1
|
Tripathi A, Chhabra A, Rizvi S, Tyagi RK. Selective steroid receptor modulators, degraders and PROTACs: Therapeutic strategies in management of endocrine-related cancers. Mol Cell Endocrinol 2025; 605:112569. [PMID: 40339978 DOI: 10.1016/j.mce.2025.112569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/23/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Endocrine-related disorders are highly prevalent globally, affecting millions of people. Such diseases are multifactorial in origin and are influenced by the complex interplay of genetics, lifestyle, and environmental factors. Recurring disruptions in the endocrine homeostasis can lead to a cascade of endocrine-related cancers. It is well known that nuclear receptors (NRs), particularly estrogen receptor and androgen receptor malfunctioning promote the oncogenesis of breast cancer and prostate cancer, respectively. However, existing therapeutics against these diseases, including aromatase inhibitors, (anti-) hormonal therapy, etc., often yield limited success, prompting to explore alternative methods of disease management. Additionally, drug resistance is prominent in cancer patients undergoing multidrug therapy. Currently, novel drug design strategies targeting NRs are being implemented for the discovery of a new generation of small molecule modulators, including selective NR modulators (SNuRMs) and degraders (SNuRDs). Moreover, proteolysis-targeting chimeras (PROTACs) as NR degraders, are also being developed primarily to overcome drug resistance, enhance protein selectivity, and mitigate off-target toxicity. This review highlights recent advancements in SNuRMs and SNuRDs for managing NRs-associated endocrine/metabolic disorders. Furthermore, we discuss the therapeutic potential of PROTAC degraders as a stand-alone strategy for receptor-mediated disease intervention, offering new avenues for precision medicine.
Collapse
Affiliation(s)
- Anjali Tripathi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Ayushi Chhabra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Sheeba Rizvi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
2
|
Wu Y, Wang G, Yang R, Zhou D, Chen Q, Wu Q, Chen B, Yuan L, Qu N, Wang H, Hassan M, Zhao Y, Liu M, Shen Z, Zhou W. Activation of PERK/eIF2α/ATF4 signaling inhibits ERα expression in breast cancer. Neoplasia 2025; 65:101165. [PMID: 40252311 PMCID: PMC12023901 DOI: 10.1016/j.neo.2025.101165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025]
Abstract
Approximately 70-80% of breast cancers rely on estrogen receptor alpha (ERα) for growth. The unfolded protein response (UPR), a cellular response to endoplasmic reticulum stress (ERS), is an important process crucial for oncogenic transformation. The effect of ERS on ERα expression and signaling remains incompletely elucidated. Here, we focused on the regulatory mechanisms of ERS on ERα expression in ER-positive breast cancer (ER+ BC). Our results demonstrate that ERα protein and mRNA levels in ER+ BC cells are considerably reduced by the ERS inducers thapsigargin (TG) and brefeldin A (BFA) via the PERK/eIF2α/ATF4 signaling pathway. ChIP-qPCR and luciferase reporter gene analysis revealed that ERS induction facilitated ATF4 binding to the ESR1 (the gene encoding ERα) promoter region, thereby suppressing ESR1 promoter activity and inhibiting ERα expression. Furthermore, selective activation of PERK signaling or ATF4 overexpression attenuated ERα expression and tumor cell growth both in vitro and in vivo. In conclusion, our results demonstrate that ERS suppresses ERα expression transcriptionally via the PERK/eIF2α/ATF4 signaling. Our study provides insights into the treatment of ER+ BC by targeting ERα signaling through selective activation of the PERK branch of the UPR.
Collapse
Affiliation(s)
- Yuanli Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, PR China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Gang Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, PR China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ruixue Yang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, PR China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Duanfang Zhou
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University/Chongqing Health Center for Women and Children, Chongqing, 401147, PR China
| | - Qingjuan Chen
- Department of Oncology, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, 723000, Shaanxi, PR China
| | - Qiuya Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, PR China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Bo Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, PR China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, PR China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Na Qu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, PR China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hongmei Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, PR China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China; Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Moustapha Hassan
- Experimental Cancer Medicine, Division of Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, 14186, Sweden
| | - Ying Zhao
- Experimental Cancer Medicine, Division of Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, 14186, Sweden
| | - Mingpu Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, PR China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zhengze Shen
- Department of Pharmacy, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, PR China.
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, PR China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
3
|
Ng RA, Barratt S, Parisian A, Palanisamy GS, Phukan S, Sun R, Robello B, Peña G, Sapugay J, Yeghikyan D, Wang C, Satish Kher S, Thangathirupathy S, Millikin R, Yu G, Watanabe T, Zhou F, Rich B, Duncan A, Andersen SE, Chawla R, Zak DR, Heerding DA, Hearn BR, Greene G, Harmon CL, Hodges-Gallagher L, Kushner PJ, Fanning SW, Myles DC. Discovery of Palazestrant (OP-1250), a Potent and Orally Bioavailable Complete Estrogen Receptor Antagonist (CERAN) and Selective Estrogen Receptor Degrader (SERD). ACS OMEGA 2025; 10:22685-22700. [PMID: 40521471 PMCID: PMC12163657 DOI: 10.1021/acsomega.4c11023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 05/06/2025] [Accepted: 05/20/2025] [Indexed: 06/18/2025]
Abstract
Metastatic breast cancer (mBC) is a leading cause of cancer death in women. Most breast cancer patients are administered estrogen-receptor-targeted endocrine therapies to treat or prevent progressive metastatic disease. Development of endocrine resistance through acquisition of mutations in the estrogen receptor gene, ESR1, that constitutively activate the estrogen receptor leads to relapse. Complete antagonism of both WT and mutant ESR1 (mutESR1) with an oral therapeutic that persistently antagonizes ER-driven oncogenic transcriptional activities is a requirement for efficacy. Here, we describe our discovery of the investigational drug OP-1250 (palazestrant). OP-1250 is a potent complete estrogen receptor antagonist (CERAN) and selective estrogen receptor degrader (SERD) that is active in both WT and mutESR1 breast cancer tumors. OP-1250's effective induction of tumor regression either as a single agent or in combination with a CDK4/6 inhibitor has led to the rapid advancement of this compound into a Phase 3 clinical trial (OPERA-01).
Collapse
Affiliation(s)
- Raymond A. Ng
- Olema
Oncology, 780 Brannan
Street, San Francisco94107, California, United
States
| | - Susanna Barratt
- Olema
Oncology, 780 Brannan
Street, San Francisco94107, California, United
States
| | - Alison Parisian
- Olema
Oncology, 780 Brannan
Street, San Francisco94107, California, United
States
| | | | - Samiron Phukan
- Aragen
Life Sciences Private Ltd., Hyderabad500076, India
| | - Richard Sun
- Olema
Oncology, 780 Brannan
Street, San Francisco94107, California, United
States
| | - Brandon Robello
- Olema
Oncology, 780 Brannan
Street, San Francisco94107, California, United
States
| | - Guadalupe Peña
- Olema
Oncology, 780 Brannan
Street, San Francisco94107, California, United
States
| | - Judevin Sapugay
- Olema
Oncology, 780 Brannan
Street, San Francisco94107, California, United
States
| | - David Yeghikyan
- Olema
Oncology, 780 Brannan
Street, San Francisco94107, California, United
States
| | - Chenbo Wang
- Olema
Oncology, 780 Brannan
Street, San Francisco94107, California, United
States
| | | | | | - Robert Millikin
- Olema
Oncology, 780 Brannan
Street, San Francisco94107, California, United
States
| | - Guijun Yu
- Synterys,
Inc., Union City94587, California, United States
| | | | - Fei Zhou
- Adesis,
Inc., New Castle19720, Delaware, United States
| | - Brian Rich
- Olema
Oncology, 780 Brannan
Street, San Francisco94107, California, United
States
| | - Alexis Duncan
- Olema
Oncology, 780 Brannan
Street, San Francisco94107, California, United
States
| | - Samuel E. Andersen
- Olema
Oncology, 780 Brannan
Street, San Francisco94107, California, United
States
| | - Reena Chawla
- Olema
Oncology, 780 Brannan
Street, San Francisco94107, California, United
States
| | - David R. Zak
- Department
of Cancer Biology, Loyola University Chicago
Stritch School of Medicine, Maywood60153, Illinois, United States
| | - Dirk A. Heerding
- Olema
Oncology, 780 Brannan
Street, San Francisco94107, California, United
States
| | - Brian R. Hearn
- Olema
Oncology, 780 Brannan
Street, San Francisco94107, California, United
States
| | - Geoffrey Greene
- The
Ben May Department for Cancer Research, University of Chicago, Chicago60637, Illinois, United States
| | - Cyrus L. Harmon
- Olema
Oncology, 780 Brannan
Street, San Francisco94107, California, United
States
| | | | - Peter J. Kushner
- Olema
Oncology, 780 Brannan
Street, San Francisco94107, California, United
States
| | - Sean W. Fanning
- Department
of Cancer Biology, Loyola University Chicago
Stritch School of Medicine, Maywood60153, Illinois, United States
| | - David C. Myles
- Olema
Oncology, 780 Brannan
Street, San Francisco94107, California, United
States
| |
Collapse
|
4
|
Vidal M, Falato C, Pascual T, Sanchez-Bayona R, Muñoz-Mateu M, Cebrecos I, Gonzalez-Farré X, Cortadellas T, Margelí Vila M, Luna MA, Siso C, Amillano K, Galván P, Bergamino MA, Ferrero-Cafiero JM, Salvador F, Espinosa Guerrero A, Pare L, Sanfeliu E, Prat A, Bellet M. Elacestrant in Women with Estrogen Receptor-Positive and HER2-Negative Early Breast Cancer: Results from the Preoperative Window-of-Opportunity ELIPSE Trial. Clin Cancer Res 2025; 31:1223-1232. [PMID: 39820652 PMCID: PMC11959270 DOI: 10.1158/1078-0432.ccr-24-2460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/04/2024] [Accepted: 01/14/2025] [Indexed: 01/19/2025]
Abstract
PURPOSE Elacestrant has shown significantly prolonged progression-free survival compared with standard-of-care endocrine therapy in estrogen receptor-positive (ER-positive), HER2-negative metastatic breast cancer, whereas potential benefit in early-stage disease requires further exploration. The SOLTI-ELIPSE window-of-opportunity trial investigated the biological changes induced by a short course of preoperative elacestrant in postmenopausal women with early breast cancer. PATIENTS AND METHODS Eligible patients with untreated T1c (≥1.5 cm)-T3, N0, ER-positive/HER2-negative breast cancer with locally assessed Ki67 ≥10% received elacestrant at a daily dose of 345 mg for 4 weeks. The primary efficacy endpoint was complete cell cycle arrest, defined as Ki67 ≤2.7%, on day 28. RESULTS Overall, 22 patients were evaluable for the primary endpoint. Elacestrant was associated with a complete cell cycle arrest rate of 27.3% and a statistically significant Ki67 geometric mean change of -52.9% (P = 0.007; 95% confidence interval, -67.4 to -32.1). Notably, the treatment with elacestrant led to a shift toward a more endocrine-sensitive and less proliferative tumor phenotype based on PAM50-based gene signatures. Elacestrant increased the expression of immune-response genes (GZMB, CD4, and CD8A) and suppressed proliferation and estrogen-signaling genes (MKI67, ESR1, and AR). These biological changes were independent of the levels of Ki67 suppression on day 28. The most common adverse events were grade 1 anemia (21.7%), hot flushes (8.7%), constipation (8.7%), and abdominal pain (8.7%). One patient experienced a grade 3 cutaneous rash, leading to treatment discontinuation. No other serious adverse events were reported. CONCLUSIONS Preoperative treatment with elacestrant in early breast cancer demonstrated relevant biological and molecular responses and exhibited a manageable safety profile. These findings support further investigation of elacestrant in the early setting.
