1
|
An J, Lin T, Guo X, Cao Z, Lu Q. Regulation of the EGFR/PI3K/AKT signaling cascade using the Shengui Yangrong Decoction improves ovulation dysfunction and insulin resistance in polycystic ovary syndrome. Fitoterapia 2025; 182:106407. [PMID: 39978644 DOI: 10.1016/j.fitote.2025.106407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/21/2025] [Accepted: 02/01/2025] [Indexed: 02/22/2025]
Abstract
Shengui Yangrong Decoction (SGYR) is a traditional Chinese herbal prescription that has been used for the treatment of polycystic ovary syndrome (PCOS). However, there is a consensus on the clinical efficacy of SGYR in treating PCOS, yet the underlying pharmacological mechanisms remain unclear.This study aim to investigate the effects of SGYR on insulin resistance in rats with PCOS and its modulation of follicular development through the epidermal growth factor receptor (EGFR)/PI3K/AKT signaling cascade by integrating metabolomics and network pharmacology and in vivo and in vitro experimental validation.Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, network pharmacology, and molecular docking, were used to identify key components of SGYR and predict its potential targets. Subcutaneous dehydroepiandrosterone injections and a fat-rich diet were used to create a rat model for PCOS. This was followed by the in vitro growth of human granulosa cells and subsequent treatment with dihydrotestosterone and the epidermal growth factor (EGF). Subsequently, the recovery mechanism of SGYR was analyzed using an enzyme-linked immunosorbent assay, hematoxylin and eosin staining, immunofluorescence, and western blot assays.A total of 112 compounds were identified in SGYR, and 147 potential PCOS targets were found. The core targets were screened using a cluster analysis, and seven gene clusters and five core genes were identified. The core genes included ERBB2, SDHB, EGFR, IL6ST, and PIK3CD, and the EGFR/PI3K/AKT signaling cascade was investigated in depth based on component-target-pathway screening and in conjunction with literature studies. Molecular docking confirmed that the EGF receptor had good binding activity with these compounds. In vivo and in vitro experiments confirmed that SGYR effectively regulated sex hormone levels, improved insulin resistance, attenuated pathological changes in rat ovaries, and verified the localization and expression of EGFR, ERBB2, IGF-1, follicle-stimulating hormone receptor, and luteinizing hormone/chorionic gonadotropin receptor in the ovaries. The complex mechanism of SGYR in treating PCOS by inhibiting the EGFR/PI3K/AKT signaling cascade was revealed.
Collapse
Affiliation(s)
- Jie An
- Nanjing University of Chinese Medicine, Nanjing 210029, China; Kunshan TCM Hospital Affliated to Nanjing University of Chinese Medicine, Kunshan 215300, China
| | - Tao Lin
- Kunshan TCM Hospital Affliated to Nanjing University of Chinese Medicine, Kunshan 215300, China
| | - Xiaojing Guo
- Kunshan TCM Hospital Affliated to Nanjing University of Chinese Medicine, Kunshan 215300, China
| | - Zhenzhen Cao
- Kunshan TCM Hospital Affliated to Nanjing University of Chinese Medicine, Kunshan 215300, China
| | - Qibin Lu
- Jiangsu Provincial Hospital of Chinese Medicine, Affliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
2
|
Dou Z, Li Q, Zhang J, Zhang X. Exploring the mechanism of Schisandra rubriflora in the treatment of polycystic ovary syndrome based on network pharmacology and molecular docking. J Ovarian Res 2025; 18:16. [PMID: 39875917 PMCID: PMC11773789 DOI: 10.1186/s13048-025-01600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrine disease associated with reproductive and metabolic abnormalities. The aim of this study was to elucidate the effects of Schisandra rubriflora (S. rubriflora) on PCOS and its related mechanisms using network pharmacology, molecular docking and in vitro experiments. MATERIALS AND METHODS HERB database and SwissTargetPrediction database were used to obtain the active components and the targets of S. rubriflora. Differentially expressed genes (DEGs) associated with PCOS were obtained by analyzing GSE54248 dataset. A protein-protein interaction network was constructed, and topological analyses were performed to identify the hub targets and main bioactive components. The binding abilities between hub targets and key components were studied by molecular docking. Finally, in vitro PCOS models were constructed with KGN cells and rat ovarian granulosa cells, respectively, and the regulatory effects of schisandrin, a key bioactive component of S. rubriflora, on the cells were investigated by in vitro assays. RESULTS A total of 14 bioactive ingredients of S. rubriflora and 26 potential therapeutic targets of S. rubriflora in PCOS treatment were obtained. Bioinformatics analyses suggested that the mechanisms of S. rubriflora in treating PCOS were related to IL-17 signaling pathway and TNF signaling pathway. The binding affinities between key components of S. rubriflora (schisandrin, wyerone, and rugosal) and hub targets (PTGS2, MMP9, MCL1, and JUN) were high. Schisandrin could attenuate lipopolysaccharide-induced inflammation, oxidative stress, and apoptosis of KGN cells and rat ovarian granulosa cells, as well as inhibit hub target expression and TNF pathway activation. CONCLUSION PTGS2, MMP9, MCL1 and JUN are potential targets for S. rubriflora to treat PCOS. Schisandrin, a main component of S. rubriflora, may be a candidate for the treatment of PCOS.
