1
|
Guo B, Qu X, Chen Z, Yu J, Yan L, Zhu H. Transcriptome analysis reveals transforming growth factor-β1 prevents extracellular matrix degradation and cell adhesion during the follicular-luteal transition in cows. J Reprod Dev 2022; 68:12-20. [PMID: 34690213 PMCID: PMC8872751 DOI: 10.1262/jrd.2021-071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/29/2021] [Indexed: 11/20/2022] Open
Abstract
Ovarian angiogenesis is an extremely rapid process that occurs during the transition from follicle to corpus luteum (CL) and is crucial for reproduction. It is regulated by numerous factors including transforming growth factor-β1 (TGFB1). However, the regulatory mechanism of TGFB1 in ovarian angiogenesis is not fully understood. To address this, in this study we obtained high-throughput transcriptome analysis (RNA-seq) data from bovine luteinizing follicular cells cultured in a system mimicking angiogenesis and treated with TGFB1, and identified 455 differentially expressed genes (DEGs). Quantitative real-time PCR results confirmed the differential expression patterns of the 12 selected genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified that the MAPK and ErbB pathways, cell adhesion molecules (CAMs), and extracellular matrix (ECM)-receptor interactions may play pivotal roles in TGFB1-mediated inhibition of CL angiogenesis. TGFB1 phosphorylated ERK1/2 (MAPK1/3) and Akt, indicating that these pathways may play an important role in the regulation of angiogenesis. Several genes with specific functions in cell adhesion and ECM degradation were identified among the DEGs. In particular, TGFB1-induced upregulation of syndecan-1 (SDC1) and collagen type I alpha 1 chain (COL1A1) expression may contribute to the deposition of type I collagen in luteinizing follicular cells. These results indicate that TGFB1 inhibits cell adhesion and ECM degradation processes involving ERK1/2, ErbB, and PI3K/Akt signaling pathways, and leads to inhibition of angiogenesis during the follicular-luteal transition. Our results further reveal the molecular mechanisms underlying the actions of TGFB1 in early luteinization.
Collapse
Affiliation(s)
- Binbin Guo
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaolu Qu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhe Chen
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianning Yu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Leyan Yan
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huanxi Zhu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
2
|
Yan L, Qu X, Yu J, Robinson RS, Woad KJ, Shi Z. Transforming growth factor-β1 disrupts angiogenesis during the follicular-luteal transition through the Smad-serpin family E member 1 (SERPINE1)/serpin family B member 5 (SERPINB5) signalling pathway in the cow. Reprod Fertil Dev 2021; 33:643-654. [PMID: 38600656 DOI: 10.1071/rd20325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/13/2021] [Indexed: 04/12/2024] Open
Abstract
Intense angiogenesis is critical for the development of the corpus luteum and is tightly regulated by numerous factors. However, the exact role transforming growth factor-β1 (TGFB1) plays during this follicular-luteal transition remains unclear. This study hypothesised that TGFB1, acting through TGFB receptor 1 (TGFBR1) and Smad2/3 signalling, would suppress angiogenesis during the follicular-luteal transition. Using a serum-free luteinising follicular angiogenesis culture system, TGFB1 (1 and 10ngmL-1 ) markedly disrupted the formation of capillary-like structures, reducing the endothelial cell network area and the number of branch points (P <0.001 compared with control). Furthermore, TGFB1 activated canonical Smad signalling and inhibited endothelial nitric oxide synthase (NOS3 ) mRNA expression, but upregulated latent TGFB-binding protein and TGFBR1 , serpin family E member 1 (SERPINE1 ) and serpin family B member 5 (SERPINB5 ) mRNA expression. SB431542, a TGFBR1 inhibitor, reversed the TGFB1-induced upregulation of SERPINE1 and SERPINB5 . In addition, TGFB1 reduced progesterone synthesis by decreasing the expression of steroidogenic acute regulatory protein (STAR ), cytochrome P450 family 11 subfamily A member 1 (CYP11A1 ) and 3β-hydroxysteroid dehydrogenase (HSD3B1 ) expression. These results show that TGFB1 regulates NOS3 , SERPINE1 and SERPINB5 expression via TGFBR1 and Smad2/3 signalling and this could be the mechanism by which TGFB1 suppresses endothelial networks. Thereby, TGFB1 may provide critical homeostatic control of angiogenesis during the follicular-luteal transition. The findings of this study reveal the molecular mechanisms underlying the actions of TGFB1 in early luteinisation, which may lead to novel therapeutic strategies to reverse luteal inadequacy.
