1
|
Freitas-Castro F, Almeida MQ. Personalized management for phaeochromocytomas and paragangliomas in Latin America: A genetic perspective. Best Pract Res Clin Endocrinol Metab 2025; 39:101922. [PMID: 39244493 DOI: 10.1016/j.beem.2024.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Phaeochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors with clinical heterogeneity and a high association with hereditary disease, affecting approximately 30 % of the cases. Differences in the presentation and genetic etiologies of PPGLs have been demonstrated between Chinese and European patients. The frequency of germline genetic diagnosis was remarkably higher in Brazilian patients (∼50 %) compared with other cohorts (Chinese 21 %, European 31 %, and The Cancer Genome Atlas Program cohort 27 %). Interestingly, germline SDHB genetic defects were also more prevalent in Brazilian patients (17 %) with PPGLs when compared with other cohorts (3-9 %). The SDHB exon 1 deletion was responsible for approximately 50 % of the SDHB pathogenic/likely pathogenic variants in Brazilian patients with PPGLs due to a founder effect. The germline SDHB exon 1 deletion represents ∼10 % of the germline drivers in Brazilian patients (and possibly in Latin America). Therefore, a single diagnostic PCR for the SDHB exon 1 deletion might be very useful in clinical practice for genetic testing and counseling of patients with PPGLs in Latin America.
Collapse
Affiliation(s)
- Felipe Freitas-Castro
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Madson Q Almeida
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil; Unidade de Oncologia Endócrina, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil.
| |
Collapse
|
2
|
Fischer A, Del Rivero J, Wang K, Nölting S, Jimenez C. Systemic therapy for patients with metastatic pheochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab 2025; 39:101977. [PMID: 39880697 DOI: 10.1016/j.beem.2025.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Pheochromocytomas and paragangliomas are rare neuroendocrine tumors derived from the paraganglia. These tumors frequently secrete excessive amounts of catecholamines leading to cardiovascular and gastrointestinal complications. While all pheochromocytomas and paragangliomas possess the potential for metastasis, actual metastatic occurrences are observed in approximately one third of cases. The metastases primarily affect the lymph nodes, skeletal system, liver, and lungs. Furthermore, patients often experience a reduced overall survival rate attributed to factors such as tumor size, disease advancement, and excessive catecholamine secretion. For several decades, treatment options for patients diagnosed with metastatic pheochromocytomas and paragangliomas have primarily included combination chemotherapy with cyclophosphamide, vincristine, and dacarbazine, along with Iodine-131-metaiodobenzylguanidine. However, significant advancements in scientific research over the past 25 years have enabled a comprehensive characterization of these tumors from biochemical, molecular, and diagnostic standpoints, resulting in the identification of new therapeutic alternatives for affected patients. In the last decade, we have witnessed the introduction of innovative systemic therapies specifically designed for those with metastatic pheochromocytomas and paragangliomas. In this review, we aim to present findings on the efficacy, safety, and overall activity from prospective clinical trials involving radiopharmaceuticals and tyrosine kinase inhibitors, and we will also outline the prospective advantages of additional novel therapies currently under evaluation.
Collapse
Affiliation(s)
- Alessa Fischer
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), Zurich CH-8091, Switzerland
| | | | - Katharina Wang
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich 80336, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), Zurich CH-8091, Switzerland; Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich 80336, Germany
| | - Camilo Jimenez
- Department of Endocrine Neoplasia and HormonalDisorders, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Zhang C, Wei Y, Cheng K, Cao D. Durable and deep response to CVD chemotherapy in SDHB-mutated metastatic paraganglioma: case report. Front Endocrinol (Lausanne) 2024; 15:1483516. [PMID: 39744181 PMCID: PMC11688215 DOI: 10.3389/fendo.2024.1483516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/04/2024] [Indexed: 03/17/2025] Open
Abstract
INTRODUCTION Succinate dehydrogenase subunit B (SDHB)-mutated paragangliomas (PGLs) are rare neuroendocrine tumors characterized by increased malignancy, readily metastasizing, and poorer prognosis. Here we report a case of SDHB-mutated metastatic PGL, wherein the patient showed significant tumor shrinkage and complete symptom remission following chemotherapy. We aim to contribute additional evidence to the existing knowledge associated with SDHB-mutated PGLs. CASE REPORT A 40-year-old male patient presented with recurrent hypoglycemia and hypertension crisis. Imaging revealed a huge left retroperitoneal tumor and multiple diffuse metastases in lungs. Catecholamine was also elevated, aligning with a diagnosis of metastatic PGL. Pathology also confirmed this diagnosis. Additionally, the immunohistochemistry indicated negative expression of SDHB and gene test showed somatic SDHB mutation. Given the SDHB mutation, cyclophosphamide-vincristine-dacarbazine (CVD) chemotherapy was initiated in critical conditions. Subsequently, a significant tumor shrinkage and complete biochemical response were observed after two treatment cycles. In September 2024, CT scan revealed new pulmonary lesions. The progression-free survival (PFS) with CVD chemotherapy was 24 months. CONCLUSION This report reviews the distinct clinical and biochemical characteristics and treatment approaches of SDHB-mutated paragangliomas, emphasizing that the significance of incorporating both genetic testing and immunohistochemical analysis in clinical practice.
Collapse
Affiliation(s)
| | | | - Ke Cheng
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Cao
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Boehm E, Gill AJ, Clifton-Bligh R, Tothill RW. Recent progress in molecular classification of phaeochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab 2024; 38:101939. [PMID: 39271378 DOI: 10.1016/j.beem.2024.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Phaeochromocytomas (PC) and paragangliomas (PG) are neural crest cancers with high heritability. Recent advances in molecular profiling, including multi-omics and single cell genomics has identified up to seven distinct molecular subtypes. These subtypes are defined by mutations involving hypoxia-inducible factors (HIFs), Krebs cycle, kinase and WNT signalling, but are also defined by chromaffin differentiation states. PCPG have a dominant proangiogenic microenvironment linked to HIF pathway activity and are generally considered "immune cold" tumours with a high number of macrophages. PCPG subtypes can indicate increased metastatic risk but secondary mutations in telomere maintenance genes TERT or ATRX are required to drive the metastatic phenotype. Molecular profiling can identify molecular therapeutic (e.g. RET and EPAS1) and radiopharmaceutical targets while also helping to support variant pathogenicity and familial risk. Molecular profiling and subtyping of PCPG therefore confers the possibility of nuanced prognostication and individual treatment stratification but this still requires large-scale prospective validation.
Collapse
Affiliation(s)
- Emma Boehm
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia; Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Anthony J Gill
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Roderick Clifton-Bligh
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, University of Sydney, Sydney NSW, Australia.
| | - Richard W Tothill
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Jimenez C, Baudrand R, Uslar T, Bulzico D. Perspective review: lessons from successful clinical trials and real-world studies of systemic therapy for metastatic pheochromocytomas and paragangliomas. Ther Adv Med Oncol 2024; 16:17588359241301359. [PMID: 39574494 PMCID: PMC11580098 DOI: 10.1177/17588359241301359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are orphan tumors with the potential to spread to distant organs such as the lymph nodes, the skeleton, the lungs, and the liver. These metastatic tumors exhibit high rates of morbidity and mortality due to their frequently large tumor burden, the progression of the disease, and the excessive secretion of catecholamines that lead to cardiovascular disease and gastrointestinal dysmotility. Several molecular drivers responsible for the development of PPGLs have been described over the last 30 years. Although therapeutic options are limited, substantial progress has been made in the recognition of effective systemic therapies for these tumors. Successful clinical trials with radiopharmaceuticals such as high-specific-activity meta-iodobenzylguanidine and tyrosine kinase inhibitors such as cabozantinib and sunitinib have been recently published. This review will discuss the results of these studies and their impact on current clinical practices. In addition, this review will provide valuable information on how to design clinical trials to treat patients with metastatic PPGLs with novel medications.
Collapse
Affiliation(s)
- Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1461, Houston, TX 77030, USA
| | - Rene Baudrand
- Department of Endocrinology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Thomas Uslar
- Department of Endocrinology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Daniel Bulzico
- Department of Nuclear Medicine and Endocrine Oncology, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Passman JE, Wachtel H. Management of Pheochromocytomas and Paragangliomas. Surg Clin North Am 2024; 104:863-881. [PMID: 38944505 DOI: 10.1016/j.suc.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Pheochromocytomas and paragangliomas are distinctive neuroendocrine tumors which frequently produce excess catecholamines with resultant cardiovascular morbidity. These tumors have a strong genetic component, with up to 40% linked to hereditary pathogenic variants; therefore, germline genetic testing is recommended for all patients. Surgical resection offers the only potential cure in the case of localized disease. Given the potential for catecholaminergic crises, appropriate perioperative management is crucial, and all patients should undergo alpha-adrenergic blockade before resection. Therapeutic options for metastatic disease are limited and include surgical debulking, radiopharmaceutical therapies, and conventional chemotherapy.
Collapse
Affiliation(s)
- Jesse E Passman
- Department of Surgery, University of Pennsylvania Health System, 3400 Spruce Street, 4th Floor, Maloney Building, Philadelphia, PA 19104, USA.
| | - Heather Wachtel
- Department of Surgery, University of Pennsylvania Health System, 3400 Spruce Street, 4th Floor, Maloney Building, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Park YG, Park I, Kim Y, Lee HS, Lee W, Yoon S, Lee JL. Outcomes of systemic treatment according to germline mutational status in patients with metastatic pheochromocytoma and paraganglioma. Clin Genitourin Cancer 2024; 22:413-419. [PMID: 38228412 DOI: 10.1016/j.clgc.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Abstract
INTRODUCTION Metastatic disease affects approximately 15% to 17% of patients with pheochromocytomas and paragangliomas (PPGLs). Unfortunately, treatment options for metastatic PPGLs are limited and rely on small, nonrandomized clinical trials. The impact of germline mutation status on systemic treatment outcomes remains unclear. To address these gaps, we retrospectively evaluated treatment outcomes in patients with PPGL. PATIENTS AND METHODS Between December 2004 and December 2021, 33 patients were diagnosed with metastatic PPGLs and received systemic treatment at the Department of Oncology, Asan Medical Center, Seoul, South Korea. RESULTS The median age of the patients was 49. Germline mutations were revealed in nine patients (39.1%) out of 23 who underwent germline testing, with SDHB mutation being the most frequent in 5 patients. Cyclophosphamide, vincristine, and dacarbazine (CVD) chemotherapy was administered to 18 patients, with an objective response rate (ORR) of 22% and a disease control rate (DCR) of 67%. The median progression-free survival (PFS) was 7.9 and the median overall survival (OS) was 36.2 months. Sunitinib was given to 6 patients, which had an ORR of 33%, a DCR of 83%, and a median PFS of 14.6 months. Notably, patients with SDHB/SDHD mutation (4 patients and one patient, respectively) who received CVD treatment had a significantly better OS than those without (median OS 94.0 months vs. 13.7 months, P = .01). CONCLUSION Our study reveals that CVD and sunitinib are effective treatments for metastatic PPGLs. The results are consistent with previous studies and patients with SDHB and SDHD mutations may benefit most from CVD treatment.