Collapse
Affiliation(s)
- Zhengyan Dou
- Department of Operation Room, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Qingxian Li
- Department of Reproductive Medicine Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Jing Zhang
- Department of Integrative Therapy, Fudan University Cancer Hospital, Shanghai, 200000, China
| | - Xin Zhang
- Department of Reproductive Medicine Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| |
Collapse
|
3
|
Xu X, Zhang X, Chen J, Du X, Sun Y, Zhan L, Wang W, Li Y. Exploring the molecular mechanisms by which per- and polyfluoroalkyl substances induce polycystic ovary syndrome through in silico toxicogenomic data mining. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116251. [PMID: 38537477 DOI: 10.1016/j.ecoenv.2024.116251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
The pathogeny of polycystic ovary syndrome (PCOS) is intricate, with endocrine disruptors (EDCs) being acknowledged as significant environmental factors. Research has shown a link between exposure to per- and polyfluoroalkyl substances (PFAS) and the development and progression of PCOS, although the precise mechanism is not fully understood. This study utilized toxicogenomics and comparative toxicogenomics databases to analyze data and investigate how PFAS mixtures may contribute to the development of PCOS. The results indicated that 74 genes are associated with both PFAS exposure and PCOS progression. Enrichment analysis suggested that cell cycle regulation and steroid hormone synthesis may be crucial pathways through which PFAS mixtures participate in the development of PCOS, involving important genes such as CCNB1 and SRD5A1. Furthermore, the study identified transcription factors (TFs) and miRNAs that may be involved in the onset and progression of PCOS, constructing regulatory networks encompassing TFs-mRNA interactions and miRNA-mRNA relationships to elucidate their regulatory roles in gene expression. By utilizing data mining techniques based on toxicogenomic databases, this study provides relatively comprehensive insights into the association between exposure factors and diseases compared to traditional toxicology studies. These findings offer new perspectives for further in vivo or in vitro investigations and contribute to understanding the pathogenesis of PCOS, thereby providing valuable references for identifying clinical treatment targets.
Collapse
Affiliation(s)
- Xueming Xu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Xiaoping Zhang
- Ganzhou Ganxian District Maternity and Child Health Hospital, Ganzhou, Jiangxi Province 341100, China
| | - Jiake Chen
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Xiushuai Du
- School of Public Health, Fudan University, Shanghai 200032, China
| | - Yi Sun
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Liqin Zhan
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Wenxiang Wang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China.
| |
Collapse
|
4
|
Fu LW, Gao Z, Zhang N, Yang N, Long HY, Kong LY, Li XY. Traditional Chinese medicine formulae: A complementary method for the treatment of polycystic ovary syndrome. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117698. [PMID: 38171464 DOI: 10.1016/j.jep.2023.117698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/04/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polycystic ovary syndrome (PCOS) is a prevalent female endocrine condition that significantly affects women of all age groups and is characterized by metabolic dysfunction. The efficacy of existing pharmaceutical interventions for the treatment of PCOS remains inadequate. With a rich history and cultural significance spanning thousands of years, Traditional Chinese Medicine (TCM) is extensively employed for treating a variety of ailments and can serve as a supplementary therapy for managing PCOS. Multiple clinical observations and laboratory tests have unequivocally demonstrated the substantial effectiveness and safety of TCM formulae in treating PCOS, and further investigations are currently in progress. AIM OF THE STUDY To summarize the TCM formulae commonly employed in the clinical management of PCOS, examine their therapeutic benefits, investigate their mechanism of action, active constituents, and establish the correlation between efficacy, mechanism of action, and active constituents. MATERIALS AND METHODS We conducted a comprehensive search on PubMed, Web of Science, and China national knowledge infrastructure (CNKI) using the following keywords: "Polycystic Ovary Syndrome", "Traditional Chinese Medicine Decoctions", "Traditional Chinese Medicine formulae", "Traditional Chinese Medicine", "Clinical Observation", "Mechanism", "Treatment", "Pharmacology", and various combinations of these terms. From January 1, 2006 until October 7, 2023, (inclusive). RESULTS This paper summarized the clinical effectiveness, mechanism of action, and active components of 8 TCM formulae for the treatment of PCOS. Our research indicates that TCM formulae can potentially treat PCOS by enhancing the levels of hyperandrogenism and other endocrine hormones, decreasing insulin resistance and hyperinsulinemia, and controlling chronic low-grade inflammation, among other modes of action. In addition, we found an association between epigenetics and TCM formulae for the treatment of PCOS. CONCLUSION TCM formulae have specific advantages in the treatment of Polycystic Ovary Syndrome (PCOS). They achieve therapeutic benefits by targeting several pathways and connections, attracting considerable interest and playing a vital role in the treatment of PCOS. TCM formulae can be used as an adjunctive therapy for the treatment of PCOS.
