1
|
Xiong Y, Zhang X, Xie W, Yin Y, Qian Y, Ying X, Zheng X, Wang X. DUSP4 inhibited tumor cell proliferation by downregulating glycolysis via p-ERK/p-PGK1 signaling in ovarian cancer. Cancer Cell Int 2025; 25:87. [PMID: 40082940 PMCID: PMC11908039 DOI: 10.1186/s12935-025-03722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/01/2025] [Indexed: 03/16/2025] Open
Abstract
Ovarian cancer (OC) remains a leading cause of gynecological cancer-related mortality, with poor prognosis and limited therapeutic options, underscoring the urgent need for a deeper understanding of OC biology. In this study, we identified a marked reduction in dual-specificity phosphatase 4 (DUSP4) expression in OC tissues compared to benign ovarian masses, with even further decreases observed in metastatic lesions. Moreover, DUSP4 expression varied among OC subtypes, with the lowest levels observed in serous ovarian cancer, and was associated with P53 and KI67 protein levels, altered TP53 mutation rates, advanced tumor stages, and poorer prognosis. Functional experiments demonstrated that DUSP4 overexpression suppressed OC cell proliferation, migration, and invasion in vitro. Phosphoproteomic profiling via LC-MS/MS analysis identified the MAPK pathway and cellular metabolism as key downstream targets of DUSP4. Notably, DUSP4 overexpression reduced phosphorylation of PGK1 at Ser203, a critical regulator of anaerobic glycolysis, and decreased its mitochondrial localization, leading to reduced lactate production and increased ROS levels. Mechanistically, DUSP4 dephosphorylated p-ERK, disrupting its interaction with PGK1 and subsequently reducing PGK1 S203 phosphorylation. In vivo, DUSP4 overexpression significantly inhibited tumor growth in mouse models, accompanied by decreased p-ERK and PGK1 S203 levels. These findings highlight a regulatory axis involving DUSP4, p-ERK, and PGK1, through which DUSP4 modulates glycolysis and tumor progression. This study establishes DUSP4 as a prognostic biomarker and a potential therapeutic target for OC, offering new insights into its role in tumor metabolism and growth.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Xiaoqian Zhang
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Weiwei Xie
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yujia Yin
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yujing Qian
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Xiang Ying
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Xiaocui Zheng
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Jiang H, Deng L, Lin Z, Yang K, Yang J, Zhao W, Gong W. GSDMB interacts with IGF2BP1 to suppress colorectal cancer progression by modulating DUSP6-ERK pathway. Int Immunopharmacol 2024; 143:113280. [PMID: 39353395 DOI: 10.1016/j.intimp.2024.113280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
There is growing evidence that the protein family of Gasdermins (GSDMs) play an essential role during the progression of colorectal cancer (CRC). However, it is not completely clear that how GSDMB, abundantly expressed in epithelial cells of gastrointestinal tract, regulates the tumorigenesis of CRC. A wealth of evidence linking GSDMB to the pathogenesis of cancer has come from genome-wide association studies. Here, we provide evidence that aberrantly upregulated GSDMB is responsible for suppressing the CRC progression by using in vitro cell and intestinal organoid, as well as in vivo GSDMB transgenic mice models. Mechanistically, GSDMB interacts with insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), which directly binds to and recognizes the 3'-UTR of dual specificity phosphatase 6 (DUSP6) mRNA, enhances the translation of DUSP6 protein and inhibits downstream ERK phosphorylation, thereby facilitating cell death and restraining cell proliferation. Our results suggest that GSDMB has potential as a novel therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Haiyang Jiang
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; BenQ Medical Center, the Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Liting Deng
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Zexing Lin
- BenQ Medical Center, the Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Kui Yang
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jun Yang
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wei Zhao
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wenbin Gong
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
3
|
Martin-Vega A, Earnest S, Augustyn A, Wichaidit C, Gazdar A, Girard L, Peyton M, Kollipara RK, Minna JD, Johnson JE, Cobb MH. ASCL1-ERK1/2 Axis: ASCL1 restrains ERK1/2 via the dual specificity phosphatase DUSP6 to promote survival of a subset of neuroendocrine lung cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545148. [PMID: 37398419 PMCID: PMC10312738 DOI: 10.1101/2023.06.15.545148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The transcription factor achaete-scute complex homolog 1 (ASCL1) is a lineage oncogene that is central for the growth and survival of small cell lung cancers (SCLC) and neuroendocrine non-small cell lung cancers (NSCLC-NE) that express it. Targeting ASCL1, or its downstream pathways, remains a challenge. However, a potential clue to overcoming this challenage has been information that SCLC and NSCLC-NE that express ASCL1 exhibit extremely low ERK1/2 activity, and efforts to increase ERK1/2 activity lead to inhibition of SCLC growth and surival. Of course, this is in dramatic contrast to the majority of NSCLCs where high activity of the ERK pathway plays a major role in cancer pathogenesis. A major knowledge gap is defining the mechanism(s) underlying the low ERK1/2 activity in SCLC, determining if ERK1/2 activity and ASCL1 function are inter-related, and if manipulating ERK1/2 activity provides a new therapeutic strategy for SCLC. We first found that expression of ERK signaling and ASCL1 have an inverse relationship in NE lung cancers: knocking down ASCL1 in SCLCs and NE-NSCLCs increased active ERK1/2, while inhibition of residual SCLC/NSCLC-NE ERK1/2 activity with a MEK inhibitor increased ASCL1 expression. To determine the effects of ERK activity on expression of other genes, we obtained RNA-seq from ASCL1-expressing lung tumor cells treated with an ERK pathway MEK inhibitor and identified down-regulated genes (such as SPRY4, ETV5, DUSP6, SPRED1) that potentially could influence SCLC/NSCLC-NE tumor cell survival. This led us to discover that genes regulated by MEK inhibition suppress ERK activation and CHIP-seq demonstrated these are bound by ASCL1. In addition, SPRY4, DUSP6, SPRED1 are known suppressors of the ERK1/2 pathway, while ETV5 regulates DUSP6. Survival of NE lung tumors was inhibited by activation of ERK1/2 and a subset of ASCL1-high NE lung tumors expressed DUSP6. Because the dual specificity phosphatase 6 (DUSP6) is an ERK1/2-selective phosphatase that inactivates these kinases and has a pharmacologic inhibitor, we focused mechanistic studies on DUSP6. These studies showed: Inhibition of DUSP6 increased active ERK1/2, which accumulated in the nucleus; pharmacologic and genetic inhibition of DUSP6 affected proliferation and survival of ASCL1-high NE lung cancers; and that knockout of DUSP6 "cured" some SCLCs while in others resistance rapidly developed indicating a bypass mechanism was activated. Thus, our findings fill this knowledge gap and indicate that combined expression of ASCL1, DUSP6 and low phospho-ERK1/2 identify some neuroendocrine lung cancers for which DUSP6 may be a therapeutic target.
Collapse
|
4
|
He W, Sun Y, Ge J, Wang X, Lin B, Yu S, Li Y, Hong S, Xiao H. STRA6 regulates tumor immune microenvironment and is a prognostic marker in BRAF-mutant papillary thyroid carcinoma. Front Endocrinol (Lausanne) 2023; 14:1076640. [PMID: 36843593 PMCID: PMC9950572 DOI: 10.3389/fendo.2023.1076640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND BRAF mutation is one of the most common genetic alterations contributing to the initiation and progression of papillary thyroid carcinoma (PTC). However, the prognostic value of BRAF mutation for PTC is limited. Novel markers are needed to identify BRAF-mutant patients with poor prognosis. METHODS Transcriptional expression data were downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Pathway enrichment was performed by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and gene set enrichment analysis (GSEA). Protein-protein interaction networks were predicted by the GeneMANIA. The correlation between STRA6 expression and immune infiltration was analyzed by tumor immune estimation resource (TIMER) and tumor-immune system interaction database (TISIDB). Immunohistochemistry was used to detect the STRA6 protein expression level of PTC. Infiltration of regulatory T cells (Tregs) and CD8+ T cells in tumor samples were analyzed by fluorescent multiplex immunohistochemistry. RESULTS In BRAF-mutant PTC, STRA6 was extremely upregulated and predicted unfavorable survival, which was an independent risk factor for increased mortality risk. Bioinformatic analyses indicated that STRA6 might activate the MAPK pathway synergistically with BRAFV600E. The expression of STRA6 was associated with immune infiltrates and T cell exhaustion. Fluorescent multiplex immunohistochemistry showed that STRA6 increased Tregs abundance and decreased CD8+ T cells infiltration in PTC. Moreover, STRA6 promoted epithelial-mesenchymal transition via increased cancer-associated fibroblasts infiltration. CONCLUSIONS Our study demonstrates STRA6 may serve as a prognostic marker for BRAF-mutated PTC, which may drive thyroid carcinogenesis via activation of oncogenic pathway and regulation of tumor immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Weiman He
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yijia Sun
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiawei Ge
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuejie Wang
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bo Lin
- Department of Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuang Yu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shubin Hong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Haipeng Xiao, ; Shubin Hong,
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Haipeng Xiao, ; Shubin Hong,
| |
Collapse
|
5
|
Toraih EA, Fawzy MS, Ning B, Zerfaoui M, Errami Y, Ruiz EM, Hussein MH, Haidari M, Bratton M, Tortelote GG, Hilliard S, Nilubol N, Russell JO, Shama MA, El-Dahr SS, Moroz K, Hu T, Kandil E. A miRNA-Based Prognostic Model to Trace Thyroid Cancer Recurrence. Cancers (Basel) 2022; 14:cancers14174128. [PMID: 36077665 PMCID: PMC9454675 DOI: 10.3390/cancers14174128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Some thyroid tumors elected for surveillance remain indolent, while others progress. The mechanism responsible for this difference is poorly understood, making it challenging to devise patient surveillance plans. Early prediction is important for tailoring treatment and follow-up in high-risk patients. The aim of our study was to identify predictive markers for progression. We leveraged a highly sensitive test that accurately predicts which thyroid nodules are more likely to develop lymph node metastasis, thereby improving care and outcomes for cancer patients. Abstract Papillary thyroid carcinomas (PTCs) account for most endocrine tumors; however, screening and diagnosing the recurrence of PTC remains a clinical challenge. Using microRNA sequencing (miR-seq) to explore miRNA expression profiles in PTC tissues and adjacent normal tissues, we aimed to determine which miRNAs may be associated with PTC recurrence and metastasis. Public databases such as TCGA and GEO were utilized for data sourcing and external validation, respectively, and miR-seq results were validated using quantitative real-time PCR (qRT-PCR). We found miR-145 to be significantly downregulated in tumor tissues and blood. Deregulation was significantly related to clinicopathological features of PTC patients including tumor size, lymph node metastasis, TNM stage, and recurrence. In silico data analysis showed that miR-145 can negatively regulate multiple genes in the TC signaling pathway and was associated with cell apoptosis, proliferation, stem cell differentiation, angiogenesis, and metastasis. Taken together, the current study suggests that miR-145 may be a biomarker for PTC recurrence. Further mechanistic studies are required to uncover its cellular roles in this regard.