Collapse
Affiliation(s)
- Leyan Yan
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; and Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaolu Qu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; and Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianning Yu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; and Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Robert S Robinson
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Kathryn J Woad
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Zhendan Shi
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; and Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; and Corresponding author
| |
Collapse
|
3
|
Talukder AK, Marey MA, Shirasuna K, Kusama K, Shimada M, Imakawa K, Miyamoto A. Roadmap to pregnancy in the first 7 days post-insemination in the cow: Immune crosstalk in the corpus luteum, oviduct, and uterus. Theriogenology 2020; 150:313-320. [PMID: 32088048 DOI: 10.1016/j.theriogenology.2020.01.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
Abstract
The first 7 days post-insemination are critical for establishment of pregnancy. The pre-ovulatory luteinizing hormone (LH) surge induces ovulation through disruption of the follicle structure that elucidates pro-inflammatory (Th1) responses. Various types of immune cells are recruited into the corpus luteum (CL) to regulate luteal angiogenesis and progesterone (P4) secretion into the circulation to establish pregnancy. The active sperm-uterine crosstalk also induces Th1 responses, mainly via Toll-like receptor (TLR) 2/4 signaling pathway in vitro. The endometrial glands serve as sensors for sperm signals, which trigger Th1 responses. Conversely, the sperm-oviduct binding generates anti-inflammatory (Th2) responses to support sperm survival until fertilization. It is well-established that embryo-maternal crosstalk starts after the embryo hatches out from the zona pellucida (ZP). However most recently, it was shown that the 16-cell stage bovine embryo starts to secrete interferon-tau (IFNT) that induces Th2 immune responses in the oviduct. Once developing embryos descend into the uterine horn, they induce Th2 responses with interferon-stimulated genes (ISGs) expression in the uterine epithelium and local immune cells mainly via IFNT release. Likewise, multiple embryos in the uterus of superovulated donor cows on D7 post-insemination induce Th2 immune responses with ISGs expressions in circulating immune cells. These findings strongly suggest that the maternal immune system reacts to the embryo during the first 7 days post-insemination to induce fetal tolerance. It became evident that the innate immunity of the developing CL, oviduct, and uterus works together to provide optimal conditions for fertilization and early embryonic development during the first 7 days post-insemination.
Collapse
Affiliation(s)
- Anup K Talukder
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan; Department of Gynecology, Obstetrics and Reproductive Health, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohamed A Marey
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan; Department of Theriogenology, Faculty of Veterinary Medicine, Damanhur University, Behera, Egypt
| | - Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, 243-0034, Japan
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Masayuki Shimada
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
| | - Akio Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan.
| |
Collapse
|
4
|
Pandey A, Medhamurthy R, Rao S, Asaithambi K. Hormonal regulation and function of an RNA helicase, Ddx5 in corpus luteum of adult Wistar rats. Reprod Biol 2019; 19:179-188. [PMID: 31151754 DOI: 10.1016/j.repbio.2019.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 11/26/2022]
Abstract
Corpus luteum (CL) is an endocrine tissue involved in regulation of reproductive cycle and early pregnancy establishment. In the present study DEAD-box helicase-5 (Ddx5), a member of the DEAD box family of RNA helicases was investigated for its expression, regulation and function in CL of Wistar rats. Ddx5 was expressed in adult rat CL. Primary cell culture from supra-ovulated ovaries were established for in vitro studies. Addition of luteinizing hormone (LH; 100 ng/ml), a luteotrophic factor in primary cell culture, decreased Ddx5 RNA expression (foldchange:0.6 ± 0.075) while prostaglandin alpha (PGF2α; 1μM), a luteolytic factor caused an increase (foldchange:2.4 ± 0.4) compared to control group. Under in vivo conditions, the administration of PGF2α or gonadotropin-releasing hormone antagonist; cetrorelix (CET) caused luteolysis as well as an increase in the protein level of Ddx5 (foldchange:1.9 ± 0.27 and 1.4 ± 0.09 viz.; p < 0.05) in CL of adult rats. LH was administered post CET treatment which suppressed Ddx5 protein expression (foldchange:0.8 ± 0.16; p < 0.05) compared to CET treated group. Further, it was observed that the expression of Ddx5 was upregulated (foldchange:1.5 ± 0.23; p < 0.05) in CL during late pregnancy compared to mid pregnancy concomitant to luteolysis in adult rats. Overall, the results suggest for the first time that Ddx5 is expressed in rat CL and regulated by luteolytic and luteotrophic factors in an inverse fashion. Further, the data significantly correlates ddx5 expression to CL regression suggesting involvement of ddx5 in luteolysis. These results suggest a significant role of Ddx5 in female reproduction biology and warrant in depth examination of the function of Ddx5 in CL.
Collapse
Affiliation(s)
- Aparamita Pandey
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.
| | - Rudraiah Medhamurthy
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Swati Rao
- School of Life Sciences, Manipal University, Manipal, India
| | - Killivalavan Asaithambi
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
5
|
Ortega Serrano PV, Guzmán A, Hernández-Coronado CG, Castillo-Juárez H, Rosales-Torres AM. Reduction in the mRNA expression of sVEGFR1 and sVEGFR2 is associated with the selection of dominant follicle in cows. Reprod Domest Anim 2016; 51:985-991. [PMID: 27650571 DOI: 10.1111/rda.12777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/02/2016] [Indexed: 11/28/2022]
Abstract
The vascular endothelial growth factor (VEGF) is essential for follicular development by promoting follicular angiogenesis, as well as for the proliferation and survival of granulosa cells. The biological effects of VEGF are regulated by two membrane receptors, VEGFR1 and VEGFR2, and two soluble receptors, sVEGFR1 and sVEGFR2, which play an antagonistic role. Thus, the objective of this study was to identify the mRNA expression pattern of total VEGF, VEGFR1, VEGFR2, sVEGFR1 and sVEGFR2 in bovine preselected follicles (PRF) and post-selected follicles (POF). The mRNA expression of these five genes in both granulosa cells (GC) and theca cells (TC) was compared between follicles classified as PRF and POF based on their diameter and on their ratio of estradiol/progesterone (E2/P4). Results showed a lower expression of mRNA of sVEGFR1 and sVEGFR2 in POF than in PRF (p < .05). Regarding the mRNA expression of total VEGF, VEGFR1 and VEGFR2, there was no difference between POF and PRF follicles (p > .05). Our results showed that the mRNA expression of VEGFR2 and sVEGFR1 was more abundant than the expression of VEGFR1 and sVEGFR2, while GC was the main source of mRNA for total VEGF. On the other hand, TC was the follicular compartment where the receptors were most expressed. Our results suggest that non-dominant follicles maintain a greater concentration of the mRNA expression of both membrane and soluble VEGF receptors. On the other hand, follicular dominance is related to a reduction in the mRNA expression of sVEGFR1 and sVEGFR2, which may favour VEGF binding with VEGFR2 and, hence, improve the follicular health and development.
