1
|
Lopez-Pier MA, Marino VA, Vazquez-Loreto AC, Skaria RS, Cannon DK, Hoyer-Kimura CH, Solomon AE, Lipovka Y, Doubleday K, Pier M, Chu M, Mayfield R, Behunin SM, Hu T, Langlais PR, McKinsey TA, Konhilas JP. Myocardial transcriptomic and proteomic landscapes across the menopausal continuum in a murine model of chemically induced accelerated ovarian failure. Physiol Genomics 2025; 57:409-430. [PMID: 40266891 DOI: 10.1152/physiolgenomics.00133.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/17/2024] [Accepted: 03/21/2025] [Indexed: 04/25/2025] Open
Abstract
Risk of cardiovascular disease (CVD) in women increases with the menopausal transition. Using a chemical model (4-vinylcyclohexene diepoxide; VCD) of accelerated ovarian failure, we previously demonstrated that menopausal females are more susceptible to CVD compared with peri- or premenopausal females like humans. Yet, the cellular and molecular mechanisms underlying this shift in CVD susceptibility across the pre- to peri- to menopause continuum remain understudied. In this work using the VCD mouse model, we phenotyped cellular and molecular signatures from hearts at each hormonally distinct stage that included transcriptomic, proteomic, and cell biological analyses. The transcriptional profile of premenopausal hearts clustered separately from perimenopausal and menopausal hearts, which clustered more similarly. Proteomics also revealed hormonal clustering; perimenopausal hearts grouped more closely with premenopausal than menopausal hearts. Both proteomes and transcriptomes showed similar trends in genes associated with atherothrombosis, contractility, and impaired nuclear signaling between pre-, peri-, and menopausal murine hearts. Further analysis of posttranslational modifications (PTMs) showed hormone-dependent shifts in the phosphoproteome and acetylome. To further interrogate these findings, we triggered pathological remodeling using angiotensin II (Ang II). Phosphorylation of AMP-activated protein kinase (AMPK) signaling and histone deacetylase (HDAC) activity were found to be dependent on hormonal status and Ang II stimulation. Finally, knockdown of anti-inflammatory regulatory T cells (Treg) exacerbated Ang II-dependent fibrosis implicating HDAC-mediated epigenetic suppression of Treg activity. Taken together, we demonstrated unique cellular and molecular profiles underlying the cardiac phenotype of pre-, peri-, and menopausal mice supporting the necessity to study CVD in females across the hormonal transition.NEW & NOTEWORTHY Cycling and perimenopausal females are protected from cardiovascular disease (CVD) whereas menopausal females are more susceptible to CVD and other pathological sequalae. The cellular and molecular mechanisms underlying loss of CVD protection across the pre- to peri- to menopause transition remain understudied. Using the murine 4-vinylcyclohexene diepoxide (VCD) model of menopause we highlight cellular and molecular signatures from hearts at each hormonally distinct stage that included transcriptomic, proteomic, and cell biological analyses.