Collapse
Affiliation(s)
- Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: ; Tel.: +1-346-907-4237
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar P.O. Box 1321, Saudi Arabia
| | - Bo Ning
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Mourad Zerfaoui
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Youssef Errami
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Emmanuelle M. Ruiz
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mohammad H. Hussein
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Muhib Haidari
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Melyssa Bratton
- Biospecimen Core Laboratory, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Giovane G. Tortelote
- Section of Pediatric Nephrology, Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Sylvia Hilliard
- Section of Pediatric Nephrology, Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Naris Nilubol
- Endocrine Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20814, USA
| | - Jonathon O. Russell
- Division of Head and Neck Endocrine Surgery, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins, Baltimore, MD 21287, USA
| | - Mohamed A. Shama
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Samir S. El-Dahr
- Section of Pediatric Nephrology, Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Tony Hu
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
6
|
Duan S, Moro L, Qu R, Simoneschi D, Cho H, Jiang S, Zhao H, Chang Q, de Stanchina E, Arbini AA, Pagano M. Loss of FBXO31-mediated degradation of DUSP6 dysregulates ERK and PI3K-AKT signaling and promotes prostate tumorigenesis. Cell Rep 2021; 37:109870. [PMID: 34686346 PMCID: PMC8577224 DOI: 10.1016/j.celrep.2021.109870] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/12/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023] Open
Abstract
FBXO31 is the substrate receptor of one of many CUL1-RING ubiquitin ligase (CRL1) complexes. Here, we show that low FBXO31 mRNA levels are associated with high pre-operative prostate-specific antigen (PSA) levels and Gleason grade in human prostate cancer. Mechanistically, the ubiquitin ligase CRL1FBXO31 promotes the ubiquitylation-mediated degradation of DUSP6, a dual specificity phosphatase that dephosphorylates and inactivates the extracellular-signal-regulated kinase-1 and -2 (ERK1/2). Depletion of FBXO31 stabilizes DUSP6, suppresses ERK signaling, and activates the PI3K-AKT signaling cascade. Moreover, deletion of FBXO31 promotes tumor development in a mouse orthotopic model of prostate cancer. Treatment with BCI, a small molecule inhibitor of DUSP6, suppresses AKT activation and prevents tumor formation, suggesting that the FBXO31 tumor suppressor activity is dependent on DUSP6. Taken together, our studies highlight the relevance of the FBXO31-DUSP6 axis in the regulation of ERK- and PI3K-AKT-mediated signaling pathways, as well as its therapeutic potential in prostate cancer.
Collapse
Affiliation(s)
- Shanshan Duan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Loredana Moro
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Rui Qu
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Hyunwoo Cho
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Shaowen Jiang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Huiyong Zhao
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Qing Chang
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Elisa de Stanchina
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Arnaldo A Arbini
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Department of Pathology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA.
| |
Collapse
|
7
|
Kambaru A, Chaudhary N. Role of Protein Tyrosine Phosphatase in Regulation of Cell Signaling Cascades Affecting Tumor Cell Growth: A Future Perspective as Anti- Cancer Drug Target. Curr Pharm Biotechnol 2021; 23:920-931. [PMID: 34375185 DOI: 10.2174/1389201022666210810094739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 11/22/2022]
Abstract
Protein Tyrosine Phosphatase (PTP) superfamily is a key enzyme involved in the regulation of growth-related cell signaling cascades, such as the RAS/MAPK pathway, that directly affect cancer cell growth and metastasis. Several studies have indicated that the drug resistance observed in several late-stage tumors might also be affected by the levels of PTP in the cell. Hence, these phosphatases have been in the limelight for the past few decades as potential drug-targets and several promising drug candidates have been developed, even though none of these drugs have reached the market yet. In this review, we explore the potential of PTP as a viable anti-cancer drug target by studying PTPs, their regulation of several key cancer cell signaling pathways and how their levels affect various types of cancer. Furthermore, we present the current scenario of PTP as a molecular target and the various challenges faced in the development of PTP-targeting anti-cancer drugs.
Collapse
Affiliation(s)
| | - Nidhee Chaudhary
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
8
|
Corrado A, Aceto R, Silvestri R, Dell'Anno I, Ricci B, Miglietta S, Romei C, Giovannoni R, Poliseno L, Evangelista M, Vitiello M, Cipollini M, Garritano S, Giusti L, Zallocco L, Elisei R, Landi S, Gemignani F. Pro64His (rs4644) Polymorphism Within Galectin-3 Is a Risk Factor of Differentiated Thyroid Carcinoma and Affects the Transcriptome of Thyrocytes Engineered via CRISPR/Cas9 System. Thyroid 2021; 31:1056-1066. [PMID: 33308024 DOI: 10.1089/thy.2020.0366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: Galectin-3 (LGALS3) is an important glycoprotein involved in the malignant transformation of thyrocytes acting in the extracellular matrix, cytoplasm, and nucleus where it regulates TTF-1 and TCF4 transcription factors. Within LGALS3 gene, a common single-nucleotide polymorphism (SNP) (c.191C>A, p.Pro64His; rs4644) encoding for the variant Proline to Histidine at codon 64 has been extensively studied. However, data on rs4644 in the context of thyroid cancer are lacking. Thus, the aim of the present work was to evaluate the role of the rs4644 SNP as risk factor for differentiated thyroid cancer (DTC) and to determine the effect on the transcriptome in thyrocytes. Methods: A case/control association study in 1223 controls and 1142 unrelated consecutive DTC patients was carried out to evaluate the association between rs4644-P64H and the risk of DTC. We used the nonmalignant cell line Nthy-Ori (rs4644-C/A) and the CRISPR/Cas9 technique to generate isogenic cells carrying either the rs4644-A/A or rs4644-C/C homozygosis. Then, the transcriptome of the derivative and unmodified parental cells was analyzed by RNA-seq. Genes differentially expressed were validated by quantitative reverse transcription PCR and further tested in the parental Nthy-Ori cells after LGALS3 gene silencing, to investigate whether the expression of target genes was dependent on galectin-3 levels. Results: rs4644 AA genotype was associated with a reduced risk of DTC (compared with CC, ORadj = 0.66; 95% confidence interval = 0.46-0.93; Pass = 0.02). We found that rs4644 affects galectin-3 as a transcriptional coregulator. Among 34 genes affected by rs4644, HES1, HSPA6, SPC24, and NHS were of particular interest since their expression was rs4644-dependent (CC>AA for the first and AA>CC for the others), also in 574 thyroid tissues of Genotype-Tissue Expression (GTEx) biobank. Moreover, the expression of these genes was regulated by LGALS3-silencing. Using the proximity ligation assay in Nthy-Ori cells, we found that the TTF-1 interaction was genotype dependent. Conclusions: Our data show that in thyroid, rs4644 is a trans-expression quantitative trait locus that can modify the transcriptional expression of downstream genes, through the modulation of TTF-1.
Collapse
Affiliation(s)
- Alda Corrado
- Genetic Unit, Department of Biology, University of Pisa, Pisa, Italy
| | - Romina Aceto
- Genetic Unit, Department of Biology, University of Pisa, Pisa, Italy
- Humanitas Clinical and Research Centre-IRCCS, Milan, Italy
| | - Roberto Silvestri
- Genetic Unit, Department of Biology, University of Pisa, Pisa, Italy
| | - Irene Dell'Anno
- Genetic Unit, Department of Biology, University of Pisa, Pisa, Italy
| | - Benedetta Ricci
- Fondazione I.R.C.C.S., Istituto Neurologico Carlo Besta, Milan, Italy
| | - Simona Miglietta
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Romei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Laura Poliseno
- Institute of Clinical Physiology (IFC), CNR, Pisa, Italy
| | | | | | - Monica Cipollini
- Genetic Unit, Department of Biology, University of Pisa, Pisa, Italy
| | - Sonia Garritano
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Laura Giusti
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Lorenzo Zallocco
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Rossella Elisei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Landi
- Genetic Unit, Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
9
|
Gao PP, Qi XW, Sun N, Sun YY, Zhang Y, Tan XN, Ding J, Han F, Zhang Y. The emerging roles of dual-specificity phosphatases and their specific characteristics in human cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188562. [PMID: 33964330 DOI: 10.1016/j.bbcan.2021.188562] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022]
Abstract
Reversible phosphorylation of proteins, controlled by kinases and phosphatases, is involved in various cellular processes. Dual-specificity phosphatases (DUSPs) can dephosphorylate phosphorylated serine, threonine and tyrosine residues. This family consists of 61 members, 44 of which have been identified in human, and these 44 members are classified into six subgroups, the phosphatase and tensin homolog (PTEN) protein phosphatases (PTENs), mitogen-activated protein kinase phosphatases (MKPs), atypical DUSPs, cell division cycle 14 (CDC14) phosphatases (CDC14s), slingshot protein phosphatases (SSHs), and phosphatases of the regenerating liver (PRLs). Growing evidence has revealed dysregulation of DUSPs as one of the common phenomenons and highlighted their key roles in human cancers. Furthermore, their differential expression may be a potential biomarker for tumor prognosis. Despite this, there are still many unstudied members of DUSPs need to further explore their precise roles and mechanism in cancers. Most importantly, the systematic review is very limited on the functional/mechanistic characteristics and clinical application of DUSPs at present. In this review, the structures, functions and underlying mechanisms of DUSPs are systematically reviewed, and the molecular and functional characteristics of DUSPs in different tumor types according to the current researches are summarized. In addition, the potential roles of the unstudied members and the possible different mechanisms of DUSPs in cancer are discussed and classified based on homology alignment and structural domain analyses. Moreover, the specific characteristics of their expression and prognosis are further determined in more than 30 types of human cancers by using the online databases. Finally, their potential application in precise diagnosis, prognosis and treatment of different types of cancers, and the main possible problems for the clinical application at present are prospected.