Collapse
Affiliation(s)
- Young-Gyu Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Inkeun Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yongjae Kim
- Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho-Su Lee
- Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Woochang Lee
- Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shinkyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Lyun Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
8
|
Taïeb D, Nölting S, Perrier ND, Fassnacht M, Carrasquillo JA, Grossman AB, Clifton-Bligh R, Wanna GB, Schwam ZG, Amar L, Bourdeau I, Casey RT, Crona J, Deal CL, Del Rivero J, Duh QY, Eisenhofer G, Fojo T, Ghayee HK, Gimenez-Roqueplo AP, Gill AJ, Hicks R, Imperiale A, Jha A, Kerstens MN, de Krijger RR, Lacroix A, Lazurova I, Lin FI, Lussey-Lepoutre C, Maher ER, Mete O, Naruse M, Nilubol N, Robledo M, Sebag F, Shah NS, Tanabe A, Thompson GB, Timmers HJLM, Widimsky J, Young WJ, Meuter L, Lenders JWM, Pacak K. Management of phaeochromocytoma and paraganglioma in patients with germline SDHB pathogenic variants: an international expert Consensus statement. Nat Rev Endocrinol 2024; 20:168-184. [PMID: 38097671 DOI: 10.1038/s41574-023-00926-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 02/17/2024]
Abstract
Adult and paediatric patients with pathogenic variants in the gene encoding succinate dehydrogenase (SDH) subunit B (SDHB) often have locally aggressive, recurrent or metastatic phaeochromocytomas and paragangliomas (PPGLs). Furthermore, SDHB PPGLs have the highest rates of disease-specific morbidity and mortality compared with other hereditary PPGLs. PPGLs with SDHB pathogenic variants are often less differentiated and do not produce substantial amounts of catecholamines (in some patients, they produce only dopamine) compared with other hereditary subtypes, which enables these tumours to grow subclinically for a long time. In addition, SDHB pathogenic variants support tumour growth through high levels of the oncometabolite succinate and other mechanisms related to cancer initiation and progression. As a result, pseudohypoxia and upregulation of genes related to the hypoxia signalling pathway occur, promoting the growth, migration, invasiveness and metastasis of cancer cells. These factors, along with a high rate of metastasis, support early surgical intervention and total resection of PPGLs, regardless of the tumour size. The treatment of metastases is challenging and relies on either local or systemic therapies, or sometimes both. This Consensus statement should help guide clinicians in the diagnosis and management of patients with SDHB PPGLs.
Collapse
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine, Aix-Marseille University, La Timone University Hospital, Marseille, France
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nancy D Perrier
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Fassnacht
- Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Jorge A Carrasquillo
- Molecular Imaging and Therapy Service, Radiology Department, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashley B Grossman
- Green Templeton College, University of Oxford, Oxford, UK
- NET Unit, Royal Free Hospital, London, UK
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital and Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| | - George B Wanna
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zachary G Schwam
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laurence Amar
- Université Paris Cité, Inserm, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
- Hypertension Unit, Hôpital Européen Georges Pompidou, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Ruth T Casey
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Joakim Crona
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Cheri L Deal
- Research Center, CHU Sainte-Justine and Dept. of Paediatrics, University of Montreal, Montreal, Québec, Canada
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Quan-Yang Duh
- Department of Surgery, UCSF-Mount Zion, San Francisco, CA, USA
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at the TU Dresden, Dresden, Germany
| | - Tito Fojo
- Columbia University Irving Medical Center, New York City, NY, USA
- James J. Peters VA Medical Center, New York City, NY, USA
| | - Hans K Ghayee
- Division of Endocrinology & Metabolism, Department of Medicine, University of Florida, Gainesville, FL, USA
- Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Anne-Paule Gimenez-Roqueplo
- Université Paris Cité, Inserm, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
- Department of Oncogenetics and Cancer Genomic Medicine, AP-HP, Hôpital européen Georges Pompidou, Paris, France
| | - Antony J Gill
- University of Sydney, Sydney NSW Australia, Cancer Diagnosis and Pathology Group Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- NSW Health Pathology Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Rodney Hicks
- Department of Medicine, St Vincent's Hospital Medical School, Melbourne, Victoria, Australia
| | - Alessio Imperiale
- Department of Nuclear Medicine and Molecular Imaging - Institut de Cancérologie de Strasbourg Europe (ICANS), IPHC, UMR 7178, CNRS, University of Strasbourg, Strasbourg, France
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Michiel N Kerstens
- Department of Endocrinology, University Medical Center Groningen, Groningen, Netherlands
| | - Ronald R de Krijger
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
- Princess Máxima Center for paediatric oncology, Utrecht, Netherlands
| | - André Lacroix
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Canada
| | - Ivica Lazurova
- Department of Internal Medicine 1, University Hospital, P.J. Šafárik University, Košice, Slovakia
| | - Frank I Lin
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charlotte Lussey-Lepoutre
- Université Paris Cité, Inserm, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
- Sorbonne University, Department of Nuclear Medicine, Pitié-Salpêtrière, Paris, France
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Ozgur Mete
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mitsuhide Naruse
- Clinical Research Institute of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center and Endocrine Center, Kyoto, Japan
- Clinical Research Center, Ijinkai Takeda General Hospital, Kyoto, Japan
| | - Naris Nilubol
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Frédéric Sebag
- Department of Endocrine Surgery, Aix-Marseille University, Conception Hospital, Marseille, France
| | - Nalini S Shah
- Department of Endocrinology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Akiyo Tanabe
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan
| | - Geoffrey B Thompson
- Division of Endocrine Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Henri J L M Timmers
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jiri Widimsky
- Third Department of Medicine, Department of Endocrinology and Metabolism of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - William J Young
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Leah Meuter
- Stanford University School of Medicine, Department of Physician Assistant Studies, Stanford, CA, USA
| | - Jacques W M Lenders
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Sharma S, Fishbein L. Diagnosis and Management of Pheochromocytomas and Paragangliomas: A Guide for the Clinician. Endocr Pract 2023; 29:999-1006. [PMID: 37586639 DOI: 10.1016/j.eprac.2023.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE The aim of this review was to provide a practical approach for clinicians regarding the diagnosis and management of pheochromocytomas and paragangliomas (PPGLs). METHODS A literature search of PubMed was carried out using key words, including pheochromocytoma, paraganglioma, treatment, diagnosis, screening, and management. The discussion of diagnosis and management of PPGL is based on the evidence available from prospective studies when available and mostly from cohort studies, cross-sectional studies, and expert consensus. RESULTS PPGL are neuroendocrine tumors arising from the chromaffin cells of adrenal medulla and sympathetic and parasympathetic ganglia, respectively. PPGL can be localized or metastatic, and they may secrete catecholamines, causing a variety of symptoms and potentially catastrophic and lethal complications if left untreated. The rarity of these tumors along with heterogeneous clinical presentation often poses challenges for the diagnosis and management. PPGL can be associated with several familial syndromes which are important to recognize. CONCLUSION The last few years have witnessed an exponential growth in the knowledge around PPGL. This review aims at providing a comprehensive discussion of current concepts for clinicians regarding clinical presentation, diagnostic tools, and management strategies for PPGL.
Collapse
Affiliation(s)
- Sona Sharma
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Duke University, Durham, North Carolina
| | - Lauren Fishbein
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism and Rocky Mountain Regional Veteran's Administration Medical Center, Endocrinology Section, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
10
|
Abstract
OPINION STATEMENT Temporal bone paragangliomas (TBPs) are indolent, classically benign and highly vascular neoplasms of the temporal bone. There are two types of TBPs, tympanomastoid paragangliomas (TMPs) and tympanojugular paragangliomas (TJPs). The most common symptoms are hearing loss and pulsatile tinnitus. Diagnostic workup, besides conventional physical and laboratory examinations, includes biochemical testing of catecholamine and genetic testing of SDHx gene mutations as well as radiological examination. Although surgery is traditionally the mainstay of treatment, it is challenging due to the close proximity of tumor to critical neurovascular structures and thus the high risk of complications, especially in patients with advanced lesions. Radiotherapy and active surveillance have been increasingly recommended for selected patients. Decision on treatment should be made comprehensively. Curative effect depends on various factors. Long-term follow-up with clinical, laboratory, and radiological examinations is essential for all patients.
Collapse
Affiliation(s)
- Shixun Zhong
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Wenqi Zuo
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
11
|
Fagundes GFC, Freitas-Castro F, Santana LS, Afonso ACF, Petenuci J, Funari MFA, Guimaraes AG, Ledesma FL, Pereira MAA, Victor CR, Ferrari MSM, Coelho FMA, Srougi V, Tanno FY, Chambo JL, Latronico AC, Mendonca BB, Fragoso MCBV, Hoff AO, Almeida MQ. Evidence for a Founder Effect of SDHB Exon 1 Deletion in Brazilian Patients With Paraganglioma. J Clin Endocrinol Metab 2023; 108:2105-2114. [PMID: 36652439 DOI: 10.1210/clinem/dgad028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
CONTEXT Limited information is available concerning the genetic spectrum of pheochromocytoma and paraganglioma (PPGL) patients in South America. Germline SDHB large deletions are very rare worldwide, but most of the individuals harboring the SDHB exon 1 deletion originated from the Iberian Peninsula. OBJECTIVE Our aim was to investigate the spectrum of SDHB genetic defects in a large cohort of Brazilian patients with PPGLs. METHODS Genetic investigation of 155 index PPGL patients was performed by Sanger DNA sequencing, multiplex ligation-dependent probe amplification, and/or target next-generation sequencing panel. Common ancestrality was investigated by microsatellite genotyping with haplotype reconstruction, and analysis of deletion breakpoint. RESULTS Among 155 index patients, heterozygous germline SDHB pathogenic or likely pathogenic variants were identified in 22 cases (14.2%). The heterozygous SDHB exon 1 complete deletion was the most frequent genetic defect in SDHB, identified in 8 out of 22 (36%) of patients. Haplotype analysis of 5 SDHB flanking microsatellite markers demonstrated a significant difference in haplotype frequencies in a case-control permutation test (P = 0.03). More precisely, 3 closer/informative microsatellites were shared by 6 out of 8 apparently unrelated cases (75%) (SDHB-GATA29A05-D1S2826-D1S2644 | SDHB-186-130-213), which was observed in only 1 chromosome (1/42) without SDHB exon 1 deletion (X2 = 29.43; P < 0.001). Moreover, all cases with SDHB exon 1 deletion had the same gene breakpoint pattern of a 15 678 bp deletion previously described in the Iberian Peninsula, indicating a common origin. CONCLUSION The germline heterozygous SDHB exon 1 deletion was the most frequent genetic defect in the Brazilian PPGL cohort. Our findings demonstrated a founder effect for the SDHB exon 1 deletion in Brazilian patients with paragangliomas.
Collapse
Affiliation(s)
- Gustavo F C Fagundes
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM/25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Felipe Freitas-Castro
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM/25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Lucas S Santana
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM/25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Ana Caroline F Afonso
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM/25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Janaina Petenuci
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM/25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Mariana F A Funari
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM/25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Augusto G Guimaraes
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM/25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Felipe L Ledesma
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Maria Adelaide A Pereira
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM/25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Carolina R Victor
- Divisão de Oncologia Clínica, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brasil
- Centro de Oncologia Clínica, Rede D'Or, São Paulo 04543-000, Brasil
| | - Marcela S M Ferrari
- Divisão de Oncologia Clínica, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brasil
- Centro de Oncologia Clínica, Rede D'Or, São Paulo 04543-000, Brasil
| | - Fernando M A Coelho
- Instituto de Radiologia InRad, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Victor Srougi
- Divisão de Urologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Fabio Y Tanno
- Divisão de Urologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Jose L Chambo
- Divisão de Urologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Ana Claudia Latronico
- Unidade de Adrenal & Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Berenice B Mendonca
- Unidade de Adrenal & Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Maria Candida B V Fragoso
- Unidade de Adrenal & Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
- Divisão de Oncologia Endócrina, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brasil
| | - Ana O Hoff
- Centro de Oncologia Clínica, Rede D'Or, São Paulo 04543-000, Brasil
- Divisão de Oncologia Endócrina, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brasil
| | - Madson Q Almeida
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM/25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
- Divisão de Oncologia Endócrina, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brasil
| |
Collapse
|
12
|
Manotas MC, Rivera AL, Gómez AM, Abisambra P, Guevara G, Medina V, Tapiero S, Huertas A, Riaño-Moreno J, Mejía JC, Gonzalez-Clavijo AM, Tapiero-García M, Cuéllar-Cuéllar AA, Fierro-Maya LF, Sanabria-Salas MC. SDHB exon 1 deletion: A recurrent germline mutation in Colombian patients with pheochromocytomas and paragangliomas. Front Genet 2023; 13:999329. [PMID: 36685941 PMCID: PMC9845289 DOI: 10.3389/fgene.2022.999329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/08/2022] [Indexed: 01/06/2023] Open
Abstract
Pheochromocytomas (PCCs) and paragangliomas (PGLs) (known as PPGL in combination) are rare neuroendocrine tumors of the adrenal medulla and extra-adrenal ganglia. About 40% of the patients with PPGL have a hereditary predisposition. Here we present a case-series of 19 unrelated Colombian patients with a clinical diagnosis of PPGL tumors that underwent germline genetic testing as part of the Hereditary Cancer Program developed at the Instituto Nacional de Cancerología, Colombia (INC-C), the largest reference cancer center in the country. Ten of 19 patients (52.63%) were identified as carriers of a pathogenic/likely pathogenic (P/LP) germline variant in a known susceptibility gene. The majority of the P/LP variants were in the SDHB gene (9/10): one corresponded to a nonsense variant c.268C>T (p.Arg90*) and eight cases were found to be carriers of a recurrent CNV consisting of a large deletion of one copy of exon 1, explaining 42% (8/19) of all the affected cases. Only one additional case was found to be a carrier of a missense mutation in the VHL gene: c.355T>C (p.Phe119Leu). Our study highlights the major role of SDHB in Colombian patients with a clinical diagnosis of PGL/PCC tumors and supports the recommendation of including the analysis of large deletions/duplications of the SDHB gene as part of the genetic counselling to improve the detection rate of hereditary cases and their clinical care.
