1
|
Di Fulvio M, Rathod YD, Khader S. Diuretics: a review of the pharmacology and effects on glucose homeostasis. Front Pharmacol 2025; 16:1513125. [PMID: 40223924 PMCID: PMC11985539 DOI: 10.3389/fphar.2025.1513125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
Thiazides, thiazide-like and loop diuretics are commonly prescribed to manage hypertension and heart failure. The main mechanism of action of these diuretics involve inhibition of Na+ reabsorption in the kidneys, leading to increased urine production. While effective, diuretics, particularly hydrochlorothiazide, have been linked to altered glucose metabolism and other metabolic issues. These disruptions in fuel homeostasis are not clearly related to their primary action of fluid management, raising concerns for patients with metabolic syndrome, in which high blood pressure coexists with obesity, insulin resistance, glucose intolerance and dyslipidemia. In this review, we conducted an extensive examination of existing literature on these classes of diuretics, covering publications from the late 1950s to the present. Our objective was to investigate the origins, development and current understanding of the widely recognized association between the use of diuretics in general and their potential negative impact on glucose homeostasis. We focused on the clinical and experimental evidence of the most commonly prescribed diuretics: hydrochlorothiazide, chlorthalidone, bumetanide and furosemide. On one hand, the clinical evidence supports the hypothesis that the metabolic effects on glucose homeostasis are primarily linked to hydrochlorothiazide, with little, if any impact observed in other diuretics. In addition, these metabolic effects do not appear to be related to their diuretic action or intended pharmacological targets, raising concerns about the long-term metabolic impact of specific diuretics, particularly in vulnerable populations, including those with metabolic syndrome. On the other hand, the experimental evidence using animal models suggest variable effects of diuretics in insulin secretion and general glucose metabolism. Although the mechanisms involved are not clearly understood, further research is needed to uncover the molecular mechanisms by which certain diuretics disrupt fuel metabolism and contribute to metabolic disturbances.
Collapse
Affiliation(s)
- Mauricio Di Fulvio
- Department of Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH, United States
| | | | | |
Collapse
|
2
|
Okuyama T, Tsuno T, Inoue R, Fukushima S, Kyohara M, Matsumura A, Miyashita D, Nishiyama K, Takano Y, Togashi Y, Meguro-Horike M, Horike SI, Kin T, Shapiro AJ, Yanagisawa H, Terauchi Y, Shirakawa J. The matricellular protein Fibulin-5 regulates β-cell proliferation in an autocrine/paracrine manner. iScience 2025; 28:111856. [PMID: 39995864 PMCID: PMC11848788 DOI: 10.1016/j.isci.2025.111856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 11/20/2024] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
The matricellular protein Fibulin-5 (Fbln5) is a secreted protein that is essential for elastic fiber formation, and pancreatic islets are usually surrounded by the extracellular matrix (ECM), which includes elastic fibers. However, much uncertainty remains regarding the function of the ECM and its components in β-cells. Here, we describe the role of Fbln5 in β-cell replication. Fbln5 expression was increased upon glucose stimulation in β-cells of mouse and human islets. β-Cell-specific Fbln5-knockout (βFbln5KO) mice exhibit significantly reduced β-cell proliferation in vivo but not in vitro. Secreted extracellular Fbln5 enhances β-cell replication. Fbln5-deficient β-cells exhibit the downregulated expression of the gene encoding Polo-like kinase 1 (PLK1), which is accompanied by ERK-mediated FoxM1 nuclear export. These data suggest that Fbln5 is secreted from β-cells in response to glucose and plays important roles in the appropriate maintenance of β-cell functions in an autocrine or paracrine manner.