Collapse
Affiliation(s)
- Ping-Ping Gao
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xiao-Wei Qi
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Na Sun
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Yuan-Yuan Sun
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; Department of Clinical Pharmacy, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin 130023, China
| | - Ye Zhang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xuan-Ni Tan
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jun Ding
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China.
| | - Yi Zhang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
10
|
Kanda Y, Mizuno A, Takasaki T, Satoh R, Hagihara K, Masuko T, Endo Y, Tanabe G, Sugiura R. Down-regulation of dual-specificity phosphatase 6, a negative regulator of oncogenic ERK signaling, by ACA-28 induces apoptosis in NIH/3T3 cells overexpressing HER2/ErbB2. Genes Cells 2020; 26:109-116. [PMID: 33249692 DOI: 10.1111/gtc.12823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022]
Abstract
Dual-specificity phosphatase 6 (DUSP6) is a key negative feedback regulator of the member of the RAS-ERK MAPK signaling pathway that is associated with cellular proliferation and differentiation. Deterioration of DUSP6 expression could therefore result in deregulated growth activity. We have previously discovered ACA-28, a novel anticancer compound with a unique property to stimulate ERK phosphorylation and induce apoptosis in ERK-active melanoma cells. However, the mechanism of cancer cell-specific-apoptosis by ACA-28 remains obscure. Here, we investigated the involvement of DUSP6 in the mechanisms of the ACA-28-mediated apoptosis by using the NIH/3T3 cells overexpressing HER2/ErbB2 (A4-15 cells), as A4-15 exhibited higher ERK phosphorylation and are more susceptible to ACA-28 than NIH/3T3. We showed that A4-15 exhibited high DUSP6 protein levels, which require ERK activation. Notably, the silencing of the DUDSP6 gene by siRNA inhibited proliferation and induced apoptosis in A4-15, but not in NIH/3T3, indicating that A4-15 requires high DUSP6 expression for growth. Importantly, ACA-28 preferentially down-regulated the DUSP6 protein and proliferation in A4-15 via the proteasome, while it stimulated ERK phosphorylation. Collectively, the up-regulation of DUSP6 may exert a growth-promoting role in cancer cells overexpressing HER2. DUSP6 down-regulation in ERK-active cancer cells might have the potential as a novel cancer measure.
Collapse
Affiliation(s)
- Yuki Kanda
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Japan
| | - Ayami Mizuno
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Japan
| | - Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Japan
| | - Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Japan
| | - Takashi Masuko
- Laboratory of Natural Drug Resources, Department of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Japan
| | - Yuichi Endo
- Laboratory of Natural Drug Resources, Department of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Japan
| | - Genzoh Tanabe
- Laboratory of Organic Chemistry, Department of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Japan.,Pharmaceutical Research and Technology Institute, Kindai University, Higashi-Osaka, Japan
| |
Collapse
|
11
|
Wan Q, Liu C, Liu C, Liu W, Wang X, Wang Z. Discovery and Validation of a Metastasis-Related Prognostic and Diagnostic Biomarker for Melanoma Based on Single Cell and Gene Expression Datasets. Front Oncol 2020; 10:585980. [PMID: 33324561 PMCID: PMC7722782 DOI: 10.3389/fonc.2020.585980] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
Background Single cell sequencing can provide comprehensive information about gene expression in individual tumor cells, which can allow exploration of heterogeneity of malignant melanoma cells and identification of new anticancer therapeutic targets. Methods Single cell sequencing of 31 melanoma patients in GSE115978 was downloaded from the Gene Expression Omniniub (GEO) database. First, the limma package in R software was used to identify the differentially expressed metastasis related genes (MRGs). Next, we developed a prognostic MRGs biomarker in the cancer genome atlas (TCGA) by combining univariate cox analysis and the least absolute shrinkage and selection operator (LASSO) method and was further validated in another two independent datasets. The efficiency of MRGs biomarker in diagnosis of melanoma was also evaluated in multiple datasets. The pattern of somatic tumor mutation, immune infiltration, and underlying pathways were further explored. Furthermore, nomograms were constructed and decision curve analyses were also performed to evaluate the clinical usefulness of the nomograms. Results In total, 41 MRGs were screened out from 1958 malignant melanoma cell samples in GSE115978. Next, a 5-MRGs prognostic marker was constructed and validated, which show more effective performance for the diagnosis and prognosis of melanoma patients. The nomogram showed good accuracies in predicting 3 and 5 years survival, and the decision curve of nomogram model manifested a higher net benefit than tumor stage and clark level. In addition, melanoma patients can be divided into high and low risk subgroups, which owned differential mutation, immune infiltration, and clinical features. The low risk subgroup suffered from a higher tumor mutation burden (TMB), and higher levels of T cells infiltrating have a significantly longer survival time than the high risk subgroup. Gene Set Enrichment Analysis (GSEA) revealed that the extracellular matrix (ECM) receptor interaction and epithelial mesenchymal transition (EMT) were the most significant upregulated pathways in the high risk group. Conclusions We identified a robust MRGs marker based on single cell sequencing and validated in multiple independent cohort studies. Our finding provides a new clinical application for prognostic and diagnostic prediction and finds some potential targets against metastasis of melanoma.
Collapse
Affiliation(s)
- Qi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Chengxiu Liu
- Department of Ophthalmology, Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Chang Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Weiqin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
12
|
Zuchegna C, Di Zazzo E, Moncharmont B, Messina S. Dual-specificity phosphatase (DUSP6) in human glioblastoma: epithelial-to-mesenchymal transition (EMT) involvement. BMC Res Notes 2020; 13:374. [PMID: 32771050 PMCID: PMC7414695 DOI: 10.1186/s13104-020-05214-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Objective Glioblastoma (GBM) is the most aggressive and common form of primary brain cancer. Survival is poor and improved treatment options are urgently needed. Dual specificity phosphatase-6 (DUSP6) is actively involved in oncogenesis showing unexpected tumor-promoting properties in human glioblastoma, contributing to the development and expression of the full malignant and invasive phenotype. The purpose of this study was to assess if DUSP6 activates epithelial-to-mesenchymal transition (EMT) in glioblastoma and its connection with the invasive capacity. Results We found high levels of transcripts mRNA by qPCR analysis in a panel of primary GBM compared to adult or fetal normal tissues. At translational levels, these data correlate with high protein expression and long half-life values by cycloheximide-chase assay in immunoblot experiments. Next, we demonstrate that DUSP6 gene is involved in epithelial-to-mesenchymal transition (EMT) in GBM by immunoblot characterization of the mesenchymal and epithelial markers. Vimentin, N-Cadherin, E-Cadherin and fibronectin were measured with and without DUSP6 over-expression, and in response to several stimuli such as chemotherapy treatment. In particular, the high levels of vimentin were blunted at increasing doses of cisplatin in condition of DUSP6 over-expression while N-Cadherin contextually increased. Finally, DUSP6 per se increased invasion capacity of GBM. Overall, our data unveil the DUSP6 involvement in invasive mesenchymal-like properties in GBM.
Collapse
Affiliation(s)
- Candida Zuchegna
- Department of Biology, Federico II University of Naples, 80126, Naples, Italy
| | - Erika Di Zazzo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Bruno Moncharmont
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Samantha Messina
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy.
| |
Collapse
|
13
|
Kato M, Onoyama I, Yoshida S, Cui L, Kawamura K, Kodama K, Hori E, Matsumura Y, Yagi H, Asanoma K, Yahata H, Itakura A, Takeda S, Kato K. Dual-specificity phosphatase 6 plays a critical role in the maintenance of a cancer stem-like cell phenotype in human endometrial cancer. Int J Cancer 2020; 147:1987-1999. [PMID: 32159851 PMCID: PMC7496376 DOI: 10.1002/ijc.32965] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/12/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Abstract
The prognosis of patients with high‐grade or advanced‐stage endometrial cancer remains poor. As cancer stem‐like cells (CSCs) are thought to be associated with endometrial cancers, it is essential to investigate the molecular mechanisms that regulate endometrial CSCs. Dual‐specificity phosphatase 6 (DUSP6) functions as a negative‐feedback regulator of MAPK–ERK1/2 signaling, but its role in endometrial cancer remains unknown. We investigated whether DUSP6 is involved in cancer cell stemness using endometrial cancer cell lines and specimens from endometrial cancer patients. DUSP6 induced the expression of CSC‐related genes including ALDH1, Nanog, SOX2 and Oct4A, increased the population of cells in the G0/G1 phase, and promoted sphere formation ability. DUSP6 knockdown resulted in reduced cell invasion and metastasis, whereas DUSP6 overexpression inhibited apoptosis under serum‐free conditions. Moreover, DUSP6 decreased phosphorylated ERK1/2 and increased phosphorylated Akt levels, which potentially induces CSC features. In patients with endometrial cancers, DUSP6 expression was determined using immunohistochemistry, and based on the results, the patients were dichotomized into high‐ and low‐DUSP6‐expression groups. Progression‐free survival and overall survival were significantly shorter in the high‐DUSP6‐expression group. These results suggest that DUSP6 has potential value as a biomarker of CSCs and as a target of therapies designed to eliminate CSCs in endometrial cancer. What's new? Although cancer stem‐like cells (CSCs) are involved in human endometrial cancers, the underlying molecular mechanisms and biomarkers for CSCs in endometrial cancers remain elusive. Here, the authors found that DUSP6 plays an important role in regulating endometrial CSC phenotypes by increasing self‐renewal ability and starvation resistance. DUSP6 expression was required for inducing invasion and metastasis and resulted in ERK1/2 dephosphorylation and Akt phosphorylation, which potentially contribute to the promotion of CSC phenotypes. As DUSP6 expression was also positively associated with worse progression‐free and overall survival, DUSP6 represents a potential biomarker for endometrial CSCs and a therapeutic target in endometrial cancers.