Collapse
Affiliation(s)
| | - Ana Lucía Rivera
- Medical Subdirection, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Ana Milena Gómez
- Medical Subdirection, Instituto Nacional de Cancerología, Bogotá, Colombia
| | | | - Gonzalo Guevara
- Medical Subdirection, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Vilma Medina
- Medical Subdirection, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Sandra Tapiero
- Medical Subdirection, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Antonio Huertas
- Medical Subdirection, Instituto Nacional de Cancerología, Bogotá, Colombia
| | | | - Juan Carlos Mejía
- Medical Subdirection, Instituto Nacional de Cancerología, Bogotá, Colombia
| | | | | | | | | | - María Carolina Sanabria-Salas
- Medical Subdirection, Instituto Nacional de Cancerología, Bogotá, Colombia,Subdirection of Research, Instituto Nacional de Cancerología, Bogotá, Colombia,*Correspondence: María Carolina Sanabria-Salas,
| |
Collapse
|
13
|
Su T, Yang Y, Jiang L, Xie J, Zhong X, Wu L, Jiang Y, Zhang C, Zhou W, Ye L, Ning G, Wang W. SDHB immunohistochemistry for prognosis of pheochromocytoma and paraganglioma: A retrospective and prospective analysis. Front Endocrinol (Lausanne) 2023; 14:1121397. [PMID: 37008946 PMCID: PMC10061060 DOI: 10.3389/fendo.2023.1121397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
INTRODUCTION Pheochromocytomas and paragangliomas (PCC/PGL) are rare neuroendocrine tumors and can secrete catecholamine. Previous studies have found that SDHB immunohistochemistry (IHC) can predict SDHB germline gene mutation, and SDHB mutation is closely associated with tumor progression and metastasis. This study aimed to clarify the potential effect of SDHB IHC as a predictive marker for tumor progression in PCC/PGL patients. METHODS We included PCC/PGL patients diagnosed in Ruijin Hospital, Shanghai Jiao Tong University School of Medicine from 2002 to 2014 for retrospective analysis and discovered that SDHB (-) staining patients had poorer prognoses. Then we examined SDHB protein expression by IHC on all tumors in the prospective series, which was composed of patients from 2015 to 2020 in our center. RESULTS In the retrospective series, the median follow-up was 167 months, and during follow-up, 14.4% (38/264) patients developed metastasis or recurrence, and 8.0% (22/274) patients died. Retrospective analysis revealed that 66.7% (6/9) of participants in the SDHB (-) group and 15.7% (40/255) of those in the SDHB (+) group developed progressive tumors (OR: 10.75, 95% CI: 2.72-52.60, P=0.001), and SDHB (-) was independently associated with poor outcomes after adjusting by other clinicopathological parameters (OR: 11.68, 95% CI: 2.58-64.45, P=0.002). SDHB (-) patients had shorter disease-free survival (DFS) and overall survival (OS) (P<0.001) and SDHB (-) was significantly associated with shorter median DFS (HR: 6.89, 95% CI: 2.41-19.70, P<0.001) in multivariate cox proportional hazard analysis. In the prospective series, the median follow-up was 28 months, 4.7% (10/213) patients developed metastasis or recurrence, and 0.5% (1/217) patient died. For the prospective analysis, 18.8% (3/16) of participants in the SDHB (-) group had progressive tumors compared with 3.6% (7/197) in the SDHB (+) group (RR: 5.28, 95% CI: 1.51-18.47, P=0.009), statistical significance remained (RR: 3.35, 95% CI: 1.20-9.38, P=0.021) after adjusting for other clinicopathological factors. CONCLUSIONS Our findings demonstrated patients with SDHB (-) tumors had a higher possibility of poor outcomes, and SDHB IHC can be regarded as an independent biomarker of prognosis in PCC/PGL.
Collapse
Affiliation(s)
- Tingwei Su
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yifan Yang
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Jiang
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xu Zhong
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Luming Wu
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiran Jiang
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cui Zhang
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiwei Zhou
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Ye
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guang Ning
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Laboratory for Endocrine and Metabolic Diseases of Institute of Health Science, Shanghai Jiaotong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiqing Wang
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Laboratory for Endocrine and Metabolic Diseases of Institute of Health Science, Shanghai Jiaotong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Weiqing Wang,
| |
Collapse
|
14
|
|
15
|
Advances in Endocrine Surgery. Surg Oncol Clin N Am 2023; 32:199-220. [PMID: 36410918 DOI: 10.1016/j.soc.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent changes in the landscape of endocrine surgery include a shift from total thyroidectomy for almost all patients with papillary thyroid cancer to the incorporation of thyroid lobectomy for well-selected patients with low-risk disease; minimally invasive parathyroidectomy with, and potentially without, intraoperative parathyroid hormone monitoring for patients with well-localized primary hyperparathyroidism; improvement in the management of parathyroid cancer with the incorporation of immune checkpoint blockade and/or targeted therapies; and the incorporation of minimally invasive techniques in the management of patients with benign tumors and selected secondary malignancies of the adrenal gland.
Collapse
|
16
|
Provenzano A, Chetta M, De Filpo G, Cantini G, La Barbera A, Nesi G, Santi R, Martinelli S, Rapizzi E, Luconi M, Maggi M, Mannelli M, Ercolino T, Canu L. Novel Germline PHD2 Variant in a Metastatic Pheochromocytoma and Chronic Myeloid Leukemia, but in the Absence of Polycythemia. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58081113. [PMID: 36013579 PMCID: PMC9416477 DOI: 10.3390/medicina58081113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022]
Abstract
Background: Pheochromocytoma (Pheo) and paraganglioma (PGL) are rare tumors, mostly resulting from pathogenic variants of predisposing genes, with a genetic contribution that now stands at around 70%. Germline variants account for approximately 40%, while the remaining 30% is attributable to somatic variants. Objective: This study aimed to describe a new PHD2 (EGLN1) variant in a patient affected by metastatic Pheo and chronic myeloid leukemia (CML) without polycythemia and to emphasize the need to adopt a comprehensive next-generation sequencing (NGS) panel. Methods: Genetic analysis was carried out by NGS. This analysis was initially performed using a panel of genes known for tumor predisposition (EGLN1, EPAS1, FH, KIF1Bβ, MAX, NF1, RET, SDHA, SDHAF2, SDHB, SDHC, SDHD, TMEM127, and VHL), followed initially by SNP-CGH array, to exclude the presence of the pathogenic Copy Number Variants (CNVs) and the loss of heterozygosity (LOH) and subsequently by whole exome sequencing (WES) comparative sequence analysis of the DNA extracted from tumor fragments and peripheral blood. Results: We found a novel germline PHD2 (EGLN1) gene variant, c.153G>A, p.W51*, in a patient affected by metastatic Pheo and chronic myeloid leukemia (CML) in the absence of polycythemia. Conclusions: According to the latest guidelines, it is mandatory to perform genetic analysis in all Pheo/PGL cases regardless of phenotype. In patients with metastatic disease and no evidence of polycythemia, we propose testing for PHD2 (EGLN1) gene variants. A possible correlation between PHD2 (EGLN1) pathogenic variants and CML clinical course should be considered.
Collapse
Affiliation(s)
- Aldesia Provenzano
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Massimiliano Chetta
- Medical Genetics, Azienda Ospedaliera di Rilievo Nazionale (A.O.R.N.) Cardarelli, Padiglione, 80131 Naples, Italy
| | - Giuseppina De Filpo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Giulia Cantini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139 Florence, Italy
| | - Andrea La Barbera
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Gabriella Nesi
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Raffaella Santi
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Serena Martinelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139 Florence, Italy
| | - Elena Rapizzi
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139 Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Michaela Luconi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139 Florence, Italy
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139 Florence, Italy
- Endocrinology Unit, Azienda Ospedaliera-Universitaria Careggi, 50139 Florence, Italy
| | - Massimo Mannelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139 Florence, Italy
| | - Tonino Ercolino
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139 Florence, Italy
- Endocrinology Unit, Azienda Ospedaliera-Universitaria Careggi, 50139 Florence, Italy
| | - Letizia Canu
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139 Florence, Italy
- Endocrinology Unit, Azienda Ospedaliera-Universitaria Careggi, 50139 Florence, Italy
- Correspondence:
| |
Collapse
|
17
|
Prinzi N, Corti F, Torchio M, Niger M, Antista M, Pagani F, Beninato T, Pulice I, Rossi RE, Coppa J, Cascella T, Giacomelli L, Di Bartolomeo M, Milione M, de Braud F, Pusceddu S. Metastatic pheochromocytomas and paragangliomas: where are we? TUMORI JOURNAL 2022; 108:526-540. [PMID: 35593402 DOI: 10.1177/03008916221078621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) can metastasize in approximately 15-20% of cases. This review discusses the available evidence on the biology and treatment of metastatic PPGLs. Chemotherapy is the first-line treatment option for this evolving and symptomatic disease. In patients with high MIBG uptake and positive PETGa-68, radiometabolic treatment may be considered. The efficacy of sunitinib has been shown in observational studies, and pembrolizumab has been evaluated in phase II clinical studies, while other agents investigated in this setting are anti-angiogenic drugs cabozantinib, dovitinib, axitinib and lenvatinib. As these agents' efficacy and safety data, alone or in combination, are scant and based on few treated patients, enrollment in clinical trials is mandatory. Future therapeutic options may be represented by DNA repair system inhibitors (such as olaparib), HIF2 inhibitors and immunotherapy.