Collapse
Affiliation(s)
- Li-Wen Fu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zu Gao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ning Zhang
- Department of Reproduction and Genetics, Shandong Province Hospital of Traditional Chinese, Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Nan Yang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hui-Yan Long
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ling-Yuan Kong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiu-Yang Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
5
|
Chen J, Lin C, Huang X, Bian W. Baicalin enhances proliferation and reduces inflammatory-oxidative stress effect in H 2O 2-induced granulosa cells apoptosis via USP48 protein regulation. BMC Complement Med Ther 2024; 24:42. [PMID: 38245760 PMCID: PMC10799411 DOI: 10.1186/s12906-024-04346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Oxidative stress and inflammation can lead to apoptosis of ovarian granulosa cells (GCs), resulting in ovulation disorders and infertility. Baicalin (BAI) promotes cell proliferation and reduces inflammation and oxidative stress. However, the mechanisms by which BAI treatment affects oxidative stress and inflammation in GCs remain incompletely understood. METHODS KGN cells were treated with hydrogen peroxide (H2O2) to analyze the effect of oxidative stress on GCs in vitro. Subsequently, H2O2-stimulated KGN cells were treated with BAI. The levels of GSH-Px, CAT, and SOD were measured using an activity assay kit. The levels of MDA, IL-1β, IL-6, IL-8, and TNF-α were measured by ELISA. Proliferation, apoptosis, and mRNA and protein levels were measured using the CCK8, flow cytometry, qRT-PCR, and western blotting. RESULTS H2O2 treatment inhibited KGN cell proliferation and promoted apoptosis, accompanied by increased oxidative stress and inflammation. BAI promoted proliferation, inhibited apoptosis, and reduced oxidative stress and inflammation in H2O2-stimulated KGN cells. BAI treatment promoted USP48 protein expression, and USP48 knockdown abrogated the protective effects of BAI, indicating that USP48 is a downstream mediator of BAI. CONCLUSION BAI treatment enhanced cell proliferation and ameliorated oxidative stress and inflammation by enhancing USP48 protein expression. BAI, which is used clinically and as a dietary supplement, may alleviate oxidative stress-induced GC injury and ovarian disorders.
Collapse
Affiliation(s)
- Jun Chen
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University; The First Affiliated Hospital of Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020, China
| | - Chuhua Lin
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University; The First Affiliated Hospital of Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020, China
| | - Xiurong Huang
- Department of Rehabilitation Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University; The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, 518020, China
| | - Wei Bian
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University; The First Affiliated Hospital of Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020, China.
| |
Collapse
|
6
|
Jung W, Choi H, Kim J, Kim J, Kim W, Nurkolis F, Kim B. Effects of natural products on polycystic ovary syndrome: From traditional medicine to modern drug discovery. Heliyon 2023; 9:e20889. [PMID: 37867816 PMCID: PMC10589870 DOI: 10.1016/j.heliyon.2023.e20889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/24/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a common endocrine disorder with a worldwide prevalence of 6-10 % of women of reproductive age. PCOS is a risk factor for cardiometabolic disorders such as type 2 diabetes, myocardial infarction, and stroke in addition to exhibiting signs of hyperandrogenism and anovulation. However, there is no known cure for PCOS, and medications have only ever been used symptomatically, with a variety of adverse effects. Drugs made from natural plant products may help treat PCOS because several plant extracts have been widely recognized to lessen the symptoms of PCOS. In light of this, 72 current studies on natural products with the potential to control PCOS were examined. By controlling the PI3K/AKT signaling pathway and decreasing NF-κB and cytokines such as tumor necrosis factor (TNF), interleukin-1 (IL-1), and interleukin-6 (IL-6), certain plant-derived chemicals might reduce inflammation. Other substances altered the HPO axis, which normalized hormones. Additionally, other plant components increased glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) levels to reduce radiation-induced oxidative stress. The other substances prevented autophagy by impairing beclin 1, autophagy-related 5 (ATG5), and microtubule-associated protein 1A/1B-light chain 3 - II (LC3- II). The main focus of this comprehensive review is the possibility of plant extracts as natural bio-resources of PCOS treatment by regulating inflammation, hormones, reactive oxygen species (ROS), or autophagy.