Collapse
Affiliation(s)
- Maria Vidal
- SOLTI Cancer Research Group, Barcelona, Spain
- Cancer Institute and Blood Disorders, Hospital Clinic de Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumor, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Medicine Department, University of Barcelona, Barcelona, Spain
| | - Claudette Falato
- SOLTI Cancer Research Group, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumor, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Tomás Pascual
- SOLTI Cancer Research Group, Barcelona, Spain
- Cancer Institute and Blood Disorders, Hospital Clinic de Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumor, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Medicine Department, University of Barcelona, Barcelona, Spain
| | - Rodrigo Sanchez-Bayona
- SOLTI Cancer Research Group, Barcelona, Spain
- Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Montserrat Muñoz-Mateu
- SOLTI Cancer Research Group, Barcelona, Spain
- Cancer Institute and Blood Disorders, Hospital Clinic de Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumor, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Medicine Department, University of Barcelona, Barcelona, Spain
| | - Isaac Cebrecos
- Cancer Institute and Blood Disorders, Hospital Clinic de Barcelona, Barcelona, Spain
| | | | - Tomás Cortadellas
- Breast Unit, Department of Obstetrics and Gynaecology, Hospital Universitari General de Catalunya, Barcelona, Spain
| | - Mireia Margelí Vila
- SOLTI Cancer Research Group, Barcelona, Spain
- B-ARGO Group, Medical Oncology Department, ICO Badalona, Germans Trias I Pujol Institute, Badalona, Spain
- Medicine Department, Autonomous University, Barcelona, Spain
| | - Miguel A. Luna
- B-ARGO Group, Medical Oncology Department, ICO Badalona, Germans Trias I Pujol Institute, Badalona, Spain
| | | | - Kepa Amillano
- Hospital Universitari Sant Joan de Reus, Barcelona, Spain
| | - Patricia Galván
- Translational Genomics and Targeted Therapies in Solid Tumor, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Milana A. Bergamino
- SOLTI Cancer Research Group, Barcelona, Spain
- Cancer Institute and Blood Disorders, Hospital Clinic de Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumor, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- B-ARGO Group, Medical Oncology Department, ICO Badalona, Germans Trias I Pujol Institute, Badalona, Spain
| | | | | | | | - Laia Pare
- SOLTI Cancer Research Group, Barcelona, Spain
| | - Esther Sanfeliu
- Translational Genomics and Targeted Therapies in Solid Tumor, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Pathology, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Aleix Prat
- Cancer Institute and Blood Disorders, Hospital Clinic de Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumor, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Medicine Department, University of Barcelona, Barcelona, Spain
| | - Meritxell Bellet
- SOLTI Cancer Research Group, Barcelona, Spain
- Medicine Department, Autonomous University, Barcelona, Spain
- Vall d’Hebron University Hospital, Barcelona, Spain
- Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
5
|
Fan Z, Xu Y, Guo S, Song B. Post-marketing safety of elacestrant in breast cancer: a pharmacovigilance investigation using the FDA adverse event reporting system. BMC Pharmacol Toxicol 2025; 26:56. [PMID: 40069893 PMCID: PMC11895172 DOI: 10.1186/s40360-025-00887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Recently, the US Food and Drug Administration approved a new oral selective estrogen receptor downregulator for breast cancer, namely, elacestrant (Orserdu). This study aimed to analyze the signals of adverse events (AEs) within the introduction of elacestrant to the market using the FDA Adverse Event Reporting System (FAERS) database. METHODS Reports on the AEs of elacestrant after its marketing were obtained from the FAERS database. Disproportionality was analyzed using the reporting odds ratio to calculate the magnitude of the risk of the target drug and the AE combination, and the proportional reporting ratio to quantify the strength of the association between the drug and the AEs. RESULTS A total of 3132 reports on elacestrant-related AEs were obtained, with disease progression, drug ineffectiveness, product dose omission, arthralgia, asthenia, increased tumor marker levels, and bone pain (Number of reported cases (a) ≥ 3 and lower limit of 95% confidence interval >1) being the high-frequency events not mentioned on the drug label. The top three total frequencies at the system organ class level comprised general disorders and administration site conditions, gastrointestinal disorders, and musculoskeletal and connective tissue disorders. CONCLUSIONS FAERS data analyses were conducted to evaluate the safety of post-marketing clinical use of elacestrant and to ensure that physicians identify the risk factors for the AEs of this drug.
Collapse
Affiliation(s)
- Ziyi Fan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Yanan Xu
- Department of Laboratory, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Shuding Guo
- School of Graduate Studies, Lingnan University, Hong Kong, China
| | - Bin Song
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China.
| |
Collapse
|
6
|
Sarfraz A, Sarfraz M, Javad F, Khalid M, Shah B, Gul A, Ganiyani MA, Ismail A, Cheema K. Elacestrant in hormone receptor-positive metastatic breast cancer: a post-hoc analysis. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002293. [PMID: 39991467 PMCID: PMC11847623 DOI: 10.37349/etat.2025.1002293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/29/2024] [Indexed: 02/25/2025] Open
Abstract
Background Breast cancer is a leading cause of mortality in women. Hormone therapy plays a crucial role in treatment of hormone receptor-positive metastatic breast cancer. Elacestrant is a selective estrogen receptor degrader (SERD) that has shown promise in early-phase clinical trials. This post-hoc analysis systematically evaluates elacestrant's effectiveness in hormone receptor-positive metastatic breast cancer patients, providing insights into its efficacy, safety, and potential advantages over existing treatments. Methods We adhered to the PRISMA Statement 2020 guidelines and systematically searched the databases PubMed/MEDLINE, ClinicalTrials.gov, Web of Science, and Embase. We conducted the post-hoc analysis using R software (V 4.3.3), applying the inverse variance method and the DerSimonian-Laird estimator to pool effect estimates with a random-effects model. We assessed heterogeneity using the Cochran's Q test and the I 2 statistic. Results Our post-hoc analysis encompassed 3 clinical trials and a total of 835 participants. The mean age of all 835 participants across the three trials was 59.5 years (95% CI: 58.7-60.3). The pooled progression-free survival (PFS)-was estimated at 4.38 (95% CI: -7.58-16.35, P = 0.47), and the pooled objective response rate (ORR) was 7% (95% CI: 2-18%, P = 0.04), with significant heterogeneity observed among the studies. Discussion Elacestrant shows promise for improving outcomes in hormone receptor-positive metastatic breast cancer, but further research is needed to confirm its effectiveness. Future studies should include larger sample sizes, comprehensive phase II and III trials, and investigation of elacestrant in combination with other drugs or in preoperative settings.
Collapse
Affiliation(s)
- Azza Sarfraz
- Department of Pediatrics, The Aga Khan University, Karachi 74800, Pakistan
| | - Muzna Sarfraz
- Department of Research, King Edward Medical University, Lahore 54000, Pakistan
| | - Faheem Javad
- Department of Research, Al Nafees Medical College, Islamabad 45600, Pakistan
| | - Musfira Khalid
- Department of Research, Fatima Jinnah Medical University, Lahore 54000, Pakistan
| | - Bushra Shah
- Department of Research, Fatima Jinnah Medical University, Lahore 54000, Pakistan
| | - Amna Gul
- Department of Research, Liaquat National Medical College and Hospital, Karachi 74800, Pakistan
| | - Mohammad Arfat Ganiyani
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Areeba Ismail
- Department of Research, Jinnah Sindh Medical University, Karachi 75510, Pakistan
| | - Khadija Cheema
- Department of Medicine, Tucson Medical Center, Tucson, AZ 85712, USA
| |
Collapse
|
7
|
Das GM, Oturkar CC, Menon V. Interaction between Estrogen Receptors and p53: A Broader Role for Tamoxifen? Endocrinology 2025; 166:bqaf020. [PMID: 39891710 PMCID: PMC11837209 DOI: 10.1210/endocr/bqaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/03/2025]
Abstract
Tamoxifen is one of the most widely used anticancer drugs in the world. It is a safe drug with generally well-tolerated side effects and has been prescribed for the treatment of early-stage and advanced-stage or metastatic estrogen receptor α (ERα/ESR1)-positive breast cancer. Tamoxifen therapy also provides a 38% reduction of the risk of developing breast cancer in women at high risk. With the advent of newer medications targeting ERα-positive breast cancer, tamoxifen is now mainly used as adjuvant therapy for lower-risk premenopausal breast cancer and cancer prevention. It is widely accepted that tamoxifen as a selective estrogen receptor modulator exerts its therapeutic effect by competitively binding to ERα, leading to the recruitment of corepressors and inhibition of transcription of genes involved in the proliferation of breast cancer epithelium. As such, expression of ERα in breast tumors has been considered necessary for tumors to be responsive to tamoxifen therapy. However, ERα-independent effects of tamoxifen in various in vitro and in vivo contexts have been reported over the years. Importantly, the recent discovery that ERα and estrogen receptor β (ERβ/ESR2) can bind tumor suppressor protein p53 with functional consequences has provided new insights into the mechanisms underlying response to tamoxifen therapy and resistance. Furthermore, these findings have paved the way for broadening the use of tamoxifen by potentially repurposing it to treat triple negative (negative for ERα, human epidermal growth factor receptor 2, and progesterone receptor) breast cancer. Herein, we summarize these developments and discuss their mechanistic underpinnings and clinical implications.
Collapse
Affiliation(s)
- Gokul M Das
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Chetan C Oturkar
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Vishnu Menon
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
8
|
Scafetta R, Zagami P, Del Re M, Criscitiello C, Marra A, Curigliano G. Oral selective estrogen receptor degraders for breast cancer treatment: focus on pharmacological differences. Breast Cancer Res Treat 2025; 209:455-465. [PMID: 39776334 DOI: 10.1007/s10549-024-07595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE The management of hormone receptor-positive (HR +) breast cancer (BC) relies on endocrine therapy (ET), with a primary focus on disrupting estrogen receptor (ER) signaling due to its critical role in BC tumorigenesis and progression. While effective for both early-stage and advanced breast cancers, ET frequently encounters resistance mechanisms, including both ligand-dependent and ligand-independent trajectories, ultimately leading to disease progression. METHODS We searched PubMed, EMBASE and Scopus databases to review the current evidence on the use of novel oral selective estrogen receptor degraders (SERDs) for the treatment of HR+ BC. CONCLUSIONS Somatic activating mutations of the estrogen receptor 1 (ESR1) gene are known to sustain ER activity, boost ER-dependent gene transcription, and foster resistance to ET. The most significant gap remains after treatment failure with ET and cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors, where fulvestrant monotherapy typically results in a median progression-free survival of 2-3 months. Novel compounds, including oral SERDs, have been explored for their potential to overcome therapeutic resistance, both as monotherapy and in combination with other targeted therapies. Herein, we provide an overview on the latest findings on oral SERDs, examining their mechanism of action, safety data, and pharmacokinetics and pharmacodynamics profiles.
Collapse
Affiliation(s)
- Roberta Scafetta
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Paola Zagami
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy
| | - Marzia Del Re
- Saint Camillus International, University of Health and Medical Sciences, Rome, Italy
- Scientific Direction, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy
| | - Antonio Marra
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy.
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy.
| |
Collapse
|
9
|
Wang H, Luo Y, Artham S, Wang Q, Peng Y, Yun Z, Li X, Wu C, Liu Z, Weber-Bonk KL, Pai CP, Cao Y, Yue J, Park S, Keri RA, Geng L, McDonnell DP, Kao HY, Yang S. Mitoxantrone inhibits and downregulates ER α through binding at the DBD-LBD interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631371. [PMID: 39829897 PMCID: PMC11741414 DOI: 10.1101/2025.01.07.631371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Targeting the estrogen receptor (ER or ERα) through competitive antagonists, receptor downregulators, or estrogen synthesis inhibition remains the primary therapeutic strategy for luminal breast cancer. We have identified a novel mechanism of ER inhibition by targeting the critical interface between its DNA-binding domain (DBD) and ligand-binding domain (LBD). We demonstrate that mitoxantrone (MTO), a topoisomerase II inhibitor, binds at this previously unexplored DBD-LBD interface. Using comprehensive computational, biophysical, biochemical, and cellular analyses, we show that independent of its DNA damage response activity, MTO binding induces distinct conformational changes in ER, leading to its cytoplasmic redistribution and subsequent proteasomal degradation. Notably, MTO effectively inhibits clinically relevant ER mutations (Y537S and D538G) that confer resistance to current endocrine therapies, outperforming fulvestrant in both in vitro and in vivo assays. Our findings establish domain-domain interaction targeting as a viable therapeutic strategy for ER, with translational implications for other nuclear receptors.
Collapse
|
10
|
Li Z, Chen F, Chen L, Liu J, Tseng D, Hadi F, Omarjee S, Kishore K, Kent J, Kirkpatrick J, D'Santos C, Lawson M, Gertz J, Sikora MJ, McDonnell DP, Carroll JS, Polyak K, Oesterreich S, Lee AV. The EstroGene2.0 database for endocrine therapy response and resistance in breast cancer. NPJ Breast Cancer 2024; 10:106. [PMID: 39702552 PMCID: PMC11659402 DOI: 10.1038/s41523-024-00709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024] Open
Abstract
Endocrine therapies targeting the estrogen receptor (ER/ESR1) are the cornerstone to treat ER-positive breast cancers patients, but resistance often limits their effectiveness. Notable progress has been made although the fragmented way data is reported has reduced their potential impact. Here, we introduce EstroGene2.0, an expanded database of its precursor 1.0 version. EstroGene2.0 focusses on response and resistance to endocrine therapies in breast cancer models. Incorporating multi-omic profiling of 361 experiments from 212 studies across 28 cell lines, a user-friendly browser offers comprehensive data visualization and metadata mining capabilities ( https://estrogeneii.web.app/ ). Taking advantage of the harmonized data collection, our follow-up meta-analysis revealed transcriptomic landscape and substantial diversity in response to different classes of ER modulators. Endocrine-resistant models exhibit a spectrum of transcriptomic alterations including a contra-directional shift in ER and interferon signalings, which is recapitulated clinically. Dissecting multiple ESR1-mutant cell models revealed the different clinical relevance of cell model engineering and identified high-confidence mutant-ER targets, such as NPY1R. These examples demonstrate how EstroGene2.0 helps investigate breast cancer's response to endocrine therapies and explore resistance mechanisms.