Collapse
Affiliation(s)
- Natalie Prinzi
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Francesca Corti
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Martina Torchio
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Monica Niger
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Maria Antista
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Filippo Pagani
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Teresa Beninato
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Iolanda Pulice
- Clinical Trial Center, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Roberta Elisa Rossi
- Gastro-intestinal Surgery and Liver Transplantation Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Pathophysiology and Organ Transplant, Università degli Studi di Milano, Milan, Italy
| | - Jorgelina Coppa
- Gastro-intestinal Surgery and Liver Transplantation Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Tommaso Cascella
- Radiology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Maria Di Bartolomeo
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Massimo Milione
- Diagnostic Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy.,Oncology and Hemato-Oncology Department, Università degli Studi di Milano, Milan, Italy
| | - Sara Pusceddu
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| |
Collapse
|
18
|
Lin EP, Chin BB, Fishbein L, Moritani T, Montoya SP, Ellika S, Newlands S. Head and Neck Paragangliomas: An Update on the Molecular Classification, State-of-the-Art Imaging, and Management Recommendations. Radiol Imaging Cancer 2022; 4:e210088. [PMID: 35549357 DOI: 10.1148/rycan.210088] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Paragangliomas are neuroendocrine tumors that derive from paraganglia of the autonomic nervous system, with the majority of parasympathetic paragangliomas arising in the head and neck. More than one-third of all paragangliomas are hereditary, reflecting the strong genetic predisposition of these tumors. The molecular basis of paragangliomas has been investigated extensively in the past couple of decades, leading to the discovery of several molecular clusters and more than 20 well-characterized driver genes (somatic and hereditary), which are more than are known for any other endocrine tumor. Head and neck paragangliomas are largely related to the pseudohypoxia cluster and have been previously excluded from most molecular profiling studies. This review article introduces the molecular classification of paragangliomas, with a focus on head and neck paragangliomas, and discusses its impact on the management of these tumors. Genetic testing is now recommended for all patients with paragangliomas to provide screening and surveillance recommendations for patients and relatives. While CT and MRI provide excellent anatomic characterization of paragangliomas, gallium 68 tetraazacyclododecane tetraacetic acid-octreotate (ie, 68Ga-DOTATATE) has superior sensitivity and is recommended as first-line imaging in patients with head and neck paragangliomas with concern for multifocal and metastatic disease, patients with known multifocal and metastatic disease, and in candidates for targeted peptide-receptor therapy. Keywords: Molecular Imaging, MR Perfusion, MR Spectroscopy, Neuro-Oncology, PET/CT, SPECT/CT, Head/Neck, Genetic Defects © RSNA, 2022.
Collapse
Affiliation(s)
- Edward P Lin
- From the Departments of Imaging Sciences (E.P.L., S.E.) and Otolaryngology (S.N.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; Departments of Radiology (B.B.C.) and Medicine (L.F.), University of Colorado School of Medicine, Denver, Colo; Department of Radiology, University of Michigan, Ann Arbor, Mich (T.M.); Eastern Radiologists, East Carolina University, Vidant Medical Center, Greenville, NC (S.P.M.); and Department of Radiology, Massachusetts General Hospital, Boston, Mass (S.P.M.)
| | - Bennett B Chin
- From the Departments of Imaging Sciences (E.P.L., S.E.) and Otolaryngology (S.N.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; Departments of Radiology (B.B.C.) and Medicine (L.F.), University of Colorado School of Medicine, Denver, Colo; Department of Radiology, University of Michigan, Ann Arbor, Mich (T.M.); Eastern Radiologists, East Carolina University, Vidant Medical Center, Greenville, NC (S.P.M.); and Department of Radiology, Massachusetts General Hospital, Boston, Mass (S.P.M.)
| | - Lauren Fishbein
- From the Departments of Imaging Sciences (E.P.L., S.E.) and Otolaryngology (S.N.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; Departments of Radiology (B.B.C.) and Medicine (L.F.), University of Colorado School of Medicine, Denver, Colo; Department of Radiology, University of Michigan, Ann Arbor, Mich (T.M.); Eastern Radiologists, East Carolina University, Vidant Medical Center, Greenville, NC (S.P.M.); and Department of Radiology, Massachusetts General Hospital, Boston, Mass (S.P.M.)
| | - Toshio Moritani
- From the Departments of Imaging Sciences (E.P.L., S.E.) and Otolaryngology (S.N.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; Departments of Radiology (B.B.C.) and Medicine (L.F.), University of Colorado School of Medicine, Denver, Colo; Department of Radiology, University of Michigan, Ann Arbor, Mich (T.M.); Eastern Radiologists, East Carolina University, Vidant Medical Center, Greenville, NC (S.P.M.); and Department of Radiology, Massachusetts General Hospital, Boston, Mass (S.P.M.)
| | - Simone P Montoya
- From the Departments of Imaging Sciences (E.P.L., S.E.) and Otolaryngology (S.N.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; Departments of Radiology (B.B.C.) and Medicine (L.F.), University of Colorado School of Medicine, Denver, Colo; Department of Radiology, University of Michigan, Ann Arbor, Mich (T.M.); Eastern Radiologists, East Carolina University, Vidant Medical Center, Greenville, NC (S.P.M.); and Department of Radiology, Massachusetts General Hospital, Boston, Mass (S.P.M.)
| | - Shehanaz Ellika
- From the Departments of Imaging Sciences (E.P.L., S.E.) and Otolaryngology (S.N.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; Departments of Radiology (B.B.C.) and Medicine (L.F.), University of Colorado School of Medicine, Denver, Colo; Department of Radiology, University of Michigan, Ann Arbor, Mich (T.M.); Eastern Radiologists, East Carolina University, Vidant Medical Center, Greenville, NC (S.P.M.); and Department of Radiology, Massachusetts General Hospital, Boston, Mass (S.P.M.)
| | - Shawn Newlands
- From the Departments of Imaging Sciences (E.P.L., S.E.) and Otolaryngology (S.N.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; Departments of Radiology (B.B.C.) and Medicine (L.F.), University of Colorado School of Medicine, Denver, Colo; Department of Radiology, University of Michigan, Ann Arbor, Mich (T.M.); Eastern Radiologists, East Carolina University, Vidant Medical Center, Greenville, NC (S.P.M.); and Department of Radiology, Massachusetts General Hospital, Boston, Mass (S.P.M.)
| |
Collapse
|
19
|
Davidoff DF, Benn DE, Field M, Crook A, Robinson BG, Tucker K, De Abreu Lourenco R, Burgess JR, Clifton-Bligh RJ. Surveillance Improves Outcomes for Carriers of SDHB Pathogenic Variants: A Multicenter Study. J Clin Endocrinol Metab 2022; 107:e1907-e1916. [PMID: 35037935 PMCID: PMC9016424 DOI: 10.1210/clinem/dgac019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 11/22/2022]
Abstract
CONTEXT Carriers of succinate dehydrogenase type B (SDHB) pathogenic variants (PVs) are at risk of pheochromocytoma and paraganglioma (PPGL) from a young age. It is widely recommended carriers enter a surveillance program to detect tumors, but there are limited studies addressing outcomes of surveillance protocols for SDHB PV carriers. OBJECTIVE The purpose of this study was to describe surveillance-detected (s-d) tumors in SDHB PV carriers enrolled in a surveillance program and to compare their outcomes to probands. METHODS This was a multicenter study of SDHB PV carriers with at least 1 surveillance episode (clinical, biochemical, imaging) in Australian genetics clinics. Data were collected by both retrospective and ongoing prospective follow-up. Median duration of follow-up was 6.0 years. RESULTS 181 SDHB PV carriers (33 probands and 148 nonprobands) were assessed. Tumors were detected in 20% of nonprobands undergoing surveillance (age range 9-76 years). Estimated 10-year metastasis-free survival was 66% for probands and 84% for nonprobands with s-d tumors (P = .027). S-d tumors were smaller than those in probands (median 27 mm vs 45 mm respectively, P = .001). Tumor size ≥40 mm was associated with progression to metastatic disease (OR 16.9, 95% CI 2.3-187.9, P = .001). Patients with s-d tumors had lower mortality compared to probands: 10-year overall survival was 79% for probands and 100% for nonprobands (P = .029). CONCLUSION SDHB carriers with s-d tumors had smaller tumors, reduced risk of metastatic disease, and lower mortality than probands. Our results suggest that SDHB PV carriers should undertake surveillance to improve clinical outcomes.
Collapse
Affiliation(s)
- Dahlia F Davidoff
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Endocrinology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Diana E Benn
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Michael Field
- NSLHD Familial Cancer Service, Department of Cancer Services, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Ashley Crook
- NSLHD Familial Cancer Service, Department of Cancer Services, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Bruce G Robinson
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Endocrinology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Katherine Tucker
- Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, NSW, Australia
- Prince of Wales Clinical School, UNSW Medicine, Kensington, NSW, Australia
| | - Richard De Abreu Lourenco
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Haymarket, Sydney, Australia
| | - John R Burgess
- Department of Diabetes and Endocrinology, Royal Hobart Hospital, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Roderick J Clifton-Bligh
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Endocrinology, Royal North Shore Hospital, St Leonards, NSW, Australia
- Correspondence: Roderick J. Clifton-Bligh, BSc (med), MBBS, PhD, FRACP, FFSc (RCPA), Department of Endocrinology, Royal North Shore Hospital, St Leonards, NSW 2065, Australia.
| |
Collapse
|
20
|
Genetics of Pheochromocytomas and Paragangliomas Determine the Therapeutical Approach. Int J Mol Sci 2022; 23:ijms23031450. [PMID: 35163370 PMCID: PMC8836037 DOI: 10.3390/ijms23031450] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Pheochromocytomas and paragangliomas are the most heritable endocrine tumors. In addition to the inherited mutation other driver mutations have also been identified in tumor tissues. All these genetic alterations are clustered in distinct groups which determine the pathomechanisms. Most of these tumors are benign and their surgical removal will resolve patient management. However, 5–15% of them are malignant and therapeutical possibilities for them are limited. This review provides a brief insight about the tumorigenesis associated with pheochromocytomas/paragangliomas in order to present them as potential therapeutical targets.
Collapse
|
21
|
New Directions in Treatment of Metastatic or Advanced Pheochromocytomas and Sympathetic Paragangliomas: an American, Contemporary, Pragmatic Approach. Curr Oncol Rep 2022; 24:89-98. [DOI: 10.1007/s11912-022-01197-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/17/2022]
|
22
|
Winzeler B, Challis BG, Casey RT. Precision Medicine in Phaeochromocytoma and Paraganglioma. J Pers Med 2021; 11:jpm11111239. [PMID: 34834591 PMCID: PMC8620689 DOI: 10.3390/jpm11111239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Precision medicine is a term used to describe medical care, which is specifically tailored to an individual patient or disease with the aim of ensuring the best clinical outcome whilst reducing the risk of adverse effects. Phaeochromocytoma and paraganglioma (PPGL) are rare neuroendocrine tumours with uncertain malignant potential. Over recent years, the molecular profiling of PPGLs has increased our understanding of the mechanisms that drive tumorigenesis. A high proportion of PPGLs are hereditary, with non-hereditary tumours commonly harbouring somatic mutations in known susceptibility genes. Through detailed interrogation of genotype-phenotype, correlations PPGLs can be classified into three different subgroups or clusters. Thus, PPGLs serve as an ideal paradigm for developing, testing and implementing precision medicine concepts in the clinic. In this review, we provide an overview of PPGLs and highlight how detailed molecular characterisation of these tumours provides current and future opportunities for precision oncology.