Collapse
Affiliation(s)
- Marissa A Lopez-Pier
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, United States
| | - Vito A Marino
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
| | | | - Rinku S Skaria
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
- College of Medicine, University of Arizona, Tucson, Arizona, United States
| | - Danielle K Cannon
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
| | | | - Alice E Solomon
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States
| | - Yulia Lipovka
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Kevin Doubleday
- College of Medicine, University of Arizona, Tucson, Arizona, United States
| | - Maricela Pier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States
| | - Meinsung Chu
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States
| | - Rachel Mayfield
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States
| | - Samantha M Behunin
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States
| | - Tianjing Hu
- Division of Cardiology and Consortium for Fibrosis Research & Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Paul R Langlais
- Department of Endocrinology, University of Arizona, Tucson, Arizona, United States
- College of Medicine, University of Arizona, Tucson, Arizona, United States
| | - Timothy A McKinsey
- Division of Cardiology and Consortium for Fibrosis Research & Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - John P Konhilas
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
2
|
Hoermann B, Dürr EM, Ludwig C, Ercan M, Köhn M. A strategy to disentangle direct and indirect effects on (de)phosphorylation by chemical modulators of the phosphatase PP1 in complex cellular contexts. Chem Sci 2024; 15:2792-2804. [PMID: 38404380 PMCID: PMC10882499 DOI: 10.1039/d3sc04746f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/12/2024] [Indexed: 02/27/2024] Open
Abstract
Chemical activators and inhibitors are useful probes to identify substrates and downstream effects of enzymes; however, due to the complex signaling environment within cells, it is challenging to distinguish between direct and indirect effects. This is particularly the case for phosphorylation, where a single (de)phosphorylation event can trigger rapid changes in many other phosphorylation sites. An additional complication arises when a single catalytic entity, which acts in the form of many different holoenzymes with different substrates, is activated or inhibited, as it is unclear which holoenzymes are affected, and in turn which of their substrates are (de)phosphorylated. Direct target engaging MS-based technologies to study targets of drugs do not address these challenges. Here, we tackle this by studying the modulation of protein phosphatase-1 (PP1) activity by PP1-disrupting peptides (PDPs), as well as their selectivity toward PP1, by using a combination of mass spectrometry-based experiments. By combining cellular treatment with the PDP with in vitro dephosphorylation by the enzyme, we identify high confidence substrate candidates and begin to separate direct and indirect effects. Together with experiments analyzing which holoenzymes are particularly susceptible to this treatment, we obtain insights into the effect of the modulator on the complex network of protein (de)phosphorylation. This strategy holds promise for enhancing our understanding of PP1 in particular and, due to the broad applicability of the workflow and the MS-based read-out, of chemical modulators with complex mode of action in general.
Collapse
Affiliation(s)
- Bernhard Hoermann
- Faculty of Biology, Institute of Biology III, University of Freiburg Freiburg Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg Freiburg Germany
| | - Eva-Maria Dürr
- Faculty of Biology, Institute of Biology III, University of Freiburg Freiburg Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg Freiburg Germany
| | - Christina Ludwig
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM) Freising Germany
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM) Freising Germany
| | - Melda Ercan
- Faculty of Biology, Institute of Biology III, University of Freiburg Freiburg Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg Freiburg Germany
| | - Maja Köhn
- Faculty of Biology, Institute of Biology III, University of Freiburg Freiburg Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg Freiburg Germany
| |
Collapse
|
3
|
Yadav Y, Sharma M, Dey CS. PP1γ regulates neuronal insulin signaling and aggravates insulin resistance leading to AD-like phenotypes. Cell Commun Signal 2023; 21:82. [PMID: 37085815 PMCID: PMC10120118 DOI: 10.1186/s12964-023-01071-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/08/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND PP1γ is one of the isoforms of catalytic subunit of a Ser/Thr phosphatase PP1. The role of PP1γ in cellular regulation is largely unknown. The present study investigated the role of PP1γ in regulating neuronal insulin signaling and insulin resistance in neuronal cells. PP1 was inhibited in mouse neuroblastoma cells (N2a) and human neuroblastoma cells (SH-SY5Y). The expression of PP1α and PP1γ was determined in insulin resistant N2a, SH-SY5Y cells and in high-fat-diet-fed-diabetic mice whole-brain-lysates. PP1α and PP1γ were silenced by siRNA in N2a and SH-SY5Y cells and effect was tested on AKT isoforms, AS160 and GSK3 isoforms using western immunoblot, GLUT4 translocation by confocal microscopy and glucose uptake by fluorescence-based assay. RESULTS Results showed that, in one hand PP1γ, and not PP1α, regulates neuronal insulin signaling and insulin resistance by regulating phosphorylation of AKT2 via AKT2-AS160-GLUT4 axis. On the other hand, PP1γ regulates phosphorylation of GSK3β via AKT2 while phosphorylation of GSK3α via MLK3. Imbalance in this regulation results into AD-like phenotype. CONCLUSION PP1γ acts as a linker, regulating two pathophysiological conditions, neuronal insulin resistance and AD. Video Abstract.