Collapse
Affiliation(s)
- Tomoko Okuyama
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takahiro Tsuno
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Ryota Inoue
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Setsuko Fukushima
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Mayu Kyohara
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Anzu Matsumura
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Daisuke Miyashita
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kuniyuki Nishiyama
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Yusuke Takano
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yu Togashi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Makiko Meguro-Horike
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Shin-ichi Horike
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Tatsuya Kin
- Clinical Islet Laboratory and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - A.M. James Shapiro
- Clinical Islet Laboratory and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Jun Shirakawa
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| |
Collapse
|
3
|
Growth hormone receptor (GHR) in AgRP neurons regulates thermogenesis in a sex-specific manner. GeroScience 2023:10.1007/s11357-023-00726-4. [PMID: 36633824 PMCID: PMC10400518 DOI: 10.1007/s11357-023-00726-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Evidence for hypothalamic regulation of energy homeostasis and thermoregulation in brown adipose tissue (BAT) during aging has been well recognized, yet the central molecular mediators involved in this process are poorly understood. The arcuate hypothalamus, orexigenic agouti-related peptide (AgRP) neurons control nutrient intake, energy homeostasis, and BAT thermogenesis. To determine the roles of growth hormone receptor (GHR) signaling in the AgRP neurons, we used mice with the AgRP-specific GHR deletion (AgRPΔGHR). We found that female AgRPΔGHR mice were resistant to temperature adaptation, and their body core temperature remained significantly lower when held at 10 °C, 22 °C, or 30 °C, compared to control mice. Low body core temperature in female AgRPΔGHR mice has been associated with significant reductions in Ucp1 and Pgc1α expression in the BAT. Further, neuronal activity in AgRP in response to cold exposure was blunted in AgRPΔGHR female mice, while the number of Fos+ AgRP neurons was increased in female controls exposed to cold. Global transcriptome from BAT identified increased the expression of genes related to immune responses and chemokine activity and decreased the expression of genes involved in triglyceride synthesis and metabolic pathways in AgRPΔGHR female mice. Importantly, these were the same genes that are downregulated by thermoneutrality in control mice but not in the AgRPΔGHR animals. Collectively, these data demonstrate a novel sex-specific role for GHR signaling in AgRP neurons in thermal regulation, which might be particularly relevant during aging.
Collapse
|
4
|
Loss of Slc12a2 specifically in pancreatic β-cells drives metabolic syndrome in mice. PLoS One 2022; 17:e0279560. [PMID: 36580474 PMCID: PMC9799326 DOI: 10.1371/journal.pone.0279560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 12/11/2022] [Indexed: 12/30/2022] Open
Abstract
The risk of type-2 diabetes and cardiovascular disease is higher in subjects with metabolic syndrome, a cluster of clinical conditions characterized by obesity, impaired glucose metabolism, hyperinsulinemia, hyperlipidemia and hypertension. Diuretics are frequently used to treat hypertension in these patients, however, their use has long been associated with poor metabolic outcomes which cannot be fully explained by their diuretic effects. Here, we show that mice lacking the diuretic-sensitive Na+K+2Cl-cotransporter-1 Nkcc1 (Slc12a2) in insulin-secreting β-cells of the pancreatic islet (Nkcc1βKO) have reduced in vitro insulin responses to glucose. This is associated with islet hypoplasia at the expense of fewer and smaller β-cells. Remarkably, Nkcc1βKO mice excessively gain weight and progressive metabolic syndrome when fed a standard chow diet ad libitum. This is characterized by impaired hepatic insulin receptor activation and altered lipid metabolism. Indeed, overweight Nkcc1βKO but not lean mice had fasting and fed hyperglycemia, hypertriglyceridemia and non-alcoholic steatohepatitis. Notably, fasting hyperinsulinemia was detected earlier than hyperglycemia, insulin resistance, glucose intolerance and increased hepatic de novo gluconeogenesis. Therefore, our data provide evidence supporting the novel hypothesis that primary β-cell defects related to Nkcc1-regulated intracellular Cl-homeostasis and β-cell growth can result in the development of metabolic syndrome shedding light into additional potential mechanisms whereby chronic diuretic use may have adverse effects on metabolic homeostasis in susceptible individuals.