Collapse
Affiliation(s)
- Masaya Kato
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
- Department of Obstetrics and GynecologySchool of Medical Sciences, Juntendo UniversityTokyoJapan
| | - Ichiro Onoyama
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Sachiko Yoshida
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Lin Cui
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Keiko Kawamura
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Keisuke Kodama
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Emiko Hori
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Yumiko Matsumura
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Hiroshi Yagi
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Kazuo Asanoma
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Hideaki Yahata
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Atsuo Itakura
- Department of Obstetrics and GynecologySchool of Medical Sciences, Juntendo UniversityTokyoJapan
| | - Satoru Takeda
- Department of Obstetrics and GynecologySchool of Medical Sciences, Juntendo UniversityTokyoJapan
| | - Kiyoko Kato
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| |
Collapse
|
14
|
Anania MC, Di Marco T, Mazzoni M, Greco A. Targeting Non-Oncogene Addiction: Focus on Thyroid Cancer. Cancers (Basel) 2020; 12:cancers12010129. [PMID: 31947935 PMCID: PMC7017043 DOI: 10.3390/cancers12010129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Thyroid carcinoma (TC) is the most common malignancy of endocrine organs with an increasing incidence in industrialized countries. The majority of TC are characterized by a good prognosis, even though cases with aggressive forms not cured by standard therapies are also present. Moreover, target therapies have led to low rates of partial response and prompted the emergence of resistance, indicating that new therapies are needed. In this review, we summarize current literature about the non-oncogene addiction (NOA) concept, which indicates that cancer cells, at variance with normal cells, rely on the activity of genes, usually not mutated or aberrantly expressed, essential for coping with the transformed phenotype. We highlight the potential of non-oncogenes as a point of intervention for cancer therapy in general, and present evidence for new putative non-oncogenes that are essential for TC survival and that may constitute attractive new therapeutic targets.
Collapse
|
15
|
Boufraqech M, Nilubol N. Multi-omics Signatures and Translational Potential to Improve Thyroid Cancer Patient Outcome. Cancers (Basel) 2019; 11:E1988. [PMID: 31835496 PMCID: PMC6966476 DOI: 10.3390/cancers11121988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Recent advances in high-throughput molecular and multi-omics technologies have improved our understanding of the molecular changes associated with thyroid cancer initiation and progression. The translation into clinical use based on molecular profiling of thyroid tumors has allowed a significant improvement in patient risk stratification and in the identification of targeted therapies, and thereby better personalized disease management and outcome. This review compiles the following: (1) the major molecular alterations of the genome, epigenome, transcriptome, proteome, and metabolome found in all subtypes of thyroid cancer, thus demonstrating the complexity of these tumors and (2) the great translational potential of multi-omics studies to improve patient outcome.
Collapse
Affiliation(s)
| | - Naris Nilubol
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20817, USA;
| |
Collapse
|
16
|
Li J, Yang C, Yang J, Zou L. Down-regulation of CCL17 in cancer-associated fibroblasts inhibits cell migration and invasion of breast cancer through ERK1/2 pathway. Cancer Manag Res 2019; 11:7439-7453. [PMID: 31496803 PMCID: PMC6689663 DOI: 10.2147/cmar.s211651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/17/2019] [Indexed: 02/05/2023] Open
Abstract
Objective Cancer-associated fibroblasts (CAFs) in the tumor microenvironment are involved in cancer development and progression, including breast cancer (BC). Up-regulation of CCL17 was observed in BC and predicted a decrease in overall survival, suggesting an important role of CCL17 in BC development. Nonetheless, little is known about the role of CCL17 in the interaction between CAFs and BC. Materials and methods Real-time quantitative PCR, Western blot, and enzyme-linked immunosorbent assay were performed to examine C-C motif chemokine ligand 17 (CCL17) and C-C motif chemokine receptor 4 (CCR4) levels in BC tissues and CAFs. Cell proliferation, migration, and invasion of CAFs co-cultured with or without BC cell lines were measured by Cell Counting Kit-8 and Transwell analysis. Expression of CCL17, CCR4, dual specificity phosphatase 6 (DUSP6), matrix metallopeptidase 13 (MMP13), extracellular signal-regulated kinase (ERK) 1/2, and phosphor-ERK1/2 (p-ERK1/2) in BC cell lines co-cultured with or without CAFs was measured by Western blotting. Results We found that BC tissues and CAFs demonstrated higher levels of CCL17 compared with adjacent-normal breast tissues and adjacent-normal fibroblasts (NFs), respectively. CCL17 expression is correlated with lymph nodes, TNM stage and tumor size of BC patients. CCL17 knockdown significantly inhibited CCL17 release, CCR4 expression, and the cell proliferation of CAFs, while CCL17 overexpression demonstrated an inverse effect in NFs. Co-culture with CAFs induced the increases in cell proliferation, migration, invasion, and the expression of CCL17, CCR4, MMP13, and p-ERK1/2 in MCF-7 and MDA-MB-231 cells were markedly reversed by CCL17 knockdown in CAFs. Meanwhile, co-culture with NFs induced the malignant phenotype of MCF-7 cells was markedly enhanced by CCL17 overexpression in NFs. Moreover, DUSP6, a negative regulator of ERK1/2, was dose-dependent decrease in response to recombinant CCL17 and inhibited cell migration, invasion, MMP13 expression, and ERK1/2 activation in MCF-7 cells. Conclusion The findings of this study suggest that CCL17 may function as a novel biomarker as well as potential therapeutic target against BC and CAF-secreted CCL17 promotes BC cell migration and invasion through the DUSP6-dependent ERK1/2 pathway.
Collapse
Affiliation(s)
- Junjie Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.,Department of Breast Surgery, Sichuan Cancer Hospital, Chengdu 610041, People's Republic of China
| | - Chunli Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jingshi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Liqun Zou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
17
|
Beaudry K, Langlois MJ, Montagne A, Cagnol S, Carrier JC, Rivard N. Dual-specificity phosphatase 6 deletion protects the colonic epithelium against inflammation and promotes both proliferation and tumorigenesis. J Cell Physiol 2018; 234:6731-6745. [PMID: 30273442 PMCID: PMC6519001 DOI: 10.1002/jcp.27420] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/21/2018] [Indexed: 12/22/2022]
Abstract
The Ras/mitogen‐activated protein kinase (MAPK) pathway controls fundamental cellular processes such as proliferation, differentiation, and apoptosis. The dual‐specificity phosphatase 6 (DUSP6) regulates cytoplasmic MAPK signaling by dephosphorylating and inactivating extracellular signal‐regulated kinase (ERK1/2) MAPK. To determine the role of DUSP6 in the maintenance of intestinal homeostasis, we characterized the intestinal epithelial phenotype of
Dusp6 knockout (KO) mice under normal, oncogenic, and proinflammatory conditions. Our results show that loss of Dusp6 increased crypt depth and epithelial cell proliferation without altering colonic architecture. Crypt regeneration capacity was also enhanced, as revealed by ex vivo
Dusp6 KO organoid cultures. Additionally, loss of Dusp6 induced goblet cell expansion without affecting enteroendocrine and absorptive cell differentiation. Our data also demonstrate that
Dusp6 KO mice were protected from acute dextran sulfate sodium‐induced colitis, as opposed to wild‐type mice. In addition,
Dusp6 gene deletion markedly enhanced tumor load in
ApcMin/+ mice. Decreased DUSP6 expression by RNA interference in HT29 colorectal cancer cells enhanced ERK1/2 activation levels and promoted both anchorage‐independent growth in soft agar as well as invasion through Matrigel. Finally,
DUSP6 mRNA expression in human colorectal tumors was decreased in advanced stage tumors compared with paired normal tissues. These results demonstrate that DUSP6 phosphatase, by controlling ERK1/2 activation, regulates colonic inflammatory responses, and protects the intestinal epithelium against oncogenic stress.
Collapse
Affiliation(s)
- Katia Beaudry
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marie-Josée Langlois
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Amélie Montagne
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sébastien Cagnol
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Julie C Carrier
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nathalie Rivard
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
18
|
Ao ZX, Chen YC, Lu JM, Shen J, Peng LP, Lin X, Peng C, Zeng CP, Wang XF, Zhou R, Chen Z, Xiao HM, Deng HW. Identification of potential functional genes in papillary thyroid cancer by co-expression network analysis. Oncol Lett 2018; 16:4871-4878. [PMID: 30250553 PMCID: PMC6144229 DOI: 10.3892/ol.2018.9306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
Interactions between multiple genes are involved in the development of complex diseases. However, there are few analyses of gene interactions associated with papillary thyroid cancer (PTC). Weighted gene co-expression network analysis (WGCNA) is a novel and powerful method that detects gene interactions according to their co-expression similarities. In the present study, WGCNA was performed in order to identify functional genes associated with PTC using R package. First, differential gene expression analysis was conducted in order to identify the differentially expressed genes (DEGs) between PTC and normal samples. Subsequently, co-expression networks of the DEGs were constructed for the two sample groups, respectively. The two networks were compared in order to identify a poorly preserved module. Concentrating on the significant module, validation analysis was performed to confirm the identified genes and combined functional enrichment analysis was conducted in order to identify more functional associations of these genes with PTC. As a result, 1062 DEGs were identified for network construction. A brown module containing 118 highly related genes was selected as it exhibited the lowest module preservation. After validation analysis, 61 genes in the module were confirmed to be associated with PTC. Following the enrichment analysis, two PTC-related pathways were identified: Wnt signal pathway and transcriptional misregulation in cancer. LRP4, KLK7, PRICKLE1, ETV4 and ETV5 were predicted to be candidate genes regulating the pathogenesis of PTC. These results provide novel insights into the etiology of PTC and the identification of potential functional genes.
