of metformin. Trends Pharmacol Sci 2023; 44:457-473. [PMID: 37188578 DOI: 10.1016/j.tips.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
Metformin is the most prescribed drug for the treatment of type 2 diabetes mellitus (T2DM), but its mechanism of action has not yet been completely elucidated. Classically, the liver has been considered the major site of action of metformin. However, over the past few years, advances have unveiled the gut as an additional important target of metformin, which contributes to its glucose-lowering effect through new mechanisms of action. A better understanding of the mechanistic details of metformin action in the gut and the liver and its relevance in patients remains the challenge of present and future research and may impact drug development for the treatment of T2DM. Here, we offer a critical analysis of the current status of metformin-driven multiorgan glucose-lowering effects.
Collapse
Affiliation(s)
- Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, E-08950 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Marta Montori-Grau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, E-08950 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore; ToxAlim (Research Center in Food Toxicology), INRAE, UMR1331, 31300 Toulouse Cedex, France
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, E-08950 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, E-08950 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain.
| |
Collapse
|
8
|
Shabbir S, Khurram E, Moorthi VS, Eissa YTH, Kamal MA, Butler AE. The interplay between androgens and the immune response in polycystic ovary syndrome. J Transl Med 2023; 21:259. [PMID: 37062827 PMCID: PMC10105935 DOI: 10.1186/s12967-023-04116-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a metabolic-reproductive-endocrine disorder that, while having a genetic component, is known to have a complex multifactorial etiology. As PCOS is a diagnosis of exclusion, standardized criteria have been developed for its diagnosis. The general consensus is that hyperandrogenism is the primary feature of PCOS and is associated with an array of physiological dysfunctions; excess androgens, for example, have been correlated with cytokine hypersecretion, adipocyte proliferation, and signaling pathway dysregulation. Another key feature of PCOS is insulin resistance, resulting in aberrant glucose and fatty acid metabolism. Additionally, the immune system plays a key role in PCOS. Hyperandrogenism stimulates some immune cells while it inhibits others, thereby disrupting the normal balance of immune cells and creating a state of chronic inflammation. This low-grade inflammation could contribute to infertility since it induces ovarian dysfunction. This dysregulated immune response in PCOS exhibits autoimmunity characteristics that require further investigation. This review paper examines the relationship between androgens and the immune response and how their malfunction contributes to PCOS.
Collapse
Affiliation(s)
- Sania Shabbir
- Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Emaan Khurram
- Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | | | | | - Mohammad Azhar Kamal
- Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
- Department of Pharmaceutics, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | |
Collapse
|
9
|
Xu H, Mao X, Nie Z, Li Y. Oxr1a prevents the premature ovarian failure by regulating oxidative stress and mitochondrial function in zebrafish. Free Radic Biol Med 2023; 203:102-113. [PMID: 37031846 DOI: 10.1016/j.freeradbiomed.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/01/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Premature ovarian failure (POF) is characterized as the ovarian dysfunction and defective oocyte development. In POF patients, ROS level is reported to be significantly higher than normal individuals. However, the involvement of oxidative stress in POF and the regulatory mechanisms underlying the antioxidative process in oocyte development remain largely unknown. Here, we discover that oxidation resistance 1a (Oxr1a), the ortholog of mammalian Oxr1, protects the oocytes of female zebrafish against oxidative stress and thus represses the POF phenotype. Oxr1a was widely expressed in oocytes at different developmental stages, of which the mRNA expression levels were significantly upregulated upon follicle activation and oocyte maturation. Oxr1a knockout exacerbated the POF phenotype, as evidenced by the decreased number and quality of oocytes. Moreover, the oocytes of oxr1a knockout zebrafish exhibited excessive ROS, increased mitochondrial DNA damage, reduced mitochondria, and abnormal morphology. Mechanistically, instead of decomposing ROS directly, Oxr1a participated in the process of oxidative stress through regulating the mRNA expression levels of the key antioxidant enzymes Cat and Sod1. Moreover, treatment with antioxidant N-Acetyl-l-cysteine attenuated the mitochondrial oxidative damage and improved the fertility of mutant females, indicating that Oxr1a may mediates the Sod1/Cat pathway to metabolize the intracellular ROS and avoid the mitochondrial oxidative damage, thus ensuring the normal development and maturation of oocytes. Taken together, these findings are useful for the elucidation of molecular mechanisms underlying the oxidative damage in oocytes and beneficial to the clinical therapeutics of POF.
Collapse
Affiliation(s)
- Hao Xu
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Xiaoyu Mao
- College of Language Intelligence, Sichuan International Studies University, Chongqing, 400031, China
| | - Zhentao Nie
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Yun Li
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
10
|
Kazeminia M, Rajati F, Rajati M. The effect of exercise on anti-Mullerian hormone levels in patients with polycystic ovary syndrome: a systematic review and meta-analysis. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2022. [DOI: 10.1186/s43043-022-00121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Polycystic ovary syndrome (PCOS) is considered as the most common endocrinopathy among women of childbearing age and the most important cause of anovulatory infertility. The present study aimed to estimate the pooled effect of exercise on anti-Mullerian hormone (AMH) levels in PCOS women using systematic review and meta-analysis.
Main body
The present study was conducted according to the PRISMA guidelines from 2011 to October 2021. All published studies, which met the inclusion criteria, were searched in SID, MagIran, Embase, PubMed, Scopus, Web of Science (WoS) databases, and Google Scholar motor engine using related MeSH/Emtree terms, which were combined with free text word. Finally, 12 articles were included in the meta-analysis. As a result of the combination of the studies, after exercise, AMH level in the intervention group significantly decreased up to 0.517 ± 0.169 more than that in the control group (P ˂ 0.05). The results of subgroup analysis demonstrated that the effect of resistance training for 16 weeks was higher on women with body mass index (BMI) (≥ 25 kg/m2) and AMH (≥ 10 ng/mL) before the intervention. GRADEpro software was used to grade the level of evidence.
Conclusion
This systematic review and meta-analysis showed that either strength exercise or aerobic exercise decrease the AMH level in PCOS women. It seems more duration of the exercise has a more potential advantage to reduce the AMH levels in women with PCOS. Although the results graded by very low-quality evidence, it is recommended to include exercise in the treatment programs of PCOS patients.
