1
|
Fuller PJ, Yang J, Young MJ, Cole TJ. Mechanisms of ligand-mediated modulation of mineralocorticoid receptor signaling. Mol Cell Endocrinol 2025; 600:112504. [PMID: 39983891 DOI: 10.1016/j.mce.2025.112504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
The mineralocorticoid receptor plays a central role in homeostasis, mediating the regulation by aldosterone of epithelial sodium transport. In addition, it regulates a range of responses in other tissues where it is likely responding to both mineralocorticoids and glucocorticoids. Structural, functional and evolutionary studies have provided insights into the mechanisms of receptor activation by agonist ligands and how interactions within the domains of the mineralocorticoid receptor may modulate the response to individual ligands including the mechanisms of antagonism. This review will discuss the current understanding, including recent insights into these interactions, with implications for an emerging array of novel non-steroidal compounds targeting the mineralocorticoid receptor; and highlight their relevance to ligand- or tissue-specificity as well as their suitability as therapeutic agents.
Collapse
Affiliation(s)
- Peter J Fuller
- Centre of Endocrinology and Metabolism, Hudson Institute of Medical Research and Department of Molecular Translational Science, Monash University Clayton, Victoria, Australia.
| | - Jun Yang
- Centre of Endocrinology and Metabolism, Hudson Institute of Medical Research and Department of Molecular Translational Science, Monash University Clayton, Victoria, Australia
| | - Morag J Young
- Cardiovascular Endocrinology Laboratory, Discovery & Preclinical Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Timothy J Cole
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Zhang B, Liu Z, Chang Y, Lv R, Guo H, Qiang P, Shimosawa T, Xu Q, Yang F. Aldosterone-Induced Transformation of Vascular Smooth Muscle Cells into Macrophage-like Cells Participates in Inflammatory Vascular Lesions. Int J Mol Sci 2025; 26:3345. [PMID: 40244230 PMCID: PMC11989480 DOI: 10.3390/ijms26073345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/23/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the most abundant cell type in blood vessels, participating in cardiovascular diseases in various ways, among which their transformation into macrophage-like cells has become a research hotspot. In this study, rats were infused with aldosterone for 12 weeks, and VSMCs stimulated with aldosterone in vitro were used to observe aortic injury and the role of VSMC transformation. Vascular changes were detected via small animal ultrasound and H&E staining. Moreover, immunohistochemistry, immunofluorescence, Western blot, and flow cytometry were used to verify that the transformation of VSMCs into macrophage-like cells is regulated by mineralocorticoid receptor (MR) activation and macrophage colony-stimulating factor (M-CSF) and its receptor. Rat vasculature and in vitro cellular experiments revealed that VSMCs transformed into macrophage-like cells and secreted inflammatory factors such as interleukin-1β (IL-1β) and monocyte chemoattractant protein-1 (MCP-1), thereby exacerbating inflammatory vascular lesions, which was inhibited by the MR antagonist esaxerenone. These results reveal that increased levels of aldosterone activate MR, leading to the secretion of M-CSF by VSMCs. This further promotes the transformation of VSMCs into macrophage-like cells, which participate in inflammatory vascular lesions. Therefore, inhibiting the formation of macrophage-like cells can effectively reduce inflammatory vascular lesions.
Collapse
MESH Headings
- Animals
- Aldosterone/pharmacology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/cytology
- Macrophages/metabolism
- Macrophages/drug effects
- Macrophages/pathology
- Rats
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Receptors, Mineralocorticoid/metabolism
- Male
- Inflammation/metabolism
- Inflammation/pathology
- Rats, Sprague-Dawley
- Cells, Cultured
- Macrophage Colony-Stimulating Factor/metabolism
- Interleukin-1beta/metabolism
- Chemokine CCL2/metabolism
Collapse
Affiliation(s)
- Boya Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Ziqian Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yi Chang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Ruyan Lv
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Haixia Guo
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Panpan Qiang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Narita 286-8686, Japan
| | - Qingyou Xu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Fan Yang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
3
|
Chen X, Huang M, Chen Y, Xu H, Wu M. Mineralocorticoid receptor antagonists and heart failure with preserved ejection fraction: current understanding and future prospects. Heart Fail Rev 2025; 30:191-208. [PMID: 39414721 DOI: 10.1007/s10741-024-10455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
The mineralocorticoid receptor (MR), part of the steroid hormone receptor subfamily within nuclear hormone receptors, is found in the kidney and various non-epithelial tissues, including the heart and blood vessels. When improperly activated, it can contribute to heart failure processes such as cardiac hypertrophy, fibrosis, stiffening of arteries, inflammation, and oxidative stress. MR antagonists (MRAs) have shown clear clinical benefits in patients with heart failure with reduced ejection fraction (HFrEF). However, in cases of heart failure with preserved ejection fraction (HFpEF), there is considerable diversity due to its complex underlying mechanisms, resulting in conflicting findings regarding the effectiveness of MRAs in relevant studies. The concept of phenomapping presents an encouraging avenue for investigating different intervention targets and novel therapies for HFpEF. Post hoc analysis of the TOPCAT trial identified certain HFpEF phenotypes that responded favorably to spironolactone. Growing clinical and preclinical evidence suggests that non-steroidal MRAs, which exhibit greater receptor selectivity, stronger anti-fibrotic and anti-inflammatory properties, and fewer hormone-related side effects, may emerge as another promising treatment option for HFpEF alongside sodium-glucose co-transporter 2 (SGLT2) inhibitors. This review aims to outline the structural and functional characteristics of MR, discuss the physiological effects of its activation and inhibition, and delve into the potential for personalized MRA therapy based on the concept of HFpEF phenotype.
Collapse
Affiliation(s)
- Xi Chen
- Department of Cardiology, Affiliated Hospital of Putian University, School of Clinical Medicine, Fujian Medical University, Putian, 351100, China
| | - Meinv Huang
- Department of Cardiology, Affiliated Hospital of Putian University, School of Clinical Medicine, Fujian Medical University, Putian, 351100, China
| | - Yi Chen
- Department of Cardiology, Affiliated Hospital of Putian University, School of Clinical Medicine, Fujian Medical University, Putian, 351100, China
| | - Haishan Xu
- Department of Nephrology, Affiliated Hospital of Putian University, School of Clinical Medicine, Fujian Medical University, Putian, 351100, China.
| | - Meifang Wu
- Department of Cardiology, Affiliated Hospital of Putian University, School of Clinical Medicine, Fujian Medical University, Putian, 351100, China.
| |
Collapse
|
4
|
Leclercq B, Mejlachowicz D, Zhu L, Jonet L, Mehanna C, Berdugo M, Irinopoulou T, Jaisser F, Zhao M, Behar-Cohen F. Differential Effect of Aldosterone or Mineralocorticoid Receptor Overexpression on Retinal Inflammation. Invest Ophthalmol Vis Sci 2024; 65:39. [PMID: 39453673 PMCID: PMC11512573 DOI: 10.1167/iovs.65.12.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Purpose Overactivation of the mineralocorticoid receptor (MR) pathway is proinflammatory and contributes to the pathogenesis of diabetic retinopathy and of age-related macular degeneration. Excess of aldosterone, the specific MR ligand, is known to stimulate the production of proinflammatory cytokines and chemokines in extrarenal tissues and cells. In the RPE/choroid complex, aldosterone upregulated genes encoding proteins of the inflammatory response and downregulated genes encoding proteins involved in synaptic activity and neurotransmitters. Yet, cortisol, which is the main MR ligand in the eye, is a potent anti-inflammatory endogenous glucocorticoid. The aim of the present work was to better understand the role of MR activation in retinal inflammation either by acute injection of aldosterone or overexpression of the receptor. Methods We first analyzed the retinal transcriptomic regulation induced by acute intraocular injection of aldosterone in the rat. Then, we used a transgenic rat overexpressing human MR (hMR) to also conduct retinal transcriptomic analysis as well as histological evaluation of the retina, retinal pigment epithelium and choroid. Results Our results show that acute intravitreal injection of aldosterone is highly proinflammatory, upregulating pathways related to microglial activation, oxidative stress, cell death, and downregulating pathways related to glial/neuronal cells activity and proper neurotransmission. On the other hand, hMR overexpression mediates a low-grade inflammation in the retina, associated with notable choroidal inflammation and choroidal neuropathy. Conclusions Consequences of hMR overexpression or aldosterone-injection on retinal transcriptome reveal very distinct pathological mechanisms, with only a few common genes regulated, most of them not being regulated in the same way. Although aldosterone is highly proinflammatory in the retina, MR overactivation in its physiologic milieu mediates a low-grade inflammation in the neural retina.
Collapse
Affiliation(s)
- Bastien Leclercq
- Centre de Recherche des Cordeliers, Inserm UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Dan Mejlachowicz
- Centre de Recherche des Cordeliers, Inserm UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Linxin Zhu
- Centre de Recherche des Cordeliers, Inserm UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Laurent Jonet
- Centre de Recherche des Cordeliers, Inserm UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Chadi Mehanna
- Hôpital Américain de Paris, Neuilly-sur-Seine, Paris, France
| | - Marianne Berdugo
- Centre de Recherche des Cordeliers, Inserm UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
| | | | - Fréderic Jaisser
- Centre de Recherche des Cordeliers, Inserm UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Min Zhao
- Centre de Recherche des Cordeliers, Inserm UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Inserm UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
- Ophthalmopole Cochin University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
5
|
Apte M, Zambre S, Pisar P, Roy B, Tupe R. Decoding the role of aldosterone in glycation-induced diabetic complications. Biochem Biophys Res Commun 2024; 721:150107. [PMID: 38781658 DOI: 10.1016/j.bbrc.2024.150107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Diabetes-mediated development of micro and macro-vascular complications is a global concern. One of the factors is hyperglycemia induced the non-enzymatic formation of advanced glycation end products (AGEs). Accumulated AGEs bind with receptor of AGEs (RAGE) causing inflammation, oxidative stress and extracellular matrix proteins (ECM) modifications responsible for fibrosis, cell damage and tissue remodeling. Moreover, during hyperglycemia, aldosterone (Aldo) secretion increases, and its interaction with mineralocorticoid receptor (MR) through genomic and non-genomic pathways leads to inflammation and fibrosis. Extensive research on individual involvement of AGEs-RAGE and Aldo-MR pathways in the development of diabetic nephropathy (DN), cardiovascular diseases (CVDs), and impaired immune system has led to the discovery of therapeutic drugs. Despite mutual repercussions, the cross-talk between AGEs-RAGE and Aldo-MR pathways remains unresolved. Hence, this review focuses on the possible interaction of Aldo and glycation in DN and CVDs, considering the clinical significance of mutual molecular targets.