Collapse
Affiliation(s)
- Zeng-Xin Ao
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Yuan-Cheng Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Jun-Min Lu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Lin-Ping Peng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Cheng Peng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Chun-Ping Zeng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Xia-Fang Wang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Rou Zhou
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhi Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Hong-Mei Xiao
- School of Basic Medical Sciences, Central South University, Changsha, Hunan 410000, P.R. China
| | - Hong-Wen Deng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
- School of Basic Medical Sciences, Central South University, Changsha, Hunan 410000, P.R. China
- Department of Biostatistics and Bioinformatics, Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
19
|
Seternes OM, Kidger AM, Keyse SM. Dual-specificity MAP kinase phosphatases in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:124-143. [PMID: 30401534 PMCID: PMC6227380 DOI: 10.1016/j.bbamcr.2018.09.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/15/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023]
Abstract
It is well established that a family of dual-specificity MAP kinase phosphatases (MKPs) play key roles in the regulated dephosphorylation and inactivation of MAP kinase isoforms in mammalian cells and tissues. MKPs provide a mechanism of spatiotemporal feedback control of these key signalling pathways, but can also mediate crosstalk between distinct MAP kinase cascades and facilitate interactions between MAP kinase pathways and other key signalling modules. As our knowledge of the regulation, substrate specificity and catalytic mechanisms of MKPs has matured, more recent work using genetic models has revealed key physiological functions for MKPs and also uncovered potentially important roles in regulating the pathophysiological outcome of signalling with relevance to human diseases. These include cancer, diabetes, inflammatory and neurodegenerative disorders. It is hoped that this understanding will reveal novel therapeutic targets and biomarkers for disease, thus contributing to more effective diagnosis and treatment for these debilitating and often fatal conditions. A comprehensive review of the dual-specificity MAP kinase Phosphatases (MKPs) Focus is on MKPs in the regulation of MAPK signalling in health and disease. Covers roles of MKPs in inflammation, obesity/diabetes, cancer and neurodegeneration
Collapse
Affiliation(s)
- Ole-Morten Seternes
- Department of Pharmacy, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Andrew M Kidger
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, UK.
| | - Stephen M Keyse
- Stress Response Laboratory, Jacqui Wood Cancer Centre, James Arrot Drive, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK.
| |
Collapse
|
20
|
Ahmad MK, Abdollah NA, Shafie NH, Yusof NM, Razak SRA. Dual-specificity phosphatase 6 (DUSP6): a review of its molecular characteristics and clinical relevance in cancer. Cancer Biol Med 2018; 15:14-28. [PMID: 29545965 PMCID: PMC5842331 DOI: 10.20892/j.issn.2095-3941.2017.0107] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are the main regulators of cellular proliferation, growth, and survival in physiological or pathological conditions. Aberrant MAPK signaling plays a pivotal role in carcinogenesis, which leads to development and progression of human cancer. Dual-specificity phosphatase 6 (DUSP6), a member of the MAPK phosphatase family, interacts with specifically targeted extracellular signal-regulated kinase 1/2 via negative feedback regulation in the MAPK pathway of mammalian cells. This phosphatase functions in a dual manner, pro-oncogenic or tumor-suppressive, depending on the type of cancer. To date, the tumor-suppressive role of DUSP6 has been demonstrated in pancreatic cancer, non-small cell lung cancer, esophageal squamous cell and nasopharyngeal carcinoma, and ovarian cancer. Its pro-oncogenic role has been observed in human glioblastoma, thyroid carcinoma, breast cancer, and acute myeloid carcinoma. Both roles of DUSP6 have been documented in malignant melanoma depending on the histological subtype of the cancer. Loss- or gain-of-function effects of DUSP6 in these cancers highlights the significance of this phosphatase in carcinogenesis. Development of methods that use the DUSP6 gene as a therapeutic target for cancer treatment or as a prognostic factor for diagnosis and evaluation of cancer treatment outcome has great potential. This review focuses on molecular characteristics of the DUSP6 gene and its role in cancers in the purview of development, progression, and cancer treatment outcome.
Collapse
Affiliation(s)
- Muhammad Khairi Ahmad
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang 13200, Malaysia
| | - Nur Ainina Abdollah
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang 13200, Malaysia
| | - Nurul Husna Shafie
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang 13200, Malaysia
| | - Narazah Mohd Yusof
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang 13200, Malaysia
| | - Siti Razila Abdul Razak
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang 13200, Malaysia
| |
Collapse
|
21
|
BRAF-Oncogene-Induced Senescence and the Role of Thyroid-Stimulating Hormone Signaling in the Progression of Papillary Thyroid Carcinoma. Discov Oncol 2017; 9:1-11. [PMID: 29209896 DOI: 10.1007/s12672-017-0315-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/19/2017] [Indexed: 01/28/2023] Open
Abstract
Oncogene-induced senescence (OIS) explains the phenomenon of cellular senescence triggered by the action of oncogenes. It is a mechanism adopted by a cell to inhibit progression of benign tumors into malignancy, occurs in premalignant lesions, and is almost never present in malignant lesions. BRAF mutations occur in about 40-45% of all papillary thyroid carcinomas (PTCs) and of which 99.7% is the BRAFV600E mutation. A unique phenotype of the BRAFV600E mutation is the upregulation of the thyroid-stimulating hormone receptor (TSHR) on thyrocyte membranes. Despite the overexpression of the receptor, BRAFV600E cells undergo cell cycle arrest leading to OIS via a negative feedback signaling mechanism. A simultaneous increase in serum thyroid-stimulating hormone (TSH) in response to hypothyroidism (common in autoimmune diseases such as Hashimoto's thyroiditis) would cause senescent tumor cells to overcome OIS and proceed towards malignancy, hence showing the importance of TSH/TSHR signaling in the development of PTCs. Increase in TSH/TSHR signaling triggers an increase in levels of downstream enzymes such as manganese superoxide dismutase (MnSOD) and dual-specific phosphatase 6 (DUSP6) which eventually results in the production of oncogenic proteins such as c-Myc. Therefore, the detection of these genetic alterations as effective biomarkers for premalignant lesions of PTC is important in clinical settings and techniques such as polymerase chain reaction-mediated restriction fragment length polymorphism (PCR-RFLP) and real-time PCR can be used to detect the BRAFV600E point mutation and overexpression of TSHR, MnSOD, and DUSP6, respectively.
Collapse
|
22
|
Buffet C, Hecale-Perlemoine K, Bricaire L, Dumont F, Baudry C, Tissier F, Bertherat J, Cochand-Priollet B, Raffin-Sanson ML, Cormier F, Groussin L. DUSP5 and DUSP6, two ERK specific phosphatases, are markers of a higher MAPK signaling activation in BRAF mutated thyroid cancers. PLoS One 2017; 12:e0184861. [PMID: 28910386 PMCID: PMC5599027 DOI: 10.1371/journal.pone.0184861] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 09/03/2017] [Indexed: 02/05/2023] Open
Abstract
Background Molecular alterations of the MAPK pathway are frequently observed in papillary thyroid carcinomas (PTCs). It leads to a constitutive activation of the signalling pathway through an increase in MEK and ERK phosphorylation. ERK is negatively feedback-regulated by Dual Specificity Phosphatases (DUSPs), especially two ERK-specific DUSPs, DUSP5 (nuclear) and DUSP6 (cytosolic). These negative MAPK regulators may play a role in thyroid carcinogenesis. Methods MAPK pathway activation was analyzed in 11 human thyroid cancer cell lines. Both phosphatases were studied in three PCCL3 rat thyroid cell lines that express doxycycline inducible PTC oncogenes (RET/PTC3, H-RASV12 or BRAFV600E). Expression levels of DUSP5 and DUSP6 were quantified in 39 human PTCs. The functional role of DUSP5 and DUSP6 was investigated through their silencing in two human BRAFV600E carcinoma cell lines. Results BRAFV600E human thyroid cancer cell lines expressed higher phospho-MEK levels but not higher phospho-ERK levels. DUSP5 and DUSP6 are specifically induced by the MEK-ERK pathway in the three PTC oncogenes inducible thyroid cell lines. This negative feedback loop explains the tight regulation of p-ERK levels. DUSP5 and DUSP6 mRNA are overexpressed in human PTCs, especially in BRAFV600E mutated PTCs. DUSP5 and/or DUSP6 siRNA inactivation did not affect proliferation in two BRAFV600E mutated cell lines, which may be explained by a compensatory increase in other phosphatases. In the light of this, we observed a marked DUSP6 upregulation upon DUSP5 inactivation. Despite this, DUSP5 and DUSP6 positively control cell migration and invasion. Conclusions Our results are in favor of a stronger activation of the MAPK pathway in BRAFV600E PTCs. DUSP5 and DUSP6 have pro-tumorigenic properties in two BRAFV600E PTC cell line models.
Collapse
Affiliation(s)
- Camille Buffet
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
- * E-mail:
| | - Karine Hecale-Perlemoine
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
| | - Léopoldine Bricaire
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
| | - Florent Dumont
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
| | - Camille Baudry
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
| | - Frédérique Tissier
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
- Department of Pathology, Pitié-Salpêtrière Hospital, Paris, France
| | - Jérôme Bertherat
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
- Department of Endocrinology, Cochin Hospital, Paris, France
| | | | | | - Françoise Cormier
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
| | - Lionel Groussin
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
- Department of Endocrinology, Cochin Hospital, Paris, France
| |
Collapse
|
23
|
Abstract
MicroRNAs (miRNAs) are small non-coding RNA comprising approximately 19-25 nucleotides. miRNAs can act as tumour suppressors or oncogenes, and aberrant expression of miRNAs has been reported in several human cancers and has been associated with cancer initiation and progression. Recent evidence suggests that miRNAs play a major role in thyroid carcinogenesis. In this review, we summarize the role of miRNAs in thyroid cancer and describe the oncogenic or tumour suppressor function of miRNAs as well as their clinical utility as prognostic or diagnostic markers in thyroid cancer.