Collapse
Affiliation(s)
- Zheqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Fangyuan Chen
- School of Medicine, Tsinghua University, Beijing, China
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Li Chen
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jiebin Liu
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Danielle Tseng
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Fazal Hadi
- AstraZeneca, The Discovery Centre, Biomedical Campus, Cambridge, UK
| | - Soleilmane Omarjee
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kamal Kishore
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joshua Kent
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joanna Kirkpatrick
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Clive D'Santos
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Mandy Lawson
- AstraZeneca, The Discovery Centre, Biomedical Campus, Cambridge, UK
| | - Jason Gertz
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Matthew J Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jason S Carroll
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Institute for Precision Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Qureshi Z, Jamil A, Altaf F, Siddique R, Adilovic E, Fatima E, Shah S. Elacestrant in the treatment landscape of ER-positive, HER2-negative, ESR1-mutated advanced breast cancer: a contemporary narrative review. Ann Med Surg (Lond) 2024; 86:4624-4633. [PMID: 39118705 PMCID: PMC11305773 DOI: 10.1097/ms9.0000000000002293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Estrogen receptor-positive (ER+), human epidermal growth factor receptor 2-negative (HER2-) breast cancer with ESR1 mutations presents a significant therapeutic challenge due to its adaptive resistance mechanisms to chemotherapy, especially endocrine treatment. Elacestrant, a novel oral selective estrogen receptor degrader (SERD), has emerged as a promising agent in this treatment-resistant era. Method A comprehensive search was conducted on pivotal clinical trials, including the RAD1901-005 Trial, EMERALD TRIAL, ELIPSE, and ELEVATE, focusing on their methodologies, patient populations, treatment regimens, and outcomes. Discussion This narrative review describes the available preclinical and clinical evidence on elacestrant, focusing on its pharmacodynamics, pharmacokinetics, efficacy, and safety within the existing literature. Elacestrant has demonstrated excellent activity against ESR1 mutations associated with resistance to first-line endocrine therapies. Clinical trials have shown improved progression-free survival in patients with advanced ER+/HER2-, ESR1-mutated breast cancer. Safety profiles indicate a tolerable side effect spectrum consistent with other agents. Its oral bioavailability offers a convenient alternative to injectable SERDs, with potential implications for patient adherence and quality of life. The review also discusses the comparative efficacy of elacestrant relative to existing endocrine therapies and its possible use in combination regimens. Conclusion Ongoing clinical trials assessing elacestrant and other SERDs will yield data that might aid clinicians in determining the optimal selection and order of endocrine treatment drugs for ER+ breast cancer. The integration of targeted and immunotherapeutic agents with traditional chemotherapy represents a pivotal shift in Breast Cancer treatment, moving towards more personalized and effective regimens.
Collapse
Affiliation(s)
- Zaheer Qureshi
- The Frank H. Netter M.D. School of Medicine at Quinnipiac University
| | - Abdur Jamil
- Department of Medicine, Samaritan Medical Centre
| | - Faryal Altaf
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/BronxCare Health System, New York, NY, USA
| | | | | | - Eeshal Fatima
- Department of Medicine, Services Institute of Medical Sciences, Lahore, Pakistan
| | - Shivendra Shah
- Department of Medicine, Nepalgunj Medical College, Chisapani, Nepal
| |
Collapse
|
12
|
Li Z, Chen F, Chen L, Liu J, Tseng D, Hadi F, Omarjee S, Kishore K, Kent J, Kirkpatrick J, D’Santos C, Lawson M, Gertz J, Sikora MJ, McDonnell DP, Carroll JS, Polyak K, Oesterreich S, Lee AV. EstroGene2.0: A multi-omic database of response to estrogens, ER-modulators, and resistance to endocrine therapies in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601163. [PMID: 39005294 PMCID: PMC11244912 DOI: 10.1101/2024.06.28.601163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Endocrine therapies targeting the estrogen receptor (ER/ESR1) are the cornerstone to treat ER-positive breast cancers patients, but resistance often limits their effectiveness. Understanding the molecular mechanisms is thus key to optimize the existing drugs and to develop new ER-modulators. Notable progress has been made although the fragmented way data is reported has reduced their potential impact. Here, we introduce EstroGene2.0, an expanded database of its precursor 1.0 version. EstroGene2.0 focusses on response and resistance to endocrine therapies in breast cancer models. Incorporating multi-omic profiling of 361 experiments from 212 studies across 28 cell lines, a user-friendly browser offers comprehensive data visualization and metadata mining capabilities (https://estrogeneii.web.app/). Taking advantage of the harmonized data collection, our follow-up meta-analysis revealed substantial diversity in response to different classes of ER-modulators including SERMs, SERDs, SERCA and LDD/PROTAC. Notably, endocrine resistant models exhibit a spectrum of transcriptomic alterations including a contra-directional shift in ER and interferon signaling, which is recapitulated clinically. Furthermore, dissecting multiple ESR1-mutant cell models revealed the different clinical relevance of genome-edited versus ectopic overexpression model engineering and identified high-confidence mutant-ER targets, such as NPY1R. These examples demonstrate how EstroGene2.0 helps investigate breast cancer's response to endocrine therapies and explore resistance mechanisms.
Collapse
Affiliation(s)
- Zheqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Fangyuan Chen
- School of Medicine, Tsinghua University, Beijing, China
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh PA, USA
| | - Li Chen
- Computational Biology Department, Carnegie Mellon University, Pittsburgh PA, USA
| | - Jiebin Liu
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Danielle Tseng
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh PA, USA
| | | | - Soleilmane Omarjee
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kamal Kishore
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joshua Kent
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joanna Kirkpatrick
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Clive D’Santos
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Jason Gertz
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Matthew J. Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Donald P. McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jason S. Carroll
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Steffi Oesterreich
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
| | - Adrian V. Lee
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
- Institute for Precision Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Keenan JC, Medford AJ, Dai CS, Wander SA, Spring LM, Bardia A. Novel oral selective estrogen receptor degraders (SERDs) to target hormone receptor positive breast cancer: elacestrant as the poster-child. Expert Rev Anticancer Ther 2024; 24:397-405. [PMID: 38642015 DOI: 10.1080/14737140.2024.2346188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
INTRODUCTION Estrogen receptor positive (ER+) breast cancer is the most common breast cancer subtype, and therapeutic management relies primarily on inhibiting ER signaling. In the metastatic setting, ER signaling is typically targeted by selective estrogen receptor degraders (SERDs) or aromatase inhibitors (AIs), the latter of which prevent estrogen production. Activating ESR1 mutations are among the most common emergent breast cancer mutations and confer resistance to AIs. AREAS COVERED Until 2023, fulvestrant was the only approved SERD; fulvestrant is administered intramuscularly, and in some cases may also have limited efficacy in the setting of certain ESR1 mutations. In 2023, the first oral SERD, elacestrant, was approved for use in ESR1-mutated, ER+/HER2- advanced breast cancer and represents a new class of therapeutic options. While the initial approval was as monotherapy, ongoing studies are evaluating elacestrant (as well as other oral SERDs) in combination with other therapies including CDK4/6 inhibitors and PI3K inhibitors, which parallels the current combination uses of fulvestrant. EXPERT OPINION Elacestrant's recent approval sheds light on the use of biomarkers such as ESR1 to gauge a tumor's endocrine sensitivity. Ongoing therapeutic and correlative biomarker studies will offer new insight and expanding treatment options for patients with advanced breast cancer.
Collapse
Affiliation(s)
- Jennifer C Keenan
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Arielle J Medford
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Charles S Dai
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Seth A Wander
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Laura M Spring
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Aditya Bardia
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| |
Collapse
|
14
|
Hancock GR, Gertz J, Jeselsohn R, Fanning SW. Estrogen Receptor Alpha Mutations, Truncations, Heterodimers, and Therapies. Endocrinology 2024; 165:bqae051. [PMID: 38643482 PMCID: PMC11075793 DOI: 10.1210/endocr/bqae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Annual breast cancer (BCa) deaths have declined since its apex in 1989 concomitant with widespread adoption of hormone therapies that target estrogen receptor alpha (ERα), the prominent nuclear receptor expressed in ∼80% of BCa. However, up to ∼50% of patients who are ER+ with high-risk disease experience post endocrine therapy relapse and metastasis to distant organs. The vast majority of BCa mortality occurs in this setting, highlighting the inadequacy of current therapies. Genomic abnormalities to ESR1, the gene encoding ERα, emerge under prolonged selective pressure to enable endocrine therapy resistance. These genetic lesions include focal gene amplifications, hotspot missense mutations in the ligand binding domain, truncations, fusions, and complex interactions with other nuclear receptors. Tumor cells utilize aberrant ERα activity to proliferate, spread, and evade therapy in BCa as well as other cancers. Cutting edge studies on ERα structural and transcriptional relationships are being harnessed to produce new therapies that have shown benefits in patients with ESR1 hotspot mutations. In this review we discuss the history of ERα, current research unlocking unknown aspects of ERα signaling including the structural basis for receptor antagonism, and future directions of ESR1 investigation. In addition, we discuss the development of endocrine therapies from their inception to present day and survey new avenues of drug development to improve pharmaceutical profiles, targeting, and efficacy.
Collapse
Affiliation(s)
- Govinda R Hancock
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60513, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sean W Fanning
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60513, USA
| |
Collapse
|
15
|
Guglielmi G, Del Re M, Gol LS, Bengala C, Danesi R, Fogli S. Pharmacological insights on novel oral selective estrogen receptor degraders in breast cancer. Eur J Pharmacol 2024; 969:176424. [PMID: 38402929 DOI: 10.1016/j.ejphar.2024.176424] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
The therapeutic landscape of estrogen receptor (ER)-positive breast cancer includes endocrine treatments with aromatase inhibitors (AIs), selective estrogen receptor modulators (SERMs), and selective estrogen receptor degraders (SERDs). Fulvestrant is the first approved SERD with proven efficacy and good tolerability in clinical practice. However, drug resistance, low receptor affinity, and parental administration stimulated the search for new oral SERDs opening a new therapeutic era in ER + breast cancer. Elacestrant is an orally bioavailable SERD that has been recently approved by the FDA for postmenopausal women with ER+, human epidermal growth factor receptor 2-negative (HER2-), estrogen receptor 1 (ESR1)-mutated advanced or metastatic breast cancer with disease progression following at least one line of endocrine therapy. Other molecules of the same class currently tested in clinical trials are amcenestrant, giredestrant, camizestrant, and imlunestrant. The current review article offers a detailed pharmacological perspective of this emerging drug class, which may help with their possible future clinical applications.
Collapse
Affiliation(s)
- Giorgio Guglielmi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Leila Sadeghi Gol
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carmelo Bengala
- Clinical Oncology Unit 1, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy.
| | - Stefano Fogli
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Heath H, Mogol AN, Santaliz Casiano A, Zuo Q, Madak-Erdogan Z. Targeting systemic and gut microbial metabolism in ER + breast cancer. Trends Endocrinol Metab 2024; 35:321-330. [PMID: 38220576 DOI: 10.1016/j.tem.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Estrogen receptor-positive (ER+) breast tumors have a better overall prognosis than ER- tumors; however, there is a sustained risk of recurrence. Mounting evidence indicates that genetic and epigenetic changes associated with resistance impact critical signaling pathways governing cell metabolism. This review delves into recent literature concerning the metabolic pathways regulated in ER+ breast tumors by the availability of nutrients and endocrine therapies and summarizes research on how changes in systemic and gut microbial metabolism can affect ER activity and responsiveness to endocrine therapy. As targeting of metabolic pathways using dietary or pharmacological approaches enters the clinic, we provide an overview of the supporting literature and suggest future directions.
Collapse
Affiliation(s)
- Hannah Heath
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ayca Nazli Mogol
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
17
|
Shah M, Lingam H, Gao X, Gittleman H, Fiero MH, Krol D, Biel N, Ricks TK, Fu W, Hamed S, Li F, Sun J(J, Fan J, Schuck R, Grimstein M, Tang L, Kalavar S, Abukhdeir A, Pathak A, Ghosh S, Bulatao I, Tilley A, Pierce WF, Mixter BD, Tang S, Pazdur R, Kluetz P, Amiri-Kordestani L. US Food and Drug Administration Approval Summary: Elacestrant for Estrogen Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative, ESR1-Mutated Advanced or Metastatic Breast Cancer. J Clin Oncol 2024; 42:1193-1201. [PMID: 38381994 PMCID: PMC11003513 DOI: 10.1200/jco.23.02112] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/16/2023] [Accepted: 12/18/2023] [Indexed: 02/23/2024] Open
Abstract
PURPOSE The US Food and Drug Administration (FDA) approved elacestrant for the treatment of postmenopausal women or adult men with estrogen receptor-positive (ER+), human epidermal growth factor receptor 2-negative (HER2-), estrogen receptor 1 (ESR1)-mutated advanced or metastatic breast cancer with disease progression after at least one line of endocrine therapy (ET). PATIENTS AND METHODS Approval was based on EMERALD (Study RAD1901-308), a randomized, open-label, active-controlled, multicenter trial in 478 patients with ER+, HER2- advanced or metastatic breast cancer, including 228 patients with ESR1 mutations. Patients were randomly assigned (1:1) to receive either elacestrant 345 mg orally once daily (n = 239) or investigator's choice of ET (n = 239). RESULTS In the ESR1-mut subgroup, EMERALD demonstrated a statistically significant improvement in progression-free survival (PFS) by blinded independent central review assessment (n = 228; hazard ratio [HR], 0.55 [95% CI, 0.39 to 0.77]; P value = .0005). Although the overall survival (OS) end point was not met, there was no trend toward a potential OS detriment (HR, 0.90 [95% CI, 0.63 to 1.30]) in the ESR1-mut subgroup. PFS also reached statistical significance in the intention-to-treat population (ITT, N = 478; HR, 0.70 [95% CI, 0.55 to 0.88]; P value = .0018). However, improvement in PFS in the ITT population was primarily attributed to results from patients in the ESR1-mut subgroup. More patients who received elacestrant experienced nausea, vomiting, and dyslipidemia. CONCLUSION The approval of elacestrant in ER+, HER2- advanced or metastatic breast cancer was restricted to patients with ESR1 mutations. Benefit-risk assessment in the ESR1-mut subgroup was favorable on the basis of a statistically significant improvement in PFS in the context of an acceptable safety profile including no evidence of a potential detriment in OS. By contrast, the benefit-risk assessment in patients without ESR1 mutations was not favorable. Elacestrant is the first oral estrogen receptor antagonist to receive FDA approval for patients with ESR1 mutations.
