1
|
Povroznik JM, Wang L, Annamanedi M, Bare RL, Akhter H, Hu G, Robinson CM. The influence of interleukin-27 on metabolic fitness in a murine neonatal model of bacterial sepsis. Am J Physiol Endocrinol Metab 2025; 328:E297-E310. [PMID: 39810405 DOI: 10.1152/ajpendo.00243.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/26/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025]
Abstract
Human neonates are predisposed to an increased risk of mortality from infection due to fundamental differences in the framework of innate and adaptive immune responses relative to those in the adult population. As one key difference in neonates, an increase in the immunosuppressive cytokine, IL-27, is responsible for poor outcomes in a murine neonatal model of bacterial sepsis. In our model, the absence of IL-27 signaling during infection is associated with improved maintenance of body mass, increased bacterial clearance with reduced systemic inflammation, and decreased mortality rates that correlate to preservation of glucose homeostasis and insulin production. To further elucidate the mechanisms associated with IL-27 signaling and metabolic fitness, we analyzed global transcriptomes from spleen, liver, pancreas, and hindlimb muscle during Escherichia coli-induced sepsis in wild-type (WT) and IL-27Rα-deficient (KO) mice. Metabolically important tissues such as the liver, pancreas, and hindlimb muscle exhibit a shift in differential gene expression of pathways involved in oxidative phosphorylation, glycolysis, gluconeogenesis, lipid metabolism, and fatty acid β oxidation. The hindlimb muscle of KO pups demonstrated a significant reduction in all of these pathways during infection. The KO liver showed a significant down-regulation in gluconeogenesis and glycolytic pathways. Collectively, these findings suggest a negative influence of IL-27 on the metabolic profile during early-life infection. This is an important consideration for antagonization of IL-27 as a potential host-directed therapeutic opportunity as our findings point to an overall improvement in infectious disease parameters and metabolic fitness.NEW & NOTEWORTHY IL-27 has been linked with immune regulation during infection, but this is the first report of a combined influence of IL-27 on complete host response during systemic infection with metabolic fitness in a neonate. Novel findings demonstrate improved glucose homeostasis and insulin response supported by a reduced expression of genes involved in gluconeogenesis in the absence of IL-27 signaling. An increased expression of genes integral to cholesterol biosynthesis further supports a protective response during sepsis.
Collapse
Affiliation(s)
- Jessica M Povroznik
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, United States
| | - Lei Wang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Madhavi Annamanedi
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Rachael L Bare
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Halima Akhter
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Cory M Robinson
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, United States
| |
Collapse
|
2
|
Oumeddour DZ, Lin W, Lian C, Zhao L, Wang X, Zhao L, Guo L. The Anti-Diabetic Effect of Non-Starch Polysaccharides Extracted from Wheat Beer on Diet/STZ-Induced Diabetic Mice. Foods 2024; 13:2692. [PMID: 39272460 PMCID: PMC11394238 DOI: 10.3390/foods13172692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Diabetes mellitus (DM), a major cause of mortality, is characterized by insulin resistance and β-cell dysfunction. The increasing prevalence of DM is linked to lifestyle changes and there is a need for alternative approaches to conventional oral hypoglycemic agents. Polysaccharides, particularly non-starch polysaccharides (NSPs), have been identified as promising hypoglycemic agents. Cereals, especially wheat, are key sources of dietary polysaccharides, with NSPs derived from wheat beer attracting significant interest. This study aimed to investigate the hypoglycemic and hypolipidemic effects of NSPs extracted from wheat beer in STZ-induced diabetic C57BL/6J male mice. The results showed that NSPs extract positively influenced blood glucose regulation, lipid profiles, and liver and kidney functions, by attenuating liver AST and kidney CRE levels in a dose-dependent manner. The NSPs demonstrated anti-oxidative and anti-inflammatory properties, potentially providing significant benefits in managing diabetes and its complications. Moreover, the study revealed the histoprotective effects of NSPs on the liver and pancreas, reducing lipid deposition, necrosis, and inflammation. These findings highlight the multifaceted advantages of NSPs and suggest their potential as effective agents in diabetes management. This study supports the need for further research into the therapeutic potential of NSPs and their application in developing innovative treatments for diabetes and its associated complications.