Collapse
Affiliation(s)
- P V Ortega Serrano
- Universidad Autónoma Metropolitana-Xochimilco Estudiante de Posgrado en Ciencias Agropecuarias, Ciudad de México, México
| | - A Guzmán
- Laboratorio Bioquímica de la Reproducción, Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, México
| | - C G Hernández-Coronado
- Universidad Autónoma Metropolitana-Xochimilco Estudiante de Posgrado en Ciencias Agropecuarias, Ciudad de México, México
| | - H Castillo-Juárez
- Laboratorio Bioquímica de la Reproducción, Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, México
| | - A M Rosales-Torres
- Laboratorio Bioquímica de la Reproducción, Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, México
| |
Collapse
|
6
|
Mishra S, Parmar M, Chouhan V, Rajesh G, Yadav V, Bharti M, Bharati J, Mondal T, Reshma R, Paul A, Dangi S, Das B, González L, Sharma G, Singh G, Sarkar M. Expression and localization of fibroblast growth factor (FGF) family in corpus luteum during different stages of estrous cycle and synergistic role of FGF2 and vascular endothelial growth factor (VEGF) on steroidogenesis, angiogenesis and survivability of cultured buffalo luteal cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.aggene.2016.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Woad KJ, Robinson RS. Luteal angiogenesis and its control. Theriogenology 2016; 86:221-8. [PMID: 27177965 DOI: 10.1016/j.theriogenology.2016.04.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/11/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
Abstract
Angiogenesis, the formation of new blood vessels from preexisting ones, is critical to luteal structure and function. In addition, it is a complex and tightly regulated process. Not only does rapid and extensive angiogenesis occur to provide the corpus luteum with an unusually high blood flow and support its high metabolic rate, but in the absence of pregnancy, the luteal vasculature must rapidly regress to enable the next cycle of ovarian activity. This review describes a number of key endogenous stimulatory and inhibitory factors, which act in a delicate balance to regulate luteal angiogenesis and ultimately luteal function. In vitro luteal angiogenesis cultures have demonstrated critical roles for fibroblast growth factor 2 (FGF2) in endothelial cell proliferation and sprouting, although other factors such as vascular endothelial growth factor A (VEGFA) and platelet-derived growth factor were important modulators in the control of luteal angiogenesis. Post-transcriptional regulation by small non-coding microRNAs is also likely to play a central role in the regulation of luteal angiogenesis. Appropriate luteal angiogenesis requires the coordinated activity of numerous factors expressed by several cell types at different times, and this review will also describe the role of perivascular pericytes and the importance of vascular maturation and stability. It is hoped that a better understanding of the critical processes underlying the transition from follicle to corpus luteum and subsequent luteal development will benefit the management of luteal function in the future.
Collapse
Affiliation(s)
- Kathryn J Woad
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK.
| | - Robert S Robinson
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK
| |
Collapse
|
8
|
Kang BJ, Wang Y, Zhang L, Xiao Z, Li SW. bFGF and VEGF improve the quality of vitrified-thawed human ovarian tissues after xenotransplantation to SCID mice. J Assist Reprod Genet 2015; 33:281-9. [PMID: 26712576 DOI: 10.1007/s10815-015-0628-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/29/2015] [Indexed: 01/25/2023] Open
Abstract
PURPOSE The aim of this research is to study whether basic fibroblast growth factor (bFGF) alone or in combination with vascular endothelial growth factor (VEGF) could improve the quality of vitrified-thawed human ovarian tissue xenotransplanted to severe combined immune deficiency (SCID) mice. METHODS After collection and cryopreservation, thawed human ovarian tissue were cultured in vitro for 2 days and then xenografted to severe combined immune deficiency (SCID) mice for 7 days. The in vitro culture medium was separated into six groups, including (A) the blank control group, (B) the human recombinant bFGF (150 ng/ml) group, (C) the bFGF (150 ng/ml)+human recombinant VEGF (25 ng/ml) group, (D) bFGF (150 ng/ml)+VEGF (50 ng/ml) group, (E) bFGF (150 ng/ml)+ VEGF (75 ng/ml) group and (F) bFGF (150 ng/ml) + VEGF (100 ng/ml) group. In addition, eight pieces of thawed ovarian tissue were transplanted without in vitro culture, which serve as the fresh control group. The effect of transplantation was assessed by histological analysis, immunohistochemical staining for CD34, Ki-67, and AC-3 expression, and microvessel density (MVD). RESULTS There was no significant difference between the fresh and blank control group. Compared to the blank control group, the number of follicles, MVD, and rate of Ki-67-positive cells increased significantly in groups B, C, D, E, and F, while apoptosis decreased significantly. Compared to the bFGF treatment group, no significant difference appeared in group C, D, E, and F. CONCLUSIONS The administration of bFGF alone or in combination with VEGF improved the quality of postgraft human ovarian tissue, though VEGF, regardless of different concentrations, did not influence effect of bFGF.