Collapse
Affiliation(s)
- Bettina Winzeler
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland;
- Department of Clinical Research, University of Basel, 4031 Basel, Switzerland
- Department of Medical Genetics, Cambridge Biomedical Campus, Cambridge University, Cambridge CB2 0QQ, UK
| | - Benjamin G. Challis
- Department of Endocrinology, Cambridge University Hospital, Cambridge CB2 0QQ, UK;
| | - Ruth T. Casey
- Department of Medical Genetics, Cambridge Biomedical Campus, Cambridge University, Cambridge CB2 0QQ, UK
- Department of Endocrinology, Cambridge University Hospital, Cambridge CB2 0QQ, UK;
- Correspondence:
| |
Collapse
|
23
|
Bratslavsky G, Sokol ES, Daneshvar M, Necchi A, Shapiro O, Jacob J, Liu N, Sanford TS, Pinkhasov R, Goldberg H, Killian JK, Ramkissoon S, Severson EA, Huang RSP, Danziger N, Mollapour M, Ross JS, Pacak K. Clinically Advanced Pheochromocytomas and Paragangliomas: A Comprehensive Genomic Profiling Study. Cancers (Basel) 2021; 13:cancers13133312. [PMID: 34282751 PMCID: PMC8268679 DOI: 10.3390/cancers13133312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Clinically advanced pheochromocytomas and paragangliomas are a rare form of endocrine malignancy which can occur in familial and sporadic clinical settings and feature a variety of genomic alterations. Comprehensive genomic profiling (CGP) was performed to characterize the genomic alterations (GA) in clinically advanced disease to enable the search for potential therapy targets. Although the GA/tumor is relatively low for clinically advanced disease, CGP can reveal important potential targets for therapy in the metastatic setting including RET, NF1 and FGFR1. Based on this data, further study of CGP as a method of developing precision therapies for clinically advanced disease appears warranted. Abstract Patients with clinically advanced paragangliomas (CA-Para) and pheochromocytomas (CA-Pheo) have limited surgical or systemic treatments. We used comprehensive genomic profiling (CGP) to compare genomic alterations (GA) in CA-Para and CA-Pheo to identify potential therapeutic targets. Eighty-three CA-Para and 45 CA-Pheo underwent hybrid-capture-based CGP using a targeted panel of 324 genes. Tumor mutational burden (TMB) and microsatellite instability (MSI) were determined. The GA/tumor frequencies were low for both tumor types (1.9 GA/tumor for CA-Para, 2.3 GA/tumor for CA-Pheo). The most frequent potentially targetable GA in CA-Para were in FGFR1 (7%, primarily amplifications), NF1, PTEN, NF2, and CDK4 (all 2%) and for CA-Pheo in RET (9%, primarily fusions), NF1 (11%) and FGFR1 (7%). Germline mutations in known cancer predisposition genes were predicted in 13 (30%) of CA-Pheo and 38 (45%) of CA-Para cases, predominantly involving SDHA/B genes. Both CA-Para and CA-Para had low median TMB, low PD-L1 expression levels and none had MSI high status. While similar GA frequency is seen in both CA-Para and CA-Para, germline GA were seen more frequently in CA-Para. Low PD-L1 expression levels and no MSI high status argue against strong potential for novel immune checkpoint inhibitors. However, several important potential therapeutic targets in both CA-Para and CA-Para are identified using CGP.
Collapse
Affiliation(s)
- Gennady Bratslavsky
- Departments of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.D.); (O.S.); (J.J.); (N.L.); (T.S.S.); (R.P.); (H.G.); (M.M.); (J.S.R.)
- Correspondence: ; Tel.: +1-315-464-4473
| | - Ethan S. Sokol
- Foundation Medicine, Cambridge, MA 021411, USA; (E.S.S.); (J.K.K.); (S.R.); (E.A.S.); (R.S.P.H.); (N.D.)
| | - Michael Daneshvar
- Departments of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.D.); (O.S.); (J.J.); (N.L.); (T.S.S.); (R.P.); (H.G.); (M.M.); (J.S.R.)
| | | | - Oleg Shapiro
- Departments of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.D.); (O.S.); (J.J.); (N.L.); (T.S.S.); (R.P.); (H.G.); (M.M.); (J.S.R.)
| | - Joseph Jacob
- Departments of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.D.); (O.S.); (J.J.); (N.L.); (T.S.S.); (R.P.); (H.G.); (M.M.); (J.S.R.)
| | - Nick Liu
- Departments of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.D.); (O.S.); (J.J.); (N.L.); (T.S.S.); (R.P.); (H.G.); (M.M.); (J.S.R.)
| | - Tom S. Sanford
- Departments of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.D.); (O.S.); (J.J.); (N.L.); (T.S.S.); (R.P.); (H.G.); (M.M.); (J.S.R.)
| | - Ruben Pinkhasov
- Departments of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.D.); (O.S.); (J.J.); (N.L.); (T.S.S.); (R.P.); (H.G.); (M.M.); (J.S.R.)
| | - Hanan Goldberg
- Departments of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.D.); (O.S.); (J.J.); (N.L.); (T.S.S.); (R.P.); (H.G.); (M.M.); (J.S.R.)
| | - Jonathan K. Killian
- Foundation Medicine, Cambridge, MA 021411, USA; (E.S.S.); (J.K.K.); (S.R.); (E.A.S.); (R.S.P.H.); (N.D.)
| | - Shakti Ramkissoon
- Foundation Medicine, Cambridge, MA 021411, USA; (E.S.S.); (J.K.K.); (S.R.); (E.A.S.); (R.S.P.H.); (N.D.)
| | - Eric A. Severson
- Foundation Medicine, Cambridge, MA 021411, USA; (E.S.S.); (J.K.K.); (S.R.); (E.A.S.); (R.S.P.H.); (N.D.)
| | - Richard S. P. Huang
- Foundation Medicine, Cambridge, MA 021411, USA; (E.S.S.); (J.K.K.); (S.R.); (E.A.S.); (R.S.P.H.); (N.D.)
| | - Natalie Danziger
- Foundation Medicine, Cambridge, MA 021411, USA; (E.S.S.); (J.K.K.); (S.R.); (E.A.S.); (R.S.P.H.); (N.D.)
| | - Mehdi Mollapour
- Departments of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.D.); (O.S.); (J.J.); (N.L.); (T.S.S.); (R.P.); (H.G.); (M.M.); (J.S.R.)
| | - Jeffrey S. Ross
- Departments of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.D.); (O.S.); (J.J.); (N.L.); (T.S.S.); (R.P.); (H.G.); (M.M.); (J.S.R.)
- Foundation Medicine, Cambridge, MA 021411, USA; (E.S.S.); (J.K.K.); (S.R.); (E.A.S.); (R.S.P.H.); (N.D.)
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW This review summarizes our current understanding of germline and somatic genetics and genomics of pheochromocytomas and paragangliomas (PCC/PGL), describes existing knowledge gaps, and discusses future research directions. RECENT FINDINGS Germline pathogenic variants (PVs) are found in up to 40% of those with PCC/PGL. Tumors with germline PVs are broadly categorized as Cluster 1 (pseudohypoxia), including those with SDH, VHL, FH, and EPAS1 PVs, or Cluster 2 (kinase signaling) including those with NF1, RET, TMEM127, and MAX PVs. Somatic driver mutations exist in some of the same genes (RET, VHL, NF1, EPAS1) as well as in additional genes including HRAS, CSDE1 and genes involved in cell immortalization (ATRX and TERT). Other somatic driver events include recurrent fusion genes involving MAML3. SUMMARY PCC/PGL have the highest association with germline PVs of all human solid tumors. Expanding our understanding of the molecular pathogenesis of PCC/PGL is essential to advancements in diagnosis and surveillance and the development of novel therapies for these unique tumors.
Collapse
Affiliation(s)
- Heather Wachtel
- Hospital of the University of Pennsylvania, Department of Surgery, Division of Endocrine and Oncologic Surgery and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lauren Fishbein
- University of Colorado School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism and Diabetes and the Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
25
|
Petenuci J, Fagundes GFC, Benedetti AFF, Guimaraes AG, Afonso ACF, Mota FT, Magalhães ALF, Coura-Filho GB, Zerbini MCN, Siqueira S, Montenegro FLM, Srougi V, Tanno FY, Chambo JL, Ferrari MSS, Bezerra Neto JE, Pereira MAA, Latronico AC, Fragoso MCBV, Mendonca BB, Hoff AO, Almeida MQ. SDHB large deletions are associated with absence of MIBG uptake in metastatic lesions of malignant paragangliomas. Endocrine 2021; 72:586-590. [PMID: 33420946 DOI: 10.1007/s12020-020-02594-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Janaina Petenuci
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo F C Fagundes
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Anna Flavia F Benedetti
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Augusto G Guimaraes
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana Caroline F Afonso
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Flavia T Mota
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Aurea Luiza F Magalhães
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - George B Coura-Filho
- Serviço de Medicina Nuclear, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maria Claudia N Zerbini
- Divisão de Anatomia Patológica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sheila Siqueira
- Divisão de Anatomia Patológica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Fabio L M Montenegro
- Serviço de Cirurgia de Cabeça e Pescoço, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Victor Srougi
- Serviço Urologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Fabio Y Tanno
- Serviço Urologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jose Luis Chambo
- Serviço Urologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marcela S S Ferrari
- Serviço de Oncologia Clínica, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Centro de Oncologia Clínica, Rede D'Or, São Paulo, Brazil
| | - Joao Evangelista Bezerra Neto
- Serviço de Oncologia Clínica, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Centro de Oncologia Clínica, Rede D'Or, São Paulo, Brazil
| | - Maria Adelaide A Pereira
- Unidade de Endocrinologia Geral, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana Claudia Latronico
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maria Candida B V Fragoso
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Servico de Endocrinologia, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Berenice B Mendonca
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana O Hoff
- Centro de Oncologia Clínica, Rede D'Or, São Paulo, Brazil
- Servico de Endocrinologia, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Madson Q Almeida
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
- Servico de Endocrinologia, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
26
|
Fishbein L, Del Rivero J, Else T, Howe JR, Asa SL, Cohen DL, Dahia PLM, Fraker DL, Goodman KA, Hope TA, Kunz PL, Perez K, Perrier ND, Pryma DA, Ryder M, Sasson AR, Soulen MC, Jimenez C. The North American Neuroendocrine Tumor Society Consensus Guidelines for Surveillance and Management of Metastatic and/or Unresectable Pheochromocytoma and Paraganglioma. Pancreas 2021; 50:469-493. [PMID: 33939658 DOI: 10.1097/mpa.0000000000001792] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT This manuscript is the result of the North American Neuroendocrine Tumor Society consensus conference on the medical management and surveillance of metastatic and unresectable pheochromocytoma and paraganglioma held on October 2 and 3, 2019. The panelists consisted of endocrinologists, medical oncologists, surgeons, radiologists/nuclear medicine physicians, nephrologists, pathologists, and radiation oncologists. The panelists performed a literature review on a series of questions regarding the medical management of metastatic and unresectable pheochromocytoma and paraganglioma as well as questions regarding surveillance after resection. The panelists voted on controversial topics, and final recommendations were sent to all panel members for final approval.
Collapse
Affiliation(s)
- Lauren Fishbein
- From the Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Tobias Else
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - James R Howe
- Division of Surgical Oncology and Endocrine Surgery, Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center and University Health Network, Toronto, Case Western Reserve University, Cleveland, OH
| | - Debbie L Cohen
- Renal Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Patricia L M Dahia
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX
| | - Douglas L Fraker
- Division of Endocrine and Oncologic Surgery, Department of Surgery, University of Pennsylvania and Abramson Cancer Center, Philadelphia, PA
| | - Karyn A Goodman
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Pamela L Kunz
- Division of Oncology, Department of Medicine, Yale School of Medicine, New Haven, CT
| | - Kimberly Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Nancy D Perrier
- Division of Surgery, Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Daniel A Pryma
- Department of Radiology and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mabel Ryder
- Endocrine Oncology Tumor Group, Division of Medical Oncology, Mayo Clinic, Rochester, MN
| | - Aaron R Sasson
- Division of Surgical Oncology, Department of Surgery, Stony Brook University Medical Center, Stony Brook, NY
| | - Michael C Soulen
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
27
|
Dillon JS, Bushnell D, Laux DE. High-specific-activity 131iodine-metaiodobenzylguanidine for therapy of unresectable pheochromocytoma and paraganglioma. Future Oncol 2021; 17:1131-1141. [PMID: 33506713 DOI: 10.2217/fon-2020-0625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PPG) are rare cancers arising from the adrenal medulla (pheochromocytoma) or autonomic ganglia (paraganglioma). They have highly variable biological behavior. Most PPG express high-affinity norepinephrine transporters, allowing active uptake of the norepinephrine analog, 131iodine-metaiodobenzylguanidine (131I-MIBG). Low-specific-activity forms of 131I-MIBG have been used since 1983 for therapy of PPG. High-specific-activity 131I-MIBG therapy improves hypertension management, induces partial radiological response or stable disease, decreases biochemical markers of disease activity and is well tolerated by patients. This drug, approved in the USA in July 2018, is the first approved agent for patients with unresectable, locally advanced or metastatic PPG and imaging evidence of metaiodobenzylguanidine uptake, who require systemic anticancer therapy.