Collapse
Affiliation(s)
- Woobin Jung
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Hyojoo Choi
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Jimin Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Jeongwoo Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Woojin Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Indonesia
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| |
Collapse
|
7
|
Tsai YR, Liao YN, Kang HY. Current Advances in Cellular Approaches for Pathophysiology and Treatment of Polycystic Ovary Syndrome. Cells 2023; 12:2189. [PMID: 37681921 PMCID: PMC10487183 DOI: 10.3390/cells12172189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent gynecological and endocrine disorder that results in irregular menstruation, incomplete follicular development, disrupted ovulation, and reduced fertility rates among affected women of reproductive age. While these symptoms can be managed through appropriate medication and lifestyle interventions, both etiology and treatment options remain limited. Here we provide a comprehensive overview of the latest advancements in cellular approaches utilized for investigating the pathophysiology of PCOS through in vitro cell models, to avoid the confounding systemic effects such as in vitro fertilization (IVF) therapy. The primary objective is to enhance the understanding of abnormalities in PCOS-associated folliculogenesis, particularly focusing on the aberrant roles of granulosa cells and other relevant cell types. Furthermore, this article encompasses analyses of the mechanisms and signaling pathways, microRNA expression and target genes altered in PCOS, and explores the pharmacological approaches considered as potential treatments. By summarizing the aforementioned key findings, this article not only allows us to appreciate the value of using in vitro cell models, but also provides guidance for selecting suitable research models to facilitate the identification of potential treatments and understand the pathophysiology of PCOS at the cellular level.
Collapse
Affiliation(s)
- Yi-Ru Tsai
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- An-Ten Obstetrics and Gynecology Clinic, Kaohsiung City 802, Taiwan
| | - Yen-Nung Liao
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Center for Hormone and Reproductive Medicine Research, Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan
| |
Collapse
|
8
|
Luo ED, Jiang HM, Chen W, Wang Y, Tang M, Guo WM, Diao HY, Cai NY, Yang X, Bian Y, Xing SS. Advancements in lead therapeutic phytochemicals polycystic ovary syndrome: A review. Front Pharmacol 2023; 13:1065243. [PMID: 36699064 PMCID: PMC9868606 DOI: 10.3389/fphar.2022.1065243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases in women of reproductive age and features complex pathological symptoms and mechanisms. Existing medical treatments have, to some extent, alleviated the deterioration of PCOS. However, these strategies only temporarily control symptoms, with a few side effects and no preventive effect. Phytochemicals extracted from medicinal herbs and plants are vital for discovering novel drugs. In recent years, many kinds of research have proven that phytochemicals isolated from traditional Chinese medicine (TCM) and medicinal plants show significant potential in preventing, alleviating, and treating PCOS. Nevertheless, compared to the abundance of experimental literature and minimal specific-topic reviews related to PCOS, there is a lack of systematic reviews to summarize these advancements in this promising field. Under this background, we systematically document the progress of bioactive phytochemicals from TCM and medicinal plants in treating PCOS, including flavonoids, polyphenols, and alkaloids. According to the literature, these valuable phytochemicals demonstrated therapeutic effects on PCOS supported by in vivo and in vitro experiments, mainly depending on anti-inflammatory, antioxidation, improvement of hormone disorder and insulin resistance (IR), and alleviation of hyperinsulinemia. Based on the current progress, future research directions should emphasize 1) exploring bioactive phytochemicals that potentially mediate bone metabolism for the treatment of PCOS; 2) improving unsatisfactory bioavailability by using advanced drug delivery systems such as nanoparticles and antibody-conjugated drugs, as well as a chemical modification; 3) conducting in-depth research on the pathogenesis of PCOS to potentially impact the gut microbiota and its metabolites in the evolution of PCOS; 4) revealing the pharmacological effects of these bioactive phytochemicals on PCOS at the genetic level; and 5) exploring the hypothetical and unprecedented functions in regulating PCOS by serving as proteolysis-targeting chimeras and molecular glues compared with traditional small molecule drugs. In brief, this review aims to provide detailed mechanisms of these bioactive phytochemicals and hopefully practical and reliable insight into clinical applications concerning PCOS.