Collapse
Affiliation(s)
- Mayura Apte
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Saee Zambre
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Pratiksha Pisar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Bishnudeo Roy
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Rashmi Tupe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| |
Collapse
|
6
|
Lockett J, Inder WJ, Clifton VL. The Glucocorticoid Receptor: Isoforms, Functions, and Contribution to Glucocorticoid Sensitivity. Endocr Rev 2024; 45:593-624. [PMID: 38551091 PMCID: PMC11244253 DOI: 10.1210/endrev/bnae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 07/13/2024]
Abstract
Glucocorticoids exert pleiotropic effects on all tissues to regulate cellular and metabolic homeostasis. Synthetic forms are used therapeutically in a wide range of conditions for their anti-inflammatory benefits, at the cost of dose and duration-dependent side effects. Significant variability occurs between tissues, disease states, and individuals with regard to both the beneficial and deleterious effects. The glucocorticoid receptor (GR) is the site of action for these hormones and a vast body of work has been conducted understanding its function. Traditionally, it was thought that the anti-inflammatory benefits of glucocorticoids were mediated by transrepression of pro-inflammatory transcription factors, while the adverse metabolic effects resulted from direct transactivation. This canonical understanding of the GR function has been brought into question over the past 2 decades with advances in the resolution of scientific techniques, and the discovery of multiple isoforms of the receptor present in most tissues. Here we review the structure and function of the GR, the nature of the receptor isoforms, and the contribution of the receptor to glucocorticoid sensitivity, or resistance in health and disease.
Collapse
Affiliation(s)
- Jack Lockett
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Warrick J Inder
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Vicki L Clifton
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
| |
Collapse
|
7
|
Ravender R, Roumelioti ME, Schmidt DW, Unruh ML, Argyropoulos C. Chronic Kidney Disease in the Older Adult Patient with Diabetes. J Clin Med 2024; 13:348. [PMID: 38256482 PMCID: PMC10816477 DOI: 10.3390/jcm13020348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Diabetes mellitus (DM) and chronic kidney disease (CKD) are common in middle aged and older adult individuals. DM may accelerate the aging process, and the age-related declines in the estimated glomerular filtration rate (eGFR) can pose a challenge to diagnosing diabetic kidney disease (DKD) using standard diagnostic criteria especially with the absence of severe albuminuria among older adults. In the presence of CKD and DM, older adult patients may need multidisciplinary care due to susceptibility to various health issues, e.g., cognitive decline, auditory or visual impairment, various comorbidities, complex medical regimens, and increased sensitivity to medication adverse effects. As a result, it can be challenging to apply recent therapeutic advancements for the general population to older adults. We review the evidence that the benefits from these newer therapies apply equally to older and younger patients with CKD and diabetes type 2 and propose a comprehensive management. This framework will address nonpharmacological measures and pharmacological management with renin angiotensin system inhibitors (RASi), sodium glucose co-transporter 2 inhibitors (SGLT2i), non-steroidal mineralocorticoids receptor antagonists (MRAs), and glucagon like peptide 1 receptor agonists (GLP1-RAs).
Collapse
Affiliation(s)
| | | | | | | | - Christos Argyropoulos
- Division of Nephrology, Department of Internal Medicine, University of New Mexico School of Medicine, MSC 04-2785, Albuquerque, NM 87131, USA; (R.R.); (M.-E.R.); (D.W.S.); (M.L.U.)
| |
Collapse
|
8
|
de Kloet ER, Joëls M. The cortisol switch between vulnerability and resilience. Mol Psychiatry 2024; 29:20-34. [PMID: 36599967 DOI: 10.1038/s41380-022-01934-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
In concert with neuropeptides and transmitters, the end products of the hypothalamus-pituitary-adrenal (HPA) axis, the glucocorticoid hormones cortisol and corticosterone (CORT), promote resilience: i.e., the ability to cope with threats, adversity, and trauma. To exert this protective action, CORT activates mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) that operate in a complementary manner -as an on/off switch- to coordinate circadian events, stress-coping, and adaptation. The evolutionary older limbic MR facilitates contextual memory retrieval and supports an on-switch in the selection of stress-coping styles at a low cost. The rise in circulating CORT concentration after stress subsequently activates a GR-mediated off-switch underlying recovery of homeostasis by providing the energy for restraining the primary stress reactions and promoting cognitive control over emotional reactivity. GR activation facilitates contextual memory storage of the experience to enable future stress-coping. Such complementary MR-GR-mediated actions involve rapid non-genomic and slower gene-mediated mechanisms; they are time-dependent, conditional, and sexually dimorphic, and depend on genetic background and prior experience. If coping fails, GR activation impairs cognitive control and promotes emotional arousal which eventually may compromise resilience. Such breakdown of resilience involves a transition to a chronic stress construct, where information processing is crashed; it leads to an imbalanced MR-GR switch and hence increased vulnerability. Novel MR-GR modulators are becoming available that may reset a dysregulated stress response system to reinstate the cognitive flexibility required for resilience.
Collapse
Affiliation(s)
- E Ronald de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, The Netherlands.
- Leiden/Amsterdam Center of Drug Research, Leiden University, Leiden, The Netherlands.
| | - Marian Joëls
- Dept. Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Kintscher U. Cardiovascular and Renal Benefit of Novel Non-steroidal Mineralocorticoid Antagonists in Patients with Diabetes. Curr Cardiol Rep 2023; 25:1859-1864. [PMID: 37991625 DOI: 10.1007/s11886-023-01998-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
PURPOSE OF REVIEW Novel non-steroidal mineralocorticoid receptor (MR) antagonists (MRAs) are a new class of drugs blocking adverse MR-mediated effects with an improved benefit-risk profile compared to steroidal MRAs. This review will provide information on the preclinical and clinical pharmacology of this new drug class and will discuss their future clinical applications in patients with cardiorenal disease. RECENT FINDINGS Non-steroidal MRAs such as esaxerenone, AZD9977, apararenone, ocedurenone (KBP-5074), and finerenone are newly approved or in clinical development for patients with cardiorenal disease including type 2 diabetes (T2D) and chronic kidney disease (CKD), hypertension -/+ CKD or heart failure. Unlike steroidal MRAs, non-steroidal MRAs do not induce sex hormone-related side effects and appear to mediate a lower risk of hyperkalemia while maintaining compelling clinical efficacy. Recently, new data from several clinical trials with non-steroidal MRAs have been published (e.g., FIDELIO-DKD, FIGARO-DKD, ESAX-DN, and BLOCK-CKD), and additional studies are currently underway (e.g., FINEARTS-HF and CLARION-CKD). These data and the clinical scientific basis for the ongoing studies will be discussed. Non-steroidal MRAs have been extensively explored in diabetic kidney disease. Selected candidates of this drug class reduced UACR in patients with varying degrees of CKD and T2D and have shown convincing cardiorenal protection, in particular finerenone. Furthermore, finerenone is currently tested in patients with heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Ulrich Kintscher
- Institute of Pharmacology, Charite - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Max Rubner Center for Cardiovascular Metabolic Renal Research, Hessische Str. 3-4, 10115, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Koca D, Lother A. Molecular pharmacology of mineralocorticoid receptor antagonists: The role of co-regulators. Steroids 2023; 199:109291. [PMID: 37558173 DOI: 10.1016/j.steroids.2023.109291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Mineralocorticoid receptor (MR) antagonists have shown remarkable benefits in the treatment of cardiovascular disease. However, their underutilization in clinical practice may be attributed to concerns regarding the risk of hyperkalemia. An ideal selective MR modulator would inhibit the detrimental effects of MR in non-epithelial cells of the cardiovascular system while sparing its physiological function in kidney epithelial cells, thereby reducing the risk of adverse events. To address this issue, a new generation of non-steroidal MR antagonists, including esaxereneone, balcinrenone, ocedurenone, and finerenone, has been developed with distinct molecular structures and pharmacology. They share a mechanism of action that is different from the previously developed steroidal MR antagonists, leading to altered co-regulator interaction, potentially involving conformational changes of the receptor. Interfering with MR co-regulator interaction or the co-regulator itself may enable selective targeting of downstream signaling cascades and - in the long term - lead to more personalized medicine. In this review article, we summarize what is currently known about the mechanisms of action of the different MR antagonists with a focus on MR co-factor interaction and what may be inferred from this for future developments.
Collapse
Affiliation(s)
- Duygu Koca
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany; Interdisciplinary Medical Intensive Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Wang P, Liu J, Tan X, Yang F, McCabe J, Zhang J. Pharmacokinetics and Drug-Drug Interaction of Ocedurenone (KBP-5074) in vitro and in vivo. Eur J Drug Metab Pharmacokinet 2023:10.1007/s13318-023-00837-5. [PMID: 37357226 DOI: 10.1007/s13318-023-00837-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND AND OBJECTIVES Ocedurenone (KBP-5074) is a novel nonsteroidal mineralocorticoid receptor antagonist that has demonstrated safety and efficacy in clinical trials in patients with uncontrolled hypertension and stage 3b/4 chronic kidney disease. This study evaluated the involvement of cytochrome P450 (CYP) isozymes and drug transporters in the biotransformation of ocedurenone, and whether ocedurenone inhibited or induced CYP enzymes and transporters. Clinical pharmacokinetic drug-drug interaction (DDI) of ocedurenone with CYP3A inhibitor and inducer were investigated in healthy volunteers. METHODS In vitro tests were conducted to determine which CYP enzymes were involved in ocedurenone's metabolism and whether ocedurenone inhibited or induced these CYP enzymes; ocedurenone substrate characteristics for efflux and uptake transporters and its inhibitory potential on major drug transporters were also assessed. A clinical DDI study was conducted in healthy volunteers to evaluate the effects of a strong CYP3A inhibitor (itraconazole) and inducer (rifampin) on ocedurenone's pharmacokinetics. RESULTS The in vitro study showed that ocedurenone was primarily metabolized by CYP3A4 and that it did not inhibit CYP enzymes. Ocedurenone appeared to be a substrate of BCRP and P-gp efflux transporters and inhibited BCRP, BSEP, MDR1, MATE1 and 2-K, OATP1B1/3, and OCT1. The clinical DDI study showed that itraconazole reduced ocedurenone's oral clearance by 51% and increased area under the plasma concentration-time curve extrapolated to infinity (AUC0-inf) by 104%, while rifampin increased its oral clearance by 6.4-fold and decreased plasma AUC0-inf by 84%. CONCLUSION Ocedurenone was shown to be a CYP3A substrate, with no inhibition potential on major drug metabolizing CYP enzymes and transporters at clinical efficacious doses. Ocedurenone did not induce CYP1A2 and 3A4 activity in cultured human primary hepatocytes. Clinical DDI study indicated ocedurenone was well tolerated when administered as a single 0.5-mg dose both alone and with itraconazole or rifampin, and while itraconazole had a weak effect on ocedurenone's pharmacokinetics, rifampin had a significant effect reducing systemic exposures.