Collapse
Affiliation(s)
- Yamini Yadav
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Medha Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
4
|
Yadav Y, Dey CS. Ser/Thr phosphatases: One of the key regulators of insulin signaling. Rev Endocr Metab Disord 2022; 23:905-917. [PMID: 35697962 DOI: 10.1007/s11154-022-09727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
Protein phosphorylation is an important post-translational modification that regulates several cellular processes including insulin signaling. The evidences so far have already portrayed the importance of balanced actions of kinases and phosphatases in regulating the insulin signaling cascade. Therefore, elucidating the role of both kinases and phosphatases are equally important. Unfortunately, the role of phosphatases is less studied as compared to kinases. Since brain responds to insulin and insulin signaling is reported to be crucial for many neuronal processes, it is important to understand the role of neuronal insulin signaling regulators. Ser/Thr phosphatases seem to play significant roles in regulating neuronal insulin signaling. Therefore, in this review, we discussed the involvement of Ser/Thr phosphatases in regulating insulin signaling and insulin resistance in neuronal system at the backdrop of the same phosphatases in peripheral insulin sensitive tissues.
Collapse
Affiliation(s)
- Yamini Yadav
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
5
|
The ceRNA Crosstalk between mRNAs and lncRNAs in Diabetes Myocardial Infarction. DISEASE MARKERS 2022; 2022:4283534. [PMID: 35592708 PMCID: PMC9112177 DOI: 10.1155/2022/4283534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
Competitive endogenous RNA regulation suggests an intricate network of all transcriptional RNAs that have the function of repressing miRNA function and regulating mRNA expression. Today, the specific ceRNA regulatory mechanisms of lncRNA–miRNA–mRNA in patients who have diabetes mellitus (DM) and myocardial infarction (MI) are still unknown. Two data sets, GSE34198 and GSE112690, were rooted in the Gene Expression Omnibus database to search for changes of lncRNA, miRNA, and mRNA in MI patients with diabetes. Weighted gene correlation network analysis (WGCNA) was used to identify the modules related to the development of diabetes in patients with MI. Target genes of miRNAs were predicted using miRWalk, TargetScan, mirDB, RNA22, and miRanda. Then, functional and enrichment analyses were performed to build the lncRNA–miRNA–mRNA interaction network. We built ceRNA regulatory networks with three lncRNAs, two miRNAs, and nine mRNAs. Differentially expressed genes enriched in biological process, including neutrophil activation, refer to immune response and positive system of defense feedback. Besides, there is significant enrichment in molecular function of calcium toll−like receptor binding, icosanoid binding, RAGE receptor binding, and arachidonic acid binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis enriched differentially expressed genes (DEGs) in pathways that were well known in MI, indicating inflammation and immune response. Pathways associated with diabetes were also significantly enriched. We confirmed significantly altered lncRNA, miRNA, and mRNA in MI patients with diabetes, which might serve as biomarkers for the progress and development of diabetic cardiovascular diseases. We constructed a ceRNA regulatory network of lncRNA–miRNA–mRNA, which will enable us to understand the novel molecular mechanisms included in the initiation, progression, and interaction between DM and MI, laying the foundation for clinical diagnosis and treatment.
Collapse
|
6
|
Jha N, Mangukia N, Patel MP, Bhavsar M, Gadhavi H, Rawal RM, Patel SK. Exploring the MiRnome of Carica papaya: A cross kingdom approach. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Qi Y, Zhang X, Seyoum B, Msallaty Z, Mallisho A, Caruso M, Damacharla D, Ma D, Al-janabi W, Tagett R, Alharbi M, Calme G, Mestareehi A, Draghici S, Abou-Samra A, Kowluru A, Yi Z. Kinome Profiling Reveals Abnormal Activity of Kinases in Skeletal Muscle From Adults With Obesity and Insulin Resistance. J Clin Endocrinol Metab 2020; 105:5607358. [PMID: 31652310 PMCID: PMC6991621 DOI: 10.1210/clinem/dgz115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
Abstract