Collapse
Affiliation(s)
- Er-Dan Luo
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hai-Mei Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Chen
- Traditional Chinese Medicine Department, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Chengdu, China
| | - Mi Tang
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wen-Mei Guo
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao-Yang Diao
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ning-Yuan Cai
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Yang
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Chengdu, China
| | - Sha-Sha Xing
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
Zhang J, Zhang H, Xin X, Zhu Y, Ye Y, Li D. Efficacy of Flavonoids on Animal Models of Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:nu14194128. [PMID: 36235780 PMCID: PMC9571610 DOI: 10.3390/nu14194128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 12/09/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common gynecological endocrinopathies. Evidence suggest that flavonoids have beneficial effects on endocrine and metabolic diseases, including PCOS. However, high-quality clinical trials are lacking. We aimed to conduct a systematic review and meta-analysis of experimental studies to determine the flavonoids' effects in animal models of PCOS. Three electronic databases including PubMed, Scopus, and Web of Science were systematically searched from their inception to March 2022. The Systematic Review Center for Laboratory Animal Experimentation's risk of bias tool was used to assess methodological quality. The standardized mean difference was calculated with 95% confidence intervals as the overall effects. R was used for all statistical analyses. This study was registered in PROSPERO (registration number: CRD42022328355). A total of eighteen studies, including 300 animals, met the inclusion criteria. Our analyses demonstrated that, compared to control groups, flavonoid groups showed a significantly lower count of atretic follicles and cystic follicles and the count of corpus luteum was higher. A significant reduction in the luteinizing hormone (LH), LH/follicle-stimulating hormone (FSH), and free testosterone were observed in intervention groups. Nevertheless, there was no significant difference in the effects of flavonoids on the level of FSH, estradiol, and progesterone. Subgroup analyses indicated that the type of flavonoid, dose, duration of administration, and PCOS induction drug were relevant factors that influenced the effects of intervention. Current evidence supports the positive properties of flavonoids on ovarian histomorphology and hormonal status in animal models of PCOS. These data call for more randomized controlled trials and further experimental studies investigating the mechanism in more depth.
Collapse
Affiliation(s)
| | | | | | | | - Yang Ye
- Correspondence: (Y.Y.); (D.L.)
| | - Dong Li
- Correspondence: (Y.Y.); (D.L.)
| |
Collapse
|
10
|
Guo X, Xu Y, Sun J, Wang Q, Kong H, Zhong Z. Exploring the Mechanism of Wenshen Huatan Quyu Decotion for PCOS Based on Network Pharmacology and Molecular Docking Verification. Stem Cells Int 2022; 2022:3299091. [PMID: 36071733 PMCID: PMC9441343 DOI: 10.1155/2022/3299091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Objective To identify the active chemical in Wenshen Huatan Quyu Decotion (WHQD) and to explore its possible network interactions with the polycystic ovary syndrome (PCOS). Methods The Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform (TCMSP) and the Bioinformatics Analysis Tool for Molecular Mechanisms in Chinese Medicine (BATMAN-TCM) were used to decompose compound formulations, detect active chemicals and their corresponding target genes, and then convert them into UniProt gene symbols. Meanwhile, PCOS-related target genes were collected from GeneCards to construct a protein-protein interaction (PPI) network, which was further analyzed by STRING online database. Gene Ontology (GO) functional analysis was also performed afterwards to construct the component-target gene-disease network to visualize the correlation between WHQD and PCOS. We then performed an in silico molecular docking study to validate the predicted relationships. Results WHQD consists of 14 single drugs containing a total of 67 chemical components. 216 genes were predicted as possible targets. 123 of the 216 target genes overlapped with PCOS. GO annotation analysis revealed that 1968 genes were associated with biological processes, 145 with molecular functions, and 71 with cellular components. KEGG analysis revealed 146 pathways involved PPI, and chemical-target gene-disease networks suggest that PGR, AR, ADRB2, IL-6, MAPK1/8, ESR1/2, CHRM3, RXRA, PPARG, BCL2/BAX, GABRA1, and NR3C2 may be key genes for the pharmacological effects of WHQD on PCOS. Molecular docking analysis confirmed that hydrogen bonding was the main interaction between WHQD and its targets. Conclusion WHQD exerts its pharmacological effects by improving insulin sensitivity, subfertility, and hormonal imbalance, increasing ovulation rates, which in turn may increase pregnancy rates in patients with significant efficacy.