Collapse
Affiliation(s)
- Dounya Zad Oumeddour
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Wen Lin
- Beijing Key Laboratory of Beer Brewing Technology, Technical Center of Beijing Yanjing Brewery Co., Ltd., Beijing 101300, China
| | - Chang Lian
- Beijing Key Laboratory of Beer Brewing Technology, Technical Center of Beijing Yanjing Brewery Co., Ltd., Beijing 101300, China
| | - Lei Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Xinyi Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Liang Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Liyun Guo
- Beijing Key Laboratory of Beer Brewing Technology, Technical Center of Beijing Yanjing Brewery Co., Ltd., Beijing 101300, China
| |
Collapse
|
3
|
Fang H, Li Q, Wang H, Ren Y, Zhang L, Yang L. Maternal nutrient metabolism in the liver during pregnancy. Front Endocrinol (Lausanne) 2024; 15:1295677. [PMID: 38572473 PMCID: PMC10987773 DOI: 10.3389/fendo.2024.1295677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
The liver plays pivotal roles in nutrient metabolism, and correct hepatic adaptations are required in maternal nutrient metabolism during pregnancy. In this review, hepatic nutrient metabolism, including glucose metabolism, lipid and cholesterol metabolism, and protein and amino acid metabolism, is first addressed. In addition, recent progress on maternal hepatic adaptations in nutrient metabolism during pregnancy is discussed. Finally, the factors that regulate hepatic nutrient metabolism during pregnancy are highlighted, and the factors include follicle-stimulating hormone, estrogen, progesterone, insulin-like growth factor 1, prostaglandins fibroblast growth factor 21, serotonin, growth hormone, adrenocorticotropic hormone, prolactin, thyroid stimulating hormone, melatonin, adrenal hormone, leptin, glucagon-like peptide-1, insulin glucagon and thyroid hormone. Our vision is that more attention should be paid to liver nutrient metabolism during pregnancy, which will be helpful for utilizing nutrient appropriately and efficiently, and avoiding liver diseases during pregnancy.
Collapse
Affiliation(s)
- Hongxu Fang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Qingyang Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Haichao Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ying Ren
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
4
|
Ruppert PMM, Kersten S. Mechanisms of hepatic fatty acid oxidation and ketogenesis during fasting. Trends Endocrinol Metab 2024; 35:107-124. [PMID: 37940485 DOI: 10.1016/j.tem.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023]
Abstract
Fasting is part of many weight management and health-boosting regimens. Fasting causes substantial metabolic adaptations in the liver that include the stimulation of fatty acid oxidation and ketogenesis. The induction of fatty acid oxidation and ketogenesis during fasting is mainly driven by interrelated changes in plasma levels of various hormones and an increase in plasma nonesterified fatty acid (NEFA) levels and is mediated transcriptionally by the peroxisome proliferator-activated receptor (PPAR)α, supported by CREB3L3 (cyclic AMP-responsive element-binding protein 3 like 3). Compared with men, women exhibit higher ketone levels during fasting, likely due to higher NEFA availability, suggesting that the metabolic response to fasting shows sexual dimorphism. Here, we synthesize the current molecular knowledge on the impact of fasting on hepatic fatty acid oxidation and ketogenesis.
Collapse
Affiliation(s)
- Philip M M Ruppert
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5000 C Odense, Denmark
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708 WE Wageningen, The Netherlands; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
5
|
Frazier K, Manzoor S, Carroll K, DeLeon O, Miyoshi S, Miyoshi J, St. George M, Tan A, Chrisler EA, Izumo M, Takahashi JS, Rao MC, Leone VA, Chang EB. Gut microbes and the liver circadian clock partition glucose and lipid metabolism. J Clin Invest 2023; 133:e162515. [PMID: 37712426 PMCID: PMC10503806 DOI: 10.1172/jci162515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/18/2023] [Indexed: 09/16/2023] Open
Abstract
Circadian rhythms govern glucose homeostasis, and their dysregulation leads to complex metabolic diseases. Gut microbes exhibit diurnal rhythms that influence host circadian networks and metabolic processes, yet underlying mechanisms remain elusive. Here, we showed hierarchical, bidirectional communication among the liver circadian clock, gut microbes, and glucose homeostasis in mice. To assess this relationship, we utilized mice with liver-specific deletion of the core circadian clock gene Bmal1 via Albumin-cre maintained in either conventional or germ-free housing conditions. The liver clock, but not the forebrain clock, required gut microbes to drive glucose clearance and gluconeogenesis. Liver clock dysfunctionality expanded proportions and abundances of oscillating microbial features by 2-fold relative to that in controls. The liver clock was the primary driver of differential and rhythmic hepatic expression of glucose and fatty acid metabolic pathways. Absent the liver clock, gut microbes provided secondary cues that dampened these rhythms, resulting in reduced lipid fuel utilization relative to carbohydrates. All together, the liver clock transduced signals from gut microbes that were necessary for regulating glucose and lipid metabolism and meeting energy demands over 24 hours.