Collapse
Affiliation(s)
- Mirat Shah
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, MD
| | - Hima Lingam
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, MD
| | - Xin Gao
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, MD
| | - Haley Gittleman
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, MD
| | - Mallorie H. Fiero
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, MD
| | - Danielle Krol
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, MD
| | - Nikolett Biel
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, MD
| | - Tiffany K. Ricks
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, MD
| | - Wentao Fu
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, MD
| | - Salaheldin Hamed
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, MD
| | - Fang Li
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, MD
| | - Jillian (Jielin) Sun
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, MD
| | - Jianghong Fan
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, MD
| | - Robert Schuck
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, MD
| | - Manuela Grimstein
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, MD
| | - Liuya Tang
- Center for Devices and Radiological Health (CDRH), US Food and Drug Administration, Silver Spring, MD
| | - Shyam Kalavar
- Center for Devices and Radiological Health (CDRH), US Food and Drug Administration, Silver Spring, MD
| | - Abdelrahmman Abukhdeir
- Center for Devices and Radiological Health (CDRH), US Food and Drug Administration, Silver Spring, MD
| | - Anand Pathak
- Center for Devices and Radiological Health (CDRH), US Food and Drug Administration, Silver Spring, MD
| | - Soma Ghosh
- Center for Devices and Radiological Health (CDRH), US Food and Drug Administration, Silver Spring, MD
| | - Ilynn Bulatao
- Oncology Center of Excellence (OCE), US Food and Drug Administration, Silver Spring, MD
| | - Amy Tilley
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, MD
| | - William F. Pierce
- Oncology Center of Excellence (OCE), US Food and Drug Administration, Silver Spring, MD
| | - Bronwyn D. Mixter
- Oncology Center of Excellence (OCE), US Food and Drug Administration, Silver Spring, MD
| | - Shenghui Tang
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, MD
| | - Richard Pazdur
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, MD
- Oncology Center of Excellence (OCE), US Food and Drug Administration, Silver Spring, MD
| | - Paul Kluetz
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, MD
- Oncology Center of Excellence (OCE), US Food and Drug Administration, Silver Spring, MD
| | - Laleh Amiri-Kordestani
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, MD
- Oncology Center of Excellence (OCE), US Food and Drug Administration, Silver Spring, MD
| |
Collapse
|
18
|
Parisian AD, Barratt SA, Hodges-Gallagher L, Ortega FE, Peña G, Sapugay J, Robello B, Sun R, Kulp D, Palanisamy GS, Myles DC, Kushner PJ, Harmon CL. Palazestrant (OP-1250), A Complete Estrogen Receptor Antagonist, Inhibits Wild-type and Mutant ER-positive Breast Cancer Models as Monotherapy and in Combination. Mol Cancer Ther 2024; 23:285-300. [PMID: 38102750 PMCID: PMC10911704 DOI: 10.1158/1535-7163.mct-23-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/01/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023]
Abstract
The estrogen receptor (ER) is a well-established target for the treatment of breast cancer, with the majority of patients presenting as ER-positive (ER+). Endocrine therapy is a mainstay of breast cancer treatment but the development of resistance mutations in response to aromatase inhibitors, poor pharmacokinetic properties of fulvestrant, agonist activity of tamoxifen, and limited benefit for elacestrant leave unmet needs for patients with or without resistance mutations in ESR1, the gene that encodes the ER protein. Here we describe palazestrant (OP-1250), a novel, orally bioavailable complete ER antagonist and selective ER degrader. OP-1250, like fulvestrant, has no agonist activity on the ER and completely blocks estrogen-induced transcriptional activity. In addition, OP-1250 demonstrates favorable biochemical binding affinity, ER degradation, and antiproliferative activity in ER+ breast cancer models that is comparable or superior to other agents of interest. OP-1250 has superior pharmacokinetic properties relative to fulvestrant, including oral bioavailability and brain penetrance, as well as superior performance in wild-type and ESR1-mutant breast cancer xenograft studies. OP-1250 combines well with cyclin-dependent kinase 4 and 6 inhibitors in xenograft studies of ER+ breast cancer models and effectively shrinks intracranially implanted tumors, resulting in prolonged animal survival. With demonstrated preclinical efficacy exceeding fulvestrant in wild-type models, elacestrant in ESR1-mutant models, and tamoxifen in intracranial xenografts, OP-1250 has the potential to benefit patients with ER+ breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Richard Sun
- Olema Pharmaceuticals, San Francisco, California
| | - David Kulp
- Olema Pharmaceuticals, San Francisco, California
| | | | | | | | | |
Collapse
|
19
|
Seguí E, Schettini F. Liquid biopsy to tailor the treatment of advanced hormone receptor-positive breast cancer in the era of novel endocrine agents and CDK4/6-inhibitors. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:19. [PMID: 38304907 PMCID: PMC10777248 DOI: 10.21037/atm-23-1804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/10/2023] [Indexed: 02/03/2024]
Affiliation(s)
- Elia Seguí
- SOLTI Cancer Research Group, Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (FRCB-IDIBAPS), Barcelona, Spain
| | - Francesco Schettini
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (FRCB-IDIBAPS), Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Wang B, Ma M, Dai Y, Yu P, Ye L, Wang W, Sha C, Yang H, Yang Y, Zhu Y, Dong L, Wei S, Wang L, Tian J, Wang H. A novel scaffold long-acting selective estrogen receptor antagonist and degrader with superior preclinical profile against ER+ breast cancer. Eur J Med Chem 2024; 264:115934. [PMID: 38007911 DOI: 10.1016/j.ejmech.2023.115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 11/28/2023]
Abstract
Breast cancer is one of the most common malignant tumors in women worldwide, with the majority of cases showing expression of estrogen receptors (ERs). Although drugs targeting ER have significantly improved survival rates in ER-positive patients, drug resistance remains an unmet clinical need. Fulvestrant, which overcomes selective estrogen receptor modulator (SERM) and AI (aromatase inhibitor) resistance, is currently the only long-acting selective estrogen receptor degrader (SERD) approved for both first and second-line settings. However, it fails to achieve satisfactory efficacy due to its poor solubility. Therefore, we designed and synthesized a series of novel scaffold (THC) derivatives, identifying their activities as ER antagonists and degraders. G-5b, the optimal compound, exhibited binding, antagonistic, degradation or anti-proliferative activities comparable to fulvestrant in ER+ wild type and mutants breast cancer cells. Notably, G-5b showed considerably improved stability and solubility. Research into the underlying mechanism indicated that G-5b engaged the proteasome pathway to degrade ER, subsequently inhibiting the ER signaling pathway and leading to the induction of apoptosis and cell cycle arrest events. Furthermore, G-5b displayed superior in vivo pharmacokinetics and pharmacodynamics properties, coupled with a favorable safety profile in the MCF-7 tamoxifen-resistant (MCF-7/TR) tumor xenograft model. Collectively, G-5b has emerged as a highly promising lead compound, offering potent antagonistic and degradation activities, positioning it as a novel long-acting SERD worthy of further refinement and optimization.
Collapse
Affiliation(s)
- Bingsi Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Mingxu Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Yusen Dai
- R & D Center, Luye Pharma Group Ltd., Yantai, 264003, China
| | - Pengfei Yu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Liang Ye
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Wenyan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Chunjie Sha
- R & D Center, Luye Pharma Group Ltd., Yantai, 264003, China
| | - Huijie Yang
- R & D Center, Luye Pharma Group Ltd., Yantai, 264003, China
| | - Yingjie Yang
- R & D Center, Luye Pharma Group Ltd., Yantai, 264003, China
| | - Yunjing Zhu
- R & D Center, Luye Pharma Group Ltd., Yantai, 264003, China
| | - Lin Dong
- R & D Center, Luye Pharma Group Ltd., Yantai, 264003, China
| | - Shujuan Wei
- R & D Center, Luye Pharma Group Ltd., Yantai, 264003, China
| | - Linlin Wang
- Department of Food Engineering, Shandong Business Institute, Yantai, 264670, China.
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| |
Collapse
|
21
|
Lawson M, Cureton N, Ros S, Cheraghchi-Bashi A, Urosevic J, D'Arcy S, Delpuech O, DuPont M, Fisher DI, Gangl ET, Lewis H, Trueman D, Wali N, Williamson SC, Moss J, Montaudon E, Derrien H, Marangoni E, Miragaia RJ, Gagrica S, Morentin-Gutierrez P, Moss TA, Maglennon G, Sutton D, Polanski R, Rosen A, Cairns J, Zhang P, Sánchez-Guixé M, Serra V, Critchlow SE, Scott JS, Lindemann JP, Barry ST, Klinowska T, Morrow CJ, S Carnevalli L. The Next-Generation Oral Selective Estrogen Receptor Degrader Camizestrant (AZD9833) Suppresses ER+ Breast Cancer Growth and Overcomes Endocrine and CDK4/6 Inhibitor Resistance. Cancer Res 2023; 83:3989-4004. [PMID: 37725704 PMCID: PMC10690091 DOI: 10.1158/0008-5472.can-23-0694] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/11/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023]
Abstract
Oral selective estrogen receptor degraders (SERD) could become the backbone of endocrine therapy (ET) for estrogen receptor-positive (ER+) breast cancer, as they achieve greater inhibition of ER-driven cancers than current ETs and overcome key resistance mechanisms. In this study, we evaluated the preclinical pharmacology and efficacy of the next-generation oral SERD camizestrant (AZD9833) and assessed ER-co-targeting strategies by combining camizestrant with CDK4/6 inhibitors (CDK4/6i) and PI3K/AKT/mTOR-targeted therapy in models of progression on CDK4/6i and/or ET. Camizestrant demonstrated robust and selective ER degradation, modulated ER-regulated gene expression, and induced complete ER antagonism and significant antiproliferation activity in ESR1 wild-type (ESR1wt) and mutant (ESR1m) breast cancer cell lines and patient-derived xenograft (PDX) models. Camizestrant also delivered strong antitumor activity in fulvestrant-resistant ESR1wt and ESR1m PDX models. Evaluation of camizestrant in combination with CDK4/6i (palbociclib or abemaciclib) in CDK4/6-naive and -resistant models, as well as in combination with PI3Kαi (alpelisib), mTORi (everolimus), or AKTi (capivasertib), indicated that camizestrant was active with CDK4/6i or PI3K/AKT/mTORi and that antitumor activity was further increased by the triple combination. The response was observed independently of PI3K pathway mutation status. Overall, camizestrant shows strong and broad antitumor activity in ER+ breast cancer as a monotherapy and when combined with CDK4/6i and PI3K/AKT/mTORi. SIGNIFICANCE Camizestrant, a next-generation oral SERD, shows promise in preclinical models of ER+ breast cancer alone and in combination with CDK4/6 and PI3K/AKT/mTOR inhibitors to address endocrine resistance, a current barrier to treatment.
Collapse
Affiliation(s)
- Mandy Lawson
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - Natalie Cureton
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - Susana Ros
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | | | - Jelena Urosevic
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - Sophie D'Arcy
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - Oona Delpuech
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - Michelle DuPont
- Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts
| | - David I. Fisher
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Eric T. Gangl
- Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts
| | - Hilary Lewis
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - Dawn Trueman
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - Neha Wali
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | | | - Jennifer Moss
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | | | | | | | | | - Sladjana Gagrica
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | | | - Thomas A. Moss
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - Gareth Maglennon
- Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Daniel Sutton
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - Radoslaw Polanski
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Alan Rosen
- Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts
| | - Jonathan Cairns
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Pei Zhang
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - Mònica Sánchez-Guixé
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Susan E. Critchlow
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - James S. Scott
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | | | - Simon T. Barry
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - Teresa Klinowska
- Late Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | |
Collapse
|
22
|
Will M, Liang J, Metcalfe C, Chandarlapaty S. Therapeutic resistance to anti-oestrogen therapy in breast cancer. Nat Rev Cancer 2023; 23:673-685. [PMID: 37500767 PMCID: PMC10529099 DOI: 10.1038/s41568-023-00604-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
The hormone receptor oestrogen receptor-α (ER) orchestrates physiological mammary gland development, breast carcinogenesis and the progression of breast tumours into lethal, treatment-refractory systemic disease. Selective antagonism of ER signalling has been one of the most successful therapeutic approaches in oncology, benefiting patients as both a cancer preventative measure and a cancer treatment strategy. However, resistance to anti-oestrogen therapy is a major clinical challenge. Over the past decade, we have gained an understanding of how breast cancers evolve under the pressure of anti-oestrogen therapy. This is best depicted by the case of oestrogen-independent mutations in the gene encoding ER (ESR1), which are virtually absent in primary breast cancer but highly prevalent (20-40%) in anti-oestrogen-treated metastatic disease. These and other findings highlight the 'evolvability' of ER+ breast cancer and the need to understand molecular processes by which this evolution occurs. Recent development and approval of next-generation ER antagonists to target ESR1-mutant breast cancer underscores the clinical importance of this evolvability and sets a new paradigm for the treatment of ER+ breast cancers.