Collapse
Affiliation(s)
- Joseph S Dillon
- Division of Endocrinology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - David Bushnell
- Department of Radiology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Douglas E Laux
- Division of Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| |
Collapse
|
28
|
Mohr H, Ballke S, Bechmann N, Gulde S, Malekzadeh-Najafabadi J, Peitzsch M, Ntziachristos V, Steiger K, Wiedemann T, Pellegata NS. Mutation of the Cell Cycle Regulator p27kip1 Drives Pseudohypoxic Pheochromocytoma Development. Cancers (Basel) 2021; 13:cancers13010126. [PMID: 33401758 PMCID: PMC7794757 DOI: 10.3390/cancers13010126] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Pheochromocytomas and paragangliomas (PPGLs) can be subdivided into at least three different subgroups associated with different clinical manifestations and depending on the risk to metastasize. A shortage in human tumor material, the lack of a functional human cell line and very limited animal models were major drawbacks for PPGL research and consequently for the development of patient-tailored targeted therapies. We have previously reported that the MENX rat model develops pheochromocytoma with a full penetrance at the age of 8–10 months, however, it was unclear which human group the rat tumors modeled best. In order to characterize the rat pheochromocytomas, we analyzed gene expression, the catecholamine profile, TCA-cycle metabolism, methylation, angiogenesis, histology and mitochondrial ultrastructure. In all aspects, rat MENX pheochromocytomas resemble the features of the human pseudohypoxia group, the most aggressive one and in need of effective therapeutic approaches. Abstract Background: Pseudohypoxic tumors activate pro-oncogenic pathways typically associated with severe hypoxia even when sufficient oxygen is present, leading to highly aggressive tumors. Prime examples are pseudohypoxic pheochromocytomas and paragangliomas (p-PPGLs), neuroendendocrine tumors currently lacking effective therapy. Previous attempts to generate mouse models for p-PPGLs all failed. Here, we describe that the rat MENX line, carrying a Cdkn1b (p27) frameshift-mutation, spontaneously develops pseudohypoxic pheochromocytoma (p-PCC). Methods: We compared rat p-PCCs with their cognate human tumors at different levels: histology, immunohistochemistry, catecholamine profiling, electron microscopy, transcriptome and metabolome. The vessel architecture and angiogenic potential of pheochromocytomas (PCCs) was analyzed by light-sheet fluorescence microscopy ex vivo and multi-spectral optoacoustic tomography (MSOT) in vivo. Results: The analysis of tissues at various stages, from hyperplasia to advanced grades, allowed us to correlate tumor characteristics with progression. Pathological changes affecting the mitochrondrial ultrastructure where present already in hyperplasias. Rat PCCs secreted high levels of norepinephrine and dopamine. Transcriptomic and metabolomic analysis revealed changes in oxidative phosphorylation that aggravated over time, leading to an accumulation of the oncometabolite 2-hydroxyglutarate, and to hypermethylation, evident by the loss of the epigenetic mark 5-hmC. While rat PCC xenografts showed high oxygenation, induced by massive neoangiogenesis, rat primary PCC transcriptomes possessed a pseudohypoxic signature of high Hif2a, Vegfa, and low Pnmt expression, thereby clustering with human p-PPGL. Conclusion: Endogenous rat PCCs recapitulate key phenotypic features of human p-PPGLs. Thus, MENX rats emerge as the best available animal model of these aggressive tumors. Our study provides evidence of a link between cell cycle dysregulation and pseudohypoxia.
Collapse
Affiliation(s)
- Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Centre Munich, Ingolstaedter Landstr.1, 85764 Neuherberg, Germany; (H.M.); (S.G.); (T.W.)
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Simone Ballke
- Institute of Pathology, School of Medicine, Technical University Munich, Trogerstr. 18, 81675 Munich, Germany; (S.B.); (K.S.)
| | - Nicole Bechmann
- Department of Medicine III, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany;
- Institute of Clinical Chemistry and Laboratory, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany;
| | - Sebastian Gulde
- Institute for Diabetes and Cancer, Helmholtz Centre Munich, Ingolstaedter Landstr.1, 85764 Neuherberg, Germany; (H.M.); (S.G.); (T.W.)
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jaber Malekzadeh-Najafabadi
- Chair of Biological Imaging, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany; (J.M.-N.); (V.N.)
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany;
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany; (J.M.-N.); (V.N.)
- Institute for Biomedical Imaging, Helmholtz Centre Munich, Ingolstaedter Landstr.1, 85764 Neuherberg, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University Munich, Trogerstr. 18, 81675 Munich, Germany; (S.B.); (K.S.)
| | - Tobias Wiedemann
- Institute for Diabetes and Cancer, Helmholtz Centre Munich, Ingolstaedter Landstr.1, 85764 Neuherberg, Germany; (H.M.); (S.G.); (T.W.)
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Natalia S. Pellegata
- Institute for Diabetes and Cancer, Helmholtz Centre Munich, Ingolstaedter Landstr.1, 85764 Neuherberg, Germany; (H.M.); (S.G.); (T.W.)
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-(0)89-3187-2633
| |
Collapse
|
29
|
De Filpo G, Maggi M, Mannelli M, Canu L. Management and outcome of metastatic pheochromocytomas/paragangliomas: an overview. J Endocrinol Invest 2021; 44:15-25. [PMID: 32602077 DOI: 10.1007/s40618-020-01344-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/23/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Metastatic pheochromocytomas and paragangliomas (PPGLs) occur in about 5-26% of cases and are characterized by a heterogeneous prognosis. Metastases can be synchronous at the initial diagnosis, but they can occur also many years after surgery for the primary tumor. To date, the treatment of patients affected by metastatic PPGLs represents a clinical challenge because of the lack of guidelines. AIM The aim of this article is to review the available management options and their impact on the outcomes of patients with metastatic PPGLs. RESULTS Generally, treatments are not curative. Surgery, when possible, can be used to reduce hormonal symptoms and cardiovascular morbidity. Chemotherapy plays a role in patients with high burden tumor and rapid disease progression. Tyrosine kinases inhibitors (TKIs) might be considered for their ability to block the angiogenesis and cell growth. Radiation therapy and interventional radiology techniques can help in the management of local metastases to control symptoms and avoid tumor progression. On the other hand, peptide receptor radionuclide therapy (PRRT), using 90Y or 177Lu-DOTATATE, could be a promising therapy. In addition, high specific 131I-MIBG was approved by the Food and Drug Administration (FDA) in the US for the treatment of patients affected by metastatic and unresectable 131I-MIBG positive PPGLs. Considering the different pathways involved in the pathogenesis of PPGLs, several target therapies have been proposed and are under evaluation in clinical trials. CONCLUSIONS The choice of the appropriate treatment should be based on multidisciplinary and personalized approach taking into account the rarity and the variability of these tumors.
Collapse
Affiliation(s)
- G De Filpo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | - M Maggi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - M Mannelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - L Canu
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
30
|
Differences in Clinical Manifestations and Tumor Features Between Metastatic Pheochromocytoma/Paraganglioma Patients With and Without Germline SDHB Mutation. Endocr Pract 2020; 27:348-353. [PMID: 34024343 DOI: 10.1016/j.eprac.2020.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare metastatic pheochromocytoma/paraganglioma (MPP) patients with germline SDHB mutations (SDHB MPP) and without SDHB mutations (non-SDHB MPP) in terms of baseline clinical manifestations, tumor characteristics, and outcomes. METHODS Clinical data were retrospectively reviewed in 101 MPP patients, including 34 SDHB MPP patients and 61 non-SDHB MPP patients. RESULTS SDHB MPP patients presented at a younger age at onset, diagnosis, or metastasis (25 ± 16 vs 36 ± 14, 28 ± 17 vs 38 ± 15, and 31 ± 17 vs 44 ± 14 years old, respectively, P < .01 for all) than non-SDHB patients. Compared with their non-SDHB counterparts, SDHB patients were more likely to have paragangliomas (83% vs 47%, P < .05), synchronous metastases (44% vs 23%, P < .05), bone metastases (80% vs 48%, P < .01), and a shorter progression-free survival (3 years vs 5 years, P < .01). The Ki-67 index was higher in SDHB tumors (P < .05). The 5- and 10-year survival rates were 79% and 74%, respectively, in all patients. Seventeen patients died from MPP, and the time from metastasis to death in patients who had received systemic therapy was significantly longer than in those who had not (3.1 ± 1.5 vs 1.4 ± 0.7 years, P < .01). CONCLUSION Compared with MPP patients without SDHB mutations, MPP patients with SDHB mutations were younger at onset, diagnosis, or metastasis; had a higher incidence of synchronous metastases, higher ratio of paraganglioma, and higher Ki-67 index; had a shorter postoperative progression-free survival; and were more likely to develop bone metastasis or sole liver metastasis. Our results suggest that patients with SDHB mutations should be identified early and monitored regularly to achieve optimal clinical outcomes.
Collapse
|
31
|
Wachtel H, Hutchens T, Baraban E, Schwartz LE, Montone K, Baloch Z, LiVolsi V, Krumeich L, Fraker DL, Nathanson KL, Cohen DL, Fishbein L. Predicting Metastatic Potential in Pheochromocytoma and Paraganglioma: A Comparison of PASS and GAPP Scoring Systems. J Clin Endocrinol Metab 2020; 105:5900767. [PMID: 32877928 PMCID: PMC7553245 DOI: 10.1210/clinem/dgaa608] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE The Pheochromocytoma of the Adrenal Gland Scaled Score (PASS) and the Grading System for Adrenal Pheochromocytoma and Paraganglioma (GAPP) are scoring systems to predict metastatic potential in pheochromocytomas (PCC) and paragangliomas (PGLs). The goal of this study is to assess PASS and GAPP as metastatic predictors and to correlate with survival outcomes. METHODS The cohort included PCC/PGL with ≥5 years of follow-up or known metastases. Surgical pathology slides were rereviewed. PASS and GAPP scores were assigned. Univariable and multivariable logistic regression, Kaplan-Meier survival analysis, and Cox proportional hazards were performed to assess recurrence-free survival (RFS) and disease-specific survival (DSS). RESULTS From 143 subjects, 106 tumors were PCC and 37 were PGL. Metastases developed in 24%. The median PASS score was 6.5 (interquartile range [IQR]: 4.0-8.0) and median GAPP score was 3.0 (IQR: 2.0-4.0). Interrater reliability was low-moderate for PASS (intraclass correlation coefficient [ICC]: 0.6082) and good for GAPP (ICC 0.7921). Older age (OR: 0.969, P = .0170) was associated with longer RFS. SDHB germline pathogenic variant (OR: 8.205, P = .0049), extra-adrenal tumor (OR: 6.357, P < .0001), Ki-67 index 1% to 3% (OR: 4.810, P = .0477), and higher GAPP score (OR: 1.537, P = .0047) were associated with shorter RFS. PASS score was not associated with RFS (P = .1779). On Cox regression, a GAPP score in the moderately differentiated range was significantly associated with disease recurrence (HR: 3.367, P = .0184) compared with well-differentiated score. CONCLUSION Higher GAPP scores were associated with aggressive PCC/PGL. PASS score was not associated with metastases and demonstrated significant interobserver variability. Scoring systems for predicting metastatic PCC/PGL may be improved by incorporation of histopathology, clinical data, and germline and somatic tumor markers.