Collapse
Affiliation(s)
- Katya Frazier
- Department of Medicine and
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | - Jun Miyoshi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | - Evan A. Chrisler
- Department of Animal & Dairy Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | | | - Joseph S. Takahashi
- Department of Neuroscience and
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Vanessa A. Leone
- Department of Animal & Dairy Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Eugene B. Chang
- Department of Medicine and
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
Protein Targeting to Glycogen (PTG): A Promising Player in Glucose and Lipid Metabolism. Biomolecules 2022; 12:biom12121755. [PMID: 36551183 PMCID: PMC9775135 DOI: 10.3390/biom12121755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Protein phosphorylation and dephosphorylation are widely considered to be the key regulatory factors of cell function, and are often referred to as "molecular switches" in the regulation of cell metabolic processes. A large number of studies have shown that the phosphorylation/dephosphorylation of related signal molecules plays a key role in the regulation of liver glucose and lipid metabolism. As a new therapeutic strategy for metabolic diseases, the potential of using inhibitor-based therapies to fight diabetes has gained scientific momentum. PTG, a protein phosphatase, also known as glycogen targeting protein, is a member of the protein phosphatase 1 (PP1) family. It can play a role by catalyzing the dephosphorylation of phosphorylated protein molecules, especially regulating many aspects of glucose and lipid metabolism. In this review, we briefly summarize the role of PTG in glucose and lipid metabolism, and update its role in metabolic regulation, with special attention to glucose homeostasis and lipid metabolism.
Collapse
|
7
|
Important Hormones Regulating Lipid Metabolism. Molecules 2022; 27:molecules27207052. [PMID: 36296646 PMCID: PMC9607181 DOI: 10.3390/molecules27207052] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
There is a wide variety of kinds of lipids, and complex structures which determine the diversity and complexity of their functions. With the basic characteristic of water insolubility, lipid molecules are independent of the genetic information composed by genes to proteins, which determine the particularity of lipids in the human body, with water as the basic environment and genes to proteins as the genetic system. In this review, we have summarized the current landscape on hormone regulation of lipid metabolism. After the well-studied PI3K-AKT pathway, insulin affects fat synthesis by controlling the activity and production of various transcription factors. New mechanisms of thyroid hormone regulation are discussed, receptor α and β may mediate different procedures, the effect of thyroid hormone on mitochondria provides a new insight for hormones regulating lipid metabolism. Physiological concentration of adrenaline induces the expression of extrapituitary prolactin in adipose tissue macrophages, which promotes fat weight loss. Manipulation of hormonal action has the potential to offer a new therapeutic horizon for the global burden of obesity and its associated complications such as morbidity and mortality.
Collapse
|
8
|
Tchéoubi SER, Akpovi CD, Coppée F, Declèves AE, Laurent S, Agbangla C, Burtea C. Molecular and cellular biology of PCSK9: impact on glucose homeostasis. J Drug Target 2022; 30:948-960. [PMID: 35723066 DOI: 10.1080/1061186x.2022.2092622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Proprotein convertase substilisin/kexin 9 (PCSK9) inhibitors (PCSK9i) revolutionised the lipid-lowering therapy. However, a risk of type 2 diabetes mellitus (T2DM) is evoked under PCSK9i therapy. In this review, we summarise the current knowledge on the link of PCSK9 with T2DM. A significant correlation was found between PCSK9 and insulin, homeostasis model assessment (HOMA) of insulin resistance and glycated haemoglobin. PCSK9 is also involved in inflammation. PCSK9 loss-of-function variants increased T2DM risk by altering insulin secretion. Local pancreatic low PCSK9 regulates β-cell LDLR expression which in turn promotes intracellular cholesterol accumulation and hampers insulin secretion. Nevertheless, the association of PCSK9 loss-of-function variants and T2DM is inconsistent. InsLeu and R46L polymorphisms were associated with T2DM, low HOMA for β-cell function and impaired fasting glucose, while the C679X polymorphism was associated with low fasting glucose in Black South African people. Hence, we assume that the impact of these variants on glucose homeostasis may vary depending on the genetic background of the studied populations and the type of effect caused by those genetic variants on the PCSK9 protein. Accordingly, these factors should be considered when choosing a genetic variant of PCSK9 to assess the impact of long-term use of PCSK9i on glucose homeostasis.