Collapse
Affiliation(s)
- Ping Wang
- KBP Biosciences Co., Ltd, Jinan, Shandong, China
| | - Jinrong Liu
- KBP Biosciences Co., Ltd, Jinan, Shandong, China
| | - Xiaojuan Tan
- KBP Biosciences Co., Ltd, Jinan, Shandong, China
| | - Fred Yang
- KBP Biosciences USA Inc, 116 Village Blvd, Suite, 210, Princeton, NJ, 08540, USA
| | - James McCabe
- KBP Biosciences USA Inc, 116 Village Blvd, Suite, 210, Princeton, NJ, 08540, USA
| | - Jay Zhang
- KBP Biosciences USA Inc, 116 Village Blvd, Suite, 210, Princeton, NJ, 08540, USA.
| |
Collapse
|
12
|
Fuller PJ, Young MJ, Yang J, Cole TJ. Structure-function relationships of the aldosterone receptor. VITAMINS AND HORMONES 2023; 123:285-312. [PMID: 37717989 DOI: 10.1016/bs.vh.2022.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The cellular response to the adrenal steroid aldosterone is mediated by the mineralocorticoid receptor (MR), a member of the nuclear receptor superfamily of ligand-dependent transcription factors. The MR binds more than one physiological ligand with binding at the MR determined by pre-receptor metabolism of glucocorticoid ligands by 11β hydroxysteroid dehydrogenase type 2. The MR has a wide tissue distribution with multiple roles beyond the classical role in electrolyte homeostasis including cardiovascular function, immune cell signaling, neuronal fate and adipocyte differentiation. The MR has three principal functional domains, an N-terminal ligand domain, a central DNA binding domain and a C-terminal, ligand binding domain, with structures having been determined for the latter two domains but not for the whole receptor. MR signal-transduction can be best viewed as a series of interactions which are determined by the conformation conferred on the receptor by ligand binding. This conformation then determines subsequent intra- and inter-molecular interactions. These interactions include chromatin, coregulators and other transcription factors, and additional less well characterized cytoplasmic non-genomic effects via crosstalk with other signaling pathways. This chapter will provide a review of MR structure and function, and an analysis of the critical interactions involved in MR-mediated signal transduction, which contribute to ligand- and tissue-specificity. Understanding the relevant mechanisms for selective MR signaling in terms of these interactions opens the possibility of novel therapeutic approaches for the treatment of MR-mediated diseases.
Collapse
Affiliation(s)
- Peter J Fuller
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular Translational Science, Monash University, Clayton, VIC, Australia.
| | - Morag J Young
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; University of Melbourne and Baker HDI Department of Cardiometabolic Health and Disease, Melbourne, VIC, Australia
| | - Jun Yang
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular Translational Science, Monash University, Clayton, VIC, Australia
| | - Timothy J Cole
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
13
|
Epstein M, Kovesdy CP, Clase CM, Sood MM, Pecoits-Filho R. Aldosterone, Mineralocorticoid Receptor Activation, and CKD: A Review of Evolving Treatment Paradigms. Am J Kidney Dis 2022; 80:658-666. [PMID: 36057467 DOI: 10.1053/j.ajkd.2022.04.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/19/2022] [Indexed: 02/02/2023]
Abstract
Mineralocorticoid receptor (MR) activation is involved in propagating kidney injury, inflammation, and fibrosis and in the progression of chronic kidney disease (CKD). Multiple clinical studies have defined the efficacy of MR antagonism in attenuating progressive kidney disease, and the US Food and Drug Administration recently approved the nonsteroidal mineralocorticoid receptor antagonist (MRA) finerenone for this indication. In this review, we consider the basic science and clinical applicability of MR antagonism. Because hyperkalemia constitutes a constraint to implementing evidence-based MR blockade, we review MRA-associated hyperkalemia in the context of finerenone and discuss evolving mitigation strategies to enhance the safety and efficacy of this treatment. Although the FIDELIO-DKD and FIGARO-DKD clinical trials focused solely on patients with type 2 diabetes mellitus, we propose that MR activation and the resulting inflammation and fibrosis act as a substantive pathogenetic mediator not only in people with diabetic CKD but also in those with CKD without diabetes. We close by briefly discussing both recently initiated and future clinical trials that focus on extending the attributes of MR antagonism to a wider array of nondiabetic kidney disorders, such as patients with nonalbuminuric CKD.
Collapse
Affiliation(s)
- Murray Epstein
- Division of Nephrology and Hypertension, Miller School of Medicine, University of Miami, Miami, Florida.
| | - Csaba P Kovesdy
- University of Tennessee Health Science Center, Memphis, Tennessee; Nephrology, Memphis Veterans Affairs Medical Center, Memphis, Tennessee
| | | | - Manish M Sood
- Department of Medicine and School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Nephrology, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Roberto Pecoits-Filho
- Arbor Research Collaborative for Health, Ann Arbor, Michigan; Escola de Medicina, Pontifical Catholic University of Paraná, Curitiba, Brazil
| |
Collapse
|
14
|
Griesler B, Schuelke C, Uhlig C, Gadasheva Y, Grossmann C. Importance of Micromilieu for Pathophysiologic Mineralocorticoid Receptor Activity-When the Mineralocorticoid Receptor Resides in the Wrong Neighborhood. Int J Mol Sci 2022; 23:12592. [PMID: 36293446 PMCID: PMC9603863 DOI: 10.3390/ijms232012592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
The mineralocorticoid receptor (MR) is a member of the steroid receptor family and acts as a ligand-dependent transcription factor. In addition to its classical effects on water and electrolyte balance, its involvement in the pathogenesis of cardiovascular and renal diseases has been the subject of research for several years. The molecular basis of the latter has not been fully elucidated, but an isolated increase in the concentration of the MR ligand aldosterone or MR expression does not suffice to explain long-term pathologic actions of the receptor. Several studies suggest that MR activity and signal transduction are modulated by the surrounding microenvironment, which therefore plays an important role in MR pathophysiological effects. Local changes in micromilieu, including hypoxia, ischemia/reperfusion, inflammation, radical stress, and aberrant salt or glucose concentrations affect MR activation and therefore may influence the probability of unphysiological MR actions. The surrounding micromilieu may modulate genomic MR activity either by causing changes in MR expression or MR activity; for example, by inducing posttranslational modifications of the MR or novel interaction with coregulators, DNA-binding sites, or non-classical pathways. This should be considered when developing treatment options and strategies for prevention of MR-associated diseases.
Collapse
Affiliation(s)
| | | | | | | | - Claudia Grossmann
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| |
Collapse
|
15
|
Alexandrou ME, Theodorakopoulou MP, Kanbay M, Sarafidis PA. Mineralocorticoid receptor antagonists for cardioprotection in chronic kidney disease: a step into the future. J Hum Hypertens 2022; 36:695-704. [PMID: 34980878 DOI: 10.1038/s41371-021-00641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022]
Abstract
Chronic kidney disease (CKD) and cardiovascular disease (CVD) share major risk factors and mechanistic pathways for progression. Furthermore, either decreased glomerular filtration rate or increased albuminuria are major risk factors for cardiovascular events. Evidence from previous renal outcome trials in patients with proteinuric CKD showed that angiotensin-converting-enzyme inhibitors (ACEIs) and angiotensin-II receptor blockers (ARBs) effectively slow CKD progression, establishing these agents as fundamental CKD pharmacologic treatments. However, in all these trials and subsequent meta-analyses, ACEIs and ARBs did not significantly reduce cardiovascular events or mortality, indicating a high residual risk for CVD progression in individuals with CKD. In contrast to the above, several outcome trials with old and novel mineralocorticoid receptor-antagonists (MRAs) clearly suggest that these agents, apart from nephroprotection, offer important cardioprotection in this population. This article is an overview of previous and recent evidence on the effects of MRAs on cardiovascular outcomes in patients with CKD attempting to highlight a pathway able to improve both cardiovascular and renal prognosis in this population.
Collapse
Affiliation(s)
- Maria-Eleni Alexandrou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marieta P Theodorakopoulou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Pantelis A Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
16
|
Shaikh A, Ray J, Campbell KN. Role of Finerenone in the Treatment of Diabetic Kidney Disease: Patient Selection and Clinical Perspectives. Ther Clin Risk Manag 2022; 18:753-760. [PMID: 35937973 PMCID: PMC9346301 DOI: 10.2147/tcrm.s325916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetes is the leading cause of chronic and end stage kidney disease globally. Despite recent advances in therapies for diabetic kidney disease (DKD), there remains a critical need for additional options to improve renal and cardiovascular outcomes. Mineralocorticoid overactivation contributes to inflammation and fibrosis which in turn leads to progression of DKD. Finerenone, a novel non-steroidal mineralocorticoid receptor antagonist, has shown promising cardiac and renoprotective benefits in DKD. The utility of finerenone in the real world will require appropriate patient selection and patient monitoring by clinicians.
Collapse
Affiliation(s)
- Aisha Shaikh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justina Ray
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kirk N Campbell
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
17
|
Daskalakis NP, Meijer OC, de Kloet ER. Mineralocorticoid receptor and glucocorticoid receptor work alone and together in cell-type-specific manner: Implications for resilience prediction and targeted therapy. Neurobiol Stress 2022; 18:100455. [PMID: 35601687 PMCID: PMC9118500 DOI: 10.1016/j.ynstr.2022.100455] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
'You can't roll the clock back and reverse the effects of experiences' Bruce McEwen used to say when explaining how allostasis labels the adaptive process. Here we will for once roll the clock back to the times that the science of the glucocorticoid hormone was honored with a Nobel prize and highlight the discovery of their receptors in the hippocampus as inroad to its current status as master regulator in control of stress coping and adaptation. Glucocorticoids operate in concert with numerous neurotransmitters, neuropeptides, and other hormones with the aim to facilitate processing of information in the neurocircuitry of stress, from anticipation and perception of a novel experience to behavioral adaptation and memory storage. This action, exerted by the glucocorticoids, is guided by two complementary receptor systems, mineralocorticoid receptors (MR) and glucocorticoid receptors (GR), that need to be balanced for a healthy stress response pattern. Here we discuss the cellular, neuroendocrine, and behavioral studies underlying the MR:GR balance concept, highlight the relevance of hypothalamic-pituitary-adrenal (HPA) -axis patterns and note the limited understanding yet of sexual dimorphism in glucocorticoid actions. We conclude with the prospect that (i) genetically and epigenetically regulated receptor variants dictate cell-type-specific transcriptome signatures of stress-related neuropsychiatric symptoms and (ii) selective receptor modulators are becoming available for more targeted treatment. These two new developments may help to 'restart the clock' with the prospect to support resilience.