Collapse
|
5
|
Cong S, Li Z, Yu L, Liu Y, Hu Y, Bi Y, Cheng M. Integrative proteomic and lipidomic analysis of Kaili Sour Soup-mediated attenuation of high-fat diet-induced nonalcoholic fatty liver disease in a rat model. Nutr Metab (Lond) 2021; 18:26. [PMID: 33691721 PMCID: PMC7945315 DOI: 10.1186/s12986-021-00553-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disease and is characterized by excessive fat accumulation. Kaili Sour Soup, a food typical of Guizhou Province, is believed to have significant health benefits. Thus, we aimed to identify and assess the impact of Kaili Sour Soup on NAFLD and its underlying mechanism using integrative proteomic and lipidomic analysis. Methods A high-fat diet and male Wistar rats were used to construct a NAFLD rat model. Haematoxylin and eosin (HE) and Oil Red O staining analyses were used to perform the histologic examination. Proteomic analysis was utilized to systematically identify the global protein profile in NAFLD with and without Kaili Sour Soup treatment. Western blot assays were used to verify the expression of proteins screened by proteomic analysis. Lipidomic analysis was performed to screen lipid metabolism in NAFLD with and without Kaili Sour Soup treatment. Results Kaili Sour Soup alleviated high-fat diet (HFD)-induced fatty liver and had a normalizing effect on physiological and biochemical indicators of NAFLD, including body weight, liver weight, liver index, total cholesterol (TC), triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and insulin resistance level of homeostasis model assessment (HOMA-IR). Kaili Sour Soup decreased the levels of 13 proteins (Tmem44, Rnaseh2b, Gstm6l, LOC100910877, Rufy4, Slc12a2, Pcif1, P4503A1, Sult1e1, Nop53, AABR07065656.4, AABR07065789.3) that were upregulated by HFD and increased the levels of 3 proteins (Sult1c2, Sult1c2a, Snrnp48) that were downregulated by HFD. Kaili Sour Soup attenuated the HFD-induced increase in acyl carnitine (AcCa) and enhanced the HFD-induced decreases in gangliosides (GM3) and lysophosphatidylserine (LPS) in the NAFLD rat model. Conclusions Altogether, this study revealed that Kaili Sour Soup attenuated HFD-induced fatty liver and systematically identified abnormal proteins and lipids involved in the role of Kaili Sour Soup in a NAFLD rat model. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-021-00553-4.
Collapse
Affiliation(s)
- Shuo Cong
- School of Basic Medicine Sciences, Guizhou Medical University, Guiyang City, China.,Guizhou Cancer Hospital, Guiyang City, China
| | - Zhengchao Li
- Graduate School of Guizhou Medical University, Guiyang City, China
| | - Lei Yu
- Maternal and Child Health Hospital of Guiyang City, Guiyang City, China
| | - Yongmei Liu
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Guiyang City, 550004, Guizhou Province, China
| | - Yaxin Hu
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Guiyang City, 550004, Guizhou Province, China
| | - Ying Bi
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Guiyang City, 550004, Guizhou Province, China
| | - Mingliang Cheng
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Guiyang City, 550004, Guizhou Province, China.
| |
Collapse
|
6
|
Heterogeneous expression of CFTR in insulin-secreting β-cells of the normal human islet. PLoS One 2020; 15:e0242749. [PMID: 33264332 PMCID: PMC7710116 DOI: 10.1371/journal.pone.0242749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is due to mutations in the CF-transmembrane conductance regulator (CFTR) and CF-related diabetes (CFRD) is its most common co-morbidity, affecting ~50% of all CF patients, significantly influencing pulmonary function and longevity. Yet, the complex pathogenesis of CFRD remains unclear. Two non-mutually exclusive underlying mechanisms have been proposed in CFRD: i) damage of the endocrine cells secondary to the severe exocrine pancreatic pathology and ii) intrinsic β-cell impairment of the secretory response in combination with other factors. The later has proven difficult to determine due to low expression of CFTR in β-cells, which results in the general perception that this Cl−channel does not participate in the modulation of insulin secretion or the development of CFRD. The objective of the present work is to demonstrate CFTR expression at the molecular and functional levels in insulin-secreting β-cells in normal human islets, where it seems to play a role. Towards this end, we have used immunofluorescence confocal and immunofluorescence microscopy, immunohistochemistry, RT-qPCR, Western blotting, pharmacology, electrophysiology and insulin secretory studies in normal human, rat and mouse islets. Our results demonstrate heterogeneous CFTR expression in human, mouse and rat β-cells and provide evidence that pharmacological inhibition of CFTR influences basal and stimulated insulin secretion in normal mouse islets but not in islets lacking this channel, despite being detected by electrophysiological means in ~30% of β-cells. Therefore, our results demonstrate a potential role for CFTR in the pancreatic β-cell secretory response suggesting that intrinsic β-cell dysfunction may also participate in the pathogenesis of CFRD.