Collapse
Affiliation(s)
- Bei-Jia Kang
- Reproductive Medical Center of West China 2nd University Hospital, Sichuan University, Ren Min Nan Lu, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yan Wang
- Reproductive Medical Center of West China 2nd University Hospital, Sichuan University, Ren Min Nan Lu, Chengdu, Sichuan, 610041, People's Republic of China
| | - Long Zhang
- Reproductive Medical Center of West China 2nd University Hospital, Sichuan University, Ren Min Nan Lu, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zhun Xiao
- Reproductive Medical Center of West China 2nd University Hospital, Sichuan University, Ren Min Nan Lu, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shang-Wei Li
- Reproductive Medical Center of West China 2nd University Hospital, Sichuan University, Ren Min Nan Lu, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
9
|
Chouhan V, Dangi S, Babitha V, Verma M, Bag S, Singh G, Sarkar M. Stimulatory effect of luteinizing hormone, insulin-like growth factor-1, and epidermal growth factor on vascular endothelial growth factor production in cultured bubaline luteal cells. Theriogenology 2015; 84:1185-96. [DOI: 10.1016/j.theriogenology.2015.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 06/21/2015] [Accepted: 06/26/2015] [Indexed: 01/11/2023]
|
10
|
Stimulatory effect of luteinizing hormone, insulin-like growth factor-1, and epidermal growth factor on progesterone secretion and viability of cultured bubaline luteal cells. Theriogenology 2014; 82:1212-23. [DOI: 10.1016/j.theriogenology.2014.07.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 11/19/2022]
|
11
|
Stimulatory effect of vascular endothelial growth factor on progesterone production and survivability of cultured bubaline luteal cells. Anim Reprod Sci 2014; 148:251-9. [DOI: 10.1016/j.anireprosci.2014.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/14/2014] [Accepted: 06/19/2014] [Indexed: 11/17/2022]
|
12
|
Mona e Pinto J, Pavanelo V, Alves de Fátima L, Medeiros de Carvalho Sousa LM, Pacheco Mendes G, Machado Ferreira R, Ayres H, Sampaio Baruselli P, Palma Rennó F, de Carvallo Papa P. Treatment with eCG Decreases the Vascular Density and Increases the Glandular Density of the Bovine Uterus. Reprod Domest Anim 2014; 49:453-62. [DOI: 10.1111/rda.12307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 02/18/2014] [Indexed: 11/27/2022]
Affiliation(s)
- J Mona e Pinto
- Department of Surgery; Faculty of Veterinary Medicine and Animal Sciences; University of São Paulo; São Paulo Brazil
| | - V Pavanelo
- Department of Surgery; Faculty of Veterinary Medicine and Animal Sciences; University of São Paulo; São Paulo Brazil
| | - L Alves de Fátima
- Department of Surgery; Faculty of Veterinary Medicine and Animal Sciences; University of São Paulo; São Paulo Brazil
| | - LM Medeiros de Carvalho Sousa
- Department of Surgery; Faculty of Veterinary Medicine and Animal Sciences; University of São Paulo; São Paulo Brazil
| | - G Pacheco Mendes
- Department of Surgery; Faculty of Veterinary Medicine and Animal Sciences; University of São Paulo; São Paulo Brazil
| | - R Machado Ferreira
- Department of Animal Reproduction; Faculty of Veterinary Medicine and Animal Sciences; University of São Paulo; São Paulo Brazil
| | - H Ayres
- Department of Animal Reproduction; Faculty of Veterinary Medicine and Animal Sciences; University of São Paulo; São Paulo Brazil
| | - P Sampaio Baruselli
- Department of Animal Reproduction; Faculty of Veterinary Medicine and Animal Sciences; University of São Paulo; São Paulo Brazil
| | - F Palma Rennó
- Department of Nutrition and Animal Production; Faculty of Veterinary Medicine and Animal Sciences; São Paulo Brazil
| | - P de Carvallo Papa
- Department of Surgery; Faculty of Veterinary Medicine and Animal Sciences; University of São Paulo; São Paulo Brazil
| |
Collapse
|
13
|
Miyamoto A, Shirasuna K, Shimizu T, Matsui M. Impact of angiogenic and innate immune systems on the corpus luteum function during its formation and maintenance in ruminants. Reprod Biol 2013; 13:272-8. [PMID: 24287035 DOI: 10.1016/j.repbio.2013.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 12/25/2022]
Abstract
The corpus luteum (CL) is formed from an ovulated follicle, and grows rapidly to secrete progesterone (P4) thereby supporting implantation and maintenance of pregnancy. It is now evident that angiogenesis is necessary to form the structure of the developing CL as well as to acquire the steroidogenic capacity to secrete large amounts of P4. It is of interest that the increases in CL size, plasma P4 concentration and luteal blood flow are occurring in parallel during the first seven days after ovulation. Angiogenic factors, such as vascular endothelial growth factor-A (VEGFA) and basic fibroblast growth factor (FGF2), play a central role in promoting cell proliferation and angiogenesis in the developing CL. Angiopoietins regulate the stability of blood vessels, which directly affects angiogenesis or angiolysis via angiogenic factors. Vasohibin-1 is a novel negative feedback regulator, which inhibits VEGF-based vasculogenesis. It became evident that the immune cells, i.e., macrophages, eosinophils and neutrophils are recruited into the CL - using the innate immune system - just after ovulation which is accompanied by bleeding. The immune cells support active angiogenesis and thus the growth of the CL. In cows, the lymphatic system, but not blood vascular system, is reconstituted during early pregnancy, and embryonic trophoblast-derived interferon tau could play a crucial role in inducing lymphangiogenesis. This novel phenomenon may support a maternal recognition of pregnancy in shifting the local systems in such a way that they ensure a long-term supply of P4 over the period of pregnancy. Overall, the current findings support the concept that several major components involved in the regulation of the CL development and maintenance overlap in stimulating steroidogenesis, angiogenesis, vascular function and the innate immune system.