Collapse
Affiliation(s)
| | - Onno C. Meijer
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - E. Ron de Kloet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
18
|
Paul SN, Wingenfeld K, Otte C, Meijer OC. Brain Mineralocorticoid receptor in health and disease: from molecular signaling to cognitive and emotional function. Br J Pharmacol 2022; 179:3205-3219. [PMID: 35297038 PMCID: PMC9323486 DOI: 10.1111/bph.15835] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 11/27/2022] Open
Abstract
Brain mineralocorticoid receptors (MR) mediate effects of glucocorticoid hormones in stress adaptation, as well as the effects of aldosterone itself in relation to salt homeostasis. Brain stem MRs respond to aldosterone, whereas forebrain MRs mediate rapid and delayed glucocorticoid effects in conjunction with the glucocorticoid receptor (GR). MR‐mediated effects depend on age, gender, genetic variations, and environmental influences. Disturbed MR activity through chronic stress, certain (endocrine) diseases or during glucocorticoid therapy can cause deleterious effects on affective state, cognitive and behavioural function in susceptible individuals. Considering the important role MR plays in cognition and emotional function in health and disease, MR modulation by pharmacological intervention could relieve stress‐ and endocrine‐related symptoms. Here, we discuss recent pharmacological interventions in the clinic and genetic developments in the molecular underpinnings of MR signalling. Further understanding of MR‐dependent pathways may help to improve psychiatric symptoms in a diversity of settings.
Collapse
Affiliation(s)
- Susana N Paul
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Katja Wingenfeld
- Klinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Campus Benjamin Franklin, Berlin, Germany
| | - Christian Otte
- Klinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Campus Benjamin Franklin, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
19
|
Genomic Insights into Non-steroidal Nuclear Receptors in Prostate and Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:227-239. [DOI: 10.1007/978-3-031-11836-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
van der Heijden CDCC, Bode M, Riksen NP, Wenzel UO. The role of the mineralocorticoid receptor in immune cells in in cardiovascular disease. Br J Pharmacol 2021; 179:3135-3151. [PMID: 34935128 DOI: 10.1111/bph.15782] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/22/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
Chronic low-grade inflammation and immune cell activation are important mechanisms in the pathophysiology of cardiovascular disease (CVD). Therefore, targeted immunosuppression is a promising novel therapy to lower cardiovascular risk. In this review, we identify the mineralocorticoid receptor (MR) on immune cells as a potential target to modulate inflammation. The MR is present in almost all cells of the cardiovascular system, including immune cells. Activation of the MR in innate and adaptive immune cells induces inflammation which can contribute to CVD, by inducing endothelial dysfunction and hypertension. Moreover, it accelerates atherosclerotic plaque formation and destabilization and impairs tissue regeneration after ischemic events. Identifying the molecular targets for these non-renal actions of the MR provide promising novel cardiovascular drug targets for mineralocorticoid receptor antagonists (MRAs), which are currently mainly applied in hypertension and heart failure.
Collapse
Affiliation(s)
| | - Marlies Bode
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, GA, Nijmegen, The Netherlands.,Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, GA, The Netherlands
| | - Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Ruhs S, Griesler B, Huebschmann R, Stroedecke K, Straetz N, Ihling C, Sinz A, Masch A, Schutkowski M, Gekle M, Grossmann C. Modulation of transcriptional mineralocorticoid receptor activity by casein kinase 1. FASEB J 2021; 36:e22059. [PMID: 34847273 DOI: 10.1096/fj.202100977rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/16/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022]
Abstract
The mineralocorticoid receptor (MR) with its ligand aldosterone (aldo) physiologically regulates electrolyte homeostasis and blood pressure but it can also lead to pathophysiological effects in the cardiovascular system. Previous results show that posttranslational modifications (PTM) can influence MR signaling and function. Based on in silico and in vitro data, casein kinase 1 (CK1) was predicted as a candidate for MR phosphorylation. To gain a deeper mechanistic insight into MR activation, we investigated the influence of CK1 on MR function in HEK cells. Co-immunoprecipitation experiments indicated that the MR is located in a protein-protein complex with CK1α and CK1ε. Reporter gene assays with pharmacological inhibitors and MR constructs demonstrated that especially CK1ε acts as a positive modulator of GRE activity via the C-terminal MR domains CDEF. CK1 enhanced the binding affinity of aldosterone to the MR, facilitated nuclear translocation and DNA interaction of the MR, and led to expression changes of pathophysiologically relevant genes like Per-1 and Phlda1. By peptide microarray and site-directed mutagenesis experiments, we identified the highly conserved T800 as a direct CK1 phosphorylation site of the MR, which modulates the nuclear import and genomic activity of the receptor. Direct phosphorylation of the MR was unable to fully account for all of the CK1 effects on MR signaling, suggesting additional phosphorylation of MR co-regulators. By LC/MS/MS, we identified the MR-associated proteins NOLC1 and TCOF1 as candidates for such CK1-regulated co-factors. Overall, we found that CK1 acts as a co-activator of MR GRE activity through direct and indirect phosphorylation, which accelerates cytosolic-nuclear trafficking, facilitates nuclear accumulation and DNA binding of the MR, and increases the expression of pathologically relevant MR-target genes.
Collapse
Affiliation(s)
- Stefanie Ruhs
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Department of Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Bruno Griesler
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ralf Huebschmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Katharina Stroedecke
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nicole Straetz
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry & Bioanalytics, Center for Structural Mass Spectrometry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Center for Structural Mass Spectrometry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Antonia Masch
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Gekle
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
22
|
Grossmann C, Almeida-Prieto B, Nolze A, Alvarez de la Rosa D. Structural and molecular determinants of mineralocorticoid receptor signalling. Br J Pharmacol 2021; 179:3103-3118. [PMID: 34811739 DOI: 10.1111/bph.15746] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
During the past decades, the mineralocorticoid receptor (MR) has evolved from a much-overlooked member of the steroid hormone receptor family to an important player, not only in volume and electrolyte homeostasis but also in pathological changes occurring in an increasing number of tissues, especially the renal and cardiovascular systems. Simultaneously, a wealth of information about the structure, interaction partners and chromatin requirements for genomic signalling of steroid hormone receptors became available. However, much of the information for the MR has been deduced from studies of other family members and there is still a lack of knowledge about MR-specific features in ligand binding, chromatin remodelling, co-factor interactions and general MR specificity-conferring mechanisms that can completely explain the differences in pathophysiological function between MR and its closest relative, the glucocorticoid receptor. This review aims to give an overview of the current knowledge of MR structure, signalling and co-factors modulating its activity.
Collapse
Affiliation(s)
- Claudia Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany
| | - Brian Almeida-Prieto
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Alexander Nolze
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany
| | - Diego Alvarez de la Rosa
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| |
Collapse
|
23
|
Young MJ, Kanki M, Karthigan N, Konstandopoulos P. The Role of the Mineralocorticoid Receptor and Mineralocorticoid Receptor-Directed Therapies in Heart Failure. Endocrinology 2021; 162:6288445. [PMID: 34050730 DOI: 10.1210/endocr/bqab105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mineralocorticoid receptor (MR) antagonists (MRA), also referred to as aldosterone blockers, are now well-recognized for their clinical benefit in patients who have heart failure (HF) with reduced ejection fraction (HFrEF). Recent studies have also shown MRA can improve outcomes in patients with HFpEF, where the ejection fraction is preserved but left ventricular filling is reduced. While the MR is a steroid hormone receptor best known for antinatriuretic actions on electrolyte homeostasis in the distal nephron, it is now established that the MR has many physiological and pathophysiological roles in the heart, vasculature, and other nonepithelial tissue types. It is the impact of MR activation on these tissues that underpins the use of MRA in cardiovascular disease, in particular HF. This mini-review will discuss the origins and the development of MRA and highlight how their use has evolved from the "potassium-sparing diuretics" spironolactone and canrenone over 60 years ago, to the more receptor-selective eplerenone and most recently the emergence of new nonsteroidal receptor antagonists esaxerenone and finerenone.
Collapse
Affiliation(s)
- Morag J Young
- Baker Heart and Diabetes Institute, Cardiovascular Endocrinology Laboratory, Prahran 3181, Australia
| | - Monica Kanki
- Baker Heart and Diabetes Institute, Cardiovascular Endocrinology Laboratory, Prahran 3181, Australia
- Hudson Institute of Medical Research, Victoria 3168, Australia
| | - Nikshay Karthigan
- Baker Heart and Diabetes Institute, Cardiovascular Endocrinology Laboratory, Prahran 3181, Australia
- Hudson Institute of Medical Research, Victoria 3168, Australia
| | - Penny Konstandopoulos
- Baker Heart and Diabetes Institute, Cardiovascular Endocrinology Laboratory, Prahran 3181, Australia
| |
Collapse
|
24
|
Clarisse D, Deng L, de Bosscher K, Lother A. Approaches towards tissue-selective pharmacology of the mineralocorticoid receptor. Br J Pharmacol 2021; 179:3235-3249. [PMID: 34698367 DOI: 10.1111/bph.15719] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/23/2021] [Accepted: 10/10/2021] [Indexed: 11/29/2022] Open
Abstract
Mineralocorticoid receptor antagonists (MRAs) are highly effective therapies for cardiovascular and renal disease. However, the widespread clinical use of currently available MRAs in cardiorenal medicine is hampered by an increased risk of hyperkalemia. The mineralocorticoid receptor (MR) is a nuclear receptor responsible for fluid and electrolyte homeostasis in epithelial tissues, whereas pathophysiological MR activation in nonepithelial tissues leads to undesirable pro-inflammatory and pro-fibrotic effects. Therefore, new strategies that selectively target the deleterious effects of MR but spare its physiological function are needed. In this review, we discuss recent pharmacological developments starting from novel non-steroidal MRAs that are now entering clinical use, such as finerenone or esaxerenone, to concepts arising from the current knowledge of the MR signaling pathway, aiming at receptor-coregulator interaction, epigenetics, or downstream effectors of MR.