Collapse
|
7
|
Chloride transporters and channels in β-cell physiology: revisiting a 40-year-old model. Biochem Soc Trans 2020; 47:1843-1855. [PMID: 31697318 PMCID: PMC6925527 DOI: 10.1042/bst20190513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
It is accepted that insulin-secreting β-cells release insulin in response to glucose even in the absence of functional ATP-sensitive K+ (KATP)-channels, which play a central role in a 'consensus model' of secretion broadly accepted and widely reproduced in textbooks. A major shortcoming of this consensus model is that it ignores any and all anionic mechanisms, known for more than 40 years, to modulate β-cell electrical activity and therefore insulin secretion. It is now clear that, in addition to metabolically regulated KATP-channels, β-cells are equipped with volume-regulated anion (Cl-) channels (VRAC) responsive to glucose concentrations in the range known to promote electrical activity and insulin secretion. In this context, the electrogenic efflux of Cl- through VRAC and other Cl- channels known to be expressed in β-cells results in depolarization because of an outwardly directed Cl- gradient established, maintained and regulated by the balance between Cl- transporters and channels. This review will provide a succinct historical perspective on the development of a complex hypothesis: Cl- transporters and channels modulate insulin secretion in response to nutrients.
Collapse
|
8
|
Kelly L, Almutairi MM, Kursan S, Pacheco R, Dias-Junior E, Castrop H, Di Fulvio M. Impaired glucose tolerance, glucagon, and insulin responses in mice lacking the loop diuretic-sensitive Nkcc2a transporter. Am J Physiol Cell Physiol 2019; 317:C843-C856. [PMID: 31365295 DOI: 10.1152/ajpcell.00144.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Na+K+2Cl- cotransporter-2 (Nkcc2, Slc12a1) is abundantly expressed in the kidney and its inhibition with the loop-diuretics bumetanide and furosemide has been linked to transient or permanent hyperglycemia in mice and humans. Notably, Slc12a1 is expressed at low levels in hypothalamic neurons and in insulin-secreting β-cells of the endocrine pancreas. The present study was designed to determine if global elimination of one of the Slc12a1 products, i.e., Nkcc2 variant a (Nkcc2a), the main splice version of Nkcc2 found in insulin-secreting β-cells, has an impact on the insulin and glucagon secretory responses and fuel homeostasis in vivo. We have used dynamic tests of glucose homeostasis in wild-type mice and mice lacking both alleles of Nkcc2a (Nkcc2aKO) and assessed their islet secretory responses in vitro. Under basal conditions, Nkcc2aKO mice have impaired glucose homeostasis characterized by increased blood glucose, intolerance to the sugar, delayed/blunted in vivo insulin and glucagon responses to glucose, and increased glycemic responses to the gluconeogenic substrate alanine. Further, we provide evidence of conserved quantitative secretory responses of Nkcc2aKO islets within a context of increased islet size related to hyperplastic/hypertrophic glucagon- and insulin-positive cells (α-cells and β-cells, respectively), normal total islet Cl- content, and reduced β-cell expression of the Cl- extruder Kcc2.
Collapse
Affiliation(s)
- Lisa Kelly
- Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio
| | - Mohammed M Almutairi
- Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio
| | - Shams Kursan
- Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio
| | - Romario Pacheco
- Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio
| | - Eduardo Dias-Junior
- Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio
| | - Hayo Castrop
- Institute of Physiology, University of Regensburg, Regensburg Germany
| | - Mauricio Di Fulvio
- Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio
| |
Collapse
|
9
|
Delpire E, Gagnon KB. Na + -K + -2Cl - Cotransporter (NKCC) Physiological Function in Nonpolarized Cells and Transporting Epithelia. Compr Physiol 2018; 8:871-901. [PMID: 29687903 DOI: 10.1002/cphy.c170018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two genes encode the Na+ -K+ -2Cl- cotransporters, NKCC1 and NKCC2, that mediate the tightly coupled movement of 1Na+ , 1K+ , and 2Cl- across the plasma membrane of cells. Na+ -K+ -2Cl- cotransport is driven by the chemical gradient of the three ionic species across the membrane, two of them maintained by the action of the Na+ /K+ pump. In many cells, NKCC1 accumulates Cl- above its electrochemical potential equilibrium, thereby facilitating Cl- channel-mediated membrane depolarization. In smooth muscle cells, this depolarization facilitates the opening of voltage-sensitive Ca2+ channels, leading to Ca2+ influx, and cell contraction. In immature neurons, the depolarization due to a GABA-mediated Cl- conductance produces an excitatory rather than inhibitory response. In many cell types that have lost water, NKCC is activated to help the cells recover their volume. This is specially the case if the cells have also lost Cl- . In combination with the Na+ /K+ pump, the NKCC's move ions across various specialized epithelia. NKCC1 is involved in Cl- -driven fluid secretion in many exocrine glands, such as sweat, lacrimal, salivary, stomach, pancreas, and intestine. NKCC1 is also involved in K+ -driven fluid secretion in inner ear, and possibly in Na+ -driven fluid secretion in choroid plexus. In the thick ascending limb of Henle, NKCC2 activity in combination with the Na+ /K+ pump participates in reabsorbing 30% of the glomerular-filtered Na+ . Overall, many critical physiological functions are maintained by the activity of the two Na+ -K+ -2Cl- cotransporters. In this overview article, we focus on the functional roles of the cotransporters in nonpolarized cells and in epithelia. © 2018 American Physiological Society. Compr Physiol 8:871-901, 2018.