Collapse
Affiliation(s)
- Akio Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan.
| | | | | | | |
Collapse
|
14
|
Shirasuna K, Shimizu T, Matsui M, Miyamoto A. Emerging roles of immune cells in luteal angiogenesis. Reprod Fertil Dev 2013; 25:351-61. [PMID: 22951090 DOI: 10.1071/rd12096] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 08/01/2012] [Indexed: 12/29/2022] Open
Abstract
In the mammalian ovary, the corpus luteum (CL) is a unique transient endocrine organ displaying rapid angiogenesis and time-dependent accumulation of immune cells. The CL closely resembles 'transitory tumours', and the rate of luteal growth equals that of the fastest growing tumours. Recently, attention has focused on multiple roles of immune cells in luteal function, not only in luteolysis (CL disruption by immune responses involving T lymphocytes and macrophages), but also in CL development (CL remodelling by different immune responses involving neutrophils and macrophages). Neutrophils and macrophages regulate angiogenesis, lymphangiogenesis, and steroidogenesis by releasing cytokines in the CL. In addition, functional polarisation of neutrophils (proinflammatory N1 vs anti-inflammatory N2) and macrophages (proinflammatory M1 vs anti-inflammatory M2) has been demonstrated. This new concept concurs with the phenomenon of immune function within the luteal microenvironment: active development of the CL infiltrating anti-inflammatory N2 and M2 versus luteal regression together with proinflammatory N1 and M1. Conversely, excessive angiogenic factors and leucocyte infiltration result in indefinite disordered tumour development. However, the negative feedback regulator vasohibin-1 in the CL prevents excessive tumour-like vasculogenesis, suggesting that CL development has well coordinated time-dependent mechanisms. In this review, we discuss the physiological roles of immune cells involved in innate immunity (e.g. neutrophils and macrophages) in the local regulation of CL development with a primary focus on the cow.
Collapse
Affiliation(s)
- Koumei Shirasuna
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | |
Collapse
|
15
|
Laird M, Woad KJ, Hunter MG, Mann GE, Robinson RS. Fibroblast growth factor 2 induces the precocious development of endothelial cell networks in bovine luteinising follicular cells. Reprod Fertil Dev 2013; 25:372-86. [DOI: 10.1071/rd12182] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 10/11/2012] [Indexed: 11/23/2022] Open
Abstract
The transition from follicle to corpus luteum represents a period of intense angiogenesis; however, the exact roles of angiogenic factors during this time remain to be elucidated. Thus, the roles of vascular endothelial growth factor (VEGF) A, fibroblast growth factor (FGF) 2 and LH in controlling angiogenesis were examined in the present study. A novel serum-free luteinising follicular angiogenesis culture system was developed in which progesterone production increased during the first 5 days and was increased by LH (P < 0.01). Blockade of signalling from FGF receptors (SU5402; P < 0.001) and, to a lesser extent, VEGF receptors (SU1498; P < 0.001) decreased the development of endothelial cell (EC) networks. Conversely, FGF2 dose-dependently (P < 0.001) induced the precocious transition of undeveloped EC islands into branched networks associated with a twofold increase in the number of branch points (P < 0.001). In contrast, VEGFA had no effect on the area of EC networks or the number of branch points. LH had no effect on the area of EC networks, but it marginally increased the number of branch points (P < 0.05) and FGF2 production (P < 0.001). Surprisingly, progesterone production was decreased by FGF2 (P < 0.01) but only on Day 5 of culture. Progesterone production was increased by SU5402 (P < 0.001) and decreased by SU1498 (P < 0.001). These results demonstrate that FGF and VEGF receptors play a fundamental role in the formation of luteal EC networks in vitro, which includes a novel role for FGF2 in induction of EC sprouting.
Collapse
|
16
|
Joseph C, Hunter MG, Sinclair KD, Robinson RS. The expression, regulation and function of secreted protein, acidic, cysteine-rich in the follicle–luteal transition. Reproduction 2012; 144:361-72. [DOI: 10.1530/rep-12-0099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The role of the tissue remodelling protein, secreted protein, acidic, cysteine-rich (SPARC), in key processes (e.g. cell reorganisation and angiogenesis) that occur during the follicle–luteal transition is unknown. Hence, we investigated the regulation of SPARC in luteinsing follicular cells and potential roles of SPARC peptide 2.3 in a physiologically relevant luteal angiogenesis culture system. SPARC protein was detected mainly in the theca layer of bovine pre-ovulatory follicles, but its expression was considerably greater in the corpus haemorrhagicum. Similarly, SPARC protein (western blotting) was up-regulated in luteinising granulosa but not in theca cells during a 6-day culture period. Potential regulatory candidates were investigated in luteinising granulosa cells: LH did not affect SPARC (P>0.05); transforming growth factor (TGF) B1 (P<0.001) dose dependently induced the precocious expression of SPARC and increased final levels: this effect was blocked (P<0.001) by SB505124 (TGFB receptor 1 inhibitor). Additionally, fibronectin, which is deposited during luteal development, increased SPARC (P<0.01). In luteal cells, fibroblast growth factor 2 decreased SPARC (P<0.001) during the first 5 days of culture, while vascular endothelial growth factor A increased its expression (P<0.001). Functionally, KGHK peptide, a SPARC proteolytic fragment, stimulated the formation of endothelial cell networks in a luteal cell culture system (P<0.05) and increased progesterone production (P<0.05). Collectively, these findings indicate that SPARC is intricately regulated by pro-angiogenic and other growth factors together with components of the extracellular matrix during the follicle–luteal transition. Thus, it is possible that SPARC plays an important modulatory role in regulating angiogenesis and progesterone production during luteal development.