Collapse
Affiliation(s)
- Sègbédé E R Tchéoubi
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium.,Non-Communicable Diseases and Cancer Research Unit, Laboratory of Applied Biology Research, University of Abomey-Calavi - UAC, Abomey-Calavi, Benin
| | - Casimir D Akpovi
- Non-Communicable Diseases and Cancer Research Unit, Laboratory of Applied Biology Research, University of Abomey-Calavi - UAC, Abomey-Calavi, Benin
| | - Frédérique Coppée
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - Anne-Emilie Declèves
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - Clément Agbangla
- Laboratory of Molecular Genetics and Genome Analyzes, Faculty of Sciences and Technics, University of Abomey-Calavi - UAC, Abomey-Calavi, Benin
| | - Carmen Burtea
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| |
Collapse
|
9
|
Emerging Role of cAMP/AMPK Signaling. Cells 2022; 11:cells11020308. [PMID: 35053423 PMCID: PMC8774420 DOI: 10.3390/cells11020308] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
The 5′-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a natural energy sensor in mammalian cells that plays a key role in cellular and systemic energy homeostasis. At the cellular level, AMPK supports numerous processes required for energy and redox homeostasis, including mitochondrial biogenesis, autophagy, and glucose and lipid metabolism. Thus, understanding the pathways regulating AMPK activity is crucial for developing strategies to treat metabolic disorders. Mounting evidence suggests the presence of a link between cyclic AMP (cAMP) and AMPK signaling. cAMP signaling is known to be activated in circumstances of physiological and metabolic stress due to the release of stress hormones, such as adrenaline and glucagon, which is followed by activation of membrane-bound adenylyl cyclase and elevation of cellular cAMP. Because the majority of physiological stresses are associated with elevated energy consumption, it is not surprising that activation of cAMP signaling may promote AMPK activity. Aside from the physiological role of the cAMP/AMPK axis, numerous reports have suggested its role in several pathologies, including inflammation, ischemia, diabetes, obesity, and aging. Furthermore, novel reports have provided more mechanistic insight into the regulation of the cAMP/AMPK axis. In particular, the role of distinct cAMP microdomains generated by soluble adenylyl cyclase in regulating basal and induced AMPK activity has recently been demonstrated. In the present review, we discuss current advances in the understanding of the regulation of the cAMP/AMPK axis and its role in cellular homeostasis and explore some translational aspects.
Collapse
|
10
|
Modulation of Cyclic AMP Levels in Fallopian Tube Cells by Natural and Environmental Estrogens. Cells 2021; 10:cells10051250. [PMID: 34069403 PMCID: PMC8158772 DOI: 10.3390/cells10051250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 11/22/2022] Open
Abstract
Autocrine/paracrine factors generated in response to 17β-estradiol (E2) within the fallopian tube (FT) facilitate fertilization and early embryo development for implantation. Since cyclic AMP (cAMP) plays a key role in reproduction, regulation of its synthesis by E2 may be of biological/pathophysiological relevance. Herein, we investigated whether cAMP production in FT cells (FTCs) is regulated by E2 and environmental estrogens (EE’s; xenoestrogens and phytoestrogens). Under basal conditions, low levels of extracellular cAMP were detectable in bovine FTCs (epithelial cells and fibroblasts; 1:1 ratio). Treatment of FTCs with forskolin (AC; adenylyl cyclase activator), isoproterenol (β-adrenoceptor agonist) and IBMX (phosphodiesterase (PDE) inhibitor) dramatically (>10 fold) increased cAMP; whereas LRE1 (sAC; soluble AC inhibitor) and 2’,5’-dideoxyadenosine (DDA; transmembrane AC (tmAC)) inhibitor decreased cAMP. Comparable changes in basal and stimulated intracellular cAMP were also observed. Ro-20-1724 (PDE-IV inhibitor), but not milrinone (PDE-III inhibitor) nor mmIBMX (PDE-I inhibitor), augmented forskolin-stimulated cAMP levels, suggesting that PDE-IV dominates in FTCs. E2 increased cAMP levels and CREB phosphorylation in FTCs, and these effects were mimicked by EE’s (genistein, 4-hydroxy-2’,4’,6’-trichlorobiphenyl, 4-hydroxy-2’,4’,6’-dichlorobiphenyl). Moreover, the effects of E2 and EE were blocked by the tmAC inhibitor DDA, but not by the ERα/β antagonist ICI182780. Moreover, BAPTA-AM (intracellular-Ca2+ chelator) abrogated the effects of E2, but not genistein, on cAMP suggesting differential involvement of Ca2+. Treatment with non-permeable E2-BSA induced cAMP levels and CREB-phosphorylation; moreover, the stimulatory effects of E2 and EEs on cAMP were blocked by G15, a G protein-coupled estrogen receptor (GPER) antagonist. E2 and IBMX induced cAMP formation was inhibited by LRE1 and DDA suggesting involvement of both tmAC and sAC. Our results provide the first evidence that in FTCs, E2 and EE’s stimulate cAMP synthesis via GPER. Exposure of the FT to EE’s and PDE inhibitors may result in abnormal non-cyclic induction of cAMP levels which may induce deleterious effects on reproduction.
Collapse
|
11
|
Liu LY, Mo DC, Li JL, Jiang YY, Zhou GQ, Jiang DD, Chen LJ, Wu XJ, Li JX, Luo M. Associations between SNP83 of phosphodiesterase 4D gene and carotid atherosclerosis in a southern Chinese Han population: a case-control study. Mamm Genome 2021; 32:115-122. [PMID: 33755782 DOI: 10.1007/s00335-021-09857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 11/30/2022]
Abstract
Atherosclerosis was an important pathophysiological basis of atherothrombotic stroke, and phosphodiesterase 4D (PDE4D) polymorphism (SNP83/rs966221) was reported to be associated with the susceptibility to atherothrombotic stroke. Aim of the present study was to explore the potential association between SNP83 and carotid atherosclerosis (CAS). 204 southern Chinese Han participants were divided into two groups according to the carotid intima-media thickness (IMT) of the carotid artery: CAS group (carotid IMT ≥ 1.0 mm) and non-CAS group (carotid IMT < 1.0 mm). Carotid IMT was measured by color Doppler ultrasound. The PDE4D SNP83 polymorphism was determined by SNaPshot technique. Our study found that SNP83 was associated significantly with CAS susceptibility under the dominant, overdominant and codominant models. After adjusting for age, gender, low-density lipoprotein cholesterol, Hemoglobin A1c, cigarette smoking, hypertension history, and diabetes mellitus history, the association still remained significant (dominant model: crude OR = 2.373, 95% CI: 1.268-4.442, P = 0.007; adjusted OR = 3.129, 95% CI: 1.104-8.866, P = 0.032; overdominant model: crude OR = 1.968, 95% CI: 1.043-3.714, P = 0.037; adjusted OR = 2.854, 95% CI: 1.005-8.108, P = 0.049; codominant: crude OR = 2.102, 95% CI: 1.110-3.979, P = 0.023; adjusted OR = 2.984, 95% CI: 1.047-8.502, P = 0.041). Carotid IMT of carriers with CT + CC genotypes was higher than carriers with TT genotype (P = 0.016). Our results indicated that the SNP83/rs966221 located on PDE4D gene was significantly associated between CAS susceptibility and carotid IMT independently of conventional risk factors in a southern Chinese Han population.