CONTEXT Obesity-related insulin resistance (OIR) is one of the main contributors to type 2 diabetes and other metabolic diseases. Protein kinases are implicated in insulin signaling and glucose metabolism. Molecular mechanisms underlying OIR involving global kinase activities remain incompletely understood. OBJECTIVE To investigate abnormal kinase activity associated with OIR in human skeletal muscle. DESIGN Utilization of stable isotopic labeling-based quantitative proteomics combined with affinity-based active enzyme probes to profile in vivo kinase activity in skeletal muscle from lean control (Lean) and OIR participants. PARTICIPANTS A total of 16 nondiabetic adults, 8 Lean and 8 with OIR, underwent hyperinsulinemic-euglycemic clamp with muscle biopsy. RESULTS We identified the first active kinome, comprising 54 active protein kinases, in human skeletal muscle. The activities of 23 kinases were different in OIR muscle compared with Lean muscle (11 hyper- and 12 hypo-active), while their protein abundance was the same between the 2 groups. The activities of multiple kinases involved in adenosine monophosphate-activated protein kinase (AMPK) and p38 signaling were lower in OIR compared with Lean. On the contrary, multiple kinases in the c-Jun N-terminal kinase (JNK) signaling pathway exhibited higher activity in OIR vs Lean. The kinase-substrate-prediction based on experimental data further confirmed a potential downregulation of insulin signaling (eg, inhibited phosphorylation of insulin receptor substrate-1 and AKT1/2). CONCLUSIONS These findings provide a global view of the kinome activity in OIR and Lean muscle, pinpoint novel specific impairment in kinase activities in signaling pathways important for skeletal muscle insulin resistance, and may provide potential drug targets (ie, abnormal kinase activities) to prevent and/or reverse skeletal muscle insulin resistance in humans.
Collapse
Affiliation(s)
- Yue Qi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI
| | - Berhane Seyoum
- Division of Endocrinology, Wayne State University School of Medicine, Wayne State University, Detroit, MI
| | - Zaher Msallaty
- Division of Endocrinology, Wayne State University School of Medicine, Wayne State University, Detroit, MI
| | - Abdullah Mallisho
- Division of Endocrinology, Wayne State University School of Medicine, Wayne State University, Detroit, MI
| | - Michael Caruso
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI
| | - Divyasri Damacharla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI
| | - Danjun Ma
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI
| | - Wissam Al-janabi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI
| | - Rebecca Tagett
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI
| | - Majed Alharbi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Griffin Calme
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI
| | - Aktham Mestareehi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI
| | - Sorin Draghici
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI
| | - Abdul Abou-Samra
- Division of Endocrinology, Wayne State University School of Medicine, Wayne State University, Detroit, MI
- Department of Medicine, Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
| | - Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI
- β-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, Detroit, MI
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI
- Correspondence: Zhengping Yi, PhD, Department of Pharmaceutical Sciences – Room 3146, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, 6135 Woodward Ave., Detroit, MI 48202. E-mail:
| |
Collapse
|
8
|
Zhao J, Wu Y, Rong X, Zheng C, Guo J. Anti-Lipolysis Induced by Insulin in Diverse Pathophysiologic Conditions of Adipose Tissue. Diabetes Metab Syndr Obes 2020; 13:1575-1585. [PMID: 32494174 PMCID: PMC7227813 DOI: 10.2147/dmso.s250699] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022] Open
Abstract
As an important energy reservoir, adipose tissue maintains lipid balance and regulates energy metabolism. When the body requires energy, adipocytes provide fatty acids to peripheral tissues through lipolysis. Insulin plays an important role in regulating normal fatty acid levels by inhibiting lipolysis. When the morphology of adipose tissue is abnormal, its microenvironment changes and the lipid metabolic balance is disrupted, which seriously impairs insulin sensitivity. As the most sensitive organ to respond to insulin, lipolysis levels in adipose tissue are affected by impaired insulin function, which results in serious metabolic diseases. However, the specific underlying mechanisms of this process have not yet been fully elucidated, and further study is required. The purpose of this review is to discuss the effects of adipose tissue on the anti-lipolysis process triggered by insulin under different conditions. In particular, the functional changes of this process respond to inconsonantly morphological changes of adipose tissue.