Collapse
|
17
|
Shirasuna K, Nitta A, Sineenard J, Shimizu T, Bollwein H, Miyamoto A. Vascular and immune regulation of corpus luteum development, maintenance, and regression in the cow. Domest Anim Endocrinol 2012; 43:198-211. [PMID: 22560178 DOI: 10.1016/j.domaniend.2012.03.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/18/2012] [Accepted: 03/28/2012] [Indexed: 01/05/2023]
Abstract
The bovine corpus luteum (CL) is a unique, transient organ with well-coordinated mechanisms by which its development, maintenance, and regression are effectively controlled. Angiogenic factors, such as vascular endothelial growth factor A and basic fibroblast growth factor, play an essential role in promoting progesterone secretion, cell proliferation, and angiogenesis. These processes are critically regulated, through both angiogenic and immune systems, by the specific immune cells, including macrophages, eosinophils, and neutrophils, that are recruited into the developing CL. The bovine luteolytic cascade appears to be similar to that of general acute inflammation in terms of time-dependent infiltration by immune cells (neutrophils, macrophages, and T lymphocytes) and drastic changes in vascular tonus and blood flow, which are regulated by luteal nitric oxide and the vasoconstrictive factors endothelin-1 and angiotensin II. Over the period of maternal recognition of pregnancy, the maternal immune system should be well controlled to accept the semiallograft fetus. The information on the presence of the developing embryo in the genital tract is suggested to be transmitted to the ovary by both the endocrine system and the circulating immune cells. In the bovine CL, the lymphatic system, but not the blood vascular system, is reconstituted during early pregnancy, and interferon tau from the embryo could trigger this novel phenomenon. Collectively, the angiogenic and vasoactive factors produced by luteal cells and the time-dependently recruited immune cells within the CL and their interactions appear to play critical roles in regulating luteal functions throughout the life span of the CL.
Collapse
Affiliation(s)
- K Shirasuna
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Woad KJ, Hunter MG, Mann GE, Laird M, Hammond AJ, Robinson RS. Fibroblast growth factor 2 is a key determinant of vascular sprouting during bovine luteal angiogenesis. Reproduction 2012; 143:35-43. [DOI: 10.1530/rep-11-0277] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fibroblast growth factor (FGF) 2 and vascular endothelial growth factor (VEGF) A are thought to be key controllers of luteal angiogenesis; however, their precise roles in the regulation and coordination of this complex process remain unknown. Thus, the temporal and spatial patterns of endothelial network formation were determined by culturing mixed cell types from early bovine corpora lutea on fibronectin in the presence of FGF2 and VEGFA (6 h to 9 days). Endothelial cells, as determined by von Willebrand factor immunohistochemistry, initially grew in cell islands (days 0–3), before undergoing a period of vascular sprouting to display a more tubule-like appearance (days 3–6), and after 9 days in culture had formed extensive intricate networks. Mixed populations of luteal cells were treated with SU1498 (VEGF receptor 2 inhibitor) or SU5402 (FGF receptor 1 inhibitor) or control on days 0–3, 3–6 or 6–9 to determine the role of FGF2 and VEGFA during these specific windows. The total area of endothelial cells was unaffected by SU1498 treatment during any window. In contrast, SU5402 treatment caused maximal reduction in the total area of endothelial cell networks on days 3–6 vs controls (mean reduction 81%;P<0.001) during the period of tubule initiation. Moreover, SU5402 treatment on days 3–6 dramatically reduced the total number of branch points (P<0.001) and degree of branching per endothelial cell island (P<0.05) in the absence of changes in mean island area. This suggests that FGF2 is a key determinant of vascular sprouting and hence critical to luteal development.
Collapse
|
19
|
Jiemtaweeboon S, Shirasuna K, Nitta A, Kobayashi A, Schuberth HJ, Shimizu T, Miyamoto A. Evidence that polymorphonuclear neutrophils infiltrate into the developing corpus luteum and promote angiogenesis with interleukin-8 in the cow. Reprod Biol Endocrinol 2011; 9:79. [PMID: 21651784 PMCID: PMC3129584 DOI: 10.1186/1477-7827-9-79] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/08/2011] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND After ovulation in the cow, the corpus luteum (CL) rapidly develops within a few days with angiogenesis and progesterone production. CL formation resembles an inflammatory response due to the influx of immune cells. Neutrophils play a role in host defense and inflammation, and secrete chemoattractants to stimulate angiogenesis. We therefore hypothesized that neutrophils infiltrate in the developing CL from just after ovulation and may play a role in angiogenesis of the CL. METHODS AND RESULTS Polymorphonuclear neutrophils (PMN) were detected in CL tissue by Pas-staining, and interleukin-8 (IL-8, a neutrophil-specific chemoattractant) was measured in supernatant of the CL tissue culture: considerable amounts of PMNs and the high level of IL-8 were observed during the early luteal phase (days 1-4 of the estrous cycle). PMNs and IL-8 were low levels in the mid and late luteal phases, but IL-8 was increased during luteal regression. The PMN migration in vitro was stimulated by the supernatant from the early CL but not from the mid CL, and this activity was inhibited by neutralizing with an anti-IL-8 antibody, indicating the major role of IL-8 in inducing active PMN migration in the early CL. Moreover, IL-8 stimulated proliferation of CL-derived endothelial cells (LECs), and both the supernatant of activated PMNs and IL-8 stimulated formation of capillary-like structures of LECs. CONCLUSION PMNs migrate into the early CL partially due to its major chemoattractant IL-8 produced at high levels in the CL, and PMNs is a potential regulator of angiogenesis together with IL-8 in developing CL in the cow.