Collapse
Affiliation(s)
- Marie Will
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jackson Liang
- Department of Oncology Biomarker Development, Genentech, South San Francisco, CA, USA
| | - Ciara Metcalfe
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA.
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
23
|
Beumer JH, Foldi J. Pharmacology and pharmacokinetics of elacestrant. Cancer Chemother Pharmacol 2023; 92:157-163. [PMID: 37314500 PMCID: PMC10713198 DOI: 10.1007/s00280-023-04550-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
Elacestrant, a novel oral selective estrogen receptor (ER) degrader (SERD), was approved by the Food and Drug Administration (FDA) on January 27, 2023, for use in patients with ER and/or progesterone receptor (PR)-positive and HER2-negative metastatic breast cancer whose tumors harbor an ESR1 missense mutation (ESR1-mut), after at least one line of endocrine therapy (ET). The FDA made its decision based on the randomized phase 3 EMERALD trial, which met its primary endpoint of improved median progression-free survival (mPFS) with elacestrant monotherapy versus standard-of-care endocrine monotherapy in the overall intention to treat population; however, this benefit was largely driven by the ESR1-mut cohort. Elacestrant is a dose-dependent mixed ER agonist/antagonist, which at high doses acts as a direct ER antagonist as well as selective downregulator of ER. It is 11% bioavailable, primarily metabolized by CYP3A4 in the liver and excreted in feces. This leads to drug-drug interactions with strong CYP3A4 inhibitors and inducers, such as itraconazole and rifampin, respectively. In accordance with its clearance route, dose reduction is recommended in patients with moderate hepatic dysfunction but not in renal dysfunction. Studies evaluating elacestrant in severe hepatic dysfunction as well as in patients from racial and ethnic minority groups are ongoing. Overall, elacestrant is the first orally bioavailable SERD approved by the FDA for use in patients with metastatic breast cancer. Current clinical trials are ongoing evaluating it in the adjuvant setting in patients with early stage ER-positive breast cancers.
Collapse
Affiliation(s)
- Jan H Beumer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Hillman Research Pavilion, Room G27E, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, USA.
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Julia Foldi
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Hillman Research Pavilion, Room G27E, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, USA
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Shastry M, Hamilton E. Novel Estrogen Receptor-Targeted Agents for Breast Cancer. Curr Treat Options Oncol 2023; 24:821-844. [PMID: 37129836 DOI: 10.1007/s11864-023-01079-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
OPINION STATEMENT It has become clear that patients whose cancers have progressed post-CDK4/6 inhibitor therapy (CDK4/6i) are not deriving the same magnitude of benefit to subsequent standard endocrine therapy as historical studies would suggest. For example, anticipated duration of benefit to fulvestrant prior to CDK4/6i historically was ~ 5-6 months, and data from the VERONICA and EMERALD trials report less than 2 months. This has magnified our need for novel endocrine agents. Some have argued that patients post-CDK4/6i may just have more endocrine-resistant tumors and perhaps should just receive chemotherapy. While this may be appropriate for some, we do not currently have an assay that reliably predicts whose cancers remain endocrine sensitive and whose are endocrine resistant. ESR1 mutations can enrich for patients whose tumors are more likely to be heavily dependent on estrogen, but this is certainly not the whole answer and many patients without ESR1 mutations continue to derive benefit from subsequent endocrine agents. Most patients would strongly prefer the side effect profile of endocrine agents compared to chemotherapy, and thus, premature use of cytotoxic agents when subsequent ER targeting can control disease is not preferred. These novel ER targeting agents (PROTAC, SERD, SERCA, CERAN) hold great promise to not only outperform standard agents like fulvestrant, but also offer the promise of agents with a different side effect profile that may be more advantageous when compared to menopausal symptoms, hot flashes, arthralgias, and sexual side effects so commonly seen with AIs. We also are likely to see these novel agents move to earlier lines, whether that be 1st line in combination with CDK4/6i or even adjuvant disease.
Collapse
Affiliation(s)
| | - Erika Hamilton
- Sarah Cannon Research Institute, Nashville, TN, USA.
- Tennessee Oncology, 335 24th Ave North, Suite 300, Nashville, TN, 37203, USA.
| |
Collapse
|
25
|
Rej RK, Thomas JE, Acharyya RK, Rae JM, Wang S. Targeting the Estrogen Receptor for the Treatment of Breast Cancer: Recent Advances and Challenges. J Med Chem 2023. [PMID: 37377342 DOI: 10.1021/acs.jmedchem.3c00136] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Estrogen receptor alpha (ERα) is a well-established therapeutic target for the treatment of ER-positive (ER+) breast cancers. Despite the tremendous successes achieved with tamoxifen, a selective ER modulator, and aromatase inhibitors (AIs), resistance to these therapies is a major clinical problem. Therefore, induced protein degradation and covalent inhibition have been pursued as new therapeutic approaches to target ERα. This Perspective summarizes recent progress in the discovery and development of oral selective ER degraders (SERDs), complete estrogen receptor antagonists (CERANs), selective estrogen receptor covalent antagonists (SERCAs), and proteolysis targeting chimera (PROTAC) ER degraders. We focus on those compounds which have been advanced into clinical development.
Collapse
Affiliation(s)
- Rohan Kalyan Rej
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Junius Eugene Thomas
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ranjan Kumar Acharyya
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James Michael Rae
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
26
|
Bhatia N, Hazra S, Thareja S. Selective Estrogen receptor degraders (SERDs) for the treatment of breast cancer: An overview. Eur J Med Chem 2023; 256:115422. [PMID: 37163948 DOI: 10.1016/j.ejmech.2023.115422] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Discovery of SERDs has changed the direction of anticancer research, as more than 70% of breast cancer cases are estrogen receptor positive (ER+). Therapies such as selective estrogen receptor modulators (SERM) and aromatase inhibitors (AI's) have been effective, but due to endocrine resistance, SERDs are now considered essential therapeutics for the treatment of ER+ breast cancer. The present review deliberates the pathophysiology of SERDs from the literature covering various molecules in clinical trials. Estrogen receptors active sites distinguishing characteristics and interactions with currently available FDA-approved drugs have also been discussed. Designing strategy of previously reported SERDs, their SAR analysis, in silico, and the biological efficacy have also been summarized along with appropriate examples.
Collapse
Affiliation(s)
- Neha Bhatia
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Shreejita Hazra
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
27
|
Corti C, De Angelis C, Bianchini G, Malorni L, Giuliano M, Hamilton E, Jeselsohn R, Jhaveri K, Curigliano G, Criscitiello C. Novel endocrine therapies: What is next in estrogen receptor positive, HER2 negative breast cancer? Cancer Treat Rev 2023; 117:102569. [PMID: 37146385 DOI: 10.1016/j.ctrv.2023.102569] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
Endocrine therapy (ET) is the cornerstone of management in hormone receptor (HR)+ breast cancer (BC). Indeed, targeting the estrogen receptor (ER) signaling at different levels is a successful strategy, since BC largely relies on the ER signaling as a driver of tumorigenesis and progression. In metastatic BC, progression of disease typically occurs due to either ligand-independent ER signaling, which favors tumor proliferation and survival in the absence of hormonal stimuli, or an ER-independent signaling, which exploits alternative transcription pathways. For instance, estrogen receptor 1 (ESR1) mutations induce constitutive ER activity, in turn upregulating ER-dependent gene transcription and causing resistance to estrogen depleting therapies. The largest unmet need lies after progression on ET + cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors, where fulvestrant alone provides an average 2-3-month PFS. In this context, novel oral selective estrogen receptor degraders (SERDs) and other next-generation ETs are being investigated, both as single agents and in combination with targeted therapies. Elacestrant, the next generation ET in most advanced clinical development and the first to be FDA approved, demonstrated improved outcomes compared to standard ETs in ET pre-treated HR+/HER2- metastatic BC in the phase 3 EMERALD clinical trial. Additionally, other agents are showing promising results in both preclinical and early phase clinical settings. In this review, emerging data related to oral SERDs and other novel ETs in managing HR+/HER2- BC are presented. Major challenges and future perspectives related to the optimal sequence of therapeutic options and the molecular landscape of endocrine resistance are also provided.
Collapse
Affiliation(s)
- Chiara Corti
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato - Oncology (DIPO), University of Milan, Milan, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy; Laster and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Giampaolo Bianchini
- Department of Medical Oncology, Ospedale San Raffaele, IRCCS, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Malorni
- "Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy; "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy; Laster and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Erika Hamilton
- Sarah Cannon Research Institute, Nashville, TN, USA; Tennessee Oncology, PLLC, Nashville, TN, USA
| | - Rinath Jeselsohn
- Breast Oncology Center, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA; Division of Molecular and Cellular Oncology, Dana Farber Cancer Institute, Boston, MA, USA; Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA, USA
| | - Komal Jhaveri
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato - Oncology (DIPO), University of Milan, Milan, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato - Oncology (DIPO), University of Milan, Milan, Italy.
| |
Collapse
|
28
|
Patel R, Klein P, Tiersten A, Sparano JA. An emerging generation of endocrine therapies in breast cancer: a clinical perspective. NPJ Breast Cancer 2023; 9:20. [PMID: 37019913 PMCID: PMC10076370 DOI: 10.1038/s41523-023-00523-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Anti-estrogen therapy is a key component of the treatment of both early and advanced-stage hormone receptor (HR)-positive breast cancer. This review discusses the recent emergence of several anti-estrogen therapies, some of which were designed to overcome common mechanisms of endocrine resistance. The new generation of drugs includes selective estrogen receptor modulators (SERMs), orally administered selective estrogen receptor degraders (SERDs), as well as more unique agents such as complete estrogen receptor antagonists (CERANs), proteolysis targeting chimeric (PROTACs), and selective estrogen receptor covalent antagonists (SERCAs). These drugs are at various stages of development and are being evaluated in both early and metastatic settings. We discuss the efficacy, toxicity profile, and completed and ongoing clinical trials for each drug and highlight key differences in their activity and study population that have ultimately influenced their advancement.
Collapse
Affiliation(s)
- Rima Patel
- Department of Medicine, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA.
| | - Paula Klein
- Department of Medicine, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Amy Tiersten
- Department of Medicine, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Joseph A Sparano
- Department of Medicine, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| |
Collapse
|
29
|
Abstract
Elacestrant (ORSERDU™) is an orally available selective estrogen receptor degrader (SERD) being developed by Stemline Therapeutics, a subsidiary of Menarini Group, for the treatment of estrogen receptor (ER)-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer. In January 2023, elacestrant received its first approval for the treatment of postmenopausal women or adult men with ER-positive, HER2-negative, estrogen receptor 1 (ESR1)-mutated (as determined by a US FDA-approved test) advanced or metastatic breast cancer with disease progression following ≥ 1 line of endocrine therapy in the USA. A regulatory assessment of elacestrant for the treatment of ER-positive, HER2-negative advanced or metastatic breast cancer is currently underway in the EU. Development of elacestrant for the treatment of vasomotor symptoms has been discontinued. This article summarizes the milestones in the development of elacestrant leading to this first approval for this indication.
Collapse
Affiliation(s)
- Sheridan M Hoy
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand.
| |
Collapse
|
30
|
Turner N, Huang-Bartlett C, Kalinsky K, Cristofanilli M, Bianchini G, Chia S, Iwata H, Janni W, Ma CX, Mayer EL, Park YH, Fox S, Liu X, McClain S, Bidard FC. Design of SERENA-6, a phase III switching trial of camizestrant in ESR1-mutant breast cancer during first-line treatment. Future Oncol 2023; 19:559-573. [PMID: 37070653 DOI: 10.2217/fon-2022-1196] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
ESR1 mutation (ESR1m) is a frequent cause of acquired resistance to aromatase inhibitor (AI) plus cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i), which is a first-line therapy for hormone-receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) advanced breast cancer (ABC). Camizestrant is a next-generation oral selective estrogen receptor degrader (SERD) that in a phase II study significantly improved progression-free survival (PFS) over fulvestrant (also a SERD) in ER+/HER2- ABC. SERENA-6 (NCT04964934) is a randomized, double-blind, phase III study evaluating the efficacy and safety of switching from an AI to camizestrant, while maintaining the same CDK4/6i, upon detection of ESR1m in circulating tumor DNA before clinical disease progression on first-line therapy for HR+/HER2- ABC. The aim is to treat ESR1m clones and extend the duration of control of ER-driven tumor growth, delaying the need for chemotherapy. The primary end point is PFS; secondary end points include chemotherapy-free survival, time to second progression event (PFS2), overall survival, patient-reported outcomes and safety.