Collapse
|
11
|
The E3 Ubiquitin Ligase SYVN1 Plays an Antiapoptotic Role in Polycystic Ovary Syndrome by Regulating Mitochondrial Fission. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3639302. [PMID: 36193086 PMCID: PMC9526636 DOI: 10.1155/2022/3639302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common hormonal disorders among premenopausal women. PCOS is accompanied by many other reproductive, endocrinal, and metabolic disorders thus amassing the difficulties encountered by the women affected. However, there is limited information on its molecular etiology. Synoviolin (SYVN1) is an E3 ubiquitin ligase that is thought to participate in the pathology of PCOS. However, the expression and function of SYVN1 in PCOS are unknown. In this study, we found that downregulation of SYVN1 expression was followed by increased apoptosis in the granulosa cells (GCs) of patients with PCOS. Subsequent in vitro experiments indicated that the overexpression of SYVN1 inhibited apoptosis and mitochondrial fission. Furthermore, using immunoprecipitation and western blotting, we identified that SYVN1 promoted the degradation of Drp1 via the proteasome-dependent pathway. Additionally, we generated a PCOS model in female Sprague Dawley rats and treated them with an SYVN1 inhibitor, LS-102. We observed that the inhibition of SYVN1 increased Drp1 levels and exacerbated the degeneration of GCs in the PCOS rat model. Finally, in vitro and in vivo experiments showed that SYVN1 inhibits apoptosis and mitochondrial fission by promoting Drp1 degradation in GCs. These results highlight the function of SYVN1 in PCOS and provide a potential target for the clinical treatment of PCOS.
Collapse
|
12
|
Lin Z, Sui X, Li L, Wang Y, Zhao J. The effect of metformin on low birth weight girls with precocious puberty: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e29765. [PMID: 35776991 PMCID: PMC9239663 DOI: 10.1097/md.0000000000029765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/23/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND In recent years, the role of metformin in girls with precocious puberty (PP) has been increasingly frequently studied. The objective of this present study is to assess the effect of metformin on low birth weight girls with precocious puberty (LBW-PP girls). METHODS We search the confirmed studies about circulating metformin and PP from the databases of EMBASE, PubMed, and Web of Science. Data were reported as weighted mean difference (WMD) and associated 95% confidence intervals (CIs). Analysis was performed by Review Manager 5.3 and Stata version 12.0. RESULTS A total of 205 cases (metformin group n = 102, untreated group n = 103) were included in this study. The meta-analysis of randomized controlled trials (RCTs) suggested that metformin had statistically significant effects on testosterone (P = .001), androstenedione (P = .022), bone mineral density (BMD; P = .151), triglycerides (P ≤ .001), body mass index Z score (BMI Z score; P ≤ .001), dehydroepiandrosterone-sulfate (DHEAS; P = .053), sex hormone-binding globulin (SHBG; P = .049), high-density lipoprotein (HDL) cholesterol (P ≤ .001), low-density lipoprotein (LDL) cholesterol (P = .021), fat mass (P ≤ .001), lean mass (P = .025), and fasting insulin (P = .002). CONCLUSION This meta-analysis provided evidence of the efficacy of metformin in girls with LBW-PP girls, which proved that metformin could improve metabolism and reduce weight. Metformin had a positive effect on preventing LBW-PP girls from developing into obesity and polycystic ovarian syndrome. In addition, this meta-analysis provided important reference opinions and directions for the treatment of LBW-PP girls.
Collapse
Affiliation(s)
- Zhiheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaohui Sui
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lijuan Li
- Changchun University of Science and Technology, Changchun, Jilin, China
| | - Ying Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Junde Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
13
|
Metabolic Action of Metformin. Pharmaceuticals (Basel) 2022; 15:ph15070810. [PMID: 35890109 PMCID: PMC9317619 DOI: 10.3390/ph15070810] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/14/2022] [Accepted: 06/26/2022] [Indexed: 12/12/2022] Open
Abstract
Metformin, a cheap and safe biguanide derivative, due to its ability to influence metabolism, is widely used as a first-line drug for type 2 diabetes (T2DM) treatment. Therefore, the aim of this review was to present the updated biochemical and molecular effects exerted by the drug. It has been well explored that metformin suppresses hepatic glucose production in both AMPK-independent and AMPK-dependent manners. Substantial scientific evidence also revealed that its action is related to decreased secretion of lipids from intestinal epithelial cells, as well as strengthened oxidation of fatty acids in adipose tissue and muscles. It was recognized that metformin’s supra-therapeutic doses suppress mitochondrial respiration in intestinal epithelial cells, whereas its therapeutic doses elevate cellular respiration in the liver. The drug is also suggested to improve systemic insulin sensitivity as a result of alteration in gut microbiota composition, maintenance of intestinal barrier integrity, and alleviation of low-grade inflammation.
Collapse
|
14
|
Rhamnocitrin Attenuates Ovarian Fibrosis in Rats with Letrozole-Induced Experimental Polycystic Ovary Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5558599. [PMID: 35663203 PMCID: PMC9162838 DOI: 10.1155/2022/5558599] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/04/2022] [Accepted: 04/23/2022] [Indexed: 12/12/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine-related cause of infertility in women and has an unknown etiology. Studies have shown that rhamnocitrin (Rha) exhibits positive effects on the reproductive system. This study investigated Rha's antifibrotic effects on PCOS rats and revealed its underlying mechanisms. Female SD rats were randomized into 4 groups (n = 8, each); the control group received tea oil by intraperitoneal injection and 1% w/v CMC by oral gavage; the PCOS group received letrozole (1 mg/kg); the PCOS+Rha group received letrozole and Rha (5 mg/kg); the PCOS+Met group received letrozole and Met (265 mg/kg) for 21 days. At the study end, Rha treatment restored letrozole-induced alterations in the relative ovarian weights, body weight, and relative weights of uterine and visceral adipose tissues. Histological observation showed that Rha ameliorates ovarian structure and fibrosis in PCOS. Administration of Rha reduced letrozole-induced metabolic dysfunction by ameliorating the levels of TC, TG, and HDL-C in the PCOS rats. Rha treatment also modulated the serum levels of sex hormones, which decreased T, E2, and LH and increased FSH in PCOS rats. In addition, Rha treatment modulated insulin resistance and increased gene expression of antioxidant enzymes (Cat, Sod2, Gpx3, Mgst1, Prdx3, Gsta4, Gsr, and Sod1) in the ovaries of the PCOS rats. Finally, Rha treatment appeared to increase the activity of PPAR-γ and inhibit the TGF-β1/Smad pathway in the ovaries of the PCOS rats. Our findings suggest that Rha significantly ameliorated metabolic disturbances and ovarian fibrosis in the PCOS rats. Rha perhaps is an effective compound for preventing ovarian fibrosis in the future.