Collapse
Affiliation(s)
- Heather Wachtel
- Hospital of the University of Pennsylvania, Department of Surgery, Division of Endocrine and Oncologic, Surgery, Philadelphia, Pennsylvania
- The Abramson Cancer Center, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Correspondence and Reprint Requests: Heather Wachtel, MD, Hospital of the University of Pennsylvania, 3400 Spruce Street, 4 Silverstein Pavilion, Philadelphia PA 19104, USA. E-mail:
| | - Troy Hutchens
- Hospital of the University of Pennsylvania, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Ezra Baraban
- Hospital of the University of Pennsylvania, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Lauren E Schwartz
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Hospital of the University of Pennsylvania, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Kathleen Montone
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Hospital of the University of Pennsylvania, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Zubair Baloch
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Hospital of the University of Pennsylvania, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Virginia LiVolsi
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Hospital of the University of Pennsylvania, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Lauren Krumeich
- Hospital of the University of Pennsylvania, Department of Surgery, Division of Endocrine and Oncologic, Surgery, Philadelphia, Pennsylvania
| | - Douglas L Fraker
- Hospital of the University of Pennsylvania, Department of Surgery, Division of Endocrine and Oncologic, Surgery, Philadelphia, Pennsylvania
- The Abramson Cancer Center, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Katherine L Nathanson
- The Abramson Cancer Center, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Hospital of the University of Pennsylvania, Division of Translational Medicine and Human Genetics, Philadelphia, Pennsylvania
| | - Debbie L Cohen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Hospital of the University of Pennsylvania, Department of Medicine, Division of Renal, Electrolytes and Hypertension, Philadelphia, Pennsylvania
| | - Lauren Fishbein
- University of Colorado School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism and Diabetes and the Division of Biomedical Informatics and Personalized Medicine, Aurora, Colorado
| |
Collapse
|
32
|
MacFarlane J, Seong KC, Bisambar C, Madhu B, Allinson K, Marker A, Warren A, Park SM, Giger O, Challis BG, Maher ER, Casey RT. A review of the tumour spectrum of germline succinate dehydrogenase gene mutations: Beyond phaeochromocytoma and paraganglioma. Clin Endocrinol (Oxf) 2020; 93:528-538. [PMID: 32686200 DOI: 10.1111/cen.14289] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/15/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
The citric acid cycle, also known as the Krebs cycle, plays an integral role in cellular metabolism and aerobic respiration. Mutations in genes encoding the citric acid cycle enzymes succinate dehydrogenase, fumarate hydratase and malate dehydrogenase all predispose to hereditary tumour syndromes. The succinate dehydrogenase enzyme complex (SDH) couples the oxidation of succinate to fumarate in the citric acid cycle and the reduction of ubiquinone to ubiquinol in the electron transport chain. A loss of function in the succinate dehydrogenase (SDH) enzyme complex is most commonly caused by an inherited mutation in one of the four SDHx genes (SDHA, SDHB, SDHC and SDHD). This mechanism was first implicated in familial phaeochromocytoma and paraganglioma. However, over the past two decades the spectrum of tumours associated with SDH deficiency has been extended to include gastrointestinal stromal tumours (GIST), renal cell carcinoma (RCC) and pituitary adenomas. The aim of this review is to describe the extended tumour spectrum associated with SDHx gene mutations and to consider how functional tests may help to establish the role of SDHx mutations in new or unexpected tumour phenotypes.
Collapse
Affiliation(s)
- James MacFarlane
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Keat Cheah Seong
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Chad Bisambar
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Basetti Madhu
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Kieren Allinson
- Department of Pathology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Alison Marker
- Department of Pathology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Anne Warren
- Department of Pathology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Soo-Mi Park
- Department of Clinical Genetics, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Olivier Giger
- Department of Pathology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Department of Pathology, Cambridge University, Cambridge, UK
| | - Benjamin G Challis
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Translational Science & Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Eamonn R Maher
- Department of Medical Genetics, Cambridge University, Cambridge, UK
| | - Ruth T Casey
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Department of Medical Genetics, Cambridge University, Cambridge, UK
| |
Collapse
|
33
|
Lenders JWM, Kerstens MN, Amar L, Prejbisz A, Robledo M, Taieb D, Pacak K, Crona J, Zelinka T, Mannelli M, Deutschbein T, Timmers HJLM, Castinetti F, Dralle H, Widimský J, Gimenez-Roqueplo AP, Eisenhofer G. Genetics, diagnosis, management and future directions of research of phaeochromocytoma and paraganglioma: a position statement and consensus of the Working Group on Endocrine Hypertension of the European Society of Hypertension. J Hypertens 2020; 38:1443-1456. [PMID: 32412940 PMCID: PMC7486815 DOI: 10.1097/hjh.0000000000002438] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
: Phaeochromocytoma and paraganglioma (PPGL) are chromaffin cell tumours that require timely diagnosis because of their potentially serious cardiovascular and sometimes life- threatening sequelae. Tremendous progress in biochemical testing, imaging, genetics and pathophysiological understanding of the tumours has far-reaching implications for physicians dealing with hypertension and more importantly affected patients. Because hypertension is a classical clinical clue for PPGL, physicians involved in hypertension care are those who are often the first to consider this diagnosis. However, there have been profound changes in how PPGLs are discovered; this is often now based on incidental findings of adrenal or other masses during imaging and increasingly during surveillance based on rapidly emerging new hereditary causes of PPGL. We therefore address the relevant genetic causes of PPGLs and outline how genetic testing can be incorporated within clinical care. In addition to conventional imaging (computed tomography, MRI), new functional imaging approaches are evaluated. The novel knowledge of genotype-phenotype relationships, linking distinct genetic causes of disease to clinical behaviour and biochemical phenotype, provides the rationale for patient-tailored strategies for diagnosis, follow-up and surveillance. Most appropriate preoperative evaluation and preparation of patients are reviewed, as is minimally invasive surgery. Finally, we discuss risk factors for developing metastatic disease and how they may facilitate personalised follow-up. Experts from the European Society of Hypertension have prepared this position document that summarizes the current knowledge in epidemiology, genetics, diagnosis, treatment and surveillance of PPGL.
Collapse
Affiliation(s)
- Jacques W M Lenders
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medicine III, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Michiel N Kerstens
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Laurence Amar
- Unité d'Hypertension Artérielle, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Université de Paris-PARCC, INSERM, Paris, France
| | | | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, European Center for Research in Medical Imaging, Aix-Marseille University, Marseille, France
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Joakim Crona
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Tomáš Zelinka
- Center for Hypertension, 3rd Department of Medicine, Division of Endocrinology and Metabolism, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Massimo Mannelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Timo Deutschbein
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Henri J L M Timmers
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frederic Castinetti
- Aix-Marseille Université, Department of Endocrinology, Institut National de la Santé et de la Recherche Médicale (INSERM), Marseille Medical Genetics (MMG), et Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Henning Dralle
- Department of General, Visceral and Transplantation Surgery, Section of Endocrine Surgery, University of Duisburg-Essen, Essen, Germany
| | - Jřri Widimský
- Center for Hypertension, 3rd Department of Medicine, Division of Endocrinology and Metabolism, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Anne-Paule Gimenez-Roqueplo
- Assistance Publique-Hôpitaux de Paris, AP-HP, Hôpital Européen Georges Pompidou, Service de Génétique, Université de Paris, PARCC, INSERM, Paris, France
| | - Graeme Eisenhofer
- Department of Medicine III, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| |
Collapse
|
34
|
Dahia PL, Clifton-Bligh R, Gimenez-Roqueplo AP, Robledo M, Jimenez C. HEREDITARY ENDOCRINE TUMOURS: CURRENT STATE-OF-THE-ART AND RESEARCH OPPORTUNITIES: Metastatic pheochromocytomas and paragangliomas: proceedings of the MEN2019 workshop. Endocr Relat Cancer 2020; 27:T41-T52. [PMID: 32069214 PMCID: PMC7334096 DOI: 10.1530/erc-19-0435] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are adrenal or extra-adrenal autonomous nervous system-derived tumors. Most PPGLs are benign, but approximately 15% progress with metastases (mPPGLs). mPPGLs are more likely to occur in patients with large pheochromocytomas, sympathetic paragangliomas, and norepinephrine-secreting tumors. Older subjects, those with larger tumors and synchronous metastases, advance more rapidly. Germline mutations of SDHB, FH, and possibly SLC25A11, or somatic MAML3 disruptions relate to a higher risk for metastatic disease. However, it is unclear whether these mutations predict outcome. Once diagnosed, there are no well-established predictors of outcome in mPPGLs, and aggressive tumors have few therapeutic options and limited response. High-specific activity (HSA) metaiodine-benzyl-guanidine (MIBG) is the first FDA approved treatment and shows clinical effectiveness for MIBG-avid mPPGLs. Ongoing and future investigations should involve validation of emerging candidate outcome biomarkers, including somatic ATRX, TERT, and microRNA disruptions and identification of novel prognostic indicators. Long-term effect of HSA-MIBG and the role of other radiopharmaceuticals should be investigated. Novel trials targeting molecular events prevalent in SDHB/FH mutant tumors, such as activated hypoxia inducible factor 2 (HIF2), angiogenesis, or other mitochondrial defects that might confer unique vulnerability to these tumors should be developed and initiated. As therapeutic options are anticipated to expand, multi-institutional collaborations and well-defined clinical and molecular endpoints will be critical to achieve higher success rates in improving care for patients with mPPGLs.
Collapse
Affiliation(s)
- Patricia L.M. Dahia
- Division of Hematology and Medical Oncology, Dept Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio-TX, 78229
- to whom correspondence should be addressed: Patricia Dahia, MD, PhD, Robert Tucker Hayes Distinguished Chair in Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7880, San Antonio-TX, 78229-3900, Tel: (210) 567-4866,
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Northern Clinical School, Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales 2065, Australia
| | - Anne-Paule Gimenez-Roqueplo
- Service de Génétique, Hôpital européen Georges Pompidou, INSERM UMR 970, PARCC@HEGP, 54 rue Leblanc, 75015 Paris, FRANCE
| | - Mercedes Robledo
- Human Cancer Genetics Program, Spanish National Cancer Research Center, E-28029, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
35
|
Liu Y, Pang Y, Zhu B, Uher O, Caisova V, Huynh TT, Taieb D, Hadrava Vanova K, Ghayee HK, Neuzil J, Levine M, Yang C, Pacak K. Therapeutic Targeting of SDHB-Mutated Pheochromocytoma/Paraganglioma with Pharmacologic Ascorbic Acid. Clin Cancer Res 2020; 26:3868-3880. [PMID: 32152203 DOI: 10.1158/1078-0432.ccr-19-2335] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/09/2019] [Accepted: 03/04/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Pheochromocytomas and paragangliomas (PCPG) are usually benign neuroendocrine tumors. However, PCPGs with mutations in the succinate dehydrogenase B subunit (SDHB) have a poor prognosis and frequently develop metastatic lesions. SDHB-mutated PCPGs exhibit dysregulation in oxygen metabolic pathways, including pseudohypoxia and formation of reactive oxygen species, suggesting that targeting the redox balance pathway could be a potential therapeutic approach. EXPERIMENTAL DESIGN We studied the genetic alterations of cluster I PCPGs compared with cluster II PCPGs, which usually present as benign tumors. By targeting the signature molecular pathway, we investigated the therapeutic effect of ascorbic acid on PCPGs using in vitro and in vivo models. RESULTS By investigating PCPG cells with low SDHB levels, we show that pseudohypoxia resulted in elevated expression of iron transport proteins, including transferrin (TF), transferrin receptor 2 (TFR2), and the divalent metal transporter 1 (SLC11A2; DMT1), leading to iron accumulation. This iron overload contributed to elevated oxidative stress. Ascorbic acid at pharmacologic concentrations disrupted redox homeostasis, inducing DNA oxidative damage and cell apoptosis in PCPG cells with low SDHB levels. Moreover, through a preclinical animal model with PCPG allografts, we demonstrated that pharmacologic ascorbic acid suppressed SDHB-low metastatic lesions and prolonged overall survival. CONCLUSIONS The data here demonstrate that targeting redox homeostasis as a cancer vulnerability with pharmacologic ascorbic acid is a promising therapeutic strategy for SDHB-mutated PCPGs.