Collapse
Affiliation(s)
- Liu-Yu Liu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Dong-Can Mo
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jian-Li Li
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yi-Ying Jiang
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Guo-Qiu Zhou
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Dong-Dong Jiang
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Li-Jie Chen
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Ju Wu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jiao-Xing Li
- Department of Neurology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Man Luo
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
12
|
Sesamol Alleviates Obesity-Related Hepatic Steatosis via Activating Hepatic PKA Pathway. Nutrients 2020; 12:nu12020329. [PMID: 31991934 PMCID: PMC7071159 DOI: 10.3390/nu12020329] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/30/2022] Open
Abstract
This study aimed to investigate the effect of sesamol (SEM) on the protein kinase A (PKA) pathway in obesity-related hepatic steatosis treatment by using high-fat diet (HFD)-induced obese mice and a palmitic acid (PA)-treated HepG2 cell line. SEM reduced the body weight gain of obese mice and alleviated related metabolic disorders such as insulin resistance, hyperlipidemia, and systemic inflammation. Furthermore, lipid accumulation in the liver and HepG2 cells was reduced by SEM. SEM downregulated the gene and protein levels of lipogenic regulator factors, and upregulated the gene and protein levels of the regulator factors responsible for lipolysis and fatty acid β-oxidation. Meanwhile, SEM activated AMP-activated protein kinase (AMPK), which might explain the regulatory effect of SEM on fatty acid β-oxidation and lipogenesis. Additionally, the PKA-C and phospho-PKA substrate levels were higher after SEM treatment. Further research found that after pretreatment with the PKA inhibitor, H89, lipid accumulation was increased even with SEM administration in HepG2 cells, and the effect of SEM on lipid metabolism-related regulator factors was abolished by H89. In conclusion, SEM has a positive therapeutic effect on obesity and obesity-related hepatic steatosis by regulating the hepatic lipid metabolism mediated by the PKA pathway.
Collapse
|
13
|
Abstract
OBJECTIVES Interventional trials on glucocorticoids in sepsis have yielded capricious results. Recent studies have identified multiple glucocorticoid receptor isoforms. The relative abundance of these isoforms in septic patients and following murine cecal ligation and puncture is unknown. The objective of this study is to determine the effects of cecal ligation and puncture on glucocorticoid receptor isoform abundance. DESIGN Determination of effects of cecal ligation and puncture on glucocorticoid receptor isoform subtype abundance in C57BL/6 mice. Examination of glucocorticoid receptor isoform abundance in tissues harvested from patients immediately after death from sepsis or nonseptic critical illness. SETTING Research laboratory. SUBJECTS C57BL/6 mice and human tissue sections from recently deceased critically ill patients. INTERVENTIONS C57BL/6 mice were subjected to cecal ligation and puncture or sham operation. Abundance of the activating glucocorticoid receptor α and the inactivating glucocorticoid receptor β isoforms was determined in mouse and human tissue using immunoblotting. Cardiac output with or without stimulation with dexamethasone was assessed using echocardiography. The expression of the gene encoding the glucocorticoid-dependent enzyme glucose-6-phosphatase was identified using polymerase chain reaction. Statistical significance (p < 0.05) was determined using analysis of variance. MEASUREMENTS AND MAIN RESULTS Results in baseline and sham operation mice were identical. At baseline, glucocorticoid receptor αA predominated in heart, lung, and skeletal muscle; abundance was decreased post cecal ligation and puncture. All glucocorticoid receptor α subtypes were identified in liver. Cecal ligation and puncture decreased the summed abundance of hepatic glucocorticoid receptor α subtypes and those of glucocorticoid receptors αA, B, and D. However, glucocorticoid receptor αC abundance was unchanged. Cecal ligation and puncture increased glucocorticoid receptor β protein abundance in the heart and lung. Relative to T0, cecal ligation and puncture decreased cardiac output and attenuated the cardiac output response to dexamethasone. Cecal ligation and puncture also decreased expression of glucose-6-phosphatase. Compared with nonseptic patients, human sepsis decreased the abundance of glucocorticoid receptor α and increased the abundance of glucocorticoid receptor β in heart and liver biopsies. CONCLUSIONS Cecal ligation and puncture altered glucocorticoid receptor α and glucocorticoid receptor β isoform expression in tissues and decreased functional responses in heart and liver. Decreases in glucocorticoid receptor α and increases in glucocorticoid receptor β might explain the diminished glucocorticoid responsiveness observed in sepsis.