Collapse
Affiliation(s)
- Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical School, Nashville, Tennessee, USA
| | - Kenneth B Gagnon
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Keystone, USA
| |
Collapse
|
10
|
Torre-Villalvazo I, Cervantes-Pérez LG, Noriega LG, Jiménez JV, Uribe N, Chávez-Canales M, Tovar-Palacio C, Marfil-Garza BA, Torres N, Bobadilla NA, Tovar AR, Gamba G. Inactivation of SPAK kinase reduces body weight gain in mice fed a high-fat diet by improving energy expenditure and insulin sensitivity. Am J Physiol Endocrinol Metab 2018; 314:E53-E65. [PMID: 29066461 DOI: 10.1152/ajpendo.00108.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) controls the activity of the electroneutral cation-chloride cotransporters (SLC12 family) and thus physiological processes such as modulation of cell volume, intracellular chloride concentration [Cl-]i, and transepithelial salt transport. Modulation of SPAK kinase activity may have an impact on hypertension and obesity, as STK39, the gene encoding SPAK, has been suggested as a hypertension and obesity susceptibility gene. In fact, the absence of SPAK activity in mice in which the activating threonine in the T loop was substituted by alanine (SPAK-KI mice) is associated with decreased blood pressure; however its consequences in metabolism have not been explored. Here, we fed wild-type and homozygous SPAK-KI mice a high-fat diet for 17 wk to evaluate weight gain, circulating substrates and hormones, energy expenditure, glucose tolerance, and insulin sensitivity. SPAK-KI mice exhibit resistance to HFD-induced obesity and hepatic steatosis associated with increased energy expenditure, higher thermogenic activity in brown adipose tissue, increased mitochondrial activity in skeletal muscle, and reduced white adipose tissue hypertrophy mediated by augmented whole body insulin sensitivity and glucose tolerance. Our data reveal a previously unrecognized role for the SPAK kinase in the regulation of energy balance, thermogenesis, and insulin sensitivity, suggesting that this kinase could be a new drug target for the treatment of obesity and the metabolic syndrome.
Collapse
Affiliation(s)
- Ivan Torre-Villalvazo
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | | | - Lilia G Noriega
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Jose V Jiménez
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Norma Uribe
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , México City, Mexico
| | - María Chávez-Canales
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - Claudia Tovar-Palacio
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Braulio A Marfil-Garza
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Nimbe Torres
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Norma A Bobadilla
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - Armando R Tovar
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y de Ciencias de la Salud, Monterrey, Mexico
| |
Collapse
|
11
|
Kursan S, McMillen TS, Beesetty P, Dias-Junior E, Almutairi MM, Sajib AA, Kozak JA, Aguilar-Bryan L, Di Fulvio M. The neuronal K +Cl - co-transporter 2 (Slc12a5) modulates insulin secretion. Sci Rep 2017; 7:1732. [PMID: 28496181 PMCID: PMC5431760 DOI: 10.1038/s41598-017-01814-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/03/2017] [Indexed: 11/09/2022] Open
Abstract
Intracellular chloride concentration ([Cl-]i) in pancreatic β-cells is kept above electrochemical equilibrium due to the predominant functional presence of Cl- loaders such as the Na+K+2Cl- co-transporter 1 (Slc12a2) over Cl-extruders of unidentified nature. Using molecular cloning, RT-PCR, Western blotting, immunolocalization and in vitro functional assays, we establish that the "neuron-specific" K+Cl- co-transporter 2 (KCC2, Slc12a5) is expressed in several endocrine cells of the pancreatic islet, including glucagon secreting α-cells, but particularly in insulin-secreting β-cells, where we provide evidence for its role in the insulin secretory response. Three KCC2 splice variants were identified: the formerly described KCC2a and KCC2b along with a novel one lacking exon 25 (KCC2a-S25). This new variant is undetectable in brain or spinal cord, the only and most abundant known sources of KCC2. Inhibition of KCC2 activity in clonal MIN6 β-cells increases basal and glucose-stimulated insulin secretion and Ca2+ uptake in the presence of glibenclamide, an inhibitor of the ATP-dependent potassium (KATP)-channels, thus suggesting a possible mechanism underlying KCC2-dependent insulin release. We propose that the long-time considered "neuron-specific" KCC2 co-transporter is expressed in pancreatic islet β-cells where it modulates Ca2+-dependent insulin secretion.