Collapse
Affiliation(s)
- Dorien Clarisse
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Lisa Deng
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karolien de Bosscher
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiology and Angiology I, University Heart Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Kowalczyk W, Waliszczak G, Jach R, Dulińska-Litewka J. Steroid Receptors in Breast Cancer: Understanding of Molecular Function as a Basis for Effective Therapy Development. Cancers (Basel) 2021; 13:4779. [PMID: 34638264 PMCID: PMC8507808 DOI: 10.3390/cancers13194779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer remains one of the most important health problems worldwide. The family of steroid receptors (SRs), which comprise estrogen (ER), progesterone (PR), androgen (AR), glucocorticoid (GR) and mineralocorticoid (MR) receptors, along with a receptor for a secosteroid-vitamin D, play a crucial role in the pathogenesis of the disease. They function predominantly as nuclear receptors to regulate gene expression, however, their full spectrum of action reaches far beyond this basic mechanism. SRs are involved in a vast variety of interactions with other proteins, including extensive crosstalk with each other. How they affect the biology of a breast cell depends on such factors as post-translational modifications, expression of coregulators, or which SR isoform is predominantly synthesized in a given cellular context. Although ER has been successfully utilized as a breast cancer therapy target for years, research on therapeutic application of other SRs is still ongoing. Designing effective hormone therapies requires thorough understanding of the molecular function of the SRs. Over the past decades, huge amount of data was obtained in multiple studies exploring this field, therefore in this review we attempt to summarize the current knowledge in a comprehensive way.
Collapse
Affiliation(s)
- Wojciech Kowalczyk
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (W.K.); (G.W.)
| | - Grzegorz Waliszczak
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (W.K.); (G.W.)
| | - Robert Jach
- Department of Gynecology and Obstetrics, Jagiellonian University Medical College, 23 Kopernika St., 31-501 Kraków, Poland;
| | - Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (W.K.); (G.W.)
| |
Collapse
|
26
|
Kolkhof P, Joseph A, Kintscher U. Nonsteroidal mineralocorticoid receptor antagonism for cardiovascular and renal disorders - New perspectives for combination therapy. Pharmacol Res 2021; 172:105859. [PMID: 34461222 DOI: 10.1016/j.phrs.2021.105859] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023]
Abstract
During the recent 30 years, there has been a dramatic increase in knowledge about the role of aldosterone and the mineralocorticoid receptor (MR) in the pathophysiology of cardiovascular (CV) and kidney diseases. The scientific perspective on the aldosterone/MR ensemble extended from a previously renal epithelial-centered focus on sodium-potassium exchange to a broader view as systemic modulators of extracellular matrix, inflammation and fibrosis. Spironolactone was launched as the first antagonist of aldosterone 27 years before the MR was cloned. It was classified as a potassium-sparing diuretic, based on its initial clinical characterization as a diuretic and its preferred activity to compensate for the potassium loss induced by loop diuretics when used in combination. The second steroidal MR antagonist was eplerenone which was discovered at a time when the role of aldosterone and MR in cardiac fibrosis was rediscovered. The constraint of developing potentially life-threatening hyperkalaemia when used in combination with other inhibitors of the renin-angiotensin-system (RAS) in patients with reduced kidney function initiated extensive research and development activities with the goal to identify novel nonsteroidal MR antagonists with an improved benefit-risk ratio. Here we summarize major current clinical trials with MRAs in different CV and renal diseases. Addition of the nonsteroidal MRA finerenone to optimal RAS blockade recently reduced CV and kidney outcomes in two large phase III trials in patients with chronic kidney disease (CKD) and type 2 diabetes (T2D). We provide an outlook on further opportunities for combination therapy of nonsteroidal MRA finerenone with RAS inhibitors and sodium-glucose cotransporter-2 inhibitors (SGLT2i).
Collapse
Affiliation(s)
- Peter Kolkhof
- Cardiovascular Research, Research and Early Development, R&D Pharmaceuticals, Bayer AG, Wuppertal, Germany.
| | - Amer Joseph
- Cardiology and Nephrology, Clinical Development, R&D Pharmaceuticals, Bayer AG, Berlin, Germany
| | - Ulrich Kintscher
- Charite - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal Research Center, 10115 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
27
|
Mineralocorticoid receptor actions in cardiovascular development and disease. Essays Biochem 2021; 65:901-911. [PMID: 34414409 DOI: 10.1042/ebc20210006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022]
Abstract
Mineralocorticoid receptors (MRs) are transcriptional regulators that mediate the diverse physiological and pathophysiological actions of corticosteroid hormones across many tissues. In the kidney aldosterone control of sodium/water resorption via DNA-binding actions of the MR is established. MRs also regulate tissues not involved in electrolyte homeostasis such as the heart, adipose tissue, brain, and inflammatory cells where the MRs can respond to both aldosterone and cortisol. The pathology of inappropriate MR activation in non-epithelial tissues are well-described, and steroidal antagonists of the MR have been clinically beneficial in the management of heart failure and blood pressure for decades. However, the role of cortisol-dependent MR activation in the physiological setting is less well defined. Like other steroid hormone receptors, the MR also regulates non-DNA-binding pathways including MAPK pathways and G protein coupled receptors to provide diversity to MR signaling. Whether nonDNA binding pathways are more relevant for MR activation in non-epithelial, versus epithelial, tissues remain unclear. This review will focus on molecular regulation of ligand-dependent MR activation and the physiology and pathophysiology of MR actions in the heart with a focus on the cardiomyocyte and provide a discussion of relevant genomic and non-genomic MR pathways and potential new transcriptional partners for the MR and their relevance for health and disease. Understanding MR actions in the heart will provide new insights into cell-selective mechanisms that underpin the therapeutic benefits of MRAs, and are a critical step towards developing next-generation tissue selective MR modulators with improved safety profiles.
Collapse
|
28
|
Zhang J, Zhang Y, Gao J, Wang M, Li X, Cui Z, Fu G. Long Noncoding RNA Tug1 Promotes Angiotensin II-Induced Renal Fibrosis by Binding to Mineralocorticoid Receptor and Negatively Regulating MicroR-29b-3p. Hypertension 2021; 78:693-705. [PMID: 34333990 DOI: 10.1161/hypertensionaha.120.16395] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Juhong Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (J.Z., J.G., M.W., X.L., G.F.)
| | - Yuqing Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China (Y.Z.)
| | - Jing Gao
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (J.Z., J.G., M.W., X.L., G.F.)
| | - Meihui Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (J.Z., J.G., M.W., X.L., G.F.)
| | - Xiaoting Li
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (J.Z., J.G., M.W., X.L., G.F.)
| | - Zhaoqiang Cui
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China (Z.C.)
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (J.Z., J.G., M.W., X.L., G.F.)
| |
Collapse
|
29
|
Gadasheva Y, Nolze A, Grossmann C. Posttranslational Modifications of the Mineralocorticoid Receptor and Cardiovascular Aging. Front Mol Biosci 2021; 8:667990. [PMID: 34124152 PMCID: PMC8193679 DOI: 10.3389/fmolb.2021.667990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/07/2021] [Indexed: 01/05/2023] Open
Abstract
During aging, the cardiovascular system is especially prone to a decline in function and to life-expectancy limiting diseases. Cardiovascular aging is associated with increased arterial stiffness and vasoconstriction as well as left ventricular hypertrophy and reduced diastolic function. Pathological changes include endothelial dysfunction, atherosclerosis, fibrosis, hypertrophy, inflammation, and changes in micromilieu with increased production of reactive oxygen and nitrogen species. The renin-angiotensin-aldosterone-system is an important mediator of electrolyte and blood pressure homeostasis and a key contributor to pathological remodeling processes of the cardiovascular system. Its effects are partially conveyed by the mineralocorticoid receptor (MR), a ligand-dependent transcription factor, whose activity increases during aging and cardiovascular diseases without correlating changes of its ligand aldosterone. There is growing evidence that the MR can be enzymatically and non-enzymatically modified and that these modifications contribute to ligand-independent modulation of MR activity. Modifications reported so far include phosphorylation, acetylation, ubiquitination, sumoylation and changes induced by nitrosative and oxidative stress. This review focuses on the different posttranslational modifications of the MR, their impact on MR function and degradation and the possible implications for cardiovascular aging and diseases.
Collapse
Affiliation(s)
- Yekatarina Gadasheva
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexander Nolze
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Grossmann
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
30
|
Laulhé M, Dumeige L, Vu TA, Hani I, Pussard E, Lombès M, Viengchareun S, Martinerie L. Sexual Dimorphism of Corticosteroid Signaling during Kidney Development. Int J Mol Sci 2021; 22:ijms22105275. [PMID: 34069759 PMCID: PMC8155845 DOI: 10.3390/ijms22105275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
Sexual dimorphism involves differences between biological sexes that go beyond sexual characteristics. In mammals, differences between sexes have been demonstrated regarding various biological processes, including blood pressure and predisposition to develop hypertension early in adulthood, which may rely on early events during development and in the neonatal period. Recent studies suggest that corticosteroid signaling pathways (comprising glucocorticoid and mineralocorticoid signaling pathways) have distinct tissue-specific expression and regulation during this specific temporal window in a sex-dependent manner, most notably in the kidney. This review outlines the evidence for a gender differential expression and activation of renal corticosteroid signaling pathways in the mammalian fetus and neonate, from mouse to human, that may favor mineralocorticoid signaling in females and glucocorticoid signaling in males. Determining the effects of such differences may shed light on short term and long term pathophysiological consequences, markedly for males.
Collapse
Affiliation(s)
- Margaux Laulhé
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
| | - Laurence Dumeige
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
- Pediatric Endocrinology Department, Hôpital Universitaire Robert Debre, France & Université de Paris, 75019 Paris, France
| | - Thi An Vu
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
| | - Imene Hani
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
| | - Eric Pussard
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, 94275 Le Kremlin-Bicêtre, France
| | - Marc Lombès
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
| | - Say Viengchareun
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
| | - Laetitia Martinerie
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
- Pediatric Endocrinology Department, Hôpital Universitaire Robert Debre, France & Université de Paris, 75019 Paris, France
- Correspondence:
| |
Collapse
|
31
|
Butterworth MB. Non-coding RNAs and the mineralocorticoid receptor in the kidney. Mol Cell Endocrinol 2021; 521:111115. [PMID: 33301840 PMCID: PMC7796954 DOI: 10.1016/j.mce.2020.111115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
The final steps in the Renin-Angiotensin-Aldosterone signaling System (RAAS) involve binding of the corticosteroid hormone, aldosterone to its mineralocorticoid receptor (MR). The bound MR interacts with response elements to induce or repress the transcription of aldosterone-regulated genes. Along with the classic genomic targets of aldosterone that alter mRNA and protein expression, aldosterone also regulates the expression of non-coding RNAs (ncRNAs). Short ncRNAs termed microRNAs (miRs) have been shown to play a role in transducing aldosterone's actions via MR signaling. The role of miRs in homeostatic regulation of aldosterone signaling, and the potential for aldosterone-regulated miRs to act as feedback regulators of MR have been recently reported. In this review, the role of miRs in RAAS signaling and feedback regulation of MR in kidney epithelial cells will be discussed.