Collapse
Affiliation(s)
- Yang Liu
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ying Pang
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Boqun Zhu
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland.,Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Ondrej Uher
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland.,Department of Medical Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Veronika Caisova
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Thanh-Truc Huynh
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Katerina Hadrava Vanova
- Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Hans Kumar Ghayee
- Department of Internal Medicine, Division of Endocrinology, University of Florida College of Medicine and Malcom Randall VA Medical Center, Gainesville, Florida
| | - Jiri Neuzil
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Mitochondria, Apoptosis and Cancer Research Group, School of Medical Science and Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland.
| |
Collapse
|
36
|
Jasim S, Jimenez C. Metastatic pheochromocytoma and paraganglioma: Management of endocrine manifestations, surgery and ablative procedures, and systemic therapies. Best Pract Res Clin Endocrinol Metab 2020; 34:101354. [PMID: 31685417 DOI: 10.1016/j.beem.2019.101354] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metastatic pheochromocytomas and paragangliomas (MPPGs) are rare neuroendocrine tumors. Most patients present with advanced disease that is associated with manifestations of catecholamine release. Surgical resection of the primary tumor and ablative therapies of metastases-whenever possible-may improve clinical outcomes and, perhaps, lengthen the patient's overall survival. Significant steps in understanding the genetic alterations linked to MPPGs and scientific progress made on cancers that share a similar pathogenesis are leading to the recognition of potential systemic therapeutic options. Data derived from clinical trials evaluating targeted therapies such as tyrosine kinase inhibitors, radiopharmaceuticals, immunotherapy, and combinations of these will likely improve the outcomes of patients with advanced and progressive MPPGs. Exemplary of this success is the recent approval in the United States of the high-specific-activity iodine131 meta-iodine-benzylguanidine (MIBG) for patients with unresectable and progressive MPPGs that express the noradrenaline transporter. This review will discuss the therapeutic approaches for patients with MPPGs.
Collapse
Affiliation(s)
- Sina Jasim
- The Division of Endocrinology, Metabolism and Lipid Research, Campus box 8127, Washington University, School of Medicine, 660 S. Euclid Ave., St. Louis, Missouri 63110, USA
| | - Camilo Jimenez
- The Department of Endocrine Neoplasia and Hormonal Disorders at the University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1461, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Albattal S, Alswailem M, Moria Y, Al-Hindi H, Dasouki M, Abouelhoda M, Alkhail HA, Alsuhaibani E, Alzahrani AS. Mutational profile and genotype/phenotype correlation of non-familial pheochromocytoma and paraganglioma. Oncotarget 2019; 10:5919-5931. [PMID: 31666924 PMCID: PMC6800268 DOI: 10.18632/oncotarget.27194] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
About 30%-40% of patients with pheochromocytoma (PCC) and paraganglioma (PGL) have underlying germline mutations in certain susceptibility genes despite absent family history of these tumors. Here, we present mutational profile of 101 such patients with PCC/PGL (PPGL) from the highly consanguineous population of Saudi Arabia. Results: Of 101 cases with PPGL, 37/101 (36.6%) had germline mutations. Mutations were detected in 30 cases by PCR and direct Sanger sequencing and in 7 additional cases by NGS. The most commonly mutated gene was SDHB (21/101 cases, 20.8%) and the most common SDHB mutation was c.268C>T, p.R90X occurring in 12/21 (57%) cases. Mutations also occurred in SDHC (4/101, 3.96%), SDHD (3/101, 3%), VHL (2/101, 2%) and MAX (2/101, 2%) genes. The following genes were mutated in 1 patient each (1%), RET, SDHA, SDHAF2, TMEM127 and NF1. Metastatic PPGL occurred in 6/21 cases (28.6%) with SDHB mutations and in 1 case with SDHAF2 mutation. Patients and Methods: DNA was isolated from peripheral blood (53 patients) or from non-tumorous formalin fixed paraffin embedded (FFPE) tissue (48 patients). PCR and direct Sanger sequencing of RET, SDHx, VHL, MAX and TMEM127 genes were performed. Cases without mutations were subjected to whole exome sequencing using next generation sequencing (NGS). Conclusion: About 37% of PPGL without family history of such tumors harbor germline mutations. The most commonly mutated gene is SDHB followed by SDHC, SDHD, VHL, MAX and rarely RET, SDHA, SDHAF2, TMEM127 and NF1. SDHB mutations were associated with metastatic PPGL in more than a quarter of cases.
Collapse
Affiliation(s)
- Shatha Albattal
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia.,Faculty of Science, King Saud University, Riyadh 11211, Saudi Arabia
| | - Meshael Alswailem
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Yosra Moria
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Hindi Al-Hindi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Majed Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 11211, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 11211, Saudi Arabia
| | - Hala Aba Alkhail
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | | | - Ali S Alzahrani
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia.,Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
38
|
Hamidi O. Metastatic pheochromocytoma and paraganglioma: recent advances in prognosis and management. Curr Opin Endocrinol Diabetes Obes 2019; 26:146-154. [PMID: 30893083 DOI: 10.1097/med.0000000000000476] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Metastatic pheochromocytomas and paragangliomas (PPGL) are rare neuroendocrine tumors with variable prognosis. This review highlights recent studies on outcomes and management of patients with metastatic PPGL. RECENT FINDINGS Latest advances were made in identifying predictors of favorable outcomes of patients with metastatic PPGL. Recent studies evaluated the efficacy of tyrosine kinase inhibitors, high-specific-activity radiopharmaceuticals, and peptide receptors radionuclide therapy in treatment of metastatic disease. Moreover, ongoing studies are assessing the effects of hypoxia-inducible factor 2αα and heat shock protein 90 inhibitors as potential therapies. SUMMARY Several active studies are evaluating the efficacy of systemic chemo, immuno, radiopharmaceutical, and peptide receptor radionuclide therapies to relieve local and adrenergic symptoms and provide survival benefit for patients with symptomatic and/or progressive advanced metastatic PPGL. Owing to rarity and wide-outcome variability, multidisciplinary team effort and personalized approach are central in caring for patients with metastatic PPGL.
Collapse
Affiliation(s)
- Oksana Hamidi
- Division of Endocrinology and Metabolism, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
39
|
Mak IYF, Hayes AR, Khoo B, Grossman A. Peptide Receptor Radionuclide Therapy as a Novel Treatment for Metastatic and Invasive Phaeochromocytoma and Paraganglioma. Neuroendocrinology 2019; 109:287-298. [PMID: 30856620 DOI: 10.1159/000499497] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/09/2019] [Indexed: 11/19/2022]
Abstract
At present there is no clinical guideline or standardised protocol for the treatment of metastatic or invasive phaeochromocytoma and paraganglioma (collectively known as PPGL) due to the rarity of the disease and the lack of prospective studies or extended national databases. Prognosis is mainly determined by genetic predisposition, tumour burden, rate of disease progression, and location of metastases. For patients with progressive or symptomatic disease that is not amenable to surgery, there are various palliative treatment options available. These include localised therapies including radiotherapy, radiofrequency, or cryoablation, as well as liver-directed therapies for those patients with hepatic metastases (e.g., transarterial chemoembolisation) and systemic therapies including chemotherapy or molecular targeted therapies. There is currently intense research interest in the value of radionuclide therapy for neuroendocrine tumours, including phaeochromocytoma and paraganglioma, with either iodine-131 (131I)-radiolabelled metaiodobenzylguanidine or very recently peptide receptor radionuclide therapy (PRRT), and the most important contemporary clinical studies will be highlighted in this review. The studies to date suggest that PRRT may induce major clinical, biochemical, and radiological changes, with 177Lu-DOTATATE being most efficacious and presenting less toxicity than 90Y-DOTATATE. Newer combination therapies with combined radioisotopes, or combinations with chemotherapeutic agents, also look promising. Given the favourable efficacy, logistic, and safety profiles, we believe that PRRT will probably become the standard treatment for inoperable metastatic PPGL in the near future, but we await data from definitive randomised controlled trials to understand its role.
Collapse
Affiliation(s)
- Ingrid Y F Mak
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, United Kingdom,
| | - Aimee R Hayes
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, United Kingdom
| | - Bernard Khoo
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, United Kingdom
| | - Ashley Grossman
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
40
|
Gild ML, Naik N, Hoang J, Hsiao E, McGrath RT, Sywak M, Sidhu S, Delbridge LW, Robinson BG, Schembri G, Clifton-Bligh RJ. Role of DOTATATE-PET/CT in preoperative assessment of phaeochromocytoma and paragangliomas. Clin Endocrinol (Oxf) 2018; 89:139-147. [PMID: 29741215 DOI: 10.1111/cen.13737] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/21/2018] [Accepted: 05/01/2018] [Indexed: 02/01/2023]
Abstract
CONTEXT Diagnosis of paragangliomas (PGL) and phaeochromocytomas (PC) can be challenging particularly if the tumour is small. Detection of metastatic disease is important for comprehensive management of malignant PC/PGL. Somatostatin receptor imaging (SRI) agents have high sensitivity for these tumours, particularly the DOTA family of radiopharmaceuticals labelled with 68 Gallium. OBJECTIVE To describe the utility of SRI in primary assessment (ie before surgery) for PC/PGL and whether measures of maximum standardized uptake (SUVmax) could be used to distinguish between adrenal adenomas and PCs. DESIGN Retrospective analysis of patients with PC and PGL between 2012 and 2017. PATIENTS Somatostatin receptor imaging (SRI) was performed for suspected PC (n = 46) or PGL (n = 27) of which 36 were during primary assessment and 37 during secondary assessment (follow-up after surgery). For comparison of adrenal SUVmax, scans from 30 patients without suspected PC/PGL (20 with normal adrenals; 10 with incidental adenomas) were evaluated. MEASUREMENTS Baseline description, sensitivity, specificity, Youden's index. RESULTS Sensitivity of DOTATATE-PET was 88% for PC and 100% for PGL. False-negative scans were seen in 2/10 PCs < 28 mm and in 1/14 PCs > 28 mm which had features of cystic degeneration. SUVmax of PCs and PGLs was more than double compared to adrenal adenomas (P > .001). CONCLUSION Somatostatin receptor imaging (SRI) has high sensitivity in primary assessment for PC and PGL. We recommend that SRI should be performed as part of primary assessment in all suspected PGLs (due to higher risk of multifocal lesions) and in PCs suspected to be associated with hereditary syndromes or metastases.
Collapse
Affiliation(s)
- Matti L Gild
- Department of Endocrinology and Diabetes, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Nikita Naik
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Jeremy Hoang
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Edward Hsiao
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Rachel T McGrath
- Department of Endocrinology and Diabetes, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Mark Sywak
- Department of Endocrine Surgery, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Stan Sidhu
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
- Department of Endocrine Surgery, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Leigh Walter Delbridge
- Department of Endocrine Surgery, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Bruce Gregory Robinson
- Department of Endocrinology and Diabetes, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Geoff Schembri
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Roderick John Clifton-Bligh
- Department of Endocrinology and Diabetes, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
41
|
Crona J, Beuschlein F, Pacak K, Skogseid B. Advances in adrenal tumors 2018. Endocr Relat Cancer 2018; 25:R405-R420. [PMID: 29794126 PMCID: PMC5976083 DOI: 10.1530/erc-18-0138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022]
Abstract
This review aims to provide clinicians and researchers with a condensed update on the most important studies in the field during 2017. We present the academic output measured by active clinical trials and peer-reviewed published manuscripts. The most important and contributory manuscripts were summarized for each diagnostic entity, with a particular focus on manuscripts that describe translational research that have the potential to improve clinical care. Finally, we highlight the importance of collaborations in adrenal tumor research, which allowed for these recent advances and provide structures for future success in this scientific field.
Collapse
Affiliation(s)
- J Crona
- Department of Medical SciencesUppsala University, Uppsala, Sweden
| | - F Beuschlein
- Medizinische Klinik und Poliklinik IVKlinikum der Universität München, Munich, Germany
- Klinik für EndokrinologieDiabetologie und Klinische Ernährung, UniversitätsSpital Zürich, Zürich, Switzerland
| | - K Pacak
- Section on Medical NeuroendocrinologyEunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - B Skogseid
- Department of Medical SciencesUppsala University, Uppsala, Sweden
| |
Collapse
|