Collapse
|
14
|
An Ancient Chinese Herbal Decoction Containing Angelicae Sinensis Radix, Astragali Radix, Jujuba Fructus, and Zingiberis Rhizoma Recens Stimulates the Browning Conversion of White Adipocyte in Cultured 3T3-L1 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3648685. [PMID: 31316571 PMCID: PMC6601477 DOI: 10.1155/2019/3648685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/30/2022]
Abstract
Background Abnormal storage of white adipocyte tissue (WAT) is the major factor causing obesity. The promising strategies for obesity treatment are building up the brown adipocyte tissue (BAT) and/or expedite fatty acid catabolism. Traditional Chinese Medicine (TCM) sheds light on preventing obesity. Ginger is one of the most effective herbs for antiobesity by accelerating browning WAT. To fortify the antiobesity effect of ginger, an ancient Chinese herbal decoction composed of four herbs, Angelicae Sinensis Radix (ASR), Astragali Radix (AR), Jujuba Fructus (JF), and Zingiberis Rhizoma Recens (ZRR; ginger), was tested here: this herbal formula was written in AD 1155, named as Danggui Buxue Tang (DBT1155). Therefore, the antiobesity function of this ancient herbal decoction was revealed in vitro by cultured 3T3-L1 cells. Materials and Method The lipid accumulation was detected by Oil Red O staining. Furthermore, the underlying working mechanisms of antiobesity functions of DBT1155 were confirmed in 3T3-L1 cells by confocal microscopy, western blot, and RT-PCR. Results DBT1155 was able to actuate brown fat-specific gene activations, which included (i) expression of PPARγ, UCP1, and PCG1α and (ii) fatty acid oxidation genes, i.e., CPT1A and HSL. The increase of browning WAT, triggered by DBT1155, was possibly mediated by a Ca2+-AMPK signaling pathway, because the application of Ca2+ chelator, BAMPTA-AM, reversed the effect. Conclusion These findings suggested that the herbal mixture DBT1155 could potentiate the antiobesity functions of ginger, which might have potential therapeutic implications.
Collapse
|
15
|
Li J, Lv S, Qiu X, Yu J, Jiang J, Jin Y, Guo W, Zhao R, Zhang ZN, Zhang C, Luan B. BMAL1 functions as a cAMP-responsive coactivator of HDAC5 to regulate hepatic gluconeogenesis. Protein Cell 2018; 9:976-980. [PMID: 29508277 PMCID: PMC6208480 DOI: 10.1007/s13238-018-0514-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jian Li
- Department of Endocrinology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Sihan Lv
- Department of Endocrinology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinchen Qiu
- Department of Endocrinology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiamin Yu
- Department of Endocrinology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junkun Jiang
- Department of Endocrinology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yalan Jin
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenxuan Guo
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ruowei Zhao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhen-Ning Zhang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Bing Luan
- Department of Endocrinology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
16
|
Abstract
The emergence of bone as an endocrine organ able to influence whole body metabolism, together with comorbid epidemics of obesity, diabetes, and osteoporosis, have prompted a renewed interest in the intermediary metabolism of the osteoblast. To date, most studies have focused on the utilization of glucose by this specialized cell, but the oxidation of fatty acids results in a larger energy yield. Osteoblasts express the requisite receptors and catabolic enzymes to take up and then metabolize fatty acids, which appears to be required during later stages of differentiation when the osteoblast is dedicated to matrix production and mineralization. In this article, we provide an overview of fatty acid β-oxidation and highlight studies demonstrating that the skeleton plays a significant role in the clearance of circulating lipoproteins and non-esterified fatty acids. Additionally, we review the requirement for long-chain fatty acid metabolism during post-natal bone development and the effects of anabolic stimuli on fatty acid utilization by osteoblasts. These recent findings may help to explain the skeletal manifestations of human diseases associated with impaired lipid metabolism while also providing additional insights into the metabolic requirements of skeletal homeostasis.
Collapse
Affiliation(s)
- Priyanka Kushwaha
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Baltimore Veterans Administration Medical Center, Baltimore, MD, USA.