Collapse
Affiliation(s)
- Xin Guo
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Yunyi Xu
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- Department of Obstetrics and Gynecology, The Second School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, China
| | - Juan Sun
- Center for Reproductive Medicine, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Qianqian Wang
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Haibo Kong
- Center for Reproductive Medicine, Department of Pediatrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Zixing Zhong
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
11
|
Hu X, Li X, Deng P, Zhang Y, Liu R, Cai D, Xu Q, Jiang X, Sun J, Bai W. The consequence and mechanism of dietary flavonoids on androgen profiles and disorders amelioration. Crit Rev Food Sci Nutr 2022; 63:11327-11350. [PMID: 35796699 DOI: 10.1080/10408398.2022.2090893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Androgen is a kind of steroid hormone that plays a vital role in reproductive system and homeostasis of the body. Disrupted androgen balance serves as the causal contributor to a series of physiological disorders and even diseases. Flavonoids, as an extremely frequent family of natural polyphenols, exist widely in plants and foods and have received great attention when considering their inevitable consumption and estrogen-like effects. Mounting evidence illustrates that flavonoids have a propensity to interfere with androgen synthesis and metabolism, and also have a designated improvement effect on androgen disorders. Therefore, flavonoids were divided into six subclasses based on the structural feature in this paper, and the literature about their effects on androgens published in the past ten years was summarized. It could be concluded that flavonoids have the potential to regulate androgen levels and biological effects, mainly by interfering with the hypothalamic-pituitary-gonadal axis, androgen synthesis and metabolism, androgen binding with its receptors and membrane receptors, and antioxidant effects. The faced challenges about androgen regulation by flavonoids masterly include target mechanism exploration, individual heterogeneity, food matrixes interaction, and lack of clinical study. This review also provides a scientific basis for nutritional intervention using flavonoids to improve androgen disorder symptoms.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Pan Deng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, PR China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Qingjie Xu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| |
Collapse
|
12
|
Integrated Network Pharmacology and Clinical Study to Reveal the Effects and Mechanisms of Bushen Huoxue Huatan Decoction on Polycystic Ovary Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2635375. [PMID: 35600955 PMCID: PMC9122682 DOI: 10.1155/2022/2635375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/18/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023]
Abstract
Objective Bushen Huoxue Huatan Decoction (BHHD) is a classic prescription for treating polycystic ovary syndrome (PCOS). This study aims to explore the effects and possible mechanisms of BHHD on PCOS by integrating network pharmacology and clinical study. Methods The components and potential drug targets of BHHD were analysed using the TCMSP platform, and the potential pathogenesis targets for PCOS were analysed using the GeneCards and OMIM databases. Subsequently, a disease-compound-target network diagram was established to identify the targets of BHHD treatment on PCOS. In addition, protein-protein interaction analysis, KEGG pathway analysis, and Gene Ontology biological analysis were carried out to reveal the mechanisms of BHHD. To further validate the analysis, a clinical trial involving 62 PCOS patients was conducted. All patients were treated with BHHD for 3 months and the ovulation rate, anthropometric indicators, clinical symptoms, and serological indicators were measured and compared before and after treatment. Results The network pharmacology analysis showed that quercetin, luteolin, and kaempferol are the most significant active components in BHHD; STAT3, Jun, AKT1, MAPK3, MAPK1, and TP53 are the most critical drug targets; regulating hormones, reversing insulin (INS) resistance, exerting anti-inflammatory effects, and improving fertility might be the most important mechanisms of BHHD in the treatment of PCOS. After BHHD administration, the cyclic ovulation rate and the clinical symptoms including acanthosis nigricans and acne of patients were obviously improved. The serum endocrine levels of luteinising hormone (LH), LH/follicle-stimulating hormone, testosterone, dehydroepiandrosterone sulphate, insulin (INS), and area under the INS curve were evidently reversed, and the serum inflammatory factors levels including human interleukin (IL)-18, IL-16, IL-1β, IL-8, macrophage migration inhibitory factor, and human leukocyte differentiation antigen CD40 ligand were greatly reduced. Conclusion BHHD has a good therapeutic effect on PCOS, and its mechanisms may be related to regulating hormone levels, improving insulin resistance, alleviating inflammation, and promoting pregnancy.