Collapse
Affiliation(s)
- Nicholas Turner
- Breast Unit, The Royal Marsden NHS Foundation Trust & Institute of Cancer Research, London, SW3 6JJ, UK
| | | | - Kevin Kalinsky
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell School of Medicine, New York City, NY 10021, USA
| | - Giampaolo Bianchini
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - Stephen Chia
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
| | - Hiroji Iwata
- Department of Breast Oncology, Aichi Cancer Center Hospital, Nagoya, 464-8681, Japan
| | - Wolfgang Janni
- Department of Obstetrics and Gynecology, University Hospital Ulm, Ulm, 89081, Germany
| | - Cynthia X Ma
- Division of Oncology, Department of Medicine and the Siteman Cancer Center, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Erica L Mayer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Steven Fox
- Global Medicines Development, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Xiaochun Liu
- Global Medicines Development, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Sasha McClain
- Global Medicines Development, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Francois-Clement Bidard
- Department of Medical Oncology, Institut Curie, Saint-Cloud, 92210, France
- Department of Medical Oncology, Université de Versailles Saint-Quentin, Université Paris-Saclay, Saint-Cloud, 92210, France
| |
Collapse
|
31
|
Varella L, Cristofanilli M. Evaluating Elacestrant in the Management of ER-Positive, HER2-Negative Advanced Breast Cancer: Evidence to Date. Onco Targets Ther 2023; 16:189-196. [PMID: 36993871 PMCID: PMC10041978 DOI: 10.2147/ott.s400563] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Breast cancer remains the second leading cause of cancer mortality in women. Endocrine therapy is the backbone treatment for hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer, the most common subtype. Although several endocrine therapy agents are available, essentially all HR-positive metastatic breast cancers will become resistant to these drugs. ESR1 mutations represent an important mechanism of resistance to aromatase inhibitors. Elacestrant is a novel oral selective estrogen receptor degrader (SERD) that selectively binds to the estrogen receptor in breast cancer cells, inhibiting tumor growth. Preclinical data suggested greater efficacy of elacestrant in combination with cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) or everolimus. In a Phase III clinical trial, elacestrant demonstrated a significant although modest improvement in median progression-free survival (PFS) compared to standard of care endocrine therapy in patients with HR-positive, HER2-negative advanced breast cancer. Importantly, there was also a significant benefit in patients with ESR1 mutations, which led to the FDA approval of elacestrant in this patient group. Elacestrant was generally well tolerated, with main side effects being upper gastrointestinal symptoms. There are several ongoing clinical trials evaluating the efficacy of elacestrant in the early setting as well as in combination with other targeted agents in the treatment of metastatic breast cancer. Other novel oral SERDs are also currently being evaluated in the treatment of HR-positive breast cancer. Results of ongoing clinical trials with these drugs will help clinicians decide the best sequence and combination of endocrine therapy agents.
Collapse
Affiliation(s)
- Leticia Varella
- Division of Medical Oncology, Internal Medicine Department, Weill Cornell Medicine, New York, NY, USA
- Correspondence: Leticia Varella, Tel +1 646 962 9888, Fax +1 646 962 0193, Email
| | - Massimo Cristofanilli
- Division of Medical Oncology, Internal Medicine Department, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
32
|
Hancock GR, Young KS, Hosfield DJ, Joiner C, Sullivan EA, Yildiz Y, Lainé M, Greene GL, Fanning SW. Unconventional isoquinoline-based SERMs elicit fulvestrant-like transcriptional programs in ER+ breast cancer cells. NPJ Breast Cancer 2022; 8:130. [PMID: 36517522 PMCID: PMC9748900 DOI: 10.1038/s41523-022-00497-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
Estrogen receptor alpha (ERα) is a ligand-dependent master transcriptional regulator and key driver of breast cancer pathology. Small molecule hormones and competitive antagonists favor unique ERα conformational ensembles that elicit ligand-specific transcriptional programs in breast cancer and other hormone-responsive tissues. By affecting disparate ligand binding domain structural features, unconventional ligand scaffolds can redirect ERα genomic binding patterns to engage novel therapeutic transcriptional programs. To improve our understanding of these ERα structure-transcriptional relationships, we develop a series of chemically unconventional antagonists based on the antiestrogens elacestrant and lasofoxifene. High-resolution x-ray co-crystal structures show that these molecules affect both classical and unique structural motifs within the ERα ligand binding pocket. They show moderately reduced antagonistic potencies on ERα genomic activities but are effective anti-proliferative agents in luminal breast cancer cells. Interestingly, they favor a 4-hydroxytamoxifen-like accumulation of ERα in breast cancer cells but lack uterotrophic activities in an endometrial cell line. Importantly, RNA sequencing shows that the lead molecules engage transcriptional pathways similar to the selective estrogen receptor degrader fulvestrant. This advance shows that fulvestrant-like genomic activities can be achieved without affecting ERα accumulation in breast cancer cells.
Collapse
Affiliation(s)
- G R Hancock
- Department of Cancer Biology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA
| | - K S Young
- Department of Cancer Biology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA
| | - D J Hosfield
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, 60637, USA
| | - C Joiner
- Department of Cancer Biology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA
| | - E A Sullivan
- Department of Cancer Biology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA
| | - Y Yildiz
- Department of Cancer Biology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA
| | - M Lainé
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, 60637, USA
| | - G L Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, 60637, USA
| | - S W Fanning
- Department of Cancer Biology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA.
| |
Collapse
|
33
|
Pagliuca M, Donato M, D’Amato AL, Rosanova M, Russo AOM, Scafetta R, De Angelis C, Trivedi MV, André F, Arpino G, Del Mastro L, De Laurentiis M, Puglisi F, Giuliano M. New steps on an old path: Novel estrogen receptor inhibitors in breast cancer. Crit Rev Oncol Hematol 2022; 180:103861. [DOI: 10.1016/j.critrevonc.2022.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
|
34
|
Garcia-Fructuoso I, Gomez-Bravo R, Schettini F. Integrating new oral selective oestrogen receptor degraders in the breast cancer treatment. Curr Opin Oncol 2022; 34:635-642. [PMID: 36000362 DOI: 10.1097/cco.0000000000000892] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Oral SERDs are under extensive development to overcome fulvestrant main limitations, including intramuscular-only formulation and poor performance in early-stage hormone receptor-positive (HR+)/HER2-negative breast cancer. This review summarizes the most relevant evidence published so far and envisions the potential integration of oral SERDs in the therapeutic algorithm of HR+/HER2-negative metastatic breast cancer (MBC). RECENT FINDINGS Amcenestrant and giredestrant, two of the most promising oral SERDs, recently failed to show a significant improvement in progression-free survival (PFS) in pivotal trials. Conversely, elacestrant demonstrated significant PFS superiority over standard-of-care endocrine therapy (aromatase inhibitors or fulvestrant) in MBC. Additionally, it did not show unusual side effects observed with other oral SERDs, like bradycardia, hematotoxicity and vision impairment, and proved to be effective also in case of ESR1 -mutant endocrine-resistant breast cancer. Combination trials of oral SERDs with target agents, such as CDK4/6-inhibitors, are ongoing. Finally, some window-of-opportunity trials showed promising on-target activity in early-stage for this drug class. SUMMARY Promising results from early-phase trials are not translating into sufficient clinical benefit in pivotal trials of main oral SERDs in monotherapy, except for elacestrant. Whether oral SERDs might become the backbone for combination strategies in MBC or the preferred (neo)adjuvant endocrine agents is under evaluation.
Collapse
Affiliation(s)
| | | | - Francesco Schettini
- Department of Medical Oncology, Hospital Clinic of Barcelona
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi I Sunyer Biomedical Research Institute (IDIBAPS)
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
35
|
Bidard FC, Kaklamani VG, Neven P, Streich G, Montero AJ, Forget F, Mouret-Reynier MA, Sohn JH, Taylor D, Harnden KK, Khong H, Kocsis J, Dalenc F, Dillon PM, Babu S, Waters S, Deleu I, García Sáenz JA, Bria E, Cazzaniga M, Lu J, Aftimos P, Cortés J, Liu S, Tonini G, Laurent D, Habboubi N, Conlan MG, Bardia A. Elacestrant (oral selective estrogen receptor degrader) Versus Standard Endocrine Therapy for Estrogen Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: Results From the Randomized Phase III EMERALD Trial. J Clin Oncol 2022; 40:3246-3256. [PMID: 35584336 PMCID: PMC9553388 DOI: 10.1200/jco.22.00338] [Citation(s) in RCA: 360] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 04/11/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Patients with pretreated estrogen receptor (ER)-positive/human epidermal growth factor receptor 2 (HER2)-negative advanced breast cancer have poor prognosis. Elacestrant is a novel, oral selective ER degrader that demonstrated activity in early studies. METHODS This randomized, open-label, phase III trial enrolled patients with ER-positive/HER2-negative advanced breast cancer who had one-two lines of endocrine therapy, required pretreatment with a cyclin-dependent kinase 4/6 inhibitor, and ≤ 1 chemotherapy. Patients were randomly assigned to elacestrant 400 mg orally once daily or standard-of-care (SOC) endocrine monotherapy. Primary end points were progression-free survival (PFS) by blinded independent central review in all patients and patients with detectable ESR1 mutations. RESULTS Patients were randomly assigned to elacestrant (n = 239) or SOC (n = 238). ESR1 mutation was detected in 47.8% of patients, and 43.4% received two prior endocrine therapies. PFS was prolonged in all patients (hazard ratio = 0.70; 95% CI, 0.55 to 0.88; P = .002) and patients with ESR1 mutation (hazard ratio = 0.55; 95% CI, 0.39 to 0.77; P = .0005). Treatment-related grade 3/4 adverse events occurred in 7.2% receiving elacestrant and 3.1% receiving SOC. Treatment-related adverse events leading to treatment discontinuations were 3.4% in the elacestrant arm versus 0.9% in SOC. Nausea of any grade occurred in 35.0% receiving elacestrant and 18.8% receiving SOC (grade 3/4, 2.5% and 0.9%, respectively). CONCLUSION Elacestrant is the first oral selective ER degrader demonstrating a significant PFS improvement versus SOC both in the overall population and in patients with ESR1 mutations with manageable safety in a phase III trial for patients with ER-positive/HER2-negative advanced breast cancer.
Collapse
Affiliation(s)
- Francois-Clement Bidard
- Institut Curie, Paris and Saint Cloud, France
- Versailles Saint Quentin/Paris-Saclay University, Saint Cloud, France
| | | | - Patrick Neven
- Universitaire Ziekenhuizen (UZ)—Leuven Cancer Institute, Leuven, Belgium
| | | | - Alberto J. Montero
- University Hospitals Seidman Cancer Center-Case Western Reserve University, Cleveland, OH
| | - Frédéric Forget
- Centre Hospitalier de l'Ardenne—Site de Libramont, Libramont-Chevigny, Belgium
| | | | - Joo Hyuk Sohn
- Yonsei Cancer Center, Yonsei University Health System-Medical Oncology, Seoul, Republic of Korea
| | - Donatienne Taylor
- Université catholique de Louvain, CHU UCL Namur—Site Sainte-Elisabeth, Namur, Belgium
| | | | - Hung Khong
- Moffit Cancer Center & Research Institute, Tampa, FL
| | | | | | | | - Sunil Babu
- Fort Wayne Medical Oncology and Hematology, Fort Wayne, IN
| | | | | | - José A. García Sáenz
- Instituto de Investigación Sanitaria Hospital Clinico San Carlos (IdISSC), Madrid, Spain
| | - Emilio Bria
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | - Janice Lu
- University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Philippe Aftimos
- Institut Jules Bordet – Université Libre de Bruxelles, Brussels, Belgium
| | - Javier Cortés
- International Breast Cancer Center (IBCC), Quironsalud Group, Barcelona, Spain
- Scientific Department, Medica Scientia Innovation Research, Valencia, Spain
- Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain
| | | | | | - Dirk Laurent
- Berlin Chemie AG/Menarini Group, Berlin, Germany
| | | | | | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| |
Collapse
|
36
|
Ferraro E, Walsh EM, Tao JJ, Chandarlapaty S, Jhaveri K. Accelerating drug development in breast cancer: New frontiers for ER inhibition. Cancer Treat Rev 2022; 109:102432. [PMID: 35839531 DOI: 10.1016/j.ctrv.2022.102432] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022]
Abstract
The estrogen receptor (ER) is an important driver in the proliferation, tumorigenesis, and progression of breast cancers, and targeting ER signaling at different levels is a successful strategy in the control of hormone receptor positive (HR+) breast cancer. Endocrine therapy has been the treatment of choice for HR+ breast cancer in the early and advanced stages with multiple agents, including selective estrogen receptor modulators (SERMS), selective estrogen receptor degraders (SERDs), and aromatase inhibitors (AIs), which vary in their mechanisms of action and pharmacokinetics. Combination strategies also employ cyclin dependent kinase 4 and 6 and phosphatidylinositol 3-kinase to maximize the benefits of endocrine therapy. This paper reviews the clinical development of SERDs and other novel ER inhibitors, as well as combination strategies to overcome mechanisms of ER pathway escape. It also assesses the advantages of newer oral ER inhibitors with increased bioavailability, improved therapeutic index, better administration, and increased efficacy, as well as discussing future directions in the field.