| |
Collapse
|
17
|
Aguilera-Mendez A, Hernández-Equihua MG, Rueda-Rocha AC, Guajardo-López C, Nieto-Aguilar R, Serrato-Ochoa D, Ruíz Herrera LF, Guzmán-Nateras JA. Protective effect of supplementation with biotin against high-fructose-induced metabolic syndrome in rats. Nutr Res 2018; 57:86-96. [DOI: 10.1016/j.nutres.2018.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 05/22/2018] [Accepted: 06/27/2018] [Indexed: 11/15/2022]
|
18
|
Qiu X, Li J, Lv S, Yu J, Jiang J, Yao J, Xiao Y, Xu B, He H, Guo F, Zhang ZN, Zhang C, Luan B. HDAC5 integrates ER stress and fasting signals to regulate hepatic fatty acid oxidation. J Lipid Res 2018; 59:330-338. [PMID: 29229738 PMCID: PMC5794426 DOI: 10.1194/jlr.m080382] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/27/2017] [Indexed: 01/23/2023] Open
Abstract
Disregulation of fatty acid oxidation, one of the major mechanisms for maintaining hepatic lipid homeostasis under fasting conditions, leads to hepatic steatosis. Although obesity and type 2 diabetes-induced endoplasmic reticulum (ER) stress contribute to hepatic steatosis, it is largely unknown how ER stress regulates fatty acid oxidation. Here we show that fasting glucagon stimulates the dephosphorylation and nuclear translocation of histone deacetylase 5 (HDAC5), where it interacts with PPARα and promotes transcriptional activity of PPARα. As a result, overexpression of HDAC5 but not PPARα binding-deficient HDAC5 in liver improves lipid homeostasis, whereas RNAi-mediated knockdown of HDAC5 deteriorates hepatic steatosis. ER stress inhibits fatty acid oxidation gene expression via calcium/calmodulin-dependent protein kinase II-mediated phosphorylation of HDAC5. Most important, hepatic overexpression of a phosphorylation-deficient mutant HDAC5 2SA promotes hepatic fatty acid oxidation gene expression and protects against hepatic steatosis in mice fed a high-fat diet. We have identified HDAC5 as a novel mediator of hepatic fatty acid oxidation by fasting and ER stress signals, and strategies to promote HDAC5 dephosphorylation could serve as new tools for the treatment of obesity-associated hepatic steatosis.
Collapse
Affiliation(s)
- Xinchen Qiu
- Department of Endocrinology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Jian Li
- Department of Endocrinology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Sihan Lv
- Department of Endocrinology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiamin Yu
- Department of Endocrinology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junkun Jiang
- Department of Endocrinology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jindong Yao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yang Xiao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Bingxin Xu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Haiyan He
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Fangfei Guo
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhen-Ning Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Bing Luan
- Department of Endocrinology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
19
|
Lee YS, Jun HS. Glucagon-Like Peptide-1 Receptor Agonist and Glucagon Increase Glucose-Stimulated Insulin Secretion in Beta Cells via Distinct Adenylyl Cyclases. Int J Med Sci 2018; 15:603-609. [PMID: 29725251 PMCID: PMC5930462 DOI: 10.7150/ijms.24492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/02/2018] [Indexed: 01/14/2023] Open
Abstract
Diabetes mellitus is a chronic disease in which the pancreas no longer produces enough insulin. Pancreatic alpha cell mass increases in response to insufficient insulin secretion. However, the reason for this increase is not clear. It is possible that the increased alpha-cells may stimulate compensatory insulin release in response to the insufficient insulin such as insulin resistance. In this study, we investigated whether glucagon and glucagon-like peptide-1 (GLP-1), hormones produced by alpha cells, contribute to insulin secretion in INS-1 cells, a beta cell line. We confirmed that alpha cell area in the pancreatic islets and glucagon secretion were increased in HFD-induced obese mice. Co-treatment with glucagon and exendin-4 (Ex-4), a GLP-1 receptor agonist, additively increased glucose-stimulated insulin secretion in INS-1 cells. In parallel, cAMP production was also additively increased by co-treatment with these hormones. The increase of insulin secretion by Ex-4 in the presence of high glucose was inhibited by 2'5'-dideoxyadenosine, a transmembrane adenylyl cyclase inhibitor, but not by KH-7, a soluble adenylyl cyclase inhibitor. The increase of insulin secretion by glucagon in INS-1 cells was inhibited by both 2'5'-dideoxyadenosine and KH-7. We suggest that glucagon and GLP-1 produced from alpha cells additively increase cAMP and insulin secretion in the presence of high glucose via distinct adenylyl cyclases in INS-1 cells, and this may contribute to the compensatory increase of insulin secretion by an increase of pancreatic alpha cell mass under conditions of insulin resistance.
Collapse
Affiliation(s)
- Young-Sun Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea.,College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, 406-840, Republic of Korea.,Gachon Medical Research Institute, Gil Hospital, Incheon, 405-760, Republic of Korea
| |
Collapse
|