Collapse
Affiliation(s)
- Michael B Butterworth
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
32
|
Agarwal R, Kolkhof P, Bakris G, Bauersachs J, Haller H, Wada T, Zannad F. Steroidal and non-steroidal mineralocorticoid receptor antagonists in cardiorenal medicine. Eur Heart J 2021; 42:152-161. [PMID: 33099609 PMCID: PMC7813624 DOI: 10.1093/eurheartj/ehaa736] [Citation(s) in RCA: 326] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/08/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
This review covers the last 80 years of remarkable progress in the development of mineralocorticoid receptor (MR) antagonists (MRAs) from synthesis of the first mineralocorticoid to trials of nonsteroidal MRAs. The MR is a nuclear receptor expressed in many tissues/cell types including the kidney, heart, immune cells, and fibroblasts. The MR directly affects target gene expression-primarily fluid, electrolyte and haemodynamic homeostasis, and also, but less appreciated, tissue remodelling. Pathophysiological overactivation of the MR leads to inflammation and fibrosis in cardiorenal disease. We discuss the mechanisms of action of nonsteroidal MRAs and how they differ from steroidal MRAs. Nonsteroidal MRAs have demonstrated important differences in their distribution, binding mode to the MR and subsequent gene expression. For example, the novel nonsteroidal MRA finerenone has a balanced distribution between the heart and kidney compared with spironolactone, which is preferentially concentrated in the kidneys. Compared with eplerenone, equinatriuretic doses of finerenone show more potent anti-inflammatory and anti-fibrotic effects on the kidney in rodent models. Overall, nonsteroidal MRAs appear to demonstrate a better benefit-risk ratio than steroidal MRAs, where risk is measured as the propensity for hyperkalaemia. Among patients with Type 2 diabetes, several Phase II studies of finerenone show promising results, supporting benefits on the heart and kidneys. Furthermore, finerenone significantly reduced the combined primary endpoint (chronic kidney disease progression, kidney failure, or kidney death) vs. placebo when added to the standard of care in a large Phase III trial.
Collapse
Affiliation(s)
- Rajiv Agarwal
- Indiana University School of Medicine and VA Medical Center, 1481 West 10th Street, 111N Indianapolis, IN 46202, USA
| | - Peter Kolkhof
- R&D Preclinical Research Cardiovascular, Bayer AG, Wuppertal, Germany
| | - George Bakris
- American Society of Hypertension's Comprehensive Hypertension Center at the University of Chicago Medicine, Chicago, IL, USA
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Faiez Zannad
- Centre d’Investigations Cliniques Plurithématique, University Henri Poincaré, Nancy, France
| |
Collapse
|
33
|
Doan TB, Cheung V, Clyne CD, Hilton HN, Eriksson N, Young MJ, Funder JW, Muscat GEO, Fuller PJ, Clarke CL, Graham JD. A tumour suppressive relationship between mineralocorticoid and retinoic acid receptors activates a transcriptional program consistent with a reverse Warburg effect in breast cancer. Breast Cancer Res 2020; 22:122. [PMID: 33148314 PMCID: PMC7641839 DOI: 10.1186/s13058-020-01355-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/13/2020] [Indexed: 03/11/2023] Open
Abstract
Background The role of nuclear receptors in both the aetiology and treatment of breast cancer is exemplified by the use of the oestrogen receptor (ER) as a prognostic marker and treatment target. Treatments targeting the oestrogen signalling pathway are initially highly effective for most patients. However, for the breast cancers that fail to respond, or become resistant, to current endocrine treatments, the long-term outlook is poor. ER is a member of the nuclear receptor superfamily, comprising 48 members in the human, many of which are expressed in the breast and could be used as alternative targets in cases where current treatments are ineffective. Methods We used sparse canonical correlation analysis to interrogate potential novel nuclear receptor expression relationships in normal breast and breast cancer. These were further explored using whole transcriptome profiling in breast cancer cells after combinations of ligand treatments. Results Using this approach, we discovered a tumour suppressive relationship between the mineralocorticoid receptor (MR) and retinoic acid receptors (RAR), in particular RARβ. Expression profiling of MR expressing breast cancer cells revealed that mineralocorticoid and retinoid co-treatment activated an expression program consistent with a reverse Warburg effect and growth inhibition, which was not observed with either ligand alone. Moreover, high expression of both MR and RARB was associated with improved breast cancer-specific survival. Conclusion Our study reveals a previously unknown relationship between MR and RAR in the breast, which is dependent on menopausal state and altered in malignancy. This finding identifies potential new targets for the treatment of breast cancers that are refractory to existing therapeutic options. Supplementary information Supplementary information accompanies this paper at 10.1186/s13058-020-01355-x.
Collapse
Affiliation(s)
- Tram B Doan
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, PO Box 412, Westmead, NSW, 2145, Australia.
| | - Vanessa Cheung
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC, 3168, Australia
| | - Colin D Clyne
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC, 3168, Australia
| | - Heidi N Hilton
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, PO Box 412, Westmead, NSW, 2145, Australia
| | - Natalie Eriksson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Morag J Young
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC, 3168, Australia
| | - John W Funder
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC, 3168, Australia
| | - George E O Muscat
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Peter J Fuller
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC, 3168, Australia
| | - Christine L Clarke
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, PO Box 412, Westmead, NSW, 2145, Australia
| | - J Dinny Graham
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, PO Box 412, Westmead, NSW, 2145, Australia.,Westmead Breast Cancer Institute, Westmead Hospital, Westmead, NSW, 2145, Australia
| |
Collapse
|
34
|
Abdel Ghafar MT. An overview of the classical and tissue-derived renin-angiotensin-aldosterone system and its genetic polymorphisms in essential hypertension. Steroids 2020; 163:108701. [PMID: 32717198 DOI: 10.1016/j.steroids.2020.108701] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/05/2020] [Accepted: 07/19/2020] [Indexed: 01/25/2023]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is a specific hormonal cascade implicated in the blood pressure control and sodium balance regulation. Several components of this pathway have been identified including renin, angiotensinogen, angiotensin-converting enzyme, angiotensins with a wide range of distinct subtypes and receptors, and aldosterone. The RAAS is not only confined to the systemic circulation but also exists locally in specific tissues such as the heart, brain, and blood vessels with a particular paracrine action. Alteration of RAAS function can contribute to the development of hypertension and the emergence of its associated end-organ damage. Genotypic variations of the different genes of RAAS cascade have been linked to the susceptibility to essential hypertension. Accordingly, to understand the pathogenesis of essential hypertension and its related complications, deep insight into the physiological and genetic aspects of RAAS with its different components and pathways is necessary. In this review, we aimed to illustrate the physiological and genetic aspects of RAAS and the underlying mechanisms which link this system to the predisposition to essential hypertension.
Collapse
|
35
|
Fuller PJ, Yao YZ, Yang J, Young MJ. Structural determinants of activation of the mineralocorticoid receptor: an evolutionary perspective. J Hum Hypertens 2020; 35:110-116. [PMID: 32467588 DOI: 10.1038/s41371-020-0360-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/14/2020] [Indexed: 12/18/2022]
Abstract
The mineralocorticoid receptor (MR) plays a central role in sodium homoeostasis by transducing the response to aldosterone in the distal nephron and other sodium transporting epithelia. The MR is a member of the nuclear receptor family of ligand-dependent transcription factors; it is unusual in being the receptor for two steroid hormones aldosterone and cortisol (which also binds to the closely related glucocorticoid receptor). Less well recognised is that progesterone also binds to the MR with high affinity. The conformation of the ligand-bound receptor is determined by the ligand including whether the conformation is agonist or antagonist. An agonist MR conformation then enables interactions with DNA, other MR (homodimerization) and coregulatory molecules to regulate gene expression. Insights into the structural determinants of an agonist response to ligand come from studies of the evolution of the MR. Progesterone is an agonist in the fish MR, but antagonist in the MR of terrestrial vertebrates; this switch results from the loss of a critical leucine that mediates a leucine:leucine interaction between helix 1 and helix 8 which enables the agonist response to progesterone. The insights into the intramolecular dynamics of activation suggest novel ways in which MR antagonism may be achieved beyond the current, progesterone-based antagonists in clinical use.
Collapse
Affiliation(s)
- Peter J Fuller
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia. .,Department of Molecular Translational Science, The Monash University, Clayton, VIC, 3168, Australia.
| | - Yi-Zhou Yao
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Molecular Translational Science, The Monash University, Clayton, VIC, 3168, Australia
| | - Jun Yang
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Molecular Translational Science, The Monash University, Clayton, VIC, 3168, Australia
| | - Morag J Young
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Molecular Translational Science, The Monash University, Clayton, VIC, 3168, Australia
| |
Collapse
|
36
|
Maning J, McCrink KA, Pollard CM, Desimine VL, Ghandour J, Perez A, Cora N, Ferraino KE, Parker BM, Brill AR, Aukszi B, Lymperopoulos A. Antagonistic Roles of GRK2 and GRK5 in Cardiac Aldosterone Signaling Reveal GRK5-Mediated Cardioprotection via Mineralocorticoid Receptor Inhibition. Int J Mol Sci 2020; 21:2868. [PMID: 32326036 PMCID: PMC7215681 DOI: 10.3390/ijms21082868] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Aldosterone (Aldo), when overproduced, is a cardiotoxic hormone underlying heart failure and hypertension. Aldo exerts damaging effects via the mineralocorticoid receptor (MR) but also activates the antiapoptotic G protein-coupled estrogen receptor (GPER) in the heart. G protein-coupled receptor (GPCR)-kinase (GRK)-2 and -5 are the most abundant cardiac GRKs and phosphorylate GPCRs as well as non-GPCR substrates. Herein, we investigated whether they phosphorylate and regulate cardiac MR and GPER. To this end, we used the cardiomyocyte cell line H9c2 and adult rat ventricular myocytes (ARVMs), in which we manipulated GRK5 protein levels via clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and GRK2 activity via pharmacological inhibition. We report that GRK5 phosphorylates and inhibits the cardiac MR whereas GRK2 phosphorylates and desensitizes GPER. In H9c2 cardiomyocytes, GRK5 interacts with and phosphorylates the MR upon β2-adrenergic receptor (AR) activation. In contrast, GRK2 opposes agonist-activated GPER signaling. Importantly, GRK5-dependent MR phosphorylation of the MR inhibits transcriptional activity, since aldosterone-induced gene transcription is markedly suppressed in GRK5-overexpressing cardiomyocytes. Conversely, GRK5 gene deletion augments cardiac MR transcriptional activity. β2AR-stimulated GRK5 phosphorylates and inhibits the MR also in ARVMs. Additionally, GRK5 is necessary for the protective effects of the MR antagonist drug eplerenone against Aldo-induced apoptosis and oxidative stress in ARVMs. In conclusion, GRK5 blocks the cardiotoxic MR-dependent effects of Aldo in the heart, whereas GRK2 may hinder beneficial effects of Aldo through GPER. Thus, cardiac GRK5 stimulation (e.g., via β2AR activation) might be of therapeutic value for heart disease treatment via boosting the efficacy of MR antagonists against Aldo-mediated cardiac injury.