Collapse
|
15
|
Buczyńska A, Sidorkiewicz I, Krętowski AJ, Zbucka-Krętowska M, Adamska A. Metformin Intervention—A Panacea for Cancer Treatment? Cancers (Basel) 2022; 14:cancers14051336. [PMID: 35267644 PMCID: PMC8909770 DOI: 10.3390/cancers14051336] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
The molecular mechanism of action and the individual influence of various metabolic pathways related to metformin intervention are under current investigation. The available data suggest that metformin provides many advantages, exhibiting anti-inflammatory, anti-cancer, hepatoprotective, cardioprotective, otoprotective, radioprotective, and radio-sensitizing properties depending on cellular context. This literature review was undertaken to provide novel evidence concerning metformin intervention, with a particular emphasis on cancer treatment and prevention. Undoubtedly, the pleiotropic actions associated with metformin include inhibiting inflammatory processes, increasing antioxidant capacity, and improving glycemic and lipid metabolism. Consequently, these characteristics make metformin an attractive medicament to translate to human trials, the promising results of which were also summarized in this review.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.J.K.)
- Correspondence: (A.B.); (A.A.); Tel.: +48-85-746-8513 (A.B.); +48-85-746-8660 (A.A.)
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.J.K.)
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.J.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Agnieszka Adamska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
- Correspondence: (A.B.); (A.A.); Tel.: +48-85-746-8513 (A.B.); +48-85-746-8660 (A.A.)
| |
Collapse
|
16
|
Feng J, Wang X, Ye X, Ares I, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Mitochondria as an important target of metformin: The mechanism of action, toxic and side effects, and new therapeutic applications. Pharmacol Res 2022; 177:106114. [DOI: 10.1016/j.phrs.2022.106114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/25/2022]
|
17
|
Arbo BD, Schimith LE, Goulart dos Santos M, Hort MA. Repositioning and development of new treatments for neurodegenerative diseases: Focus on neuroinflammation. Eur J Pharmacol 2022; 919:174800. [DOI: 10.1016/j.ejphar.2022.174800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 11/03/2022]
|
18
|
Hernández-Jiménez JL, Barrera D, Espinoza-Simón E, González J, Ortíz-Hernández R, Escobar L, Echeverría O, Torres-Ramírez N. Polycystic ovarian syndrome: signs and feedback effects of hyperandrogenism and insulin resistance. Gynecol Endocrinol 2022; 38:2-9. [PMID: 34787028 DOI: 10.1080/09513590.2021.2003326] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a disease whose diagnosis is based on the detection of hyperandrogenism (HA) and ovulatory dysfunction. Women with PCOS frequently develop insulin resistance (IR), which generates a metabolic condition that involves a decrease in the action of insulin at the cellular level and is linked to compensatory hyperinsulinemia (HI). In PCOS, the ovary remains sensitive to the action of insulin. Additionally, it has been observed that the main effect of insulin in the ovary is the stimulation of androgen synthesis, resulting in HA, one of the fundamental characteristics of the PCOS. In this sense, the excess of androgens favors the development of IR, thus perpetuating the cycle of IR-HI-HA, and therefore PCOS. Moreover, mitochondrial dysfunction is present in PCOS patients and is a common feature in both IR and HA. This review places electron transfer as a key element in HA and IR development, with emphasis on the relationship between androgen biosynthesis and mitochondrial function. Indeed, metformin has been involved in repair mitochondrial dysfunction, decrease of oxidative stress, reduction of androgens levels and the enhancing of insulin sensitivity. Therefore, we propose that treatment with metformin could decrease HI and consequently HA, restoring, at least in part, the metabolic and hormonal disorders of PCOS.
Collapse
Affiliation(s)
- Jenifer Lizbet Hernández-Jiménez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Ciudad de México, México
| | - David Barrera
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Emilio Espinoza-Simón
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Coyoacán, Ciudad de México, México
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Ciudad de México, México
| | - Rosario Ortíz-Hernández
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Ciudad de México, México
| | - Luisa Escobar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Ciudad de México, México
| | - Olga Echeverría
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Ciudad de México, México
| | - Nayeli Torres-Ramírez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Avenida Universidad 3000, Ciudad de México, México
| |
Collapse
|
19
|
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinopathy in women of reproductive age. Although its essential clinical manifestation includes a plethora of symptoms and signs, which largely reflects the underlying hyperandrogenism, oligo/anovulation, and polycystic ovarian morphology, PCOS may also be associated with many metabolic derangements. These metabolic derangements happen to overlap with many of the core constituents of the metabolic syndrome (MBS)—increased insulin resistance, central obesity, and dyslipidemia. The two disorders also display similarly increased risks for certain metabolic and vascular diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Due to the many similarities between metabolic syndrome and PCOS, this review aims to examine the evidence concerning the overlapping features, the risks for comorbidities, possible shared mechanisms, and treatment strategies in patients with coexisting PCOS and MBS.
Collapse
Affiliation(s)
- Yun-Chiao Hsieh
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Kai Yang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Jou Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
- Livia ShangYu Wan Chair Professor of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Hurley DJ, Irnaten M, O’Brien C. Metformin and Glaucoma-Review of Anti-Fibrotic Processes and Bioenergetics. Cells 2021; 10:cells10082131. [PMID: 34440899 PMCID: PMC8394782 DOI: 10.3390/cells10082131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness globally. With an aging population, disease incidence will rise with an enormous societal and economic burden. The treatment strategy revolves around targeting intraocular pressure, the principle modifiable risk factor, to slow progression of disease. However, there is a clear unmet clinical need to find a novel therapeutic approach that targets and halts the retinal ganglion cell (RGC) degeneration that occurs with fibrosis. RGCs are highly sensitive to metabolic fluctuations as a result of multiple stressors and thus their viability depends on healthy mitochondrial functioning. Metformin, known for its use in type 2 diabetes, has come to the forefront of medical research in multiple organ systems. Its use was recently associated with a 25% reduced risk of glaucoma in a large population study. Here, we discuss its application to glaucoma therapy, highlighting its effect on fibrotic signalling pathways, mitochondrial bioenergetics and NAD oxidation.
Collapse
Affiliation(s)
- Daire J. Hurley
- Department of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, D07 R2WY Dublin, Ireland; (M.I.); (C.O.)
- School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Correspondence:
| | - Mustapha Irnaten
- Department of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, D07 R2WY Dublin, Ireland; (M.I.); (C.O.)
| | - Colm O’Brien
- Department of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, D07 R2WY Dublin, Ireland; (M.I.); (C.O.)
- School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
21
|
The Hormetic Effect of Metformin: "Less Is More"? Int J Mol Sci 2021; 22:ijms22126297. [PMID: 34208371 PMCID: PMC8231127 DOI: 10.3390/ijms22126297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Metformin (MTF) is the first-line therapy for type 2 diabetes (T2DM). The euglycemic effect of MTF is due to the inhibition of hepatic glucose production. Literature reports that the principal molecular mechanism of MTF is the activation of 5′-AMP-activated protein kinase (AMPK) due to the decrement of ATP intracellular content consequent to the inhibition of Complex I, although this effect is obtained only at millimolar concentrations. Conversely, micromolar MTF seems to activate the mitochondrial electron transport chain, increasing ATP production and limiting oxidative stress. This evidence sustains the idea that MTF exerts a hormetic effect based on its concentration in the target tissue. Therefore, in this review we describe the effects of MTF on T2DM on the principal target organs, such as liver, gut, adipose tissue, endothelium, heart, and skeletal muscle. In particular, data indicate that all organs, except the gut, accumulate MTF in the micromolar range when administered in therapeutic doses, unmasking molecular mechanisms that do not depend on Complex I inhibition.