Collapse
Affiliation(s)
- Myriem Boufraqech
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joanna Klubo-Gwiezdzinska
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Electron Kebebew
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Noro R, Ishigame T, Walsh N, Shiraishi K, Robles AI, Ryan BM, Schetter AJ, Bowman ED, Welsh JA, Seike M, Gemma A, Skaug V, Mollerup S, Haugen A, Yokota J, Kohno T, Harris CC. A Two-Gene Prognostic Classifier for Early-Stage Lung Squamous Cell Carcinoma in Multiple Large-Scale and Geographically Diverse Cohorts. J Thorac Oncol 2016; 12:65-76. [PMID: 27613525 DOI: 10.1016/j.jtho.2016.08.141] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/17/2016] [Accepted: 08/20/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION There are no validated molecular methods that prospectively identify patients with surgically resected lung squamous cell carcinoma (SCC) at high risk for recurrence. By focusing on the expression of genes with known functions in development of lung SCC and prognosis, we sought to develop a robust prognostic classifier of early-stage lung SCC. METHODS The expression of 253 genes selected by literature search was evaluated in microarrays from 107 stage I/II tumors. Associations with survival were evaluated by Cox regression and Kaplan-Meier survival analyses in two independent cohorts of 121 and 91 patients with SCC, respectively. A classifier score based on multivariable Cox regression was derived and examined in six additional publicly available data sets of stage I/II lung SCC expression profiles (n = 358). The prognostic value of this classifier was evaluated in meta-analysis of patients with stage I/II (n = 479) and stage I (n = 326) lung SCC. RESULTS Dual specificity phosphatase 6 gene (DUSP6) and actinin alpha 4 gene (ACTN4) were associated with prognostic outcome in two independent patient cohorts. Their expression values were utilized to develop a classifier that identified patients with stage I/II lung SCC at high risk for recurrence (hazard ratio [HR] = 4.7, p = 0.018) or cancer-specific mortality (HR = 3.5, p = 0.016). This classifier also identified patients at high risk for recurrence (HR = 2.7, p = 0.008) or death (HR = 2.2, p = 0.001) in publicly available data sets of stage I/II and in meta-analysis of stage I patients. CONCLUSIONS We have established and validated a prognostic classifier to inform clinical management of patients with lung SCC after surgical resection.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/therapy
- Cohort Studies
- Female
- Follow-Up Studies
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Male
- Middle Aged
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/therapy
- Neoplasm Staging
- Prognosis
- Survival Rate
Collapse
Affiliation(s)
- Rintaro Noro
- Laboratory of Human Carcinogenesis, National Cancer Institute Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Teruhide Ishigame
- Laboratory of Human Carcinogenesis, National Cancer Institute Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Naomi Walsh
- Laboratory of Human Carcinogenesis, National Cancer Institute Center for Cancer Research, National Institutes of Health, Bethesda, Maryland; Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Ana I Robles
- Laboratory of Human Carcinogenesis, National Cancer Institute Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, National Cancer Institute Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Aaron J Schetter
- Laboratory of Human Carcinogenesis, National Cancer Institute Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Elise D Bowman
- Laboratory of Human Carcinogenesis, National Cancer Institute Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Judith A Welsh
- Laboratory of Human Carcinogenesis, National Cancer Institute Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Vidar Skaug
- Department of Chemical and Biological Working Environment, National Institute of Occupational Health, Oslo, Norway
| | - Steen Mollerup
- Department of Chemical and Biological Working Environment, National Institute of Occupational Health, Oslo, Norway
| | - Aage Haugen
- Department of Chemical and Biological Working Environment, National Institute of Occupational Health, Oslo, Norway
| | - Jun Yokota
- Genomics and Epigenomics of Cancer Prediction Program, Institute of Predictive and Personalized Medicine of Cancer, Barcelona, Spain
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, National Cancer Institute Center for Cancer Research, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
25
|
Ma B, Shi R, Yang S, Zhou L, Qu N, Liao T, Wang Y, Wang Y, Ji Q. DUSP4/MKP2 overexpression is associated with BRAF(V600E) mutation and aggressive behavior of papillary thyroid cancer. Onco Targets Ther 2016; 9:2255-63. [PMID: 27143921 PMCID: PMC4844429 DOI: 10.2147/ott.s103554] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The study was performed to retrospectively analyze the correlation of dual specificity phosphatase 4 (DUSP4) expression with clinicopathological variables and BRAF(V600E) mutation to better characterize the potential role of DUSP4 as a biomarker in papillary thyroid cancer (PTC). Patients (n=120) who underwent surgery for PTC at Fudan University Shanghai Cancer Center (FUSCC) were enrolled in this study, and a validation cohort from The Cancer Genome Atlas (TCGA) database was identified to confirm the preliminary findings in our study. We investigated DUSP4 expression at the mRNA level in PTC tissues and adjacent normal tissues using real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). BRAF(V600E) mutation analysis was also performed in PTC tissues using Sanger sequencing. Initially, we compared PTC tissues with paired normal tissues in DUSP4 expression using Student's t-test, and then analyzed the correlation of DUSP4 with clinicopathological variables and BRAF(V600E) mutation in PTC using Mann-Whitney U, Kruskal-Wallis, χ (2), and Fisher's exact tests. Human-derived thyroid cell lines were also used to verify our findings. DUSP4 was significantly overexpressed in PTC tissues compared with the adjacent normal tissues (P<0.001). High DUSP4 expression showed a significant association with lymph node metastasis and extrathyroidal extension in both FUSCC and TCGA cohorts, and DUSP4 overexpression was an independent risk factor for lymph node metastasis in multivariate analysis. Additionally, DUSP4 expression was associated with BRAF(V600E) mutation in both the cohorts (FUSCC: P=0.002, TCGA: P<0.001) and PTC cell lines (P=0.023). In conclusion, DUSP4 was identified as a potential biomarker for aggressive behavior in PTC, and its overexpression was BRAF(V600E) mutation-related.
Collapse
Affiliation(s)
- Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Minhang Hospital, Shanghai, People's Republic of China
| | - Rongliang Shi
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Minhang Hospital, Shanghai, People's Republic of China; Department of General Surgery, Fudan University, Minhang Hospital, Shanghai, People's Republic of China
| | - Shuwen Yang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Minhang Hospital, Shanghai, People's Republic of China
| | - Li Zhou
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Minhang Hospital, Shanghai, People's Republic of China
| | - Ning Qu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Minhang Hospital, Shanghai, People's Republic of China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Minhang Hospital, Shanghai, People's Republic of China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Minhang Hospital, Shanghai, People's Republic of China
| | - Yulong Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Minhang Hospital, Shanghai, People's Republic of China
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Minhang Hospital, Shanghai, People's Republic of China
| |
Collapse
|
26
|
The regulation of oncogenic Ras/ERK signalling by dual-specificity mitogen activated protein kinase phosphatases (MKPs). Semin Cell Dev Biol 2016; 50:125-32. [PMID: 26791049 PMCID: PMC5056954 DOI: 10.1016/j.semcdb.2016.01.009] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 11/20/2022]
Abstract
Dual-specificity MAP kinase (MAPK) phosphatases (MKPs or DUSPs) are well-established negative regulators of MAPK signalling in mammalian cells and tissues. By virtue of their differential subcellular localisation and ability to specifically recognise, dephosphorylate and inactivate different MAPK isoforms, they are key spatiotemporal regulators of pathway activity. Furthermore, as they are transcriptionally regulated as downstream targets of MAPK signalling they can either act as classical negative feedback regulators or mediate cross talk between distinct MAPK pathways. Because MAPKs and particularly Ras/ERK signalling are implicated in cancer initiation and development, the observation that MKPs are abnormally regulated in human tumours has been interpreted as evidence that these enzymes can either suppress or promote carcinogenesis. However, definitive evidence of such roles has been lacking. Here we review recent work based on the use of mouse models, biochemical studies and clinical data that demonstrate key roles for MKPs in modulating the oncogenic potential of Ras/ERK signalling and also indicate that these enzymes may play a role in the response of tumours to certain anticancer drugs. Overall, this work reinforces the importance of negative regulatory mechanisms in modulating the activity of oncogenic MAPK signalling and indicates that MKPs may provide novel targets for therapeutic intervention in cancer.
Collapse
|
27
|
Zhao S, Wang Q, Li Z, Ma X, Wu L, Ji H, Qin G. LDOC1 inhibits proliferation and promotes apoptosis by repressing NF-κB activation in papillary thyroid carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:146. [PMID: 26637328 PMCID: PMC4670541 DOI: 10.1186/s13046-015-0265-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 12/01/2015] [Indexed: 02/01/2023]
Abstract
Background The incidence of thyroid cancer has progressively increased over the past few decades, and the most frequent types of this cancer are papillary thyroid carcinoma (PTC) and small primary tumors. In PTC, oncogene activation is known to occur at a high frequency. However, the potential roles of tumor suppressor genes in thyroid carcinogenesis remain unclear. LDOC1 was first identified as a gene encoding a leucine zipper protein whose expression was decreased in a series of pancreatic and gastric cancer cell lines. In this study, we aimed to determine the status of LDOC1 in PTC and identify its mechanistic role in PTC pathogenesis. Methods LDOC1 expression was evaluated in fresh samples and stored specimens of human PTC and contralateral normal tissues by performing quantitative reverse transcription-PCR and immunohistochemical staining. The correlation to nuclear p65 content in the stored specimens was analyzed. Moreover, the basal level of LDOC1 in two human PTC-derived cell lines (BCPAP and TPC-1) compared with normal thyroid tissue was determined. Human LDOC1 cDNA was inserted into a lentiviral vector and transduced into TPC-1 cells. TPC-1 cells overexpressing LDOC1/GFP (Lv-LDOC1) or negative control GFP (Lv-NC) were stimulated with TNFα or recombinant TGF-β1, and then cell proliferation, cell cycle distribution, and apoptosis were assessed. Western blotting was used to examine the expression of p65, IκBα, c-Myc, Bax, and Bcl-xL, and a luciferase reporter assay was used to measure NF-κB activity stimulated by TNFα. Statistical significance was determined using Student’s t tests or ANOVA and Newman-Keuls multiple comparison tests. Pearson chi-square test was used to analyze possible associations. Results LDOC1 expression was significantly downregulated in PTC specimens as compared with the expression in normal thyroid tissues, and this downregulation was associated with an increase in tumor size (P < 0.05). There is a correlation between LDOC1 and nuclear P65 expression in human PTC tissues (P < 0.01). Lentivirus-mediated restoration of LDOC1 expression in TPC-1 cells characterized by low level of LDOC1 expression suppressed proliferation and induced apoptosis by inhibiting NF-κB activation, and LDOC1-overexpressing TPC-1 cells recovered responsiveness to TGF-β1 antiproliferative signaling. Conclusions LDOC1 might function as a tumor suppressor gene in PTC by inhibiting NF-κΒ signaling, and thus might represent a promising therapeutic target in patients with PTC.