Collapse
Affiliation(s)
- Shams Kursan
- Department of Pharmacology and Toxicology, Wright State University, School of Medicine, Dayton, OH, 45435, USA
| | | | - Pavani Beesetty
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, School of Medicine, Dayton, OH, 45435, USA
| | - Eduardo Dias-Junior
- Department of Pharmacology and Toxicology, Wright State University, School of Medicine, Dayton, OH, 45435, USA
| | - Mohammed M Almutairi
- Department of Pharmacology and Toxicology, Wright State University, School of Medicine, Dayton, OH, 45435, USA
| | - Abu A Sajib
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - J Ashot Kozak
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, School of Medicine, Dayton, OH, 45435, USA
| | | | - Mauricio Di Fulvio
- Department of Pharmacology and Toxicology, Wright State University, School of Medicine, Dayton, OH, 45435, USA.
| |
Collapse
|
12
|
Singh R, Kursan S, Almiahoub MY, Almutairi MM, Garzón-Muvdi T, Alvarez-Leefmans FJ, Di Fulvio M. Plasma Membrane Targeting of Endogenous NKCC2 in COS7 Cells Bypasses Functional Golgi Cisternae and Complex N-Glycosylation. Front Cell Dev Biol 2017; 4:150. [PMID: 28101499 PMCID: PMC5209364 DOI: 10.3389/fcell.2016.00150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/14/2016] [Indexed: 12/04/2022] Open
Abstract
Na+K+2Cl− co-transporters (NKCCs) effect the electroneutral movement of Na+-K+ and 2Cl− ions across the plasma membrane of vertebrate cells. There are two known NKCC isoforms, NKCC1 (Slc12a2) and NKCC2 (Slc12a1). NKCC1 is a ubiquitously expressed transporter involved in cell volume regulation, Cl− homeostasis and epithelial salt secretion, whereas NKCC2 is abundantly expressed in kidney epithelial cells of the thick ascending loop of Henle, where it plays key roles in NaCl reabsorption and electrolyte homeostasis. Although NKCC1 and NKCC2 co-transport the same ions with identical stoichiometry, NKCC1 actively co-transports water whereas NKCC2 does not. There is growing evidence showing that NKCC2 is expressed outside the kidney, but its function in extra-renal tissues remains unknown. The present study shows molecular and functional evidence of endogenous NKCC2 expression in COS7 cells, a widely used mammalian cell model. Endogenous NKCC2 is primarily found in recycling endosomes, Golgi cisternae, Golgi-derived vesicles, and to a lesser extent in the endoplasmic reticulum. Unlike NKCC1, NKCC2 is minimally hybrid/complex N-glycosylated under basal conditions and yet it is trafficked to the plasma membrane region of hyper-osmotically challenged cells through mechanisms that require minimal complex N-glycosylation or functional Golgi cisternae. Control COS7 cells exposed to slightly hyperosmotic (~6.7%) solutions for 16 h were not shrunken, suggesting that either one or both NKCC1 and NKCC2 may participate in cell volume recovery. However, NKCC2 targeted to the plasma membrane region or transient over-expression of NKCC2 failed to rescue NKCC1 in COS7 cells where NKCC1 had been silenced. Further, COS7 cells in which NKCC1, but not NKCC2, was silenced exhibited reduced cell size compared to control cells. Altogether, these results suggest that NKCC2 does not participate in cell volume recovery and therefore, NKCC1 and NKCC2 are functionally different Na+K+2Cl− co-transporters.
Collapse
Affiliation(s)
- Richa Singh
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Shams Kursan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Mohamed Y Almiahoub
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Mohammed M Almutairi
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Tomás Garzón-Muvdi
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Francisco J Alvarez-Leefmans
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Mauricio Di Fulvio
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| |
Collapse
|