Collapse
|
22
|
Ozcan C, Dixit G, Li Z. Activation of AMP-Activated Protein Kinases Prevents Atrial Fibrillation. J Cardiovasc Transl Res 2021; 14:492-502. [PMID: 32844365 DOI: 10.1007/s12265-020-10069-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022]
Abstract
Atrial fibrillation (AF) is common, yet there is no preventive therapy for AF. We tested the efficacy of AMP-activated protein kinase (AMPK) activators, metformin, and aspirin, in primary prevention of AF in cardiac-specific liver kinase B1 (LKB1) knockout (KO) mouse model of AF. Incidence of spontaneous AF was significantly reduced in treated KO mice with metformin (10 mg/kg/day) (8.3% in male and 10.3% in female) and aspirin (20 mg/kg/day) (29.4% in male and 21.4% in female) compared with untreated littermates (81% in male and 67% in female) at 8 weeks (p < 0.05). Prevention of AF was associated with activation of AMPK in treated mice and thereby improvement of mitochondrial function, gap junction proteins (connexin 40/43), and intra- and inter-cellular ultrastructure in atrial myocardium. Fibrosis was significantly less in treated mice atria. Pharmacological activation of AMPK is an effective upstream therapy for the primary prevention of AF in susceptible heart. Graphical abstract.
Collapse
Affiliation(s)
- Cevher Ozcan
- Department of Medicine, Section of Cardiology, Heart and Vascular Center, University of Chicago Medical Center, Chicago, IL, USA.
- Department of Medicine, Section of Cardiology, Center for Arrhythmia Care, Heart and Vascular Center, The University of Chicago Biological Sciences Division, 5841 S. Maryland Avenue, MC 6080, Chicago, IL, 60637, USA.
| | - Gunjan Dixit
- Department of Medicine, Section of Cardiology, Heart and Vascular Center, University of Chicago Medical Center, Chicago, IL, USA
| | - Zhenping Li
- Department of Medicine, Section of Cardiology, Heart and Vascular Center, University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
23
|
Abstract
The biguanide metformin is the most commonly used antidiabetic drug. Recent studies show that metformin not only improves chronic inflammation by improving metabolic parameters but also has a direct anti-inflammatory effect. In light of these findings, it is essential to identify the inflammatory pathways targeted by metformin to develop a comprehensive understanding of the mechanisms of action of this drug. Commonly accepted mechanisms of metformin action include AMPK activation and inhibition of mTOR pathways, which are evaluated in multiple diseases. Additionally, metformin's action on mitochondrial function and cellular homeostasis processes such as autophagy is of particular interest because of the importance of these mechanisms in maintaining cellular health. Both dysregulated mitochondria and failure of the autophagy pathways, the latter of which impair clearance of dysfunctional, damaged, or excess organelles, affect cellular health drastically and can trigger the onset of metabolic and age-related diseases. Immune cells are the fundamental cell types that govern the health of an organism. Thus, dysregulation of autophagy or mitochondrial function in immune cells has a remarkable effect on susceptibility to infections, response to vaccination, tumor onset, and the development of inflammatory and autoimmune conditions. In this study, we summarize the latest research on metformin's regulation of immune cell mitochondrial function and autophagy as evidence that new clinical trials on metformin with primary outcomes related to the immune system should be considered to treat immune-mediated diseases over the near term.
Collapse
Affiliation(s)
- Leena P Bharath
- Department of Nutrition and Public Health, Merrimack College, North Andover, Massachusetts
| | - Barbara S Nikolajczyk
- Department of Pharmacology and Nutritional Sciences and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
24
|
Biagioni EM, May LE, Broskey NT. The impact of advanced maternal age on pregnancy and offspring health: A mechanistic role for placental angiogenic growth mediators. Placenta 2021; 106:15-21. [PMID: 33601220 DOI: 10.1016/j.placenta.2021.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 01/01/2023]
Abstract
The birth rates among women of advanced maternal age (AMA) have risen over the last two decades; yet, pregnancies with AMA are considered high-risk and are associated with a significant increase in pregnancy complications. Although the mechanisms leading to pregnancy complications in women with AMA are not fully understood, it has been well established in the literature that offspring exposed to unfavorable environmental conditions in utero, such as gestational diabetes, preeclampsia, and/or intrauterine growth restriction during the early stages of development are subject to long-term health consequences. Additionally, angiogenic growth mediators, which drive vascular development of the placenta, are imbalanced in pregnancies with AMA. These same imbalances also occur in pregnancies complicated by preeclampsia, gestational diabetes, and obesity. This review discusses the impact of AMA on pregnancy and offspring health, and the potential mechanistic role of placental angiogenic growth mediators in the development of pregnancy complications at AMA.
Collapse
Affiliation(s)
- Ericka M Biagioni
- College of Health and Human Performance, Department of Kinesiology, East Carolina University, Greenville, NC, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Linda E May
- College of Health and Human Performance, Department of Kinesiology, East Carolina University, Greenville, NC, USA; School of Dental Medicine, Department of Foundational Sciences and Research, East Carolina University, Greenville, NC, USA
| | - Nicholas T Broskey
- College of Health and Human Performance, Department of Kinesiology, East Carolina University, Greenville, NC, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
25
|
Ravera S, Caicci F, Degan P, Maggi D, Manni L, Puddu A, Nicolò M, Traverso CE, Panfoli I. Inhibitory Action of Antidiabetic Drugs on the Free Radical Production by the Rod Outer Segment Ectopic Aerobic Metabolism. Antioxidants (Basel) 2020; 9:E1133. [PMID: 33203090 PMCID: PMC7696108 DOI: 10.3390/antiox9111133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Rod outer segments (OS) express the FoF1-ATP synthase and the respiratory chain, conducting an ectopic aerobic metabolism that produces free radicals in vitro. Diabetic retinopathy, a leading cause of vision loss, is associated with oxidative stress in the outer retina. Since metformin and glibenclamide, two anti-type 2 diabetes drugs, target the respiratory complexes, we studied the effect of these two drugs, individually or in association, on the free radical production in purified bovine rod OS. ATP synthesis, oxygen consumption, and oxidative stress production were assayed by luminometry, oximetry and flow cytometry, respectively. The expression of FoF1-ATP synthase was studied by immunogold electron microscopy. Metformin had a hormetic effect on the OS complex I and ATP synthetic activities, being stimulatory at concentrations below 1 mM, and inhibitory above. Glibenclamide inhibited complexes I and III, as well as ATP production in a concentration-dependent manner. Maximal concentrations of both drugs inhibited the ROI production by the light-exposed OS. Data, consistent with the delaying effect of these drugs on the onset of diabetic retinopathy, suggest that a combination of the two drugs at the beginning of the treatment might reduce the oxidative stress production helping the endogenous antioxidant defences in avoiding retinal damage.