Collapse
Affiliation(s)
- Jia Zhao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangdong, People's Republic of China
| | - YaYun Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangdong, People's Republic of China
| | - XiangLu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangdong, People's Republic of China
- Guangdong TCM Key Laboratory for the Prevention and Treatment of Metabolic Diseases, Guangdong, People's Republic of China
- Joint Laboratory of Guangdong Province and Hong Kong and Macao Regions on Metabolic Diseases, Guangdong, People's Republic of China
| | - CuiWen Zheng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangdong, People's Republic of China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangdong, People's Republic of China
- Guangdong TCM Key Laboratory for the Prevention and Treatment of Metabolic Diseases, Guangdong, People's Republic of China
- Joint Laboratory of Guangdong Province and Hong Kong and Macao Regions on Metabolic Diseases, Guangdong, People's Republic of China
| |
Collapse
|
9
|
Schelletter L, Albaum S, Walter S, Noll T, Hoffrogge R. Clonal variations in CHO IGF signaling investigated by SILAC-based phosphoproteomics and LFQ-MS. Appl Microbiol Biotechnol 2019; 103:8127-8143. [DOI: 10.1007/s00253-019-10020-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022]
|
10
|
Kiss A, Erdődi F, Lontay B. Myosin phosphatase: Unexpected functions of a long-known enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:2-15. [PMID: 30076859 DOI: 10.1016/j.bbamcr.2018.07.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/09/2018] [Accepted: 07/26/2018] [Indexed: 01/08/2023]
Abstract
Myosin phosphatase (MP) holoenzyme is a Ser/Thr specific enzyme, which is the member of protein phosphatase type 1 (PP1) family and composed of a PP1 catalytic subunit (PP1c/PPP1CB) and a myosin phosphatase targeting subunit (MYPT1/PPP1R12A). PP1c is required for the catalytic activity of the holoenzyme, while MYPT1 regulates MP through targeting the holoenzyme to its substrates. Above the well-characterized function of MP, as the major regulator of smooth muscle contractility mediating the dephosphorylation of 20 kDa myosin light chain, accumulating data support its role in other, non-contractile functions. In this review, we summarize the scaffold function of MP holoenzyme and its roles in processes such as cell cycle, development, gene expression regulation and neurotransmitter release. In particular, we highlight novel interacting proteins of MYPT1 and pathophysiological functions of MP relevant to tumorigenesis, insulin resistance and neurodegenerative disorders. This article is part of a Special Issue entitled: Protein Phosphatases as Critical Regulators for Cellular Homeostasis edited by Prof. Peter Ruvolo and Dr. Veerle Janssens.
Collapse
Affiliation(s)
- Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beáta Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
11
|
Wang F, Sun Y. Overexpression of Myosin Phosphatase Target Subunit 1 (MYPT1) Inhibits Tumor Progression and Metastasis of Gastric Cancer. Med Sci Monit 2018; 24:2508-2517. [PMID: 29687789 PMCID: PMC5937360 DOI: 10.12659/msm.906852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Myosin phosphatase target subunit 1 (MYPT1) serves as a subgroup of myosin phosphatases, and is frequently low-expressed in human cancers. However, little is known about the effects of MYPT1 in gastric cancer (GC). Material/Methods In our study, MYPT1 expression was detected by quantitative real-time reverse transcription PCR (qRT-PCR) in GC tissues, different advanced pathological stages of GC tissues, and preoperative and postoperative patients. Kaplan-Meier analysis was used to measure the overall survival of GC patients. MYPT1 expression was analyzed by qRT-PCR and Western blot assays in GES-1 cells and GC cells. Cell proliferation, cycle, and migration and invasion abilities were detected by CCK-8, flow cytometry, and Transwell assays. E-cadherin, TIMP-2, MMP-2, MMP-9 RhoA, and p-RhoA expressions were assessed by qRT-PCR and Western blot assays in treated SNU-5 cells. Results Our results indicated that MYPT1 was down-regulated in GC tissues and cells, and is related to clinical stages and overall survival of GC. Functional research demonstrated that overexpression of MYPT1 can inhibit cell proliferation, cell cycle progression, and migration and invasion of GC cells. Many studies on mechanisms reported that overexpression of MYPT1 dramatically improved the expression levels of cell cycle-related genes (Cyclin D1 and c-myc), significantly increased epithelial marker (E-cadherin) expression, and decreased invasion-associated genes (TIMP-2 and MMP-2) expressions in SNU-5 cells. In addition, we found that MYPT1 suppressed RhoA phosphorylation. Conclusions We verified that MYPT1 inhibits GC cell proliferation and metastasis by regulating RhoA phosphorylation.