Collapse
|
13
|
Song L, Yu J, Zhang D, Li X, Chen L, Cai Z, Yu C. Androgen Excess Induced Mitochondrial Abnormality in Ovarian Granulosa Cells in a Rat Model of Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2022; 13:789008. [PMID: 35370945 PMCID: PMC8967935 DOI: 10.3389/fendo.2022.789008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/14/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Androgen excess could profoundly lead to follicular dysplasia or atresia, and finally result in polycystic ovary syndrome (PCOS); however, the exact mechanism remains to be fully elucidated. METHODS PCOS model rats were induced by dehydroepiandrosterone, and their fertility was assessed. The ovarian granulosa cells (GCs) from matured follicles of PCOS model rats were collected and identified by immunofluorescence. The mitochondrial ultrastructure was observed by transmission electron microscope and the mitochondrial function was determined by detecting the adenosine triphosphate (ATP) content and mtDNA copy number. Besides, the expressions of respiratory chain complexes and ATP synthases in relation to mitochondrial function were analyzed. RESULTS The PCOS model rats were successfully induced, and their reproductive outcomes were obviously adverse. The GCs layer of the ovarian was apparently cut down and the mitochondrial ultrastructure of ovarian GCs was distinctly destroyed. The ATP content and mtDNA copy number of ovarian GCs in PCOS model rats were greatly reduced, and the expressions of NDUFB8 and ATP5j were significantly down-regulated without obvious deletion of mtDNA 4834-bp. CONCLUSIONS Androgen excess could damage mitochondrial ultrastructure and function of GCs in rat ovary by down-regulating expression of NDUFB8 and ATP5j in PCOS.
Collapse
Affiliation(s)
- Linyi Song
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Chinese People’s Liberation Army (PLA) Naval Medical University, Shanghai, China
- Department of Traditional Chinese Medicine, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Jin Yu
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Chinese People’s Liberation Army (PLA) Naval Medical University, Shanghai, China
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Danying Zhang
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Chinese People’s Liberation Army (PLA) Naval Medical University, Shanghai, China
| | - Xi Li
- Department of Gynecology of Traditional Chinese Medicine, Integrated Traditional Chinese and Western Medicine of Jiangsu Hospital, Chinese Academy of Medical Sciences, Nanjing, China
| | - Lu Chen
- Department of traditional Chinese and Western medicine, Zhejiang Association of Traditional Chinese Medicine, Hangzhou, China
| | - Zailong Cai
- Department of Biochemistry and Molecular Biology, Chinese People’s Liberation Army (PLA) Naval Medical University, Shanghai, China
- *Correspondence: Chaoqin Yu, ; Zailong Cai,
| | - Chaoqin Yu
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Chinese People’s Liberation Army (PLA) Naval Medical University, Shanghai, China
- *Correspondence: Chaoqin Yu, ; Zailong Cai,
| |
Collapse
|
14
|
Zhang X, You L, Zhang X, Wang F, Wang Y, Zhou J, Liu C, Qu F. Neurobehavioral alternations of the female offspring born to polycystic ovary syndrome model rats administered by Chinese herbal medicine. Chin Med 2021; 16:97. [PMID: 34600579 PMCID: PMC8487466 DOI: 10.1186/s13020-021-00512-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022] Open
Abstract
Background Chinese herbal medicine (CHM) has significant effects that improve the reproductive functions of patients with polycystic ovary syndrome (PCOS). However, the intergenerational effects of CHM on offspring and the underlying mechanism of CHM remain unclear. This study aimed to explore the effects and the underlying mechanism of CHM, specifically the Bu-Shen-Tian-Jing formula (BSTJF), on model rats with polycystic ovary syndrome (PCOS) and the neurobehavioral alterations of female offspring born to PCOS rats administered BSTJF. Methods High-performance liquid chromatography-mass spectrometry (HPLC–MS) and network pharmacology analysis were performed to identify the active ingredients and potential targets of BSTJF. Moreover, PCOS model rats were used to validate the role of BSTJF in reproduction and progeny neural development and to confirm the network pharmacological targets. Results A total of 91 constituents were characterized from BSTJF. The 20 most significant KEGG pathways and the high-frequency genes of these pathways were predicted to be putative targets of these molecules. The rat experiment showed that the downregulation of FOS protein expression in the ovarian granulosa cells of the PCOS group was reversed by BSTJF. The target residence time of the 5-week-old female offspring of the BSTJF group was higher than that of the PCOS group in the water maze experiment. Compared to the PCOS group, the changes in dendritic spine density, ultrastructure of neurons and synapses, and Gabrb1 and Grin2b protein expression levels in the hippocampus of female offspring were partially reversed in the BSTJF group. Conclusions BSTJF can effectively improve ovarian follicle development in PCOS rats and has positive effects on pubertal neurobehavioral alterations in the female offspring of these rats by reversing dendritic spine density, the ultrastructure of neurons and synapses, and the Gabrb1 and Grin2b protein expression levels in the hippocampus. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00512-4.