Collapse
Affiliation(s)
- Silvia Ravera
- Dipartimento di Medicina Sperimentale, Università di Genoa, Via De Toni 14, 16132 Genova, Italy;
| | - Federico Caicci
- Dipartimento di Biologia, Università di Padova, via U. Bassi 58/B, 35121 Padova, Italy; (F.C.); (L.M.)
| | - Paolo Degan
- U.O. Mutagenesis and Preventive Oncology, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi, 10, 16132 Genova, Italy;
| | - Davide Maggi
- Department of Internal Medicine and Medical Specialties, University of Genova, 16132 Genova, Italy; (D.M.); (A.P.)
| | - Lucia Manni
- Dipartimento di Biologia, Università di Padova, via U. Bassi 58/B, 35121 Padova, Italy; (F.C.); (L.M.)
| | - Alessandra Puddu
- Department of Internal Medicine and Medical Specialties, University of Genova, 16132 Genova, Italy; (D.M.); (A.P.)
| | - Massimo Nicolò
- Clinica Oculistica (DINOGMI), Università di Genova, V.le Benedetto XV 6, 16132 Genova, Italy; (M.N.); (C.E.T.)
- Fondazione per la Macula onlus, Università di Genova, V.le Benedetto XV 6, 16132 Genova, Italy
| | - Carlo E. Traverso
- Clinica Oculistica (DINOGMI), Università di Genova, V.le Benedetto XV 6, 16132 Genova, Italy; (M.N.); (C.E.T.)
| | - Isabella Panfoli
- Dipartimento di Farmacia (DIFAR), Università di Genova, V.le Benedetto XV 3, 16132 Genova, Italy
| |
Collapse
|
26
|
Metformin and Systemic Metabolism. Trends Pharmacol Sci 2020; 41:868-881. [PMID: 32994049 DOI: 10.1016/j.tips.2020.09.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/14/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
Abstract
Metformin can improve patients' hyperglycemia through significant suppression of hepatic glucose production. However, up to 300 times higher concentrations of metformin accumulate in the intestine than in the circulation, where it alters nutrient metabolism in intestinal epithelial cells and microbiome, leading to increased lactate production. Hepatocytes use lactate to make glucose at the cost of energy expenditure, creating a futile intestine-liver cycle. Furthermore, metformin reduces blood lipopolysaccharides and its initiated low-grade inflammation and increased oxidative phosphorylation in liver and adipose tissues. These metformin effects result in the improvement of insulin sensitivity and glucose utilization in extrahepatic tissues. In this review, I discuss the current understanding of the impact of metformin on systemic metabolism and its molecular mechanisms of action in various tissues.
Collapse
|
27
|
Wang Y, An H, Liu T, Qin C, Sesaki H, Guo S, Radovick S, Hussain M, Maheshwari A, Wondisford FE, O'Rourke B, He L. Metformin Improves Mitochondrial Respiratory Activity through Activation of AMPK. Cell Rep 2020; 29:1511-1523.e5. [PMID: 31693892 PMCID: PMC6866677 DOI: 10.1016/j.celrep.2019.09.070] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/11/2019] [Accepted: 09/23/2019] [Indexed: 12/25/2022] Open
Abstract
Impaired mitochondrial respiratory activity contributes to the development of insulin resistance in type 2 diabetes. Metformin, a first-line antidiabetic drug, functions mainly by improving patients’ hyperglycemia and insulin resistance. However, its mechanism of action is still not well understood. We show here that pharmacological metformin concentration increases mitochondrial respiration, membrane potential, and ATP levels in hepatocytes and a clinically relevant metformin dose increases liver mitochondrial density and complex 1 activity along with improved hyperglycemia in high-fat- diet (HFD)-fed mice. Metformin, functioning through 5′ AMP-activated protein kinase (AMPK), promotes mitochondrial fission to improve mitochondrial respiration and restore the mitochondrial life cycle. Furthermore, HFD-fed-mice with liver-specific knockout of AMPKα1/2 subunits exhibit higher blood glucose levels when treated with metformin. Our results demonstrate that activation of AMPK by metformin improves mitochondrial respiration and hyperglycemia in obesity. We also found that supra-pharmacological metformin concentrations reduce adenine nucleotides, resulting in the halt of mitochondrial respiration. These findings suggest a mechanism for metformin’s anti-tumor effects. The mechanism of metformin action still remains controversial, in particular on mitochondrial activity and the involvement of AMPK. Wang et al. show that pharmacological metformin concentration or dose improves mitochondrial respiration by increasing mitochondrial fission through AMPK-Mff signaling; in contrast, supra-pharmacological metformin concentrations reduce mitochondrial respiration through decreasing adenine nucleotide levels.
Collapse
Affiliation(s)
- Yu Wang
- Division of Neonatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hongying An
- Division of Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ting Liu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Caolitao Qin
- Division of Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Shaodong Guo
- Department of Nutrition and Food Science, Texas A&M University, TX 77843, USA
| | - Sally Radovick
- Departments of Pediatrics and Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Mehboob Hussain
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Akhil Maheshwari
- Division of Neonatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Fredric E Wondisford
- Departments of Pediatrics and Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Brian O'Rourke
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ling He
- Division of Neonatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Division of Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
28
|
Yang PK, Chou CH, Chang CH, Chen SU, Ho HN, Chen MJ. Changes in peripheral mitochondrial DNA copy number in metformin-treated women with polycystic ovary syndrome: a longitudinal study. Reprod Biol Endocrinol 2020; 18:69. [PMID: 32660613 PMCID: PMC7359290 DOI: 10.1186/s12958-020-00629-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/01/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients with polycystic ovarian syndrome (PCOS) are associated with known alterations in mitochondria DNA copy number (mtDNA-CN). The aim of this study is to study the change in mtDNA-CN in patients with PCOS who were treated with metformin. METHODS This is a prospective cohort of patients with PCOS, who received metformin for one year. From 2009 to 2015, 88 women diagnosed with PCOS, based on the Rotterdam criteria, were enrolled. Serial measurements of mtDNA-CN, 8-hydroxydeoxyguanosine (8-OHdG), anthropometric, metabolic, endocrine, and inflammatory markers were obtained before and after 3, 6, and 12 months of treatment. RESULTS A significant decrease in mtDNA-CN was seen over the course of one year. Other markers, including 8-OHdG, testosterone, free androgen index, blood pressure and liver enzymes, also decreased in the same interval. On regression analysis, there was a significant association between the change in mtDNA-CN and serum total testosterone, and no association between mtDNA-CN and metabolic factors. CONCLUSIONS Treatment with metformin is associated with a time-dependent decrease in mtDNA-CN in patients with PCOS who are treated over the course of one year. This may signify a reduction in mitochondria dysfunction. The change in mtDNA-CN corresponds to a similar change in serum total testosterone, and suggests a possible relationship between mtDNA-CN and testosterone. TRIAL REGISTRATION ClinicalTrials.gov , NCT00172523 . Registered September 15, 2005.