Collapse
Affiliation(s)
- Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Katie A. McCrink
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Celina M. Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Victoria L. Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Jennifer Ghandour
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Arianna Perez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Krysten E. Ferraino
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Barbara M. Parker
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Ava R. Brill
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Beatrix Aukszi
- Department of Chemistry and Physics, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| |
Collapse
|
37
|
Koning ASCAM, Buurstede JC, van Weert LTCM, Meijer OC. Glucocorticoid and Mineralocorticoid Receptors in the Brain: A Transcriptional Perspective. J Endocr Soc 2019; 3:1917-1930. [PMID: 31598572 PMCID: PMC6777400 DOI: 10.1210/js.2019-00158] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
Adrenal glucocorticoid hormones are crucial for maintenance of homeostasis and adaptation to stress. They act via the mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs)-members of the family of nuclear receptors. MRs and GRs can mediate distinct, sometimes opposite, effects of glucocorticoids. Both receptor types can mediate nongenomic steroid effects, but they are best understood as ligand-activated transcription factors. MR and GR protein structure is similar; the receptors can form heterodimers on the DNA at glucocorticoid response elements (GREs), and they share a number of target genes. The transcriptional basis for opposite effects on cellular physiology remains largely unknown, in particular with respect to MR-selective gene transcription. In this review, we discuss proven and potential mechanisms of transcriptional specificity for MRs and GRs. These include unique GR binding to "negative GREs," direct binding to other transcription factors, and binding to specific DNA sequences in conjunction with other transcription factors, as is the case for MRs and NeuroD proteins in the brain. MR- and GR-specific effects may also depend on specific interactions with transcriptional coregulators, downstream mediators of transcriptional receptor activity. Current data suggest that the relative importance of these mechanisms depends on the tissue and physiological context. Insight into these processes may not only allow a better understanding of homeostatic regulation but also the development of drugs that target specific aspects of disease.
Collapse
Affiliation(s)
- Anne-Sophie C A M Koning
- Einthoven Laboratory and Department of Medicine, Division of Endocrinology, Leiden University Medical Center, RC Leiden, Netherlands
| | - Jacobus C Buurstede
- Einthoven Laboratory and Department of Medicine, Division of Endocrinology, Leiden University Medical Center, RC Leiden, Netherlands
| | - Lisa T C M van Weert
- Einthoven Laboratory and Department of Medicine, Division of Endocrinology, Leiden University Medical Center, RC Leiden, Netherlands
| | - Onno C Meijer
- Einthoven Laboratory and Department of Medicine, Division of Endocrinology, Leiden University Medical Center, RC Leiden, Netherlands
| |
Collapse
|
38
|
van der Heijden CDCC, Deinum J, Joosten LAB, Netea MG, Riksen NP. The mineralocorticoid receptor as a modulator of innate immunity and atherosclerosis. Cardiovasc Res 2019; 114:944-953. [PMID: 29668907 DOI: 10.1093/cvr/cvy092] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/12/2018] [Indexed: 12/22/2022] Open
Abstract
The mineralocorticoid receptor (MR) is a member of the nuclear receptor steroid-binding family. The classical MR ligand aldosterone controls electrolyte and fluid homeostasis after binding in renal epithelial cells. However, more recent evidence suggests that activation of extrarenal MRs by aldosterone negatively impacts cardiovascular health independent of its effects on blood pressure: high levels of aldosterone associate with an increased cardiovascular event rate, where MR antagonists exert beneficial effects on cardiovascular mortality. The most important cause for cardiovascular events is atherosclerosis that is currently considered a low-grade inflammatory disorder of the arterial wall. In this inflammatory process, the innate immune system plays a deciding role, with the monocyte-derived macrophage being the most abundant cell in the atherosclerotic plaque. Intriguingly, both monocytes and macrophages express the MR, and a growing body of evidence shows that these cells are skewed into a pro-inflammatory and pro-atherosclerotic phenotype via MR stimulation. In this review, we detail the current perspective on the role of the monocyte and macrophage MR in atherosclerosis development and provide a comprehensive framework of the effects of MR activation of the innate immune system that might drive the pro-atherosclerotic outcome.
Collapse
Affiliation(s)
- Charlotte D C C van der Heijden
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Jaap Deinum
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Carl-Troll-Straβe 31, 53115 Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
39
|
Pollard CM, Desimine VL, Wertz SL, Perez A, Parker BM, Maning J, McCrink KA, Shehadeh LA, Lymperopoulos A. Deletion of Osteopontin Enhances β₂-Adrenergic Receptor-Dependent Anti-Fibrotic Signaling in Cardiomyocytes. Int J Mol Sci 2019; 20:1396. [PMID: 30897705 PMCID: PMC6470638 DOI: 10.3390/ijms20061396] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022] Open
Abstract
Cardiac β₂-adrenergic receptors (ARs) are known to inhibit collagen production and fibrosis in cardiac fibroblasts and myocytes. The β₂AR is a Gs protein-coupled receptor (GPCR) and, upon its activation, stimulates the generation of cyclic 3',5'-adenosine monophosphate (cAMP). cAMP has two effectors: protein kinase A (PKA) and the exchange protein directly activated by cAMP (Epac). Epac1 has been shown to inhibit cardiac fibroblast activation and fibrosis. Osteopontin (OPN) is a ubiquitous pro-inflammatory cytokine, which also mediates fibrosis in several tissues, including the heart. OPN underlies several cardiovascular pathologies, including atherosclerosis and cardiac adverse remodeling. We found that the cardiotoxic hormone aldosterone transcriptionally upregulates OPN in H9c2 rat cardiac myoblasts-an effect prevented by endogenous β₂AR activation. Additionally, CRISPR-mediated OPN deletion enhanced cAMP generation in response to both β₁AR and β₂AR activation in H9c2 cardiomyocytes, leading to the upregulation of Epac1 protein levels. These effects rendered β₂AR stimulation capable of completely abrogating transforming growth factor (TGF)-β-dependent fibrosis in OPN-lacking H9c2 cardiomyocytes. Finally, OPN interacted constitutively with Gαs subunits in H9c2 cardiac cells. Thus, we uncovered a direct inhibitory role of OPN in cardiac β₂AR anti-fibrotic signaling via cAMP/Epac1. OPN blockade could be of value in the treatment and/or prevention of cardiac fibrosis.
Collapse
Affiliation(s)
- Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Victoria L Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Shelby L Wertz
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Arianna Perez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Barbara M Parker
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Katie A McCrink
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Lina A Shehadeh
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy; Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
40
|
Ames MK, Atkins CE, Pitt B. The renin-angiotensin-aldosterone system and its suppression. J Vet Intern Med 2019; 33:363-382. [PMID: 30806496 PMCID: PMC6430926 DOI: 10.1111/jvim.15454] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic activation of the renin-angiotensin-aldosterone system (RAAS) promotes and perpetuates the syndromes of congestive heart failure, systemic hypertension, and chronic kidney disease. Excessive circulating and tissue angiotensin II (AngII) and aldosterone levels lead to a pro-fibrotic, -inflammatory, and -hypertrophic milieu that causes remodeling and dysfunction in cardiovascular and renal tissues. Understanding of the role of the RAAS in this abnormal pathologic remodeling has grown over the past few decades and numerous medical therapies aimed at suppressing the RAAS have been developed. Despite this, morbidity from these diseases remains high. Continued investigation into the complexities of the RAAS should help clinicians modulate (suppress or enhance) components of this system and improve quality of life and survival. This review focuses on updates in our understanding of the RAAS and the pathophysiology of AngII and aldosterone excess, reviewing what is known about its suppression in cardiovascular and renal diseases, especially in the cat and dog.
Collapse
Affiliation(s)
- Marisa K Ames
- Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado
| | - Clarke E Atkins
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Bertram Pitt
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| |
Collapse
|
41
|
Nagata Y, Goto T, Miyamoto H. The Role of Mineralocorticoid Receptor Signaling in Genitourinary Cancers. NUCLEAR RECEPTOR RESEARCH 2019. [DOI: 10.32527/2019/101410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yujiro Nagata
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Urology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Fukuoka 807-8555, Japan
| | - Takuro Goto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
42
|
Fuller PJ, Yang J, Young MJ. Mechanisms of Mineralocorticoid Receptor Signaling. VITAMINS AND HORMONES 2019; 109:37-68. [DOI: 10.1016/bs.vh.2018.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Brain Mineralocorticoid Receptors and Resilience to Stress. VITAMINS AND HORMONES 2019; 109:341-359. [DOI: 10.1016/bs.vh.2018.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
44
|
Parker BM, Wertz SL, Pollard CM, Desimine VL, Maning J, McCrink KA, Lymperopoulos A. Novel Insights into the Crosstalk between Mineralocorticoid Receptor and G Protein-Coupled Receptors in Heart Adverse Remodeling and Disease. Int J Mol Sci 2018; 19:3764. [PMID: 30486399 PMCID: PMC6320977 DOI: 10.3390/ijms19123764] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
The mineralocorticoid hormone aldosterone regulates sodium and potassium homeostasis but also adversely modulates the maladaptive process of cardiac adverse remodeling post-myocardial infarction. Through activation of its mineralocorticoid receptor (MR), a classic steroid hormone receptor/transcription factor, aldosterone promotes inflammation and fibrosis of the heart, the vasculature, and the kidneys. This is why MR antagonists reduce morbidity and mortality of heart disease patients and are part of the mainstay pharmacotherapy of advanced human heart failure. A plethora of animal studies using cell type⁻specific targeting of the MR gene have established the importance of MR signaling and function in cardiac myocytes, vascular endothelial and smooth muscle cells, renal cells, and macrophages. In terms of its signaling properties, the MR is distinct from nuclear receptors in that it has, in reality, two physiological hormonal agonists: not only aldosterone but also cortisol. In fact, in several tissues, including in the myocardium, cortisol is the primary hormone activating the MR. There is a considerable amount of evidence indicating that the effects of the MR in each tissue expressing it depend on tissue- and ligand-specific engagement of molecular co-regulators that either activate or suppress its transcriptional activity. Identification of these co-regulators for every ligand that interacts with the MR in the heart (and in other tissues) is of utmost importance therapeutically, since it can not only help elucidate fully the pathophysiological ramifications of the cardiac MR's actions, but also help design and develop novel better MR antagonist drugs for heart disease therapy. Among the various proteins the MR interacts with are molecules involved in cardiac G protein-coupled receptor (GPCR) signaling. This results in a significant amount of crosstalk between GPCRs and the MR, which can affect the latter's activity dramatically in the heart and in other cardiovascular tissues. This review summarizes the current experimental evidence for this GPCR-MR crosstalk in the heart and discusses its pathophysiological implications for cardiac adverse remodeling as well as for heart disease therapy. Novel findings revealing non-conventional roles of GPCR signaling molecules, specifically of GPCR-kinase (GRK)-5, in cardiac MR regulation are also highlighted.