Collapse
Affiliation(s)
- Sineenard Jiemtaweeboon
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Koumei Shirasuna
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Akane Nitta
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Ayumi Kobayashi
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Hans-Joachim Schuberth
- Institute of Immunology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Takashi Shimizu
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Akio Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| |
Collapse
|
20
|
Garside SA, Harlow CR, Hillier SG, Fraser HM, Thomas FH. Thrombospondin-1 inhibits angiogenesis and promotes follicular atresia in a novel in vitro angiogenesis assay. Endocrinology 2010; 151:1280-9. [PMID: 20080874 DOI: 10.1210/en.2009-0686] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Thrombospondin-1 (TSP-1) is a putative antiangiogenic factor, but its role in regulating physiological angiogenesis is unclear. We have developed a novel in vitro angiogenesis assay to study the effect of TSP-1 on follicular angiogenesis and development. Intact preantral/early antral follicles dissected from 21-d-old rat ovaries were cultured for 6 d in the presence or absence of TSP-1. At the end of the culture period, angiogenic sprouting from the follicles was quantified using image analysis. Follicles were fixed and sectioned, and follicular apoptosis was assessed by immunohistochemistry for activated caspase-3 in granulosa cells. The results showed that TSP-1 inhibited follicular angiogenesis (P < 0.01) and promoted follicular apoptosis (P < 0.001) in a dose-dependent manner. To determine whether the proapoptotic activity of TSP-1 is mediated by direct effects on granulosa cells, isolated granulosa cells were cultured with TSP-1 (0, 10, 100, and 1000 ng/ml) for 48 h. Apoptosis was quantified using a luminescent caspase-3/7 assay. TSP-1 promoted apoptosis of granulosa cells in a dose-dependent manner (P < 0.05), suggesting that TSP-1 can act independently of the angiogenesis pathway to promote follicular apoptosis. These results show that TSP-1 can both inhibit follicular angiogenesis and directly induce apoptosis of granulosa cells. As such, it may have potential as a therapeutic for abnormal ovarian angiogenesis and could facilitate the destruction of abnormal follicles observed in polycystic ovary syndrome.
Collapse
Affiliation(s)
- Samantha A Garside
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | | | | | | | | |
Collapse
|
21
|
Berisha B, Meyer HHD, Schams D. Effect of prostaglandin F2 alpha on local luteotropic and angiogenic factors during induced functional luteolysis in the bovine corpus luteum. Biol Reprod 2010; 82:940-7. [PMID: 20056670 DOI: 10.1095/biolreprod.109.076752] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The essential role of endometrial prostaglandin F2 alpha (PTGF) for induction of the corpus luteum (CL) regression is well documented in the cow. However, the acute effects of PTGF on known local luteotropic factors (oxytocin [OXT] and its receptor, insulin-like growth factor [IGF] 1, and progesterone and its receptor), the principal angiogenic factor vascular endothelial growth factor (VEGF) A and the capillary destabilization factor angiopoietin (ANGPT) 2 were not thoroughly studied in detail. The aim of this study was therefore to evaluate the tissue concentration of these factors during PTGF induced luteolysis. In addition the mRNA expression of progesterone receptor (PGR), OXT receptor (OXTR), IGF1, IGFBP1, ANGPT1, and ANGPT2 was determined at different times after PTGF treatment. Cows (n = 5 per group) in the mid-luteal phase (Days 8-12, control group) were injected with the PTGF analog (cloprostenol), and CL were collected by transvaginal ovariectomy at 0.5, 2, 4, 12, 24, 48, and 64 h after injection. The mRNA expression was analyzed by quantitative real-time PCR, and the protein concentration was evaluated by enzyme immunoassay or radioimmunoassay. Progesterone concentrations, as well as mRNA expression of PGR, in CL tissue were significantly down-regulated by 12 h after PTGF. Tissue OXT peptide and OXTR mRNA decreased significantly after 2 h, followed by a continuous decrease of OXT mRNA. IGF1 and VEGFA protein already decreased after 0.5 h. By contrast, the IGFBP1 mRNA was up-regulated significantly after 2 h to a high plateau. ANGPT2 protein and mRNA significantly increased during the first 2 h, followed by a steep decrease after 4 h. The acute decrease of local luteotropic activity and acute changes of ANGPT2 and VEGFA suggest that modulation of vascular stability may be a key component in the cascade of events leading to functional luteolysis.
Collapse
Affiliation(s)
- Bajram Berisha
- Physiology Weihenstephan, Technical University Munich, Freising, Germany.
| | | | | |
Collapse
|
22
|
Robinson RS, Woad KJ, Hammond AJ, Laird M, Hunter MG, Mann GE. Angiogenesis and vascular function in the ovary. Reproduction 2009; 138:869-81. [DOI: 10.1530/rep-09-0283] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ovarian function is dependent on the establishment and continual remodelling of a complex vascular system. This enables the follicle and/or corpus luteum (CL) to receive the required supply of nutrients, oxygen and hormonal support as well as facilitating the release of steroids. Moreover, the inhibition of angiogenesis results in the attenuation of follicular growth, disruption of ovulation and drastic effects on the development and function of the CL. It appears that the production and action of vascular endothelial growth factor A (VEGFA) is necessary at all these stages of development. However, the expression of fibroblast growth factor 2 (FGF2) in the cow is more dynamic than that of VEGFA with a dramatic upregulation during the follicular–luteal transition. This upregulation is then likely to initiate intense angiogenesis in the presence of high VEGFA levels. Recently, we have developed a novel ovarian physiological angiogenesis culture system in which highly organised and intricate endothelial cell networks are formed. This system will enable us to elucidate the complex inter-play between FGF2 and VEGFA as well as other angiogenic factors in the regulation of luteal angiogenesis. Furthermore, recent evidence indicates that pericytes might play an active role in driving angiogenesis and highlights the importance of pericyte–endothelial interactions in this process. Finally, the targeted promotion of angiogenesis may lead to the development of novel strategies to alleviate luteal inadequacy and infertility.