Collapse
Affiliation(s)
- Po-Kai Yang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, No. 8, Chung-Shan South Road, 100, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Hong Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, No. 8, Chung-Shan South Road, 100, Taipei, Taiwan
| | - Chin-Hao Chang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Shee-Uan Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, No. 8, Chung-Shan South Road, 100, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hong-Nerng Ho
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, No. 8, Chung-Shan South Road, 100, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
- College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Jou Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, No. 8, Chung-Shan South Road, 100, Taipei, Taiwan.
- College of Medicine, National Taiwan University, Taipei, Taiwan.
- Livia Shangyu Wan Scholar, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
29
|
Pradas I, Rovira-Llopis S, Naudí A, Bañuls C, Rocha M, Hernandez-Mijares A, Pamplona R, Victor VM, Jové M. Metformin induces lipid changes on sphingolipid species and oxidized lipids in polycystic ovary syndrome women. Sci Rep 2019; 9:16033. [PMID: 31690730 PMCID: PMC6831788 DOI: 10.1038/s41598-019-52263-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Metformin is one of the treatments used for PCOS pathology decreasing body weight, plasma androgen, FSH and glucose levels. Unfortunately, there is little known about metformin's effects on lipid metabolism, a crucial process in PCOS pathology. We have employed a lipidomic approach to explore alterations in the plasma lipid profile of patients with PCOS following metformin treatment. The aim is to offer new insights about the effect of metformin in PCOS patients. Plasma samples were obtained from 27 subjects prior to and following 12 weeks of metformin treatment. A detailed biochemical characterization and lipidomic profile was performed. Metformin reduces BMI, HOMA-IR, FSH and androstenedione and increases DHEA-S but no changes were found in glucose levels after treatment. Multivariate statistics revealed a specific lipidomic signature due to the effect of 12 weeks of metformin treatment in PCOS patients. This signature includes changes in sphingolipid metabolism suggesting a crosstalk between these lipid species and the androgenic metabolism and a decrease in oxidized lipids reinforcing that metformin treatment improves oxidative stress status. Our study confirms the specific effect of metformin in lipid metabolism on women with PCOS after 12 weeks of treatment.
Collapse
Affiliation(s)
- Irene Pradas
- Department of Experimental Medicine, Lleida University-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), 25198, Lleida, Spain
| | - Susana Rovira-Llopis
- Foundation for the Promotion of Healthcare and Biomedical Research in the Valencian Community (FISABIO), Service of Endocrinology, University Hospital Dr. Peset, 46017, Valencia, Spain
| | - Alba Naudí
- Department of Experimental Medicine, Lleida University-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), 25198, Lleida, Spain
| | - Celia Bañuls
- Foundation for the Promotion of Healthcare and Biomedical Research in the Valencian Community (FISABIO), Service of Endocrinology, University Hospital Dr. Peset, 46017, Valencia, Spain
| | - Milagros Rocha
- Foundation for the Promotion of Healthcare and Biomedical Research in the Valencian Community (FISABIO), Service of Endocrinology, University Hospital Dr. Peset, 46017, Valencia, Spain
| | - Antonio Hernandez-Mijares
- Foundation for the Promotion of Healthcare and Biomedical Research in the Valencian Community (FISABIO), Service of Endocrinology, University Hospital Dr. Peset, 46017, Valencia, Spain
- Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia University, 46010, Valencia, Spain
- Department of Medicine, Valencia University, 46010, Valencia, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida University-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), 25198, Lleida, Spain
| | - Victor M Victor
- Foundation for the Promotion of Healthcare and Biomedical Research in the Valencian Community (FISABIO), Service of Endocrinology, University Hospital Dr. Peset, 46017, Valencia, Spain.
- Department of Physiology, Valencia University, 46010, Valencia, Spain.
| | - Mariona Jové
- Department of Experimental Medicine, Lleida University-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), 25198, Lleida, Spain.
| |
Collapse
|
30
|
Zhang J, Bao Y, Zhou X, Zheng L. Polycystic ovary syndrome and mitochondrial dysfunction. Reprod Biol Endocrinol 2019; 17:67. [PMID: 31420039 PMCID: PMC6698037 DOI: 10.1186/s12958-019-0509-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent hormonal disorder of premenopausal women worldwide and is characterized by reproductive, endocrine, and metabolic abnormalities. The clinical manifestations of PCOS include oligomenorrhea or amenorrhea, hyperandrogenism, ovarian polycystic changes, and infertility. Women with PCOS are at an increased risk of suffering from type 2 diabetes; me\tabolic syndrome; cardiovascular events, such as hypertension, dyslipidemia; gynecological diseases, including infertility, endometrial dysplasia, endometrial cancer, and ovarian malignant tumors; pregnancy complications, such as premature birth, low birthweight, and eclampsia; and emotional and mental disorders in the future. Although numerous studies have focused on PCOS, the underlying pathophysiological mechanisms of this disease remain unclear. Mitochondria play a key role in energy production, and mitochondrial dysfunction at the cellular level can affect systemic metabolic balance. The recent wide acceptance of functional mitochondrial disorders as a correlated factor of numerous diseases has led to the presupposition that abnormal mitochondrial metabolic markers are associated with PCOS. Studies conducted in the past few years have confirmed that increased oxidative stress is associated with the progression and related complications of PCOS and have proven the relationship between other mitochondrial dysfunctions and PCOS. Thus, this review aims to summarize and discuss previous and recent findings concerning the relationship between mitochondrial dysfunction and PCOS.