Collapse
Affiliation(s)
- Fengyong Wang
- Department of Gastrointestinal and Pancreatic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China (mainland)
| | - Yuanshui Sun
- Department of Gastrointestinal and Pancreatic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
12
|
Netrin-1 exerts oncogenic activities through enhancing Yes-associated protein stability. Proc Natl Acad Sci U S A 2015; 112:7255-60. [PMID: 26039999 DOI: 10.1073/pnas.1505917112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Yes-associated protein (YAP), a transcription coactivator, is the major downstream effector of the Hippo pathway, which plays a critical role in organ size control and cancer development. However, how YAP is regulated by extracellular stimuli in tumorigenesis remains incompletely understood. Netrin-1, a laminin-related secreted protein, displays proto-oncogenic activity in cancers. Nonetheless, the downstream signaling mediating its oncogenic effects is not well defined. Here we show that netrin-1 via its transmembrane receptors, deleted in colorectal cancer and uncoordinated-5 homolog, up-regulates YAP expression, escalating YAP levels in the nucleus and promoting cancer cell proliferation and migration. Inactivating netrin-1, deleted in colorectal cancer, or uncoordinated-5 homolog B (UNC5B) decreases YAP protein levels, abrogating cancer cell progression by netrin-1, whereas knockdown of mammalian STE20-like protein kinase 1/2 (MST1/2) or large tumor suppressor kinase 1/2 (Lats1/2), two sets of upstream core kinases of the Hippo pathway, has no effect in blocking netrin-1-induced up-regulation of YAP. Netrin-1 stimulates phosphatase 1A to dephosphorylate YAP, which leads to decreased ubiquitination and degradation, enhancing YAP accumulation and signaling. Hence, our findings support that netrin-1 exerts oncogenic activity through YAP signaling, providing a mechanism coupling extracellular signals to the nuclear YAP oncogene.
Collapse
|
13
|
Kettenbach AN, Sano H, Keller SR, Lienhard GE, Gerber SA. SPECHT - single-stage phosphopeptide enrichment and stable-isotope chemical tagging: quantitative phosphoproteomics of insulin action in muscle. J Proteomics 2014; 114:48-60. [PMID: 25463755 DOI: 10.1016/j.jprot.2014.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 10/20/2014] [Accepted: 11/03/2014] [Indexed: 02/04/2023]
Abstract
UNLABELLED The study of cellular signaling remains a significant challenge for translational and clinical research. In particular, robust and accurate methods for quantitative phosphoproteomics in tissues and tumors represent significant hurdles for such efforts. In the present work, we design, implement and validate a method for single-stage phosphopeptide enrichment and stable isotope chemical tagging, or SPECHT, that enables the use of iTRAQ, TMT and/or reductive dimethyl-labeling strategies to be applied to phosphoproteomics experiments performed on primary tissue. We develop and validate our approach using reductive dimethyl-labeling and HeLa cells in culture, and find these results indistinguishable from data generated from more traditional SILAC-labeled HeLa cells mixed at the cell level. We apply the SPECHT approach to the quantitative analysis of insulin signaling in a murine myotube cell line and muscle tissue, identify known as well as new phosphorylation events, and validate these phosphorylation sites using phospho-specific antibodies. Taken together, our work validates chemical tagging post-single-stage phosphoenrichment as a general strategy for studying cellular signaling in primary tissues. BIOLOGICAL SIGNIFICANCE Through the use of a quantitatively reproducible, proteome-wide phosphopeptide enrichment strategy, we demonstrated the feasibility of post-phosphopeptide purification chemical labeling and tagging as an enabling approach for quantitative phosphoproteomics of primary tissues. Using reductive dimethyl labeling as a generalized chemical tagging strategy, we compared the performance of post-phosphopeptide purification chemical tagging to the well established community standard, SILAC, in insulin-stimulated tissue culture cells. We then extended our method to the analysis of low-dose insulin signaling in murine muscle tissue, and report on the analytical and biological significance of our results.