Collapse
Affiliation(s)
- Shuiying Zhao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China. .,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Qingzhu Wang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Zhizhen Li
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Xiaojun Ma
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Lina Wu
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Hongfei Ji
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China. .,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
28
|
TSH signaling overcomes B-RafV600E-induced senescence in papillary thyroid carcinogenesis through regulation of DUSP6. Neoplasia 2015; 16:1107-20. [PMID: 25499223 PMCID: PMC4309262 DOI: 10.1016/j.neo.2014.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/06/2014] [Accepted: 10/13/2014] [Indexed: 01/09/2023] Open
Abstract
B-RafV600E oncogene mutation occurs most commonly in papillary thyroid carcinoma (PTC) and is associated with tumor initiation. However, a genetic modification by B-RafV600E in thyrocytes results in oncogene-induced senescence (OIS). In the present study, we explored the factors involved in the senescence overcome program in PTC. First of all, we observed down-regulation of p-extracellular signal-regulated kinases 1/2 and up-regulation of dual specific phosphatase 6 (DUSP6) in the PTC with B-RafV600E mutation. DUSP6 overexpression in vitro induced extracellular signal-regulated kinases 1/2 dephosphorylation and inhibited B-RafV600E–induced senescence in thyrocytes. Although DUSP6 protein was degraded by B-RafV600E–induced reactive oxygen species (ROS), thyroid-stimulating hormone (TSH) stabilized DUSP6 protein by increasing Mn superoxide dismutase expression and inhibited B-RafV600E–induced senescence. Although serum TSH was not increased, its receptor was markedly upregulated in PTC with B-RafV600E. Furthermore, TSH together with DUSP6 reactivated Ras signaling, resulted in activation of Ras/AKT/glycogen synthase kinase 3β, and stabilized c-Myc protein by inhibiting its degradation. These observations led us to conclude that increased TSH signaling overcomes OIS and is essential for B-RafV600E–induced papillary thyroid carcinogenesis.
Collapse
|
29
|
Chen YC, Chang YC, Ke WC, Chiu HW. Cancer adjuvant chemotherapy strategic classification by artificial neural network with gene expression data: An example for non-small cell lung cancer. J Biomed Inform 2015; 56:1-7. [DOI: 10.1016/j.jbi.2015.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 04/02/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
|
30
|
Hatzihristidis T, Desai N, Hutchins AP, Meng TC, Tremblay ML, Miranda-Saavedra D. A Drosophila-centric view of protein tyrosine phosphatases. FEBS Lett 2015; 589:951-66. [PMID: 25771859 DOI: 10.1016/j.febslet.2015.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 12/30/2022]
Abstract
Most of our knowledge on protein tyrosine phosphatases (PTPs) is derived from human pathologies and mouse knockout models. These models largely correlate well with human disease phenotypes, but can be ambiguous due to compensatory mechanisms introduced by paralogous genes. Here we present the analysis of the PTP complement of the fruit fly and the complementary view that PTP studies in Drosophila will accelerate our understanding of PTPs in physiological and pathological conditions. With only 44 PTP genes, Drosophila represents a streamlined version of the human complement. Our integrated analysis places the Drosophila PTPs into evolutionary and functional contexts, thereby providing a platform for the exploitation of the fly for PTP research and the transfer of knowledge onto other model systems.
Collapse
Affiliation(s)
- Teri Hatzihristidis
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Nikita Desai
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Andrew P Hutchins
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Tzu-Ching Meng
- Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Michel L Tremblay
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| | - Diego Miranda-Saavedra
- World Premier International (WPI) Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita 565-0871, Osaka, Japan; Centro de Biología Molecular Severo Ochoa, CSIC/Universidad Autónoma de Madrid, 28049 Madrid, Spain; IE Business School, IE University, María de Molina 31 bis, 28006 Madrid, Spain.
| |
Collapse
|
31
|
Minna E, Romeo P, De Cecco L, Dugo M, Cassinelli G, Pilotti S, Degl'Innocenti D, Lanzi C, Casalini P, Pierotti MA, Greco A, Borrello MG. miR-199a-3p displays tumor suppressor functions in papillary thyroid carcinoma. Oncotarget 2015; 5:2513-28. [PMID: 24810336 PMCID: PMC4058023 DOI: 10.18632/oncotarget.1830] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Thyroid cancer incidence is rapidly increasing. Papillary Thyroid Carcinoma (PTC), the most frequent hystotype, usually displays good prognosis, but no effective therapeutic options are available for the fraction of progressive PTC patients. BRAF and RET/PTC are the most frequent driving genetic lesions identified in PTC. We developed two complementary in vitro models based on RET/PTC1 oncogene, starting from the hypothesis that miRNAs modulated by a driving PTC-oncogene are likely to have a role in thyroid neoplastic processes. Through this strategy, we identified a panel of deregulated miRNAs. Among these we focused on miR-199a-3p and showed its under-expression in PTC specimens and cell lines. We demonstrated that miR-199a-3p restoration in PTC cells reduces MET and mTOR protein levels, impairs migration and proliferation and, more interesting, induces lethality through an unusual form of cell death similar to methuosis, caused by macropinocytosis dysregulation. Silencing MET or mTOR, both involved in survival pathways, does not recapitulate miR-199a-3p-induced cell lethality, thus suggesting that the cooperative regulation of multiple gene targets is necessary. Integrated analysis of miR-199a-3p targets unveils interesting networks including HGF and macropinocytosis pathways. Overall our results indicate miR-199a-3p as a tumor suppressor miRNA in PTC.
Collapse
Affiliation(s)
- Emanuela Minna
- Molecular Mechanisms Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Schulten HJ, Alotibi R, Al-Ahmadi A, Ata M, Karim S, Huwait E, Gari M, Al-Ghamdi K, Al-Mashat F, Al-Hamour OA, Al-Qahtani MH, Al-Maghrabi J. Effect of BRAF mutational status on expression profiles in conventional papillary thyroid carcinomas. BMC Genomics 2015; 16 Suppl 1:S6. [PMID: 25922907 PMCID: PMC4315163 DOI: 10.1186/1471-2164-16-s1-s6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Whereas 40 % to 70 % of papillary thyroid carcinomas (PTCs) are characterized by a BRAF mutation (BRAFmut), unified biomarkers for the genetically heterogeneous group of BRAF wild type (BRAFwt) PTCs are not established yet. Using state-of-the-art technology we compared RNA expression profiles between conventional BRAFwt and BRAFmut PTCs. METHODS Microarrays covering 36,079 reference sequences were used to generate whole transcript expression profiles in 11 BRAFwt PTCs including five micro PTCs, 14 BRAFmut PTCs, and 7 normal thyroid specimens. A p-value with a false discovery rate (FDR) < 0.05 and a fold change > 2 were used as a threshold of significance for differential expression. Network and pathway utilities were employed to interpret significance of expression data. BRAF mutational status was established by direct sequencing the hotspot region of exon 15. RESULTS We identified 237 annotated genes that were significantly differentially expressed between BRAFwt and BRAFmut PTCs. Of these, 110 genes were down- and 127 were upregulated in BRAFwt compared to BRAFmut PTCs. A number of molecules involved in thyroid hormone metabolism including thyroid peroxidase (TPO) were differentially expressed between both groups. Among cancer-associated molecules were ERBB3 that was downregulated and ERBB4 that was upregulated in BRAFwt PTCs. Two microRNAs were significantly differentially expressed of which miR492 bears predicted functions relevant to thyroid-specific molecules. The protein kinase A (PKA) and the G protein-coupled receptor pathways were identified as significantly related signaling cascades to the gene set of 237 genes. Furthermore, a network of interacting molecules was predicted on basis of the differentially expressed gene set. CONCLUSIONS The expression study focusing on affected genes that are differentially expressed between BRAFwt and BRAFmut conventional PTCs identified a number of molecules which are connected in a network and affect important canonical pathways. The identified gene set adds to our understanding of the tumor biology of BRAFwt and BRAFmut PTCs and contains genes/biomarkers of interest.