Collapse
Affiliation(s)
- Emanuela Ferraro
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elaine M Walsh
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Jacqueline J Tao
- Graduate Medical Education, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarat Chandarlapaty
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Komal Jhaveri
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Early Drug Development Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
37
|
Hosfield DJ, Weber S, Li NS, Suavage M, Joiner CF, Hancock GR, Sullivan EA, Ndukwe E, Han R, Cush S, Lainé M, Mader SC, Greene GL, Fanning SW. Stereospecific lasofoxifene derivatives reveal the interplay between estrogen receptor alpha stability and antagonistic activity in ESR1 mutant breast cancer cells. eLife 2022; 11:72512. [PMID: 35575456 PMCID: PMC9177151 DOI: 10.7554/elife.72512] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Chemical manipulation of estrogen receptor alpha ligand binding domain structural mobility tunes receptor lifetime and influences breast cancer therapeutic activities. Selective estrogen receptor modulators (SERMs) extend estrogen receptor alpha (ERα) cellular lifetime/accumulation. They are antagonists in the breast but agonists in the uterine epithelium and/or in bone. Selective estrogen receptor degraders/downregulators (SERDs) reduce ERα cellular lifetime/accumulation and are pure antagonists. Activating somatic ESR1 mutations Y537S and D538G enable resistance to first-line endocrine therapies. SERDs have shown significant activities in ESR1 mutant setting while few SERMs have been studied. To understand whether chemical manipulation of ERα cellular lifetime and accumulation influences antagonistic activity, we studied a series of methylpyrollidine lasofoxifene (Laso) derivatives that maintained the drug’s antagonistic activities while uniquely tuning ERα cellular accumulation. These molecules were examined alongside a panel of antiestrogens in live cell assays of ERα cellular accumulation, lifetime, SUMOylation, and transcriptional antagonism. High-resolution x-ray crystal structures of WT and Y537S ERα ligand binding domain in complex with the methylated Laso derivatives or representative SERMs and SERDs show that molecules that favor a highly buried helix 12 antagonist conformation achieve the greatest transcriptional suppression activities in breast cancer cells harboring WT/Y537S ESR1. Together these results show that chemical reduction of ERα cellular lifetime is not necessarily the most crucial parameter for transcriptional antagonism in ESR1 mutated breast cancer cells. Importantly, our studies show how small chemical differences within a scaffold series can provide compounds with similar antagonistic activities, but with greatly different effects of the cellular lifetime of the ERα, which is crucial for achieving desired SERM or SERD profiles.
Collapse
Affiliation(s)
- David J Hosfield
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Sandra Weber
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Nan-Sheng Li
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Madline Suavage
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Carstyn F Joiner
- Department of Cancer Biology, Loyola University Chicago, Maywood, United States
| | - Govinda R Hancock
- Department of Cancer Biology, Loyola University Chicago, Maywood, United States
| | - Emily A Sullivan
- Department of Cancer Biology, Loyola University Chicago, Maywood, United States
| | - Estelle Ndukwe
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Ross Han
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Sydney Cush
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Muriel Lainé
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Sylvie C Mader
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Geoffrey L Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Sean W Fanning
- Department of Cancer Biology, Loyola University Chicago, Maywood, United States
| |
Collapse
|
38
|
Clinical Translation: Targeting the Estrogen Receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:297-309. [DOI: 10.1007/978-3-031-11836-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Saatci O, Huynh-Dam KT, Sahin O. Endocrine resistance in breast cancer: from molecular mechanisms to therapeutic strategies. J Mol Med (Berl) 2021; 99:1691-1710. [PMID: 34623477 PMCID: PMC8611518 DOI: 10.1007/s00109-021-02136-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022]
Abstract
Estrogen receptor-positive (ER +) breast cancer accounts for approximately 75% of all breast cancers. Endocrine therapies, including selective ER modulators (SERMs), aromatase inhibitors (AIs), and selective ER down-regulators (SERDs) provide substantial clinical benefit by reducing the risk of disease recurrence and mortality. However, resistance to endocrine therapies represents a major challenge, limiting the success of ER + breast cancer treatment. Mechanisms of endocrine resistance involve alterations in ER signaling via modulation of ER (e.g., ER downregulation, ESR1 mutations or fusions); alterations in ER coactivators/corepressors, transcription factors (TFs), nuclear receptors and epigenetic modulators; regulation of signaling pathways; modulation of cell cycle regulators; stress signaling; and alterations in tumor microenvironment, nutrient stress, and metabolic regulation. Current therapeutic strategies to improve outcome of endocrine-resistant patients in clinics include inhibitors against mechanistic target of rapamycin (mTOR), cyclin-dependent kinase (CDK) 4/6, and the phosphoinositide 3-kinase (PI3K) subunit, p110α. Preclinical studies reveal novel therapeutic targets, some of which are currently tested in clinical trials as single agents or in combination with endocrine therapies, such as ER partial agonists, ER proteolysis targeting chimeras (PROTACs), next-generation SERDs, AKT inhibitors, epidermal growth factor receptor 1 and 2 (EGFR/HER2) dual inhibitors, HER2 targeting antibody-drug conjugates (ADCs) and histone deacetylase (HDAC) inhibitors. In this review, we summarize the established and emerging mechanisms of endocrine resistance, alterations during metastatic recurrence, and discuss the approved therapies and ongoing clinical trials testing the combination of novel targeted therapies with endocrine therapy in endocrine-resistant ER + breast cancer patients.
Collapse
Affiliation(s)
- Ozge Saatci
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715, Sumter Street, CLS609D, Columbia, SC, 29208, USA
| | - Kim-Tuyen Huynh-Dam
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715, Sumter Street, CLS609D, Columbia, SC, 29208, USA
| | - Ozgur Sahin
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715, Sumter Street, CLS609D, Columbia, SC, 29208, USA.
| |
Collapse
|
40
|
Chen YC, Yu J, Metcalfe C, De Bruyn T, Gelzleichter T, Malhi V, Perez-Moreno PD, Wang X. Latest generation estrogen receptor degraders for the treatment of hormone receptor-positive breast cancer. Expert Opin Investig Drugs 2021; 31:515-529. [PMID: 34694932 DOI: 10.1080/13543784.2021.1983542] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The selective estrogen receptor degrader (SERD) and full receptor antagonist provides an important therapeutic option for hormone receptor (HR)-positive breast cancer. Endocrine therapies include tamoxifen, a selective estrogen receptor modulator (SERM), that exhibits receptor agonist and antagonist activity, and aromatase inhibitors that block estrogen biosynthesis but which demonstrate acquired resistance. Fulvestrant, the only currently approved SERD, is limited by poor drug-like properties. A key focus for improving disease management has been development of oral SERDs with optimized target occupancy and potency and superior clinical efficacy. AREAS COVERED Using PubMed, clinicaltrials.gov, and congress websites, this review explored the preclinical development and clinical pharmacokinetics from early phase clinical studies (2015 or later) of novel oral SERDs, including giredestrant, amcenestrant, camizestrant, elacestrant, and rintodestrant. EXPERT OPINION Numerous oral SERDs are in clinical development, aiming to form the core endocrine therapy for HR-positive breast cancer. Through property- and structure-based drug design of estrogen receptor-binding, antagonism, degradation, anti-proliferation, and pharmacokinetic properties, these SERDs have distinct profiles which impact clinical dosing, efficacy, and safety. Assuming preliminary safety and activity data are confirmed in phase 3 trials, these promising agents could further improve the management, outcomes, and quality of life in HR-positive breast cancer.
Collapse
Affiliation(s)
- Ya-Chi Chen
- Clinical Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Jiajie Yu
- Clinical Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Ciara Metcalfe
- Discovery Oncology, Genentech, Inc., South San Francisco, CA, USA
| | - Tom De Bruyn
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Thomas Gelzleichter
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Vikram Malhi
- Clinical Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | | | - Xiaojing Wang
- Discovery Chemistry, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
41
|
Bai C, Wu S, Ren S, Zhu M, Luo G, Xiang H. Benzothiophene derivatives as selective estrogen receptor covalent antagonists: Design, synthesis and anti-ERα activities. Bioorg Med Chem 2021; 47:116395. [PMID: 34509864 DOI: 10.1016/j.bmc.2021.116395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/22/2021] [Accepted: 08/31/2021] [Indexed: 01/11/2023]
Abstract
Estrogen receptor α emerged as a well validated therapeutic target of breast cancer for decades. However, approximately 50% of patients who initially responding to standard-of-care (SoC), such as undergo therapy of Tamoxifen, generally inevitably progress to an endocrine-resistance ER+ phenotype. Recently, selective estrogen receptor covalent antagonists (SERCAs) targeted to ERα have been demonstrated as a therapeutic alternative. In the present study, series of novel 6-OH-benzothiophene (BT) derivatives targeting ERα and deriving from Raloxifene were designed, synthesized, and biologically evaluated as covalent antagonists. Driven by the antiproliferative efficacy in ER+ breast cancer cells, our chemical optimization finally led to compound 19d that with potent antagonistic activity in ER+ tumor cells while without agonistic activity in endometrial cells. Moreover, the docking simulation was carried out to elucidate the binding mode, revealing 19d as an antagonist and covalently binding to the cysteine residue at the 530 position of ER helix H11.
Collapse
Affiliation(s)
- Chengfeng Bai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shuangjie Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shengnan Ren
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Meiqi Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
42
|
Boudreau MW, Duraki D, Wang L, Mao C, Kim JE, Henn MA, Tang B, Fanning SW, Kiefer J, Tarasow TM, Bruckheimer EM, Moreno R, Mousses S, Greene GL, Roy EJ, Park BH, Fan TM, Nelson ER, Hergenrother PJ, Shapiro DJ. A small-molecule activator of the unfolded protein response eradicates human breast tumors in mice. Sci Transl Med 2021; 13:13/603/eabf1383. [PMID: 34290053 DOI: 10.1126/scitranslmed.abf1383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 07/01/2021] [Indexed: 12/20/2022]
Abstract
Metastatic estrogen receptor α (ERα)-positive breast cancer is presently incurable. Seeking to target these drug-resistant cancers, we report the discovery of a compound, called ErSO, that activates the anticipatory unfolded protein response (a-UPR) and induces rapid and selective necrosis of ERα-positive breast cancer cell lines in vitro. We then tested ErSO in vivo in several preclinical orthotopic and metastasis mouse models carrying different xenografts of human breast cancer lines or patient-derived breast tumors. In multiple orthotopic models, ErSO treatment given either orally or intraperitoneally for 14 to 21 days induced tumor regression without recurrence. In a cell line tail vein metastasis model, ErSO was also effective at inducing regression of most lung, bone, and liver metastases. ErSO treatment induced almost complete regression of brain metastases in mice carrying intracranial human breast cancer cell line xenografts. Tumors that did not undergo complete regression and regrew remained sensitive to retreatment with ErSO. ErSO was well tolerated in mice, rats, and dogs at doses above those needed for therapeutic responses and had little or no effect on normal ERα-expressing murine tissues. ErSO mediated its anticancer effects through activation of the a-UPR, suggesting that activation of a tumor protective pathway could induce tumor regression.
Collapse
Affiliation(s)
- Matthew W Boudreau
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Darjan Duraki
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lawrence Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chengjian Mao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ji Eun Kim
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Madeline A Henn
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bingtao Tang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sean W Fanning
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | - Geoffrey L Greene
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Edward J Roy
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ben Ho Park
- Department of Medicine, Division of Heme/Onc, Vanderbilt Ingram Cancer Center, Nashville, TN 37232, USA
| | - Timothy M Fan
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Erik R Nelson
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. .,Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - David J Shapiro
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. .,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
43
|
Current and emerging estrogen receptor-targeted therapies for the treatment of breast cancer. Essays Biochem 2021; 65:985-1001. [PMID: 34328178 DOI: 10.1042/ebc20200174] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
Nearly 80% of all breast cancers are estrogen receptor positive (ER+) and require the activity of this transcription factor for tumor growth and survival. Thus, endocrine therapies, which target the estrogen signaling axis, have and will continue to be the cornerstone of therapy for patients diagnosed with ER+ disease. Several inhibitors of ER activity exist, including aromatase inhibitors (AIs), selective estrogen receptor modulators (SERMs), selective estrogen receptor degraders/down-regulators (SERDs), and ER proteolysis-targeting chimeras (ER PROTACs); drugs which differ in the mechanism(s) by which they inhibit this signaling pathway. Notwithstanding their significant impact on the management of this disease, resistance to existing endocrine therapies remains a major impediment to durable clinical responses. Although the mechanisms of resistance are complex and varied, dependence on ER is typically retained after progression on SERMs and AIs, suggesting that ER remains a bona fide therapeutic target. The discovery and development of orally bioavailable drugs that eliminate ER expression (SERDs and ER PROTACs) will likely aid in treating this growing patient population. All of the existing endocrine therapies were developed with the intent of inhibiting the cancer cell intrinsic actions of ER and/or with the objective of achieving extreme estrogen deprivation and most achieve that goal. A longstanding question that remains to be addressed, however, is how actions of existing interventions extrinsic to the cancer cells influence tumor biology. We believe that these issues need to be addressed in the development of strategies to develop the next generation of ER-modulators optimized for positive activities in both cancer cells and other cells within the tumor microenvironment (TME).