Collapse
|
23
|
Woad KJ, Hammond AJ, Hunter M, Mann GE, Hunter MG, Robinson RS. FGF2 is crucial for the development of bovine luteal endothelial networks in vitro. Reproduction 2009; 138:581-8. [DOI: 10.1530/rep-09-0030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of the corpus luteum requires angiogenesis, and involves the complex interplay between factors such as vascular endothelial growth factor A (VEGFA), fibroblast growth factor 2 (FGF2) and platelet-derived growth factor (PDGF). However, the relative role of these factors remains to be elucidated. This study used a new physiologically relevant mixed luteal cell culture system to test the hypotheses that: a) FGF2 and VEGFA are critical for bovine luteal angiogenesis; and b) local luteal PDGF signalling stimulates the formation of endothelial networks. Cells were treated with receptor tyrosine kinase inhibitors against VEGFA (SU1498), FGF2 (SU5402) or PDGF (AG1295) activity. After 9 days in culture, endothelial cells were immunostained for von Willebrand factor (VWF) and quantified by image analysis. Highly organised intricate endothelial networks were formed in the presence of exogenous VEGFA and FGF2. The inhibition of FGF2 activity reduced the total area of VWF staining versus controls (>95%; P<0.001). Inhibition of VEGF and PDGF activity reduced the endothelial network formation by more than 60 and 75% respectively (P<0.05). Progesterone production increased in all treatments from day 1 to 7 (P<0.001), and was unaffected by FGF2 or PDGF receptor kinase inhibition (P>0.05), but was reduced by the VEGF receptor inhibitor on days 5 and 7 (P<0.001). In conclusion, this study confirmed that VEGF signalling regulates both bovine luteal angiogenesis and progesterone production. However, FGF2 was crucial for luteal endothelial network formation. Also, for the first time, this study showed that local luteal PDGF activity regulates bovine luteal endothelial network formation in vitro.
Collapse
|
24
|
Robinson RS, Hammond AJ, Wathes DC, Hunter MG, Mann GE. Corpus luteum-endometrium-embryo interactions in the dairy cow: underlying mechanisms and clinical relevance. Reprod Domest Anim 2008; 43 Suppl 2:104-12. [PMID: 18638111 DOI: 10.1111/j.1439-0531.2008.01149.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Conception rates of dairy cows are currently declining at an estimated 1% every year. Approximately, 35% of embryos fail to prevent luteolysis during the first three weeks of gestation. Interactions between the corpus luteum, endometrium and embryo are critical to the successful establishment of pregnancy and inadequacies will result in the mortality of the embryo. For example, as little as a one day delay in the post-ovulatory rise of progesterone has serious consequences for embryo development and survival. Recently, we found that LH support, degree of vascularization and luteal cell steroidogenic capacity were not the major factors responsible for this luteal inadequacy, but are nevertheless essential for luteal development and function. Progesterone acting on its receptor in the endometrium stimulates the production of endometrial secretions on which the free-living embryo is dependent. However, their exact composition and effects of inadequate progesterone remains to be determined. The embryo is recognized through its secretion of interferon tau (IFNT), which suppresses luteolytic pulses of prostaglandin F(2 alpha). In the cow, it is most likely that IFNT inhibits oxytocin receptor up-regulation directly and does not require the prior inhibition of oestrogen receptor alpha (ESR1). Unravelling the precise luteal-endometrium and embryo interactions is essential for us to understand pregnancy establishment and development of strategies to reverse the declining fertility of dairy cows.
Collapse
Affiliation(s)
- R S Robinson
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics, UK.
| | | | | | | | | |
Collapse
|
25
|
Guerra DM, Giometti IC, Price CA, Andrade PB, Castilho AC, Machado MF, Ripamonte P, Papa PC, Buratini J. Expression of fibroblast growth factor receptors during development and regression of the bovine corpus luteum. Reprod Fertil Dev 2008; 20:659-64. [DOI: 10.1071/rd07114] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 04/21/2008] [Indexed: 11/23/2022] Open
Abstract
There is evidence that fibroblast growth factors (FGFs) are involved in the regulation of growth and regression of the corpus luteum (CL). However, the expression pattern of most FGF receptors (FGFRs) during CL lifespan is still unknown. The objective of the present study was to determine the pattern of expression of ‘B’ and ‘C’ splice variants of FGFRs in the bovine CL. Bovine CL were collected from an abattoir and classed as corpora hemorrhagica (Stage I), developing (Stage II), developed (Stage III) or regressed (Stage IV) CL. Expression of FGFR mRNA was measured by semiquantitative reverse transcription-polymerase chain reaction and FGFR protein was localised by immunohistochemistry. Expression of mRNA encoding the ‘B’ and ‘C’ spliced forms of FGFR1 and FGFR2 was readily detectable in the bovine CL and was accompanied by protein localisation. FGFR1C and FGFR2C mRNA expression did not vary throughout CL lifespan, whereas FGFR1B was upregulated in the developed (Stage III) CL. FGFR3B, FGFR3C and FGFR4 expression was inconsistent in the bovine CL. The present data indicate that FGFR1 and FGFR2 splice variants are the main receptors for FGF action in the bovine CL.
Collapse
|