Collapse
Affiliation(s)
- Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- KACST Technology Innovation Center in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem Alotibi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa Al-Ahmadi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manar Ata
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- KACST Technology Innovation Center in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Etimad Huwait
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mamdooh Gari
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- KACST Technology Innovation Center in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Al-Ghamdi
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Al-Mashat
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osman Abdel Al-Hamour
- Department of Surgery, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Mohammad Hussain Al-Qahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- KACST Technology Innovation Center in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jaudah Al-Maghrabi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
33
|
Smooth muscle 22α facilitates angiotensin II-induced signaling and vascular contraction. J Mol Med (Berl) 2014; 93:547-58. [PMID: 25515236 DOI: 10.1007/s00109-014-1240-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 11/23/2014] [Accepted: 11/25/2014] [Indexed: 01/29/2023]
Abstract
UNLABELLED Smooth muscle 22α (SM22α) is involved in stress fiber formation and enhances contractility in vascular smooth muscle cells (VSMCs). In many cases, SM22α acts as an adapter protein to assemble signaling complexes and regulate signaling, but whether SM22α regulates contractile signaling induced by angiotensin II (AngII) remains unclear. To address this issue, we established a hypertension model of Sm22α(-/-) mice, and demonstrated that hypertension induced by AngII was attenuated in Sm22α(-/-) mice. A decreased vasoconstriction was observed in aortic rings from Sm22α(-/-) mice. Furthermore, loss of SM22α resulted in a reduced contractile response to AngII in VSMCs in vitro. The phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) induced by AngII was impaired following depletion of SM22α, in parallel with a reduced contractility. The decay of ERK1/2 activity was associated with increased expression of mitogen-activated protein kinase phosphatase 3 (MKP3). Inhibition of MKP3 activity rescued ERK1/2 activity. SM22α depletion caused an enhanced interaction of MKP3 with ERK1/2, and a reduced ubiquitination and degradation of MKP3. Knockdown of SM22α extended the half-life of MKP3. In conclusion, SM22α promotes AngII-induced contraction by maintenance of ERK1/2 signaling cascades through facilitating ubiquitination and degradation of MKP3. KEY MESSAGE The vasoconstriction is attenuated in aortic rings from Sm22α(-/-) mice. MKP3 mediates dephosphorylation of ERK1/2 in AngII-induced VSMC contraction. SM22α inhibits the interaction of ERK1/2 with MKP3. SM22α promotes ubiquitination and degradation of MKP3. SM22α facilitates AngII-induced contraction by maintenance of ERK1/2 signaling.
Collapse
|
34
|
Chen YC, Ke WC, Chiu HW. Risk classification of cancer survival using ANN with gene expression data from multiple laboratories. Comput Biol Med 2014; 48:1-7. [PMID: 24631783 DOI: 10.1016/j.compbiomed.2014.02.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/16/2014] [Accepted: 02/13/2014] [Indexed: 01/28/2023]
Abstract
Numerous cancer studies have combined gene expression experiments and clinical survival data to predict the prognosis of patients of specific gene types. However, most results of these studies were data dependent and were not suitable for other data sets. This study performed cross-laboratory validations for the cancer patient data from 4 hospitals. We investigated the feasibility of survival risk predictions using high-throughput gene expression data and clinical data. We analyzed multiple data sets for prognostic applications in lung cancer diagnosis. After building tens of thousands of various ANN architectures using the training data, five survival-time correlated genes were identified from 4 microarray gene expression data sets by examining the correlation between gene signatures and patient survival time. The experimental results showed that gene expression data can be used for valid predictions of cancer patient survival classification with an overall accuracy of 83.0% based on survival time trusted data. The results show the prediction model yielded excellent predictions given that patients in the high-risk group obtained a lower median overall survival compared with low-risk patients (log-rank test P-value<0.00001). This study provides a foundation for further clinical studies and research into other types of cancer. We hope these findings will improve the prognostic methods of cancer patients.
Collapse
Affiliation(s)
- Yen-Chen Chen
- Graduate Institute of Biomedical Informatics, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, Taiwan
| | - Wan-Chi Ke
- Graduate Institute of Biomedical Informatics, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, Taiwan
| | - Hung-Wen Chiu
- Graduate Institute of Biomedical Informatics, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, Taiwan.
| |
Collapse
|
35
|
Peer CJ, Brown JL, Martin TJ, Roth J, Spencer SD, Brassil P, McNeill KA, Kreisl TN, Fine HA, Figg WD. A novel uHPLC–MS/MS method for the quantitation of AZD7451 (AZ12607092) in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 942-943:107-12. [DOI: 10.1016/j.jchromb.2013.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/02/2013] [Accepted: 10/11/2013] [Indexed: 10/26/2022]
|
36
|
Hagan CR, Knutson TP, Lange CA. A Common Docking Domain in Progesterone Receptor-B links DUSP6 and CK2 signaling to proliferative transcriptional programs in breast cancer cells. Nucleic Acids Res 2013; 41:8926-42. [PMID: 23921636 PMCID: PMC3799453 DOI: 10.1093/nar/gkt706] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Progesterone receptors (PR) are transcription factors relevant to breast cancer biology. Herein, we describe an N-terminal common docking (CD) domain in PR-B, a motif first described in mitogen-activated protein kinases. Binding studies revealed PR-B interacts with dual-specificity phosphatase 6 (DUSP6) via the CD domain. Mutation of the PR-B CD domain (mCD) attenuated cell cycle progression and expression of PR-B target genes (including STAT5A and Wnt1); mCD PR-B failed to undergo phosphorylation on Ser81, a ck2-dependent site required for expression of these genes. PR-B Ser81 phosphorylation was dependent on binding with DUSP6 and required for recruitment of a transcriptional complex consisting of PR-B, DUSP6 and ck2 to an enhancer region upstream of the Wnt1 promoter. STAT5 was present at this site in the absence or presence of progestin. Furthermore, phospho-Ser81 PR-B was recruited to the STAT5A gene upon progestin treatment, suggestive of a feed-forward mechanism. Inhibition of JAK/STAT-signaling blocked progestin-induced STAT5A and Wnt1 expression. Our studies show that DUSP6 serves as a scaffold for ck2-dependent PR-B Ser81 phosphorylation and subsequent PR-B-specific gene selection in coordination with STAT5. Coregulation of select target genes by PR-B and STAT5 is likely a global mechanism required for growth promoting programs relevant to mammary stem cell biology and cancer.
Collapse
Affiliation(s)
- Christy R Hagan
- Departments of Medicine and Pharmacology, Cell Signaling Program; Masonic Cancer Center, University of Minnesota, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
37
|
DUSP6 regulates drug sensitivity by modulating DNA damage response. Br J Cancer 2013; 109:1063-71. [PMID: 23839489 PMCID: PMC3749559 DOI: 10.1038/bjc.2013.353] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Dual specificity phosphatase 6 (DUSP6) is a member of a family of mitogen-activated protein kinase phosphatases that dephosphorylates and inhibits activated ERK1/2. Dual specificity phosphatase 6 is dynamically regulated in developmental and pathological conditions such as cancer. METHODS Cancer cell lines were made deficient in DUSP6 by siRNA and shRNA silencing. Sensitivity to anti-EGFR and chemotherapeutic agents was determined in viability and apoptosis assays, and in xenografts established in SCID mice. Cellular effects of DUSP6 inactivation were analysed by proteomic methods, followed by analysis of markers of DNA damage response (DDR) and cell cycle. RESULTS We determined that depletion of DUSP6 reduced the viability of cancer cell lines and increased the cytotoxicity of EGFR and other targeted inhibitors, and cytotoxic agents, in vitro and in vivo. Subsequent phosphoproteomic analysis indicated DUSP6 depletion significantly activated CHEK2 and p38, which function in the DDR pathway, and elevated levels of phosphorylated H2AX, ATM, and CHEK2, for the first time identifying a role for DUSP6 in regulating DDR. CONCLUSION Our results provide a novel insight into the DUSP6 function in regulating genomic integrity and sensitivity to chemotherapy in cancer.
Collapse
|
38
|
Smith N, Tierney R, Wei W, Vockerodt M, Murray PG, Woodman CB, Rowe M. Induction of interferon-stimulated genes on the IL-4 response axis by Epstein-Barr virus infected human b cells; relevance to cellular transformation. PLoS One 2013; 8:e64868. [PMID: 23724103 PMCID: PMC3664578 DOI: 10.1371/journal.pone.0064868] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/19/2013] [Indexed: 11/19/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic virus that is associated with the pathogenesis of several human lymphoid malignancies, including Hodgkin's lymphoma. Infection of normal resting B cells with EBV results in activation to lymphoblasts that are phenotypically similar to those generated by physiological stimulation with CD40L plus IL-4. One important difference is that infection leads to the establishment of permanently growing lymphoblastoid cell lines, whereas CD40L/IL-4 blasts have finite proliferation lifespans. To identify early events which might later determine why EBV infected blasts go on to establish transformed cell lines, we performed global transcriptome analyses on resting B cells and on EBV and CD40L/IL-4 blasts after 7 days culture. As anticipated there was considerable overlap in the transcriptomes of the two types of lymphoblasts when compared to the original resting B cells, reflecting common changes associated with lymphocyte activation and proliferation. Of interest to us was a subset of 255 genes that were differentially expressed between EBV and CD40L/IL-4 blasts. Genes which were more highly expressed in EBV blasts were substantially and significantly enriched for a set of interferon-stimulated genes which on further in silico analyses were found to be repressed by IL-4 in other cell contexts and to be up-regulated in micro-dissected malignant cells from Hodgkin's lymphoma biopsies when compared to their normal germinal center cell counterparts. We hypothesized that EBV and IL-4 were targeting and discordantly regulating a common set of genes. This was supported experimentally in our B cell model where IL-4 stimulation partially reversed transcriptional changes which follow EBV infection and it impaired the efficiency of EBV-induced B cell transformation. Taken together, these data suggest that the discordant regulation of interferon and IL-4 pathway genes by EBV that occurs early following infection of B cells has relevance to the development or maintenance of an EBV-associated malignancy.
Collapse
Affiliation(s)
- Nikki Smith
- School of Cancer Sciences, Birmingham Cancer Research UK Centre, and Birmingham Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Rosemary Tierney
- School of Cancer Sciences, Birmingham Cancer Research UK Centre, and Birmingham Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Wenbin Wei
- School of Cancer Sciences, Birmingham Cancer Research UK Centre, and Birmingham Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Martina Vockerodt
- School of Cancer Sciences, Birmingham Cancer Research UK Centre, and Birmingham Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Paul G. Murray
- School of Cancer Sciences, Birmingham Cancer Research UK Centre, and Birmingham Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Ciaran B. Woodman
- School of Cancer Sciences, Birmingham Cancer Research UK Centre, and Birmingham Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Martin Rowe
- School of Cancer Sciences, Birmingham Cancer Research UK Centre, and Birmingham Centre for Human Virology, University of Birmingham College of Medical and Dental Sciences, Birmingham, United Kingdom
| |
Collapse
|