Collapse
|
44
|
Hernando C, Ortega-Morillo B, Tapia M, Moragón S, Martínez MT, Eroles P, Garrido-Cano I, Adam-Artigues A, Lluch A, Bermejo B, Cejalvo JM. Oral Selective Estrogen Receptor Degraders (SERDs) as a Novel Breast Cancer Therapy: Present and Future from a Clinical Perspective. Int J Mol Sci 2021; 22:ijms22157812. [PMID: 34360578 PMCID: PMC8345926 DOI: 10.3390/ijms22157812] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/21/2023] Open
Abstract
Estrogen receptor-positive (ER+) is the most common subtype of breast cancer. Endocrine therapy is the fundamental treatment against this entity, by directly or indirectly modifying estrogen production. Recent advances in novel compounds, such as cyclin-dependent kinase 4/6 inhibitors (CDK4/6i), or phosphoinositide 3-kinase (PI3K) inhibitors have improved progression-free survival and overall survival in these patients. However, some patients still develop endocrine resistance after or during endocrine treatment. Different underlying mechanisms have been identified as responsible for endocrine treatment resistance, where ESR1 gene mutations are one of the most studied, outstanding from others such as somatic alterations, microenvironment involvement and epigenetic changes. In this scenario, selective estrogen receptor degraders/downregulators (SERD) are one of the weapons currently in research and development against aromatase inhibitor- or tamoxifen-resistance. The first SERD to be developed and approved for ER+ breast cancer was fulvestrant, demonstrating also interesting activity in ESR1 mutated patients in the second line treatment setting. Recent investigational advances have allowed the development of new oral bioavailable SERDs. This review describes the evolution and ongoing studies in SERDs and new molecules against ER, with the hope that these novel drugs may improve our patients’ future landscape.
Collapse
Affiliation(s)
- Cristina Hernando
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
- Correspondence: (C.H.); (J.M.C.)
| | - Belén Ortega-Morillo
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
| | - Marta Tapia
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
| | - Santiago Moragón
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
| | - María Teresa Martínez
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
| | - Pilar Eroles
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, 28029 Madrid, Spain
- Departamento de Fisiología, Universidad de València, 46010 Valencia, Spain
| | - Iris Garrido-Cano
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
| | - Anna Adam-Artigues
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
| | - Ana Lluch
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, 28029 Madrid, Spain
| | - Begoña Bermejo
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, 28029 Madrid, Spain
| | - Juan Miguel Cejalvo
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, 28029 Madrid, Spain
- Correspondence: (C.H.); (J.M.C.)
| |
Collapse
|
45
|
Pharmacokinetic and Pharmacodynamic Studies of Elacestrant, A Novel Oral Selective Estrogen Receptor Degrader, in Healthy Post-Menopausal Women. Eur J Drug Metab Pharmacokinet 2021; 45:675-689. [PMID: 32661909 PMCID: PMC7511284 DOI: 10.1007/s13318-020-00635-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background and Objectives Advanced estrogen receptor-positive (ER+) breast cancer is currently treated with endocrine therapy. Elacestrant is a novel, nonsteroidal, selective estrogen receptor degrader with complex dose-related ER agonist/antagonist activity that is being developed as a treatment option for ER+ breast cancer. Methods Two first-in-human phase 1 studies of elacestrant in healthy postmenopausal women (Study 001/Study 004) were conducted to determine its pharmacokinetic and pharmacodynamic profile as well as its safety and maximum tolerated dose. Results In total, 140 postmenopausal subjects received at least one dose of study drug (114 received elacestrant and 26 received placebo). Single-ascending dose and multiple-ascending dose assessments showed that doses up to 1000 mg daily were safe and well tolerated, and the maximum tolerated dose was not reached. Oral administration of elacestrant had an absolute bioavailability of 10% and a mean half-life ranging from 27 to 47 h, reaching steady state after 5–6 days. Mean occupancy of the ER in the uterus after seven daily doses was 83% for 200 mg and 92% for 500 mg daily. The median ratio of elacestrant concentrations in the cerebral spinal fluid vs. plasma was 0.126% (500 mg dose) and 0.205% (200 mg dose). Most adverse events were related to the upper gastrointestinal tract. Conclusions These data demonstrate that elacestrant has good bioavailability when administered orally with a half-life that supports once-daily administration. Engagement of the ER and some ability to cross the blood-brain barrier was demonstrated in addition to an acceptable safety profile. Electronic supplementary material The online version of this article (10.1007/s13318-020-00635-3) contains supplementary material, which is available to authorized users.
Collapse
|
46
|
Barghout SH. Targeted Protein Degradation: An Emerging Therapeutic Strategy in Cancer. Anticancer Agents Med Chem 2021; 21:214-230. [PMID: 32275492 DOI: 10.2174/1871520620666200410082652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/20/2020] [Accepted: 02/19/2020] [Indexed: 11/22/2022]
Abstract
Drug discovery in the scope of cancer therapy has been focused on conventional agents that nonselectively induce DNA damage or selectively inhibit the activity of key oncogenic molecules without affecting their protein levels. An emerging therapeutic strategy that garnered attention in recent years is the induction of Targeted Protein Degradation (TPD) of cellular targets by hijacking the intracellular proteolysis machinery. This novel approach offers several advantages over conventional inhibitors and introduces a paradigm shift in several pharmacological aspects of drug therapy. While TPD has been found to be the major mode of action of clinically approved anticancer agents such as fulvestrant and thalidomide, recent years have witnessed systematic endeavors to expand the repertoire of proteins amenable to therapeutic ablation by TPD. Such endeavors have led to three major classes of agents that induce protein degradation, including molecular glues, Proteolysis Targeting Chimeras (PROTACs) and Hydrophobic Tag (HyT)-based degraders. Here, we briefly highlight agents in these classes and key advances made in the field with a focus on clinical translation in cancer therapy.
Collapse
Affiliation(s)
- Samir H Barghout
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
47
|
Knox AK, Kalchschmid C, Schuster D, Gaggia F, Gust R. Heterodimeric GW7604 Derivatives: Modification of the Pharmacological Profile by Additional Interactions at the Coactivator Binding Site. J Med Chem 2021; 64:5766-5786. [PMID: 33904307 PMCID: PMC8279417 DOI: 10.1021/acs.jmedchem.0c02230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
(E/Z)-3-(4-((E)-1-(4-Hydroxyphenyl)-2-phenylbut-1-enyl)phenyl)acrylic
acid (GW7604)
as a derivative of (Z)-4-hydroxytamoxifen (4-OHT)
was linked by diaminoalkane spacers to molecules that are known binders
to the coactivator binding site (benzimidazole or thioxo-quinazolinone
scaffolds). With this modification, an optimization of the pharmacological
profile was achieved. The most active thioxo-quinazolinone derivative 16 showed extraordinarily high affinity to the estrogen receptor
(ER) β (RBA = 110%), inhibited effectively the coactivator recruitment
(IC50 = 20.88 nM (ERα) and 28.34 nM (ERβ)),
acted as a pure estradiol (E2) antagonist in a transactivation assay
(IC50 = 18.5 nM (ERα) and 7.5 nM (ERβ)), and
downregulated the ERα content in MCF-7 cells with an efficacy
of 60% at 1 μM. The cytotoxicity was restricted to hormone-dependent
MCF-7 (IC50 = 4.2 nM) and tamoxifen-resistant MCF-7TamR
cells (IC50 = 476.6 nM). The compounds bearing a thioxo-quinazolinone
moiety can therefore be assigned as pure E2-antagonistic selective
ER degraders/downregulators. By contrast, the benzimidazole derivatives
acted solely as pure antagonists without degradation of the ER.
Collapse
Affiliation(s)
- Alexandra K Knox
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI - Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB - Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Christina Kalchschmid
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI - Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB - Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Daniela Schuster
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI - Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB - Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria.,Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Francesca Gaggia
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI - Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB - Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI - Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB - Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| |
Collapse
|
48
|
Bardia A, Kaklamani V, Wilks S, Weise A, Richards D, Harb W, Osborne C, Wesolowski R, Karuturi M, Conkling P, Bagley RG, Wang Y, Conlan MG, Kabos P. Phase I Study of Elacestrant (RAD1901), a Novel Selective Estrogen Receptor Degrader, in ER-Positive, HER2-Negative Advanced Breast Cancer. J Clin Oncol 2021; 39:1360-1370. [PMID: 33513026 PMCID: PMC8078341 DOI: 10.1200/jco.20.02272] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 01/10/2023] Open
Abstract
PURPOSE This phase I study (RAD1901-005; NCT02338349) evaluated elacestrant, an investigational oral selective estrogen receptor degrader (SERD), in heavily pretreated women with estrogen receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer, including those with estrogen receptor gene alpha (ESR1) mutation. The primary objective was to determine the maximum tolerated dose and/or recommended phase II dose (RP2D). METHODS The study consisted of a 3 + 3 design (elacestrant capsules) followed by expansion at RP2D (400-mg capsules, then 400-mg tablets) for the evaluation of safety and antitumor activity. Elacestrant was taken once daily until progression or intolerability. RESULTS Of 57 postmenopausal women enrolled, 50 received RP2D (400 mg once daily): median age, 63 years; median three prior anticancer therapies, including cyclin-dependent kinase 4,6 inhibitors (CDK4/6i; 52%), SERD (52%), and ESR1 mutation (circulating tumor DNA; 50%). No dose-limiting toxicities occurred; the most common adverse events at RP2D (400-mg tablet; n = 24) were nausea (33.3%) and increased blood triglycerides and decreased blood phosphorus (25.0% each). Most adverse events were grade 1-2 in severity. The objective response rate was 19.4% (n = 31 evaluable patients receiving RP2D), 15.0% in patients with prior SERD, 16.7% in patients with prior CDK4/6i, and 33.3% in patients with ESR1 mutation (n = 5/15). The clinical benefit rate (24-week) was 42.6% overall (n = 47 patients receiving RP2D), 56.5% (n = 23, ESR1 mutation), and 30.4% (n = 23, prior CDK4/6i). Elacestrant clinical benefit was associated with decline in ESR1 mutant allele fraction. CONCLUSION Elacestrant 400 mg orally once daily has an acceptable safety profile and demonstrated single-agent activity with confirmed partial responses in heavily pretreated patients with estrogen receptor-positive metastatic breast cancer. Notably, responses were observed in patients with ESR1 mutation as well as those with prior CDK4/6i and prior SERD. A phase III trial investigating elacestrant versus standard endocrine therapy is ongoing.
Collapse
Affiliation(s)
- Aditya Bardia
- Massachusetts General Hospital Cancer Center, Boston, MA
| | | | | | - Amy Weise
- Barbara Ann Karmanos Cancer Center, Detroit, MI
| | | | - Wael Harb
- Horizon Oncology Center, Lafayette, IN
| | - Cynthia Osborne
- Texas Oncology-Baylor Charles A. Sammons Cancer Center; Dallas, TX
| | | | | | - Paul Conkling
- US Oncology Research, Virginia Oncology Associates, Norfolk, VA
| | | | | | | | | |
Collapse
|
49
|
Mottamal M, Kang B, Peng X, Wang G. From Pure Antagonists to Pure Degraders of the Estrogen Receptor: Evolving Strategies for the Same Target. ACS OMEGA 2021; 6:9334-9343. [PMID: 33869913 PMCID: PMC8047716 DOI: 10.1021/acsomega.0c06362] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/19/2021] [Indexed: 05/08/2023]
Abstract
Pure antiestrogens, or selective estrogen receptor degraders (SERDs), have proven to be effective in treating breast cancer that has progressed on tamoxifen and/or aromatase inhibitors. However, the only FDA-approved pure antiestrogen, fulvestrant, is limited in efficacy by its low bioavailability. The search for orally bioavailable SERDs has continued for nearly as long as the clinical history of the injection-only fulvestrant. Oral SERDs that have been developed and tested in patients ranged from nonsteroidal ER binders containing an acrylic acid or amino side chain to bifunctional proteolysis-targeting chimera (PROTAC) pure ER degraders. Structural evolution in the development of oral SERD molecules has been closely associated with quantifiable ER-degrading potency, as seen in the structural comparison analysis of acrylic acid and basic amino side-chain-bearing SERDs. Failure to improve on fulvestrant in the clinical trials by numerous acidic SERDs and early basic SERDs is blamed on tolerability and/or insufficient efficacy, which will likely be overcome by the new-generation basic SERD molecules and PROTAC ER degraders with improved oral bioavailability, low toxicity, and superior efficacy of receptor degradation.
Collapse
|
50
|
McDonnell DP, Wardell SE, Chang CY, Norris JD. Next-Generation Endocrine Therapies for Breast Cancer. J Clin Oncol 2021; 39:1383-1388. [PMID: 33705209 DOI: 10.1200/jco.20.03565] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC
| | - Suzanne E Wardell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC
| | - John D Norris
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC
| |
Collapse
|