Collapse
Affiliation(s)
- Xian Zhang
- Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, 310006, China
| | - Lifang You
- First People's Hospital of Yuhang District, Hangzhou, 311103, Zhejiang, China
| | - Xiaohui Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fangfang Wang
- Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, 310006, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jue Zhou
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chang Liu
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310053, China
| | - Fan Qu
- Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, 310006, China.
| |
Collapse
|
15
|
Ni Z, Ding J, Zhao Q, Cheng W, Yu J, Zhou L, Sun S, Yu C. Alpha-linolenic acid regulates the gut microbiota and the inflammatory environment in a mouse model of endometriosis. Am J Reprod Immunol 2021; 86:e13471. [PMID: 34022075 DOI: 10.1111/aji.13471] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023] Open
Abstract
PROBLEM This study aims to investigate the effects of alpha-linolenic acid (ALA) on the gut microbiota (GM) and the abdominal environment in mice with endometriosis (EMS). METHODS The effects of faecal microbiota transplantation (FMT) from EMS mice on mice treated with antibiotic cocktail were conducted. The 16S rRNA sequencing and PICRUSt software were used to detect the structure and function of GM respectively. The protein levels of Claudin 4 and ZO-2 in the intestinal wall were detected using the western blotting. The level of LPS in the abdominal cavity was detected using enzyme-linked immunosorbent assay (ELISA). The content of macrophages in the abdominal cavity was detected using flow cytometry. RESULTS The exogenous supplementation of ALA could restore the abundance of Firmicutes and Bacteroidota in EMS mice. After the ALA treatment, the abundance of 125 functional pathways and 50 abnormal enzymes related to GM in EMS mice was significantly improved (p < .05). The expression of the ZO-2 protein in the intestinal wall was decreased, and the level of LPS in the abdominal cavity was significantly increased after FMT from EMS mice (p < .05). ALA could increase the expression of the ZO-2 protein in the intestinal wall of EMS mice, reduce the level of LPS in the abdominal cavity (p < .05) and reduce the aggregation of peritoneal macrophages (p < .05). CONCLUSION Alpha-linolenic acid can improve the GM, intestinal wall barrier and abdominal inflammatory environment and reduce the level of LPS in mice with EMS.
Collapse
Affiliation(s)
- Zhexin Ni
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jie Ding
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qianqian Zhao
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wen Cheng
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jin Yu
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ling Zhou
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shuai Sun
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chaoqin Yu
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
16
|
Brady K, Liu HC, Hicks JA, Long JA, Porter TE. Transcriptome Analysis During Follicle Development in Turkey Hens With Low and High Egg Production. Front Genet 2021; 12:619196. [PMID: 33815464 PMCID: PMC8012691 DOI: 10.3389/fgene.2021.619196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Low and high egg producing hens exhibit gene expression differences related to ovarian steroidogenesis. High egg producing hens display increased expression of genes involved in progesterone and estradiol production, in the granulosa layer of the largest follicle (F1G) and small white follicles (SWF), respectively, whereas low egg producing hens display increased expression of genes related to progesterone and androgen production in the granulosa (F5G) and theca interna layer (F5I) of the fifth largest follicle, respectively. Transcriptome analysis was performed on F1G, F5G, F5I, and SWF samples from low and high egg producing hens to identify novel regulators of ovarian steroidogenesis. In total, 12,221 differentially expressed genes (DEGs) were identified between low and high egg producing hens across the four cell types examined. Pathway analysis implied differential regulation of the hypothalamo-pituitary-thyroid (HPT) axis, particularly thyroid hormone transporters and thyroid hormone receptors, and of estradiol signaling in low and high egg producing hens. The HPT axis showed up-regulation in high egg producing hens in less mature follicles but up-regulation in low egg producing hens in more mature follicles. Estradiol signaling exclusively exhibited up-regulation in high egg producing hens. Treatment of SWF cells from low and high egg producing hens with thyroid hormone in vitro decreased estradiol production in cells from high egg producing hens to the levels seen in cells from low egg producing hens, whereas thyroid hormone treatment did not impact estradiol production in cells from low egg producing hens. Transcriptome analysis of the major cell types involved in steroidogenesis inferred the involvement of the HPT axis and estradiol signaling in the regulation of differential steroid hormone production seen among hens with different egg production levels.
Collapse
Affiliation(s)
- Kristen Brady
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States.,Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD, United States
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - Julie A Hicks
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - Julie A Long
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD, United States
| | - Tom E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| |
Collapse
|