Collapse
Affiliation(s)
- Jingshun Zhang
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin China
| | - Yigang Bao
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin China
| | - Xu Zhou
- 0000 0004 1760 5735grid.64924.3dCollege of Animal Sciences, Jilin University, Changchun, Jilin China
| | - Lianwen Zheng
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin China
| |
Collapse
|
31
|
Atef MM, Abd-Ellatif RN, Emam MN, Abo El Gheit RE, Amer AI, Hafez YM. Therapeutic potential of sodium selenite in letrozole induced polycystic ovary syndrome rat model: Targeting mitochondrial approach (selenium in PCOS). Arch Biochem Biophys 2019; 671:245-254. [PMID: 31251923 DOI: 10.1016/j.abb.2019.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/14/2019] [Accepted: 06/23/2019] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endorinopathy in fertile women with heterogeneous reproductive and metabolic phenotypes and unknown etiology. This study was undertaken to investigate the beneficial effect of selenium in management of letrozole induced PCOS and its role in modulating mitochondrial dynamics, and its associated signals. Twenty four adult female rats were enrolled and randomly divided into four equal groups; control group received 0.5% w/v carboxymethyl cellulose (CMC); PCOS group received letrozole (1 mg/kg, daily) in 0.5% CMC for 21 days. From day 22 to day 36, after letrozole PCOS induction, the (PCOS +Metformin) group received metformin (2 mg/kg, daily) while (PCOS + sodium selenite) group received sodium selenite (0.1 mg/kg, daily). All doses were given via oral gavage. At the study end, serum hormone levels, lipid profile and HOMA-IR were assessed. Ovaries were dissected, used for histopathological evaluation, immunohistochemical detection of B-cell lymphoma-2 (Bcl-2), and its associated X protein (Bax) expression, measurement of redox status, mitochondrial dynamics markers and citrate synthase (CS) activity. Furthermore Mitofusins 2 (Mfn2) and dynamin related protein 1 (Drp1) mRNA expression was assessed by real time PCR. Selenium treatment of PCOS rats succeeded, comparable to metformin, to greatly improve the PCOS associated endocrine and metabolic phenotypes and histopathological changes, mostly through modulating mitochondrial dynamics, anti-apoptotic action, alleviating oxidative stress and mitochondrial dysfunction. So, selenium could provide a novel therapeutic strategy for PCOS.
Collapse
Affiliation(s)
- Marwa Mohamed Atef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Marwa Nagy Emam
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | | | - Alaa Ibrahim Amer
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Yasser Mostafa Hafez
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
32
|
Paolicchi E, Gemignani F, Krstic-Demonacos M, Dedhar S, Mutti L, Landi S. Targeting hypoxic response for cancer therapy. Oncotarget 2017; 7:13464-78. [PMID: 26859576 PMCID: PMC4924654 DOI: 10.18632/oncotarget.7229] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/17/2016] [Indexed: 12/21/2022] Open
Abstract
Hypoxic tumor microenvironment (HTM) is considered to promote metabolic changes, oncogene activation and epithelial mesenchymal transition, and resistance to chemo- and radio-therapy, all of which are hallmarks of aggressive tumor behavior. Cancer cells within the HTM acquire phenotypic properties that allow them to overcome the lack of energy and nutrients supply within this niche. These phenotypic properties include activation of genes regulating glycolysis, glucose transport, acidosis regulators, angiogenesis, all of which are orchestrated through the activation of the transcription factor, HIF1A, which is an independent marker of poor prognosis. Moreover, during the adaptation to a HTM cancer cells undergo deep changes in mitochondrial functions such as “Warburg effect” and the “reverse Warburg effect”. This review aims to provide an overview of the characteristics of the HTM, with particular focus on novel therapeutic strategies currently in clinical trials, targeting the adaptive response to hypoxia of cancer cells.
Collapse
Affiliation(s)
- Elisa Paolicchi
- Genetics-Department of Biology, University of Pisa, Pisa, Italy
| | | | - Marija Krstic-Demonacos
- School of Environment and Life Sciences, College of Science and Technology, University of Salford, Salford, UK
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency and Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luciano Mutti
- School of Environment and Life Sciences, College of Science and Technology, University of Salford, Salford, UK
| | - Stefano Landi
- Genetics-Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
33
|
Wang J, Zhu L, Hu K, Tang Y, Zeng X, Liu J, Xu J. Effects of metformin treatment on serum levels of C-reactive protein and interleukin-6 in women with polycystic ovary syndrome: a meta-analysis: A PRISMA-compliant article. Medicine (Baltimore) 2017; 96:e8183. [PMID: 28953677 PMCID: PMC5626320 DOI: 10.1097/md.0000000000008183] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Metformin is effective for the treatment of polycystic ovary syndrome (PCOS), but conflicting results regarding its impact on serum levels of C-reactive protein (CRP) and interleukin-6 (IL-6) in women with PCOS have been reported. To provide high-quality evidence about the effect of treatment with metformin on CRP and IL-6 in PCOS, relevant studies that assessed the serum levels of CRP and IL-6 in women with PCOS receiving metformin treatment were reviewed and analyzed. METHODS A literature search was conducted in the Science Citation Index, PubMed, Embase, and Cochrane Library databases, and personal contact was made with the authors. Random-effects model was used to estimate the standardized mean differences (SMDs) with 95% confidence intervals (95% CIs). To ensure synthesis of the best available evidence, subgroup analysis, sensitivity analysis, meta-regression analysis, and publication bias were performed. RESULTS Of 216 studies identified, 20 were included in the meta-analysis (7 prospective, nonrandomized studies, and 13 randomized control trials). Data suggest that serum levels of CRP were decreased after metformin treatment in PCOS patients with an SMD (95% CI) of -0.86 [-1.24 to -0.48] and P = .000 (random-effects). However, significant heterogeneity was detected across studies (I = 84.6% and P = .000). Unfortunately, the sources of heterogeneity were not found by subgroup analysis and meta-regression analysis. Serum IL-6 concentrations were not significantly changed after metformin treatment in PCOS with an SMD (95% CI) of -0.48 [-1.26 to 0.31] and P > .05 (random-effects). Significant heterogeneity was also detected across studies (I = 90.9% and P = .000). The subgroup analysis suggested that treatment-related reductions in serum IL-6 levels were significantly correlated with BMI, whereas the sources of heterogeneity were not found. In addition, we noticed that metformin treatment could decrease BMI in the CRP and IL-6 related studies (SMD = -0.45, 95% CI: -0.68 to -0.23; SMD = -0.44, 95% CI: -0.73 to -0.16). CONCLUSION This meta-analysis showed a significant decrease of serum CRP levels, especially in obese women, but no significant changes in IL-6 levels after metformin treatment in women with PCOS. In general, the data support that early metformin therapy may ameliorate the state of chronic inflammation in women with PCOS. Considering the obvious heterogeneity reported in the literature, further well-designed investigations with larger samples are needed to ascertain the long-term effects of metformin on chronic inflammation in PCOS.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University
| | - Lingyan Zhu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University