Collapse
Affiliation(s)
- Arminja N Kettenbach
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Norris Cotton Cancer Center, Lebanon, NH 03756, USA.
| | - Hiroyuki Sano
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Susanna R Keller
- Department of Medicine, Division of Endocrinology, University of Virginia, Charlottesville, VA 22903, USA
| | - Gustav E Lienhard
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Scott A Gerber
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Norris Cotton Cancer Center, Lebanon, NH 03756, USA; Department of Genetics, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.
| |
Collapse
|
14
|
Korrodi-Gregório L, Esteves SLC, Fardilha M. Protein phosphatase 1 catalytic isoforms: specificity toward interacting proteins. Transl Res 2014; 164:366-91. [PMID: 25090308 DOI: 10.1016/j.trsl.2014.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 01/21/2023]
Abstract
The coordinated and reciprocal action of serine-threonine protein kinases and protein phosphatases produces transitory phosphorylation, a fundamental regulatory mechanism for many biological processes. Phosphoprotein phosphatase 1 (PPP1), a major serine-threonine phosphatase, in particular, is ubiquitously distributed and regulates a broad range of cellular functions, including glycogen metabolism, cell cycle progression, and muscle relaxation. PPP1 has evolved effective catalytic machinery but in vitro lacks substrate specificity. In vivo, its specificity is achieved not only by the existence of different PPP1 catalytic isoforms, but also by binding of the catalytic moiety to a large number of regulatory or targeting subunits. Here, we will address exhaustively the existence of diverse PPP1 catalytic isoforms and the relevance of their specific partners and consequent functions.
Collapse
Affiliation(s)
- Luís Korrodi-Gregório
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal
| | - Sara L C Esteves
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
15
|
Zhang X, Ma D, Caruso M, Lewis M, Qi Y, Yi Z. Quantitative phosphoproteomics reveals novel phosphorylation events in insulin signaling regulated by protein phosphatase 1 regulatory subunit 12A. J Proteomics 2014; 109:63-75. [PMID: 24972320 DOI: 10.1016/j.jprot.2014.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/11/2014] [Accepted: 06/14/2014] [Indexed: 01/07/2023]
Abstract
UNLABELLED Serine/threonine protein phosphatase 1 regulatory subunit 12A (PPP1R12A) modulates the activity and specificity of the catalytic subunit of protein phosphatase 1, regulating various cellular processes via dephosphorylation. Nonetheless, little is known about phosphorylation events controlled by PPP1R12A in skeletal muscle insulin signaling. Here, we used quantitative phosphoproteomics to generate a global picture of phosphorylation events regulated by PPP1R12A in a L6 skeletal muscle cell line, which were engineered for inducible PPP1R12A knockdown. Phosphoproteomics revealed 3876 phosphorylation sites (620 were novel) in these cells. Furthermore, PPP1R12A knockdown resulted in increased overall phosphorylation in L6 cells at the basal condition, and changed phosphorylation levels for 698 sites (assigned to 295 phosphoproteins) at the basal and/or insulin-stimulated conditions. Pathway analysis on the 295 phosphoproteins revealed multiple significantly enriched pathways related to insulin signaling, such as mTOR signaling and RhoA signaling. Moreover, phosphorylation levels for numerous regulatory sites in these pathways were significantly changed due to PPP1R12A knockdown. These results indicate that PPP1R12A indeed plays a role in skeletal muscle insulin signaling, providing novel insights into the biology of insulin action. This new information may facilitate the design of experiments to better understand mechanisms underlying skeletal muscle insulin resistance and type 2 diabetes. BIOLOGICAL SIGNIFICANCE These results identify a large number of potential new substrates of serine/threonine protein phosphatase 1 and suggest that serine/threonine protein phosphatase 1 regulatory subunit 12A indeed plays a regulatory role in multiple pathways related to insulin action, providing novel insights into the biology of skeletal muscle insulin signaling. This information may facilitate the design of experiments to better understand the molecular mechanism responsible for skeletal muscle insulin resistance and associated diseases, such as type 2 diabetes and cardiovascular diseases.
Collapse
Affiliation(s)
- Xiangmin Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Danjun Ma
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Michael Caruso
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Monique Lewis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Yue Qi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|