Collapse
Affiliation(s)
- Barbara M Parker
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Shelby L Wertz
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Victoria L Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
- Present address: Jackson Memorial Hospital, Miami, FL 33136, USA.
| | - Katie A McCrink
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
- Present address: Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
45
|
Meijer OC, Buurstede JC, Schaaf MJM. Corticosteroid Receptors in the Brain: Transcriptional Mechanisms for Specificity and Context-Dependent Effects. Cell Mol Neurobiol 2018; 39:539-549. [PMID: 30291573 PMCID: PMC6469829 DOI: 10.1007/s10571-018-0625-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022]
Abstract
Corticosteroid hormones act in the brain to support adaptation to stress via binding to mineralocorticoid and glucocorticoid receptors (MR and GR). These receptors act in large measure as transcription factors. Corticosteroid effects can be highly divergent, depending on the receptor type, but also on brain region, cell type, and physiological context. These differences ultimately depend on differential interactions of MR and GR with other proteins, which determine ligand binding, nuclear translocation, and transcriptional activities. In this review, we discuss established and potential mechanisms that confer receptor and cell type-specific effects of the MR and GR-mediated transcriptional effects in the brain.
Collapse
Affiliation(s)
- Onno C Meijer
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
| | - J C Buurstede
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Marcel J M Schaaf
- Department of Animal Sciences and Health (M.J.M.S.), Institute of Biology, Leiden University, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
46
|
Mifsud KR, Reul JMHM. Mineralocorticoid and glucocorticoid receptor-mediated control of genomic responses to stress in the brain. Stress 2018; 21:389-402. [PMID: 29614900 DOI: 10.1080/10253890.2018.1456526] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Successful coping with stressful events involves adaptive and cognitive processes in the brain that make the individual more resilient to similar stressors in the future. Stressful events result in the secretion of glucocorticoids (GCs) from the adrenal glands into the blood stream. Early work proved instrumental for developing the concept that these hormones act in the brain to coordinate physiological and behavioral responses to stress through binding to two different GC-binding receptors. Once activated these receptors translocate to the nucleus where they act on target genes to facilitate (or sometimes inhibit) transcription. There are two types of receptors in the brain, the mineralocorticoid receptor (MR), and glucocorticoid receptor (GR). This review summarizes recent work which provides new insights regarding the genomic action of these receptors, both under baseline conditions and following exposure to acute stress. This work is discussed alongside the extensive studies undertaken in this field previously and new, and exciting "big data" studies which have generated a wealth of relevant data. The consequence of these new insights will challenge existing assumptions about the role of MRs and GRs and pave the way for the implementation of novel and improved methodologies to identify the role these corticosteroid receptors have in stress-related behavioral adaptation.
Collapse
Affiliation(s)
- Karen R Mifsud
- a Neuro-Epigenetics Research Group, Bristol Medical School , University of Bristol , Bristol , UK
| | - Johannes M H M Reul
- a Neuro-Epigenetics Research Group, Bristol Medical School , University of Bristol , Bristol , UK
| |
Collapse
|
47
|
Sevilla LM, Pérez P. Roles of the Glucocorticoid and Mineralocorticoid Receptors in Skin Pathophysiology. Int J Mol Sci 2018; 19:ijms19071906. [PMID: 29966221 PMCID: PMC6073661 DOI: 10.3390/ijms19071906] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022] Open
Abstract
The nuclear hormone receptor (NR) superfamily comprises approximately 50 evolutionarily conserved proteins that play major roles in gene regulation by prototypically acting as ligand-dependent transcription factors. Besides their central role in physiology, NRs have been largely used as therapeutic drug targets in many chronic inflammatory conditions and derivatives of their specific ligands, alone or in combination, are frequently prescribed for the treatment of skin diseases. In particular, glucocorticoids (GCs) are the most commonly used compounds for treating prevalent skin diseases such as psoriasis due to their anti-proliferative and anti-inflammatory actions. However, and despite their therapeutic efficacy, the long-term use of GCs is limited because of the cutaneous adverse effects including atrophy, delayed wound healing, and increased susceptibility to stress and infections. The GC receptor (GR/NR3C1) and the mineralocorticoid receptor (MR/NR3C2) are members of the NR subclass NR3C that are highly related, both structurally and functionally. While the GR is ubiquitously expressed and is almost exclusively activated by GCs; an MR has a more restricted tissue expression pattern and can bind GCs and the mineralocorticoid aldosterone with similar high affinity. As these receptors share 95% identity in their DNA binding domains; both can recognize the same hormone response elements; theoretically resulting in transcriptional regulation of the same target genes. However, a major mechanism for specific activation of GRs and/or MRs is at the pre-receptor level by modulating the local availability of active GCs. Furthermore, the selective interactions of each receptor with spatio-temporally regulated transcription factors and co-regulators are crucial for the final transcriptional outcome. While there are abundant genome wide studies identifying GR transcriptional targets in a variety of tissue and cell types; including keratinocytes; the data for MR is more limited thus far. Our group and others have studied the role of GRs and MRs in skin development and disease by generating and characterizing mouse and cellular models with gain- and loss-of-function for each receptor. Both NRs are required for skin barrier competence during mouse development and also play a role in adult skin homeostasis. Moreover, the combined loss of epidermal GRs and MRs caused a more severe skin phenotype relative to single knock-outs (KOs) in developing skin and in acute inflammation and psoriasis, indicating that these corticosteroid receptors play cooperative roles. Understanding GR- and MR-mediated signaling in skin should contribute to deciphering their tissue-specific relative roles and ultimately help to improve GC-based therapies.
Collapse
Affiliation(s)
- Lisa M Sevilla
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain.
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain.
| |
Collapse
|
48
|
de Kloet ER, Meijer OC, de Nicola AF, de Rijk RH, Joëls M. Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Front Neuroendocrinol 2018; 49:124-145. [PMID: 29428549 DOI: 10.1016/j.yfrne.2018.02.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 01/14/2023]
Abstract
Bruce McEwen's discovery of receptors for corticosterone in the rat hippocampus introduced higher brain circuits in the neuroendocrinology of stress. Subsequently, these receptors were identified as mineralocorticoid receptors (MRs) that are involved in appraisal processes, choice of coping style, encoding and retrieval. The MR-mediated actions on cognition are complemented by slower actions via glucocorticoid receptors (GRs) on contextualization, rationalization and memory storage of the experience. These sequential phases in cognitive performance depend on synaptic metaplasticity that is regulated by coordinate MR- and GR activation. The receptor activation includes recruitment of coregulators and transcription factors as determinants of context-dependent specificity in steroid action; they can be modulated by genetic variation and (early) experience. Interestingly, inflammatory responses to damage seem to be governed by a similarly balanced MR:GR-mediated action as the initiating, terminating and priming mechanisms involved in stress-adaptation. We conclude with five questions challenging the MR:GR balance hypothesis.
Collapse
Affiliation(s)
- E R de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - O C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - A F de Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina.
| | - R H de Rijk
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands & Department of Clinical Psychology, Leiden University, The Netherlands.
| | - M Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands; University of Groningen, University Medical Center Groningen, The Netherlands.
| |
Collapse
|
49
|
Kostrouchová M, Kostrouchová V, Yilma P, Benda A, Mandys V, Kostrouchová M. Valproic Acid Decreases the Nuclear Localization of MDT-28, the Nematode Orthologue of MED28. Folia Biol (Praha) 2018; 64:1-9. [PMID: 29871732 DOI: 10.14712/fb2018064010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Mediator is a multiprotein complex that connects regulation mediated by transcription factors with RNA polymerase II transcriptional machinery and integrates signals from the cell regulatory cascades with gene expression. One of the Mediator subunits, Mediator complex subunit 28 (MED28), has a dual nuclear and cytoplasmic localization and function. In the nucleus, MED28 functions as part of Mediator and in the cytoplasm, it interacts with cytoskeletal proteins and is part of the regulatory cascades including that of Grb2. MED28 thus has the potential to bring cytoplasmic regulatory interactions towards the centre of gene expression regulation. In this study, we identified MDT-28, the nematode orthologue of MED28, as a likely target of lysine acetylation using bioinformatic prediction of posttranslational modifications. Lysine acetylation was experimentally confirmed using anti-acetyl lysine antibody on immunoprecipitated GFP::MDT-28 expressed in synchronized C. elegans. Valproic acid (VPA), a known inhibitor of lysine deacetylases, enhanced the lysine acetylation of GFP::MDT-28. At the subcellular level, VPA decreased the nuclear localization of GFP::MDT-28 detected by fluorescencelifetime imaging microscopy (FLIM). This indicates that the nuclear pool of MDT-28 is regulated by a mechanism sensitive to VPA and provides an indirect support for a variable relative proportion of MED28 orthologues with other Mediator subunits.
Collapse
Affiliation(s)
- M Kostrouchová
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Pathology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - V Kostrouchová
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - P Yilma
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - A Benda
- Imaging Methods Core Facility, Biocev, Faculty of Science, Charles University, Prague, Czech Republic
| | - V Mandys
- Department of Pathology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Kostrouchová
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
50
|
Stress and the HPA Axis: Balancing Homeostasis and Fertility. Int J Mol Sci 2017; 18:ijms18102224. [PMID: 29064426 PMCID: PMC5666903 DOI: 10.3390/ijms18102224] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 12/25/2022] Open
Abstract
An organism’s reproductive fitness is sensitive to the environment, integrating cues of resource availability, ecological factors, and hazards within its habitat. Events that challenge the environment of an organism activate the central stress response system, which is primarily mediated by the hypothalamic–pituitary–adrenal (HPA) axis. The regulatory functions of the HPA axis govern the cardiovascular and metabolic system, immune functions, behavior, and reproduction. Activation of the HPA axis by various stressors primarily inhibits reproductive function and is able to alter fetal development, imparting a biological record of stress experienced in utero. Clinical studies and experimental data indicate that stress signaling can mediate these effects through direct actions in the brain, gonads, and embryonic tissues. This review focuses on the mechanisms by which stress activation of the HPA axis impacts fertility and fetal development.
Collapse
|