| | - Kaixiang Hu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University
| | - Yunliang Tang
- Department of Endocrinology and Metabolism, The Third Hospital of Nanchang, Nanchang, Jiangxi, China
| | - Xiangxia Zeng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University
| | - Jianying Liu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University
| |
Collapse
|
34
|
Ravera S, Cossu V, Tappino B, Nicchia E, Dufour C, Cavani S, Sciutto A, Bolognesi C, Columbaro M, Degan P, Cappelli E. Concentration-dependent metabolic effects of metformin in healthy and Fanconi anemia lymphoblast cells. J Cell Physiol 2017; 233:1736-1751. [PMID: 28681917 DOI: 10.1002/jcp.26085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022]
Abstract
Metformin (MET) is the drug of choice for patients with type 2 diabetes and has been proposed for use in cancer therapy and for treating other metabolic diseases. More than 14,000 studies have been published addressing the cellular mechanisms affected by MET. However, several in vitro studies have used concentrations of the drug 10-100-fold higher than the plasmatic concentration measured in patients. Here, we evaluated the biochemical, metabolic, and morphologic effects of various concentrations of MET. Moreover, we tested the effect of MET on Fanconi Anemia (FA) cells, a DNA repair genetic disease with defects in energetic and glucose metabolism, as well as on human promyelocytic leukemia (HL60) cell lines. We found that the response of wild-type cells to MET is concentration dependent. Low concentrations (15 and 150 µM) increase both oxidative phosphorylation and the oxidative stress response, acting on the AMPK/Sirt1 pathway, while the high concentration (1.5 mM) inhibits the respiratory chain, alters cell morphology, becoming toxic to the cells. In FA cells, MET was unable to correct the energetic/respiratory defect and did not improve the response to oxidative stress and DNA damage. By contrast, HL60 cells appear sensitive also at 150 μM. Our findings underline the importance of the MET concentration in evaluating the effect of this drug on cell metabolism and demonstrate that data obtained from in vitro experiments, that have used high concentrations of MET, cannot be readily translated into improving our understanding of the cellular effects of metformin when used in the clinical setting.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Vanessa Cossu
- Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Barbara Tappino
- Centro di Diagnostica Genetica e Biochimica Delle Malattie Metaboliche, Istituto Giannina Gaslini, Genova, Italy
| | - Elena Nicchia
- Department of Medical Sciences University of Trieste, Trieste, Italy
| | - Carlo Dufour
- Hematology Unit, Istituto Giannina Gaslini, Genova, Italy
| | - Simona Cavani
- Laboratorio di Genetica Umana, E.O. Ospedali Galliera, Genova, Italy
| | - Andrea Sciutto
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genova, Italy
| | - Claudia Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genova, Italy
| | - Marta Columbaro
- SC Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Paolo Degan
- U.O. Mutagenesi e Prevenzione Oncologica, IRCCS AOU San Martino-IST (Istituto Nazionale per la Ricerca sul Cancro), Genova, Italy
| | | |
Collapse
|
35
|
Sortino MA, Salomone S, Carruba MO, Drago F. Polycystic Ovary Syndrome: Insights into the Therapeutic Approach with Inositols. Front Pharmacol 2017. [PMID: 28642705 PMCID: PMC5463048 DOI: 10.3389/fphar.2017.00341] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is characterized by hormonal abnormalities that cause menstrual irregularity and reduce ovulation rate and fertility, associated to insulin resistance. Myo-inositol (cis-1,2,3,5-trans-4,6-cyclohexanehexol, MI) and D-chiro-inositol (cis-1,2,4-trans-3,5,6-cyclohexanehexol, DCI) represent promising treatments for PCOS, having shown some therapeutic benefits without substantial side effects. Because the use of inositols for treating PCOS is widespread, a deep understanding of this treatment option is needed, both in terms of potential mechanisms and efficacy. This review summarizes the current knowledge on the biological effects of MI and DCI and the results obtained from relevant intervention studies with inositols in PCOS. Based on the published results, both MI and DCI represent potential valid therapeutic approaches for the treatment of insulin resistance and its associated metabolic and reproductive disorders, such as those occurring in women affected by PCOS. Furthermore, the combination MI/DCI seems also effective and might be even superior to either inositol species alone. However, based on available data, a particular MI:DCI ratio to be administered to PCOS patients cannot be established. Further studies are then necessary to understand the real contents of MI or DCI uptaken by the ovary following oral administration in order to identify optimal doses and/or combination ratios.
Collapse
Affiliation(s)
- Maria A Sortino
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania UniversityCatania, Italy
| | - Salvatore Salomone
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania UniversityCatania, Italy
| | - Michele O Carruba
- Center for the Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of MilanMilan, Italy
| | - Filippo Drago
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania UniversityCatania, Italy
| |
Collapse
|
36
|
Chen S, Jiang M, Ding T, Wang J, Long P. Calprotectin is a potential prognostic marker for polycystic ovary syndrome. Ann Clin Biochem 2016; 54:253-257. [PMID: 27217417 DOI: 10.1177/0004563216653762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Calprotectin is an antimicrobial, calcium and zinc-binding heterocomplex protein and has been proposed as a marker to rule out inflammatory conditions. The aim of this study was to evaluate the role of calprotectin in the diagnosis of polycystic ovary syndrome and to investigate the association between calprotectin and insulin resistance. Methods A total of 41 females with polycystic ovary syndrome and 54 age-matched without polycystic ovary syndrome were eligible for the study. Serum concentration of calprotectin was determined using enzyme-linked immunosorbent assay. Clinical characteristics, hormone and metabolic parameters were evaluated in each subject. The predictive value of serum calprotectin was assessed using receiver operating characteristic curves. Correlations between the serum calprotectin concentrations and insulin resistance were examined using Spearman's correlation. Results We found that the serum calprotectin concentrations were significantly higher in polycystic ovary syndrome compared with the non-polycystic ovary syndrome group ( P < 0.001). The area under the receiver operating characteristic curve assay yielded a satisfactory result of 0.88 (95% confidence interval 0.81-0.95; P < 0.001). The optimum cut-off was 2.4 µg/mL with a 85.2% specificity and 75.6% sensitivity for polycystic ovary syndrome diagnosis. A significant positive correlation was found between the serum calprotectin and insulin resistance. Conclusions These results suggest that calprotectin might be a useful adjunct in the diagnosis of polycystic ovary syndrome, especially those with insulin resistance.
Collapse
Affiliation(s)
- Shouzhen Chen
- 1 Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Mei Jiang
- 2 Jingmen No.2 People's Hospital of Hubei Province, Jingmen, China
| | - Tao Ding
- 2 Jingmen No.2 People's Hospital of Hubei Province, Jingmen, China
| | - Junmei Wang
- 2 Jingmen No.2 People's Hospital of Hubei Province, Jingmen, China
| | - Ping Long
- 2 Jingmen No.2 People's Hospital of Hubei Province, Jingmen, China
